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Construction of multi-soliton solutions
for the L2-supercritical gKdV

and NLS equations

Raphaël Côte, Yvan Martel and Frank Merle

Abstract

Multi-soliton solutions, i.e. solutions behaving as the sum of N
given solitons as t→ +∞, were constructed for the L2 critical and sub-
critical (NLS) and (gKdV) equations in previous works (see [23], [16]
and [20]). In this paper, we extend the construction of multi-soliton
solutions to the L2 supercritical case both for (gKdV) and (NLS)
equations, using a topological argument to control the direction of
instability.

1. Introduction

1.1. The generalized KdV equation

We consider the generalized Korteweg-de Vries equations:

(gKdV) ut + (uxx + up)x = 0, (t, x) ∈ R× R,

where p ≥ 2 is an integer. See Section 3.1 for more general nonlinearities.
Recall that the Cauchy problem for (gKdV) in the energy space H1 has

been solved by Kenig, Ponce and Vega [14]: for all u0 ∈ H1(R), there exist
T = T (‖u0‖H1) > 0 and a solution u ∈ C([0, T ], H1(R)) to (gKdV) satisfying
u(0) = u0, unique in some sense. Moreover, if T1 denotes the maximal time
of existence for u, then either T1 = +∞ (global solution) or T1 < ∞ and
then ‖u(t)‖H1 →∞ as t ↑ T1 (blow-up solution).
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For such solutions, the mass and energy are conserved:∫
u2(t) =

∫
u2(0) (L2 mass),(1.1)

E(u(t)) = 1
2

∫
u2
x(t)−

1
p+ 1

∫
up+1(t) = E(u(0)) (energy).(1.2)

Now, we define Q ∈ H1, Q > 0 the unique solution (up to translations) to

Qxx +Qp = Q, i.e. Q(x) =
(

p+ 1
2 cosh2(p−1

2 x)

) 1
p−1

.

Let Qc0(x) = c
1
p−1
0 Q(√c0x) and let

Rc0,x0(t, x) = c
1
p−1
0 Q(

√
c(x− c0t− x0))

be the family of soliton solution of the (gKdV) equation.
It is well-known that the stability properties of a soliton Rc0,x0 depend

on the sign of d
dc

∫
Q2
c |c=c0. Since

∫
Q2
c = c

5−p
2(p−1)

∫
Q2, we distinguish the

following three cases:

• For p < 5 (L2 subcritical case), solitons are stable and asymptotically
stable in H1 in some suitable sense: see Cazenave and Lions [3], Wein-
stein [30] , Grillakis, Shatah and Straus [12], for orbital stability, and
Pego and Weintein [27], Martel and Merle [17] for asymptotic stability.
• In the L2 critical case, i.e. p = 5, solitons are unstable, and blow up

occur for a large class of solutions initially arbitrarily close to a soliton,
see Martel and Merle [18], [19].
• In the case p > 5 (L2 supercritical case), solitons are unstable (see Gril-

lakis, Shatah and Straus [12] and Bona, Souganidis and Strauss [2]).

Now, we focus on multi-soliton solutions. Given 2N parameters defin-
ing N solitons with different speeds,

(1.3) 0 < c1 < · · · < cN , x1, . . . xN ∈ R,

we call multi-soliton a solution u(t) to (gKdV) such that

(1.4) lim
t→+∞

∥∥∥∥ u(t)−
N∑
j=1
Rcj ,xj(t)

∥∥∥∥
H1

= 0.

Let us recall known results on multi-solitons:

• For p = 2 and 3 (KdV and mKdV), multi-solitons are well-known to
exist for any set of parameters (1.3), as a consequence of the inverse
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scattering method. Moreover, these special explicit solutions describe
the elastic collision of the solitons (see e.g. Miura [24]).
• In the L2-subcritical and critical cases, i.e. for (gKdV) with p ≤ 5 (or

for some more general nonlinearities under the stability assumption
d
dc

∫
Q2
c |c=cj > 0 for all j), Martel [16] constructed multi-solitons for

any set of parameters (1.3). The proof of this result follows the strat-
egy of Merle [23] (compactness argument) and relies on monotonicity
properties developed in [17] (see also [21]). Recall that Martel, Merle
and Tsai [21] proved stability and asymptotic stability of a sum of N
solitons for large time for the subcritical case. A refined version of the
stability result of [21] shows that for a given set of parameters, there
exists a unique multi-soliton soliton satisfying (1.4), see Theorem 1
in [16].

