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Cluster solutions for the
Schrödinger-Poisson-Slater problem

around a local minimum of the potential

David Ruiz and Giusi Vaira

Abstract
In this paper we consider the system in R

3

(0.1)
{ −ε2Δu + V (x)u + φ(x)u = up,

−Δφ = u2,

for p ∈ (1, 5). We prove the existence of multi-bump solutions whose
bumps concentrate around a local minimum of the potential V (x).
We point out that such solutions do not exist in the framework of the
usual Nonlinear Schrödinger Equation.

1. Introduction and main results

Recently, many papers have studied different versions of the Schrödinger-
Poisson-Xα problem:

(1.1) − �
2

2m
Δu+ V (x)u+

(
u2 �

1

4π|x|
)
u = |u|p−1u, x ∈ R

3,

where V (x) is an external potential and p ∈ (1, 5). The interest on this
problem stems from the Slater approximation of the exchange term in the
Hartree-Fock model, see [24]. In this framework, p = 5/3; however, other
exponents have been used in different approximations, which have been
referred to as Xα type approximations, see [21]. From another point of
view, this equation has been proposed in [5] under the name of Schrödinger-
Maxwell equation. For more information on the relevance of this model and
its deduction, we refer to [5, 6, 7, 8, 21, 25].
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From the mathematical point of view, problem (1.1) presents an interac-
tion between two different kind of nonlinear terms: a repulsive nonlocal term
and an attractive local term. This, and related problems, have been much
studied recently by using variational methods, see [3, 4, 9, 10, 16, 17, 22, 23,
26, 27].

If we define φu = u2 � 1
4π|x| and ε2 = �2

2m
, the equation (1.1) can be

rewritten as a system in the form:

(1.2)

{ −ε2Δu+ V (x)u+ φ(x)u = |u|p−1u,
−Δφ = u2.

In this paper we are concerned with the semiclassical limit for the sys-
tem (1.2), namely the problem of finding non trivial solutions (u, φ) ∈
H1(R3) ×D1,2(R3) and studying their asymptotic behavior as ε → 0. Such
solutions are usually referred to as semiclassical states.

A large number of papers study the semiclassical states for the following
nonlinear Schrödinger equation

(1.3) −ε2Δu+ V (x)u = |u|p−1u, x ∈ R
3.

For the problem (1.3) spike solutions are found around the critical points of
the potential V , see for instance [1, 20]. These are solutions that concentrate
(as ε→ 0) around a unique point, and tend to zero uniformly outside a ball
centered at this point. For instance in [20] Yanyan Li proved the existence
of positive solutions concentrating near C1 stable critical points of V . More-
over, Li proves also the existence of multi-bump solutions, namely, solutions
concentrating around different critical points of V . Other results in this
direction were given in [13, 14]. However, in the previous papers the bumps
are well separated and so the interactions among the different bumps are
neglected.

In [15] the authors prove the existence of multi-bump solutions for (1.3)
whose bumps tend to a point of local maximum of V . Here the interactions
among the bumps do play a role. In a certain sense, each bump has an
attractive effect on the other bumps, whereas the potential has a repulsive
effect (around its local maximum). The multi-bump solution exists due to
a balance between the two effects. The authors also show that multi-bump
solutions do not exist around nondegenerate local minima. In this case, both
effects would be attractive and no balance could be possible.

With respect to (1.2), the existence of single-bump solutions near critical
points of V has been recently proved, see [19]. Other concentration phenom-
ena have been proved for this system even with the absence of the potential,
see [11, 12].
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In this paper we prove the existence of positive solutions with K intera-
cting bumps around local minima of the potential V . These solutions appear
because of the effect of the Poisson term in our equation. Indeed, the Poisson
term implies a repulsive effect among the bumps which balance the attractive
effect of the potential V .

We assume that:

(V1) V has a local strict minimum point in P0, namely there exists a
bounded open set U such that P0 ∈ U and

V (P0) = min
x∈Ū

V (x) < V (P ), ∀ P ∈ U \ {P0}

Up to a translation and dilatation, we can assume P0 = 0, V (0) = 1.

(V2) V (x) = 1 + |g(x)|α for any x ∈ U , where g : U → R is a C2,1 function
and α > 2.

In particular, there holds:

(V2’) V (x) ≤ 1 + C|x|α for x ∈ U and some C > 0.

(V3) inf V > 0.

Observe that under the above conditions the local minimum must be
degenerate. We point out that conditions (V1)-(V2’)-(V3) are sufficient for
most of our arguments. We need condition (V2) for technical reasons, to be
able to rule out possible undesired oscillations of the derivatives of V near 0.

Let us denote by U the unique positive radial solution in H1(R3) of the
problem (see [18]):

(1.4) −ΔU + U = Up.

Our main result is the following.

Theorem 1.1. Assume that V satisfies (V1), (V2) and (V3) and suppose
p ∈ (1, 5). Then for any positive integer K ∈ Z, there exists εK > 0 such
that for any ε < εK there exists a positive solution uε of (1.2) with K bumps
converging to 0. More specifically, there exists Qε

1, . . . Q
ε
k ∈ R

3 such that:

1. Qε
i → 0, ε−1|Qε

i | → +∞ as ε→ 0.

2. Defining ũε(x) = uε(εx), we have that ũε(x) =
∑K

i=1 U(x − ε−1Qε
i ) +

o(1), as ε→ 0.

The proof uses a singular perturbation method, based on a Lyapunov-
Schmidt reduction. We point out that the distance between the bumps is
different from that of the multi-bump solutions of [15], and this is caused
because the different balance involving the Poisson term.
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The paper is organized as follows. Section 2 is devoted to some notations
and to the variational setting of the problem. In Section 3 we introduce the
Lyapunov-Schmidt reduction and solve the auxiliary equation. Finally, in
Section 4 the reduced functional is studied, solving the bifurcation equation.
This completes the proof of Theorem 1.1.

2. Preliminaries

As mentioned in the introduction, we denote by U the unique positive radial
solution in H1(R3) of the problem

−ΔU + U = Up.

This solution satisfies the following decay property (see [18]):

lim
r→+∞

U(r)rer = C > 0, lim
r→+∞

U ′(r)
U(r)

= −1, r = |x|.
for some constant C.

The function U is a critical point of the C2 functional I0 : H1(R3) → R

defined as

(2.1) I0(u) =
1

2
‖u‖2 − 1

p+ 1

∫
R3

|u|p+1 dx,

where ‖ · ‖ denotes the usual norm in H1(R3). Furthermore the solution U
is nondegenerate (up to translations). More specifically, there holds:

Lemma 2.1. Define the operator Q : H1(R3) → R as

Q[ν] := I ′′0 (U)[ν, ν] =

∫
R3

[
|∇ν|2 + ν2 − pUp−1ν2

]
dx.

We denote Uk = ∂U
∂xk

. Then there hold:

• Q[U ] = (1 − p)‖U‖2 < 0.

• Q[ ∂U
∂xj

] = 0, j = 1, 2, 3.

• Q[ν] ≥ C‖ν‖2 for all ν⊥U, ν⊥ ∂U
∂xj

, j = 1, 2, 3.

For a proof see for instance [2, Lemma 8.6].
It is convenient to make the change of variable x �→ εx and so we arrive

to the problem:

(2.2) −Δu + V (εx)u+ ε2φuu = up, u ∈ H1(R3), u > 0.

Here φu ∈ D1,2(R3), and∫
R3

|∇φu|2 dx =

∫
R3

φuu
2 dx =

∫
R3

∫
R3

u2(x)u2(y)

4π|x− y| dx dy.
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In general, given f ∈ L6/5, the solution of the problem −Δφ = f belongs
to D1,2(R3) and:∫

R3

∇φ · ∇ψ =

∫
R3

fψ ≤ ‖ψ‖L6‖f‖L6/5 ≤ C‖ψ‖D1,2‖f‖L6/5 .

Therefore, ‖φ‖D1,2 ≤ C‖f‖6/5.

Moreover, it is well-known (see [5], for example) that the solutions of (2.2)
correspond to positive critical points of the C2 functional Iε : H1(R3) → R,

(2.3) Iε(u) =

=
1

2

∫
R3

[|∇u|2 + V (εx)u2
]
dx+

ε2

4

∫
R3

φu(x)u
2 dx− 1

p + 1

∫
R3

|u|p+1 dx.

Finally, let us compute the derivatives of V . By using (V2)

(2.4)
Vxi

(x) = α|g(x)|α−2g(x)gxi
(x),

Vxi xj
(x) = α(α− 1)|g(x)|α−2gxi

(x)gxj
(x) + α|g(x)|α−2g(x)gxi xj

(x).

In particular V ∈ C2, γ(U), where γ = min{1, α− 2}.

3. The Lyapunov-Schmidt reduction.The auxiliary equ-
ation

In this section we begin the Lyapunov-Schmidt for the proof of Theorem 1.1.
This will be made around an appropriate set of “approximating solutions”.
For any K ∈ N, we define

Λε =
{
P ∈ R

3K : |Pi − Pj | ≥ ε
2−α
α+1

+δ, i �= j, V (εPi) ≤ 1 + ε
3α

α+1
−δ, εPi ∈ U

}
where δ > 0 is chosen small enough so that 3α

α+1
− δ > 2 (this is possible

since α > 2). Observe that 2−α
α+1

+ δ < 0 and Λε is not empty for ε small
enough.