In the present paper, we extend the multi-soliton existence result to the
L2-supercritical case, i.e., in a situation where solitons are known to be
unstable.

Theorem 1 (Existence of multi-solitons for L2-supercritical (gKdV)). Let
p > 5. Let 0 < c1 < · · · < cN and x1, . . . , xN ∈ R. There exist T0 ∈ R,
C, σ0 > 0, and a solution u ∈ C([T0,∞), H1) to (gKdV) such that

∀t ∈ [T0,∞),
∥∥∥∥ u(t)−

N∑
j=1
Rcj ,xj(t)

∥∥∥∥
H1
≤ Ce−σ3/2

0 t.

Remark 1. As in the subcritical case, the proof of Theorem 1 is based on a
compactness argument and on some large time uniform estimates, however,
it also involves an additional topological argument to control an instable
direction of the linearized operator around each Qcj . The proof relies de-
cisively on the introduction of L2 eigenfunctions of the linearized operator,
constructed by Pego and Weinstein [26] by ODE techniques. Note that
in [26], the existence of such eigenfunctions for Qc0 is proved to be equiva-
lent to d

dc

∫
Q2
c |c=c0 < 0.

It is possible that other methods of construction work for some range of
parameters 0 < c1 < · · · < cN , but due to the instable directions, the use
of such a topological argument is probably necessary to treat the general
case (1.3).

Finally, note that the solution u(t) of Theorem 1 belongs to Hs, and that
the convergence to ∑Nj=1Rcj ,xj(t) holds in Hs, for any s ≥ 1 (see Proposi-
tion 5 of [16]).

We refer to Section 3.1 for a similar existence result for (gKdV) equations
with general nonlinearities.
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1.2. The non linear Schrödinger equations

Now we turn to the case of the non linear Schrödinger equations:

(NLS) iut + Δu+ |u|p−1u = 0, (t, x) ∈ R×R
d, u(t, x) ∈ C,

where p > 1, for any space dimension d ≥ 1. Concerning the local well-
posedness of the Cauchy problem in H1, we refer to Ginibre and Velo [10].
Recall that H1 solutions satisfy the conservation laws

∫
|u|2(t) =

∫
|u0|2, Im

∫
(ū∇u)(t) = Im

∫
ū0∇u0,

1
2

∫
|∇u(t)|2 − 1

p+ 1

∫
|u|p+1(t) =

1
2

∫
|∇u0(t)|2 − 1

p+ 1

∫
|u0|p+1.

Consider the radial positive solution Q ∈ H1(Rd) to

(1.5) ΔQ+Qp = Q,

which is the unique positive solution of this equation up to translations.
We refer to [9], [1] and [15] for classical existence and uniqueness results on
equation (1.5). Given v0, x0 ∈ Rd, γ0 ∈ R and c0 > 0, the function

Rc0,γ0,v0,x0(t, x) = c
1
p−1
0 Q(

√
c0(x− v0t− x0))ei(

1
2v0·x− 1

4‖v0‖2t+c0t+γ0)

is a soliton solution to (NLS), moving on the line x = x0 + v0t.

We recall the following classical results (for any d ≥ 1):

• For 1 < p < 1 + 4/d, (L2 subcritical case) Cazenave and Lions [3]
proved that solitons are orbitally stable in H1. Multi-solitons (defined
in a similar way as for (gKdV)) were constructed in this setting by
Martel and Merle [20].

• In the L2 critical case, p = 1 + 4/d, solitons are unstable, however
multi-solitons were constructed by Merle [23], as a consequence of the
construction of special solutions of (NLS) blowing up in finite time at
N prescribed points.

• For p ∈ (1 + 4
d
, d+2
d−2) (for d = 1, 2, p > 1 + 4

d
): solitons are unstable

(see [12]). Recall that p = d+2
d−2 corresponds to the critical Ḣ1 case.