Fix P = (P1, . . . , PK) ∈ Λε. Setting zPi
(x) = U(x − Pi), we define the

manifold of “approximate solutions”:

Z =
{
zP(x) =

K∑
i=1

zPi
(x) : P ∈ Λε

}
.

This section is devoted to the proof of the next result:

Proposition 3.1. Assume that V satisfies (V1), (V2) and (V3) and suppose
p ∈ (1, 5). Then for any positive integer K ∈ Z, there exists εK > 0 such
that for any ε < εK there exists a positive solution uε of (2.2), and zε ∈ Z
such that ‖uε − zε‖ = O(ε2).
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It is easy to check that Proposition 3.1 implies Theorem 1.1.
The proof uses a Lyapunov-Schmidt reduction. For every z ∈ Z, we

define W = Wz,ε = (TzZ)⊥ and P : H1(R3) →W the orthogonal projection
onto W . Our approach is to find a pair z ∈ Z, w ∈ W , ‖w‖ = O(ε2), such
that I ′ε(z + w) = 0. Equivalently:

(3.1)

⎧⎨
⎩

a) PI ′ε(z + w) = 0,

b) (I − P )I ′ε(z + w) = 0.

The first equation above is called auxiliary equation, and the second one
receives the name of bifurcation equation.

Our intention now is to find a solution w ∈W of the auxiliary equation
for any z ∈ Z. We begin with some estimates:

Proposition 3.2. There exists C = C(K) > 0 such that for all ε > 0 small
and any P ∈ Λε, we have

(3.2) ‖I ′ε(zP)‖ ≤ Cε2.

Proof. Taking into account that zPi
are solutions of (1.4), we have:

I ′ε(zP)[v] =

∫
R3

[V (εx) − 1]zPv dx︸ ︷︷ ︸
(I)

+ ε2

∫
R3

φzPzPv dx︸ ︷︷ ︸
(II)

−
∫

R3

[
|zP|p −

K∑
i=1

zp
Pi

]
v dx

︸ ︷︷ ︸
(III)

Let us evaluate separately the various terms. The second term can be easily
estimated (see Section 2):

(II) ≤ ‖zP‖3 · ‖v‖ ≤ C K ‖v‖.(3.3)

For (I), it suffices to estimate∫
R3

[V (εx) − 1]zPi
v dx≤

∫
R3

[V (εx)−V (εPi)]zPi
v dx︸ ︷︷ ︸

(A)

+

∫
R3

[V (εPi) − 1]zPi
v dx︸ ︷︷ ︸

(B)

.

By the definition of Λε, we get that (B) = o(ε2). Let us estimate (A) by
splitting the integral in two parts:∫

R3

[V (εx) − V (εPi)]zPi
v dx =

∫
|x−Pi|>ε−1

[V (εx) − V (εPi)]zPi
v dx

+

∫
|x−Pi|<ε−1

[V (εx) − V (εPi)]zPi
v dx.
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Since V is bounded in L∞, we use Hölder estimate and the change y = x−Pi,
to conclude∫
|x−Pi|>ε−1

[V (εx)−V (εPi)]zPi
v dx ≤C

(∫
|y|>ε−1

U2(y) dy
)1/2

‖v‖L2 = o(εM)‖v‖L2

for any M > 0, thanks to the exponential decay of U .
Observe that if |x − Pi| < ε−1, εPi belongs to U and d(εx,U) ≤ 1. We

use a Taylor expansion:∫
|x−Pi|<ε−1

|V (εx) − V (εPi)|zPi
|v| dx ≤(3.4)

≤
∫

R3

(
ε|∇V (εPi)| |x− Pi| + Cε2|x− Pi|2

)
zPi

|v| dx.

Again by the exponential decay of U , ‖ |x − Pi|mzPi
‖L2 is uniformly

bounded for any m > 0. So it suffices to estimate |∇V (εPi)|.
Recall that εPi ∈ Λε, and so V (εPi) = 1 + |g(εPi)|α ≤ 1 + ε

3α
α+1

−δ.
By (2.4),

|Vxi
(x)| ≤ C|g(x)|α−1 ≤ Cε(

3α
α+1

−δ)α−1
α .

Observe that 3α
α+1

− δ > 2 > α
α−1

. Therefore, ∇V (εPi) = o(ε).

Finally we consider (III). These estimates have been done in [15]; we

sketch here the proof for the sake of completeness. Let us define ρε = ε
2−α
α+1

+δ

and divide R
3 in K + 1 regions:

Ωi = {x ∈ R
3 : 2|x− Pi| ≤ ρε} for i = 1 . . .K, Ω0 = R

3 \ (∪K
i=1Ωi

)
.

We now use the C1,σ regularity of the function f(u) = up, where σ =
min{1, p− 1}:∫

Ωj

∣∣∣∣(
K∑

i=1

zPi

)p

− zp
Pj

−
∑
i�=j

zp
Pi

∣∣∣∣ |v| dx
≤
∫

Ωj

[
pzp−1

Pj

(∑
i�=j

zPi

)
+ C
(∑

i�=j

zPi

)1+σ

+
∑
i�=j

zp
Pi

]
|v| dx

≤ C

∫
Ωj

(∑
i�=j

zPi

)
|v| dx.

The last inequality is due to the fact that in Ωj , zPi
≤ 1. Indeed, defining

ρε = ε
2−α
α+1

+δ and using the exponential decay of U , we have∫
Ωj

z2
Pi

(x) dx ≤
∫

2|x|>ρε

U2(y) dy ≤ C

∫
2r>ρε

e−2y dr = Ce−ρε .
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On the other hand,

∫
Ω0

∣∣∣( K∑
i=1

zPi

)p

−
K∑

i=1

zp
Pi

∣∣∣ |v| ≤ C

∫
Ω0

K∑
i=1

zp
Pi
|v|,

∫
Ω0

z2p
Pi

(x) dx ≤
∫

2|x|>ρε

U2p(y) dy ≤ Ce−pρε .

This concludes the estimate (III). �
Now we are concerned with the invertibility of I ′′ε (zP) onW = (TzP(Z))⊥.

First we observe that TzPZ is spanned by the functions żi,j := ∂U
∂xj

(x− Pi),

with i = 1, . . . , K and j = 1, 2, 3. Recall that P denotes the orthogonal
projection onto W ; me decompose: W = A⊕ B where

A = 〈{PzPi
}i=1...K〉 and B = (A⊕ TzPZ)⊥

Proposition 3.3. For ε small and any P ∈ Λε, PI
′′
ε (zP) : W → W is

invertible and ‖[PI ′′ε (zP)]−1‖ ≤ C̄.

The above result follows directly from the following lemma (see [2]):

Lemma 3.4. For all ε > 0 sufficiently small there exist two positive con-
stants C1, C2 such that

(a) I ′′ε (zP)[u, u] ≤ −C1‖u‖2, for all u ∈ A;

(b) I ′′ε (zP)[u, u] ≥ C2‖u‖2, for all u ∈ B.

Proof. Let be u ∈ A. Then

u =

K∑
i=1

λiPzPi
, λi ∈ R, i = 1, . . . , K.

For i = 1, . . . , K, PzPi
are orthogonal to TzP(Z). Hence we can write

PzPi
= zPi

− ψi, i = 1, . . . , K

where ψi are given by

ψi =
∑
l, j
l �=i

(zPi
, żl,j)

żl,j

||żl,j||2
.

The functions żl,j satisfy −Δżl,j + żl,j = pzp−1
Pl

żl,j . Since for i �= l, |Pi−Pl| →
+∞ as ε → 0, after an integration by parts, we get (zPi

, żl,j) = o(1) as ε→ 0.
This implies ‖ψi‖ = o(1) as ε → 0 for i = 1, . . . , K.
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We now apply the bilinear form given by I ′′ε (zP) to obtain

I ′′ε (zP)[u, u] = I ′′ε (zP)
[ K∑

i=1

λizPi
,

K∑
i=1

λizPi

]
︸ ︷︷ ︸

(I)

+ I ′′ε (zP)
[ K∑

i=1

λiψi,

K∑
i=1

λiψi

]
︸ ︷︷ ︸

(II)

+2 I ′′ε (zP)
[ K∑

i=1

λizPi

K∑
i=1

λiψi

]
︸ ︷︷ ︸

(III)

.

We observe that I ′′ε (zP) maps bounded sets onto bounded sets, then since
zP is bounded

(II) ≤ ‖I ′′ε (zP)‖
K∑

i=1

λ2
i ‖ψi‖2 ≤ C

K∑
i=1

λ2
i ‖ψi‖2 = o(1).

In the same way we obtain

(II) ≤ ‖I ′′ε (zP)‖
K∑

i=1

λ2
i ‖ψi‖2 ≤ C

K∑
i=1

λ2
i ‖ψi‖ = o(1).