We claim the following analogue of Theorem 1 in the context of the L2

supercritical (NLS) equation.
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Theorem 2 (Multi-solitons for L2 supercritical (NLS)). Let p ∈ (1+ 4
d
, d+2
d−2)

(p > 1+ 4
d

for d = 1, 2). Let c1, . . . , cN > 0, γ1, . . . , γN ∈ R, x1, . . . , xN ∈ Rd,
and v1, . . . , vN ∈ Rd be such that

∀k �= j, vk �= vj.
Then there exist T0 ∈ R, C, σ0 > 0, and a solution u ∈ C([T0,∞), H1)
to (NLS) such that

∀t ∈ [T0,∞),
∥∥∥∥u(t)−

N∑
j=1
Rcj ,γj ,vj ,xj(t)

∥∥∥∥
H1
≤ Ce−σ3/2

0 t.

Remark 2. The condition on p means that the problem is L2 supercritical
but Ḣ1 subcritical (for d ≥ 3). In the present paper, we do not treat the Ḣ1

critical case – recall that solitons then have only algebraic decay.
The proof of Theorem 2 is completely similar to the one of Theorem 1, see

Section 3.2. Note that similarly to the (gKdV) case, we need eigenfunctions
for the linearized operator around Q. For the (NLS) case, see Weinstein [29],
Grillakis [11] and Schlag [28].

In Section 1.3, we present an outline of the proof of Theorem 1. A
complete proof of Theorem 1 is given in Section 2. Next, extensions of this
result to (gKdV) equations with general nonlinearities are presented without
proof in Section 3.1. Finally, a sketch of the proof of Theorem 2 is given in
Section 3.2. In the Appendix, we gather the proof of two technical lemmas.

1.3. Outline of proof of Theorem 1

For simplicity, we consider only positive solitons and pure power nonlinear-
ities for (gKdV). The proof follows a similar initial strategy as in the works
of Merle [23] or Martel [16]. Set

Rj(t, x) = Rcj ,xj(t, x), R(t, x) =
N∑
j=1
Rj(t, x),

and consider a sequence Sn → +∞.
In the subcritical case ([16] and [20]), one considers the sequence (un)

of solutions to (gKdV) such that un(Sn) = R(Sn). The goal is then to
obtain backwards uniform estimates on un(t) − R(t) on some time interval
t ∈ [T0, Sn], where T0 does not depend on n. From these estimates, one can
construct the multi-soliton soliton by compactness arguments. To obtain the
uniform estimates, one uses monotonicity properties of local conservation
laws and coercivity property of the Hessian of the energy around a soliton:

Lv = −vxx − pQp−1v + v.
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Indeed, in the subcritical case, it is well-known (see [30]) that (Lv, v) ≥
λ‖v‖2H1 (λ > 0) provided that (v,Q) = (v,Qx) = 0. These two directions
are then controlled by modulation with respect to scaling and translation.

In the supercritical case, one cannot obtain uniform estimates in the
same way, since the previous property of L fails. It is known that (L·, ·)
is positive definite up to the directions Q

p+1
2 and Qx; the direction Qx can

still be handled using modulation in the translation parameter, but the
even direction Q

p+1
2 cannot be controled by the scaling parameter as for the

subcritical case (this is of course related to the instable nature of the soliton).
At this point, we need the L2 eigenfunctions Z± of the operator L∂x:

L(Z±x ) = ±e0Z±, e0 > 0,

constructed by Pego and Weinstein [26]. Following Duyckaerts and Merle [5],
we prove that (L·, ·) is positive definite up to the directions Z± and Qx (see
Lemma 1 in the present paper). The direction Z− being in some sense a sta-
ble direction, it does not create any difficulty. For the instable direction Z+,
we do need an extra parameter, which cannot be controlled by a scaling
argument. Thus, instead of considering the final data un(Sn) = R(Sn), as
in [16], we look at solutions un to (gKdV) with final data:

un(Sn) = R(Sn)+
∑
j,±

b±j,nZ
±
j , where Z±j (t, x) = c

1
p−1Z±(√cj(x−cjt−xj)),

and bn = (b±j,n)j=1,...N ;± belongs to some small neighborhood of 0 in R2N . A
topological argument then allows us to select, for all n, a value of bn so that
a uniform estimate of ‖un(t)−R(t)‖H1 holds on some interval [T0, Sn].