Furthermore, by making simple computations one finds

(I) =

K∑
i=1

λ2
i

(∫
R3

[|∇zPi
|2 + z2

Pi
− pzp+1

Pi
] dx
)

+
K∑

i=1

λ2
i

(∫
R3

[V (εx) − 1]z2
Pi
dx
)

︸ ︷︷ ︸
(A)

+ 2
∑
i�=j

λiλj

(∫
R3

[∇zPi
∇zPj

+ V (εx)zPi
zPj

] dx
)

︸ ︷︷ ︸
(B)

+ ε2

∫
R3

φzP

( K∑
i=1

λizPi

)2

dx

︸ ︷︷ ︸
(C)

+ 2ε2

∫
R3

φ̃ · zP
( K∑

i=1

λizPi

)
dx

︸ ︷︷ ︸
(D)

− p

∫
R3

[∣∣∣ K∑
i=1

zPi

∣∣∣p−1( K∑
i=1

λizPi

)2

−
K∑

i=1

λ2
i z

p+1
Pi

]
dx

︸ ︷︷ ︸
(E)

where φ̃ solves −Δφ̃ =
(∑K

i=1 λizPi

)
zP.
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Reasoning as in the proof of Proposition 3.2, we obtain that (A) = o(1),
(B) = o(1), (C) = o(1), (D) = o(1). Moreover

(E) ≤ C(λi)

∫
R3

[
|zP|p+1 −

K∑
i=1

zp+1
Pi

]
dx.

Then (E) = o(1) as ε→ 0 (see Proposition 3.2). At the end

I ′′ε (zP)[u, u] =
K∑

i=1

λ2
i I

′′
0 (zPi

)[zPi
, zPi

] + o(1).

Therefore, using Lemma 2.1 we have, for ε small, that

I ′′ε (zP)[u, u] ≤ (1 − p)

K∑
i=1

λ2
i ‖zPi

‖2 < −C1 < 0.

So I ′′ε (zP) is negative definite on A. We now prove that I ′′ε (zP) is positive
definite on B.

Choose an arbitrary u ∈ B. For simplicity, assume that ‖u‖ = 1. We
denote by φ̂ the solution of −Δφ̂ = zPu. Since zP and u are bounded, it is
easy to see that, for ε small enough,

ε2

∫
R3

[
φzPu

2 + 2φ̂zPu
]
dx =

∫
R3

[V (εx) − 1]u2dx = o(1).

Then

I ′′ε (zP)[u, u] =

∫
R3

[
|∇u|2 + V (εx)u2 + ε2φzPu

2 + 2ε2φ̂zPu− pzp−1
P u2

]
dx

=

∫
R3

[|∇u|2 + u2 − pzp−1
P u2

]
dx+ o(1).

As done in Proposition 3.2 it can be proved that

∫
R3

zp−1
P u2dx =

∫
R3

K∑
i=1

zp−1
Pi

u2dx+ o(1).

Hence

I ′′ε (zP)[u, u] =

∫
R3

[
|∇u|2 + u2 − p

K∑
i=1

zp−1
Pi

u2
]
dx+ o(1).(3.5)

We need to estimate the integral in (3.5). In order to do this, we use the
following technical result:
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Claim: for ε small there exists R ∈ (ε θ
2 , 1

2
εθ
)
, with θ = 2−α

α+1
+ δ < 0, such

that

(3.6)

K∑
i=1

∫
R<|x−Pi|<R+1

[|∇u|2 + u2] dx < 4ε−θ.

To prove this we remark that from ‖u‖ = 1 it follows

K∑
i=1

∑
R∈(ε

θ
2 , 1

2
εθ)

∫
R<|x−Pi|<R+1

[|∇u|2 + u2] dx ≤ 1 R ∈ N.

Since, for ε small, the above sum has more than εθ

4
summands, then, it is

always possible to choose R ∈ N, R ∈ (ε θ
2 , 1

2
εθ
)

such that the claim holds.

Let us fix R such that (3.6) is satisfied and define the smooth cut-off
functions χi : R → [0, 1], i = 1, . . . , K by setting

χi(x) :=

⎧⎪⎨
⎪⎩

1 |x− Pi| < R

0 |x− Pi| > R+ 1

|∇χi(x)| ≤ 2 ∀ x ∈ R
3.

Define also

χ0(x) = 1 −
K∑

i=1

χi(x).

Then we can decompose u =
∑K

i=0 ui where ui = uχi. From (3.6) it follows
that for i �= j (ui, uj) = o(1). Thus

1 = ‖u‖2 =

K∑
i=0

‖ui‖2 + o(1).

Using again (3.6), we obtain that (zPi
, uj) = o(1) for i > 0, i �= j. Since

u ∈ B we have (zPi
, u) = o(1). Then for i = 1, . . . , K

(zPi
, u) =

K∑
j=0

(zPi
, uj) = (zPi

, ui) + o(1).

Hence (zPi
, ui) = o(1). Finally, for i = 1, . . . , K, since u⊥żi,j, reasoning as

above, we find also (żi,j, ul) = o(1) for all i, j, l.
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By using the above properties and Lemma 2.1 we obtain

I ′′ε (zP)[u, u] =

∫
R3

[
|∇u|2 + u2 − p

K∑
i=1

zp−1
Pi

u2
]
dx+ o(1)

=

K∑
i=1

∫
R3

[|∇ui|2 + u2
i − pzp−1

Pi
u2

i

]
dx+ ‖u0‖2 + o(1)

≥ C
K∑

i=1

‖ui‖2 + ‖u0‖2 + o(1)

≥ C2

( K∑
i=0

‖ui‖2
)

+ o(1)

≥ C2 > 0.

�

With this estimates in hand we can now solve the auxiliary equation.
Consider z = zP ∈ Z fixed, and define

Bε =
{
u ∈ W : ‖u‖ ≤ 2C̄‖I ′ε(z)‖

}
,

where C̄ is the positive constant given by Proposition 3.3. So, the solutions
of the auxiliary equations are fixed points of the map Sε : W → W

Sε(w) = w − [PI ′′ε (z)]−1[PI ′ε(z + w)].

It is easy to check that ‖Sε(0)‖ ≤ C̄‖I ′ε(z)‖. We now compute the derivative
of Sε:

S ′
ε(w)[v]=v−[PI ′′ε (z)]−1PI ′′ε (z+w)[v]=[PI ′′ε (z)]−1(PI ′′ε (z)−PI ′′ε (z + w)) [v].

Now observe that I ′′ε is uniformly continuous in bounded sets, so

‖PI ′′ε (z + w) − PI ′′ε (z)‖ → 0 (ε→ 0)

uniformly in z ∈ Z and w ∈ Bε (recall Proposition 3.2).

This implies that ‖S ′
ε(w)‖ = o(1) for any w ∈ Bε. Therefore, Sε is

a contraction and, by using the mean value theorem, Sε(Bε) ⊂ Bε. We
make use of the Banach contraction theorem to find a unique fixed point
w = wε,z ∈ Bε of Sε. Moreover one has

(3.7) ‖wε,z‖ ≤ 2C̄‖I ′ε(z)‖ ≤ Cε2
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4. The reduced functional

In this section we will find a solution for the bifurcation equation among the
set of solutions of the auxiliary equation, which is:

Z̄ = {z + wε,z : z ∈ Z, wε,z solves (3.1)(a), and satisfies (3.7)} .
By the Implicit Function Theorem it is easy to check that Z̄ is a C1

manifold. Moreover, it is well-known (see [2], for example) that Z̄ is a
natural constraint for Iε for ε small. In other words, critical points of Iε|Z̄ are
solutions of the bifurcation equation (3.1) (b), and hence solutions of (2.2).

So, let us define the reduced functional as the restriction of the func-
tional Iε to the natural constraint Z̄, namely Φε : Λε → R, Φε(P) =
Iε(zP + wε,zP), and we look for critical points of Φε. Using the informa-
tion on ‖wε,zP‖, we will be able to find an expansion of Φε(P).

First of all, since I ′′ε maps bounded sets onto bounded sets, we have

Φε(P) = Iε(zP) + I ′ε(zP)[wε,zP] +O(‖wε,P‖2).

Using Proposition 3.2 and (3.7) we deduce

(4.1) Φε(P) = Iε(zP) +O(ε4).

So we have to compute Iε(zP). Preliminary lemmas are in order.

Lemma 4.1. For β = 1, 2 and F : R
3 → R such that (1+|y|β+1)F ∈ L1∩L∞

set

Ψβ[F ](x) =

∫
R3

1

|x− y|βF (y) dy.

Then there exist two positive constants C = C(β, F ) and C ′ = C ′(β, F ) such
that

(4.2)

∣∣∣∣Ψβ[F ] − C

|x|β
∣∣∣∣ ≤ C ′

|x|β+1
, ∀ x �= 0.

For a proof see [11]. Now, thanks to the the exponential decay of U the
following estimate holds (see Lemma 2.1 of [15]):

Lemma 4.2. For ε sufficiently small and P ∈ Λε, we have∫
R3

zp
Pi
zPj

dx = (η + o(1))e−|P1−P2|

where

η =

∫
R3

Up(x)e−x1 dx > 0.
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We are now in position to find an expansion of Iε(zP).