2. Proof of Theorem 1

2.1. Preliminary results

Consider the operator

Lv = −vxx − pQp−1v + v.

For p > 5, it is known from the work of Pego and Weinstein [26] that
the operator ∂xL has two eigenfunctions Y + and Y − (related by Y −(x) =
Y +(−x)) such that

(LY ±)x = ±e0Y ±, where e0 > 0.

In contrast with the (NLS) case (see references in section 3.2), the existence
of Y ± is not obtained by variational arguments, but by sharp ODE tech-
niques. Note that [26] provides a complete description of the spectrum of ∂xL
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in L2 for any p > 1 ; in particular, the existence of such eigenfunctions re-
lated to ±e0 with e0 > 0 is proved to be equivalent to super criticality (i.e.
p > 5 in the present case).

Next, we observe that Z± = LY ± are eigenfunctions of L∂x (adjoint
to −∂xL). Indeed,

L(Z±x ) = ±e0Z±.
The functions Z± are normalized so that ‖Z±‖L2 = 1. Moreover, we re-
call from [26] (standard ODE arguments) that Z±, Y ± ∈ S (R) and have
exponential decay, along with their derivatives. Let η0 > 0 such that

∀x ∈ R, |Z+(x)|+ |Z−(x)|+ |Z+
x (x)| + |Z−x (x)| ≤ Ce−η0|x|.

Following [5] (concerning the (NLS) case), we claim the following coer-
civity property of L (for f, g ∈ L2, (f, g) =

∫
fg denotes the scalar product

in L2).

Lemma 1. There exists λ > 0 such that

∀v ∈ H1, (Lv, v) ≥ λ‖v‖2H1 − 1
λ

(
(v, Z+)2 + (v, Z−)2 + (v,Qx)2

)
.

Proof. The proof is similar to the one of [5, Lemma 5.2]. It is given here
for the reader’s convenience.

First we recall the following well-known result.

Claim. There exists ν > 0 such that

(2.1) ∀v ∈ H1, (Lv, v) ≥ ν‖v‖2H1 − 1
ν

(
(v,Qx)2 + (v,Q

p+1
2 )2
)
.

Indeed, Qx and Q
p+1

2 are two eigenfunctions for L, namely

LQx = 0 and LQ
p+1

2 = μ0Q
p+1

2 , where μ0 = 1−
(
p+ 1

2

)2
< 0.

The claim then follows from Sturm-Liouville theory.
To prove the Lemma, it suffices to show that

(2.2) if (v, Z+) = (v, Z−) = (v,Qx) = 0 then (Lv, v) ≥ λ‖v‖2H1.

Let v satisfy the orthogonality conditions in (2.2) and decompose the func-
tions v, Y ± L2 orthogonaly in Span(Qx, Q

p+1
2 )⊥ and Span(Qx, Q

p+1
2 ) (the

notation ⊥ is here related to L2 orthogonality).

v = w + αQ
p+1

2 , Y + = y+ + βQx + γQ
p+1

2 , Y − = y− + δQx + ηQ
p+1

2 .

By the symmetry Y +(−x) = Y −(x) and uniqueness of the orthogonal de-
composition, note that δ = −β, η = γ and y+(−x) = y−(x).
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We claim that the functions y+, y− are linearly independent. Indeed,
decompose into even and odd parts

y+ = ye + yo, y− = ye − yo.
As Y ±, the functions y±, ye and yo have exponential decay, along with their
derivatives.

Let us prove that ye �= 0 and yo �= 0 ; we observe from (LY +)x = e0Y +

that

(Lye)x + (Lyo)x − μ0γ(Q
p+1

2 )x = e0ye + e0yo + e0βQx + e0γQ
p+1

2 , i.e.

(Lye)x = e0(yo + βQx)− μ0γ(Q
p+1

2 )x, (Lyo)x = e0(ye + γQ
p+1

2 ).