Proposition 4.3. For any P = (P1, . . . , PK) ∈ Λε and ε > 0 sufficiently
small we have

(4.3) Iε(zP) = C0 + ε2C1 + C2

K∑
i=1

V (εPi) + C3ε
2
∑
i�=j

1

|Pi − Pj| + o(ε
3α

α+1
−δ)

where

C0 = K ·
(

1

2

∫
R3

|∇U |2 dx− 1

p+ 1

∫
R3

Up+1 dx

)
,

C1 =
K

4

∫
R3

U2(x)U2(y)

|x− y| dx dy,

C2 =
1

2

∫
U2 dx,

and C3 is a positive constant given by Lemma 4.1, which depends only on U .

Proof. We compute

Iε(zP) =

K∑
i=1

Iε(zPi
) +
∑
i�=j

∫
R3

[∇zPi
∇zPj

+ V (εx)zPi
zPj

]
dx

+
ε2

4

∑
i�=j

∫
R3

φzPi
z2

Pj
dx+

ε2

2

∑
l,i�=j

∫
R3

φi,jz
2
l dx

+
ε2

4

∑
i�=j

∫
R3

φzPzPi
zPj

dx− 1

p+ 1

∫
R3

[
|zP|p+1 −

K∑
i=1

|zPi
|p+1
]
dx

=

K∑
i=1

Iε(zPi
) +
∑
i�=j

∫
R3

zp
Pi
zPj
dx+

ε2

4

∑
i�=j

∫
R3

φzPi
z2

Pj
dx

+
ε2

2

∑
l,i�=j

∫
R3

φi,jz
2
l dx+

ε2

4

∑
i�=j

∫
R3

φzPzPi
zPj

dx

− 1

p+ 1

∫
R3

[
|zP|p+1 −

K∑
i=1

|zPi
|p+1
]
dx+ o(ε

3α
α+1

−δ).

Here φi,j are the solutions of −Δφi,j = zPi
zPj

, i �= j. Let us evaluate
separately the various terms.

Claim: There holds:

(4.4) Iε(zPi
) = C̃0 + ε2C̃1 + C2V (εPi) + o(ε

3α
α+1

−δ)



Cluster solutions for the Schrödinger-Poisson-Slater problem 267

where

C̃0 =
1

2

∫
R3

|∇U |2dx− 1

p+ 1

∫
R3

|U |p+1dx, C̃1 =
1

4

∫
R3

φUU
2dx,

C2 =
1

2

∫
R3

U2dx.

It suffices to estimate:∫
R3

[V (εx) − V (εPi)]U
2(x− Pi) dx.

First, we split this integral expression in two terms∫
R3

[V (εx) − V (εPi)]z
2
Pi
dx =

∫
|x−Pi|>ε−τ

[V (εx) − V (εPi)]z
2
Pi
dx

+

∫
|x−Pi|<ε−τ

[V (εx) − V (εPi)]z
2
Pi
dx,

for some positive constant τ to be determined. Since V is bounded in L∞,
we use the change y = x− Pi, and the exponential decay of U to conclude∫

|x−Pi|>ε−τ

[V (εx) − V (εPi)]z
2
Pi
dx ≤ C

∫
|y|>ε−τ

U2(y) dy = o(εM)

for any positive M .

We use a Taylor expansion:

(4.5)

∣∣∣∣
∫
|x−Pi|<ε−τ

[V (εx) − V (εPi) − ε∇V (εPi) · (x− Pi) ] z2
Pi

∣∣∣∣ ≤
≤ ε2

2
max{‖D2V (ξ)‖ : |ξ − εPi| < ε1−τ}

∫
R3

|x− Pi|2z2
Pi
dx.

By using the radial symmetry of U ,∫
|x−Pi|<ε−τ

∇V (εPi) · (x− Pi)U(x− Pi)
2 = 0.

So, it suffices to estimate ‖D2V (ξ)‖ for |ξ − εPi| < ε1−τ . First, observe
that if τ < 1 and ε is small enough, ξ ∈ U .

Moreover, by the definition of Λε, V (εPi) = 1 + |g(εPi)|α ≤ 1 + ε
3α

α+1
−δ.

From this and (2.4) we have that

|Vxi xj
(εPi)| ≤ C|g(x)|α−2 ≤ Cε

α−2
α ( 3α

α+1
−δ).
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On the other hand, since V ∈ C2,γ (recall, γ = min{1, α− 2}):∣∣Vxi xj
(ξ) − Vxi xj

(εPi)
∣∣ ≤ Cεγ(1−τ).

Therefore,

|Vxi xj
(ξ)| ≤ Cεmin{α−2

α ( 3α
α+1

−δ), γ(1−τ)}.

By direct computation, 2 + α−2
α

(
3α

α+1
− δ
)
> 3α

α+1
− δ. Moreover, 2 + 1 =

3 > 3α
α+1

and 2 +α− 2 = α > 3α
α+1

. Then, we can choose τ > 0 small enough

such that 2 + γ(1 − τ) > 3α
α+1

− δ. This concludes the proof of the claim.

We now continue the estimates of the remaining terms. From Lemma 4.2

(4.6)

∫
R3

zp
Pi
zPj

dx = (η + o(1))e−|Pi−Pj | = o(εM)

for any M > 0. Now, by using the notations of Lemma 4.1, we have

φzPi
=

1

4π
Ψ1[U

2](x− Pi).

If i �= j, by (4.2)∫
R3

φzPi
z2

Pj
dx =

1

4π

∫
R3

Ψ1[U
2](x− Pi)U

2(x− Pj) dx

= C3

∫
R3

1

|x− Pi|U
2(x− Pj) dx+O(1)

∫
R3

1

|y + Pj − Pi|2U
2(y) dx

= C3Ψ1(U
2)|Pi − Pj | +O(1)|Pi − Pj|−2.

From the definition of Λε and since α > 2, |Pi −Pj |−2 = o(ε
3α

α+1
−δ). Further-

more ∫
R3

φzPzPi
zPj

dx ≤ C

∫
R3

zPi
zPj

dx = o(εM) (i �= j).

and, consequently,∫
R3

φi,jz
2
Pi
dx = −

∫
R3

φi,jΔφzPi
= −
∫

R3

Δφi,j φzPi
=

∫
R3

φzPi
zPi
zPj

dx = o(εM)

for any M > 0. Since P ∈ Λε, we have that for i �= j

ε2

4

∫
R3

φzPi
z2

Pj
dx = C3

ε2

|Pi − Pj|+ε
2O(|Pi−Pj |−2) = C3

ε2

|Pi − Pj|+o(ε
3α

α+1
−δ).

Finally, arguing as in Proposition 3.2, we obtain

(4.7)

∫
R3

[
|zP|p+1 −

K∑
i=1

|zPi
|p+1
]
dx = o(εM)

for any M > 0. All previous estimates imply the expansion (4.3). �
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From (4.1) and (4.3) we have the following expansion for the reduced
functional

(4.8) Φε(P) = C0 + ε2C1 +C2

K∑
i=1

V (εPi) +C3ε
2
∑
i�=j

1

|Pi − Pj| + o(ε
3α

α+1
−δ).

Proposition 4.4. For ε sufficiently small, the following minimization pro-
blem

(4.9) min {Φε(P) : P ∈ Λε}
has a solution Pε ∈ Λε.

Proof. Since Φε(P) is continuous in P in a compact set, the minimization
problem has a solution. Let Φε(P

ε) be the minimum of Φε where Pε is in
the closure of the set Λε. We prove by energy comparison that Pε is not on
the boundary of Λε. In order to do this, first we obtain an upper bound for
Φε(P

ε). Let us choose

P 0
j = ε

2−α
α+1Xj

where Xj , j = 1, . . . , K are the K vortices of K−polygon centered at 0
with |Xi −Xj| = 1, i �= j.
Then for ε small it is clear that εP 0

j ∈ U . Moreover

|P 0
i − P 0

j | = ε
2−α
α+1 |Xi −Xj|

and
V (εP 0

j ) ≤ 1 + C|εP 0
j |α ≤ 1 + Cε

3α
α+1 .

Therefore, P0 = (P 0
1 , . . . , P

0
K) ∈ Λε. Hence by (4.8) we obtain

(4.10) Φε(P
ε) = min

P∈Λε

Φε(P) ≤ Φε(P
0) ≤ C0 + ε2C1 +KC2 + C3ε

3α
α+1 .

If now Pε is such that |P ε
i − P ε

j | = ε
2−α
α+1

+δ for some i �= j, then

(4.11) Φε(P
ε) ≥ C0 + ε2C1 +KC2 + C3ε

3α
α+1

−δ.

If, instead, Pε is such that V (εP ε
i ) = 1 + ε

3α
α+1

−δ for some i, then

(4.12) Φε(P
ε) ≥ C0 + ε2C1 +KC2 + C2ε

3α
α+1

−δ.

But both (4.11) and (4.12) are in contradiction with (4.10).

We remark that we have not considered the case εPε ∈ ∂U , because this

would be in contradiction with V (εP ε
j ) ≤ 1 + ε

3α
α+1

−δ for ε small. �
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