If yo = 0, then ye = 0 and γ = 0, hence β = 0, and thus Y + = Y − = 0, which
is a contradiction. Now, if we assume ye = 0, by (Lyo)x = e0(ye + γQ

p+1
2 )

and
∫
Q
p+1

2 �= 0, we obtain γ = 0. Thus, from 0 = (Lye)x = e0(yo + βQx),
we get yo = 0 and β = 0, so that Y + = Y − = 0, a contradiction. From
the property ye �= 0 and yo �= 0, one deduces that ay+ + by− = 0 implies
a = b = 0, hence y+ and y− are linearly independent.

We now go back to the proof of coercivity. Note that

(LY ±, Y ±) = ±e−1
0 (LY ±, (LY ±)x) = 0.

We compute

0 = (v, Z+) = (v, LY +) = (Lv, Y +) = (Lw, y+) + αμ0γ‖Q
p+1

2 ‖2L2,

0 = (v, Z−) = (v, LY −) = (Lv, Y −) = (Lw, y−) + αμ0γ‖Q
p+1

2 ‖2L2,

0 = (LY +, Y +) = (Ly+, y+) + γ2μ0‖Q
p+1

2 ‖2L2 ,

0 = (LY −, Y −) = (Ly−, y−) + γ2μ0‖Q
p+1

2 ‖2L2 .

Hence
(2.3)

(Lv, v) = (Lw,w) + μ0α
2‖Q p+1

2 ‖2L2 = (Lw,w)− (Lw, y+)(Lw, y−)√
(Ly+, y+)

√
(Ly−, y−)

.

Consider

a = sup
ω∈Span(y+,y−)\{0}

∣∣∣∣ (Lω, y+)√
(Lω, ω)(Ly+, y+)

· (Lω, y−)√
(Lω, ω)(Ly−, y−)

∣∣∣∣.
Recall (L·, ·) is positive definite on Span(Qx, Q

p+1
2 )⊥ ; applying Cauchy-

Schwarz inequality to each of the two terms of the product above, we find
a ≤ 1. Furthermore, if a = 1, there exists ω �= 0 such that these two
Cauchy-Schwarz inequalities are actually equalities, but this is not possible
since y+ and y− are independent.
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Therefore, we have proved that a < 1. Using L orthogonal decomposition
on Span(Qx, Q

p+1
2 )⊥, we also obtain that for all ω ∈ Span(Qx, Q

p+1
2 )⊥,∣∣∣∣∣ (Lω, y+)(Lω, y−)√

(Ly+, y+)
√

(Ly−, y−)

∣∣∣∣∣ ≤ a(Lω, ω).

Hence, by (2.3) and next (2.1),

(Lv, v) ≥ (1− a)(Lw,w) ≥ ν(1− a)‖w‖2H1 > 0,

and so (Lw,w) ≥ |μ0|α2‖Q p+1
2 ‖2L2.

Thus, for C = 4
1−a max( 1

ν
, 1
|μ0|‖Q

p+1
2 ‖2H1‖Q p+1

2 ‖−2
L2 ) we get

C(Lv, v) ≥ C(1− a)(Lw,w) ≥ C 1− a
2

(Lw,w) + C
1− a

2
|μ0|α2‖Q p+1

2 ‖2L2

≥ 2‖w‖2H1 + 2α2‖Q p+1
2 ‖2H1 ≥ ‖w + αQ

p+1
2 ‖2H1 = ‖v‖2H1.

�

2.2. Main Proposition and proof of Theorem 1

We denote

Rj(t, x) = c
1
p−1
j Q(√cj(x− cjt− xj)), R(t, x) =

N∑
j=1
Rj(t, x),

Z±j (t, x) = c
1
p−1
j Z

±(√cj(x− cjt− xj)).
(2.4)

Let Sn → ∞ be a increasing sequence of time, bn = (b±j,n)j,± ∈ R2N be a
sequence of parameters to be determined, and let un be the solution to

(2.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
unt + (unxx + upn)x = 0,

un(Sn) = R(Sn) +
∑

j∈{1,...,N},±
b±j,nZ

±
j (Sn).

Let

(2.6) σ0 =
1
4

min
{
η0
√
c1, e

2/3
0 c1, c1, c2 − c1, . . . , cN − cN−1

}
.

Proposition 1. There exist n0 ≥ 0, T0 > 0 and C > 0 (independent of n)
such that the following holds: For each n≥n0, there exists bn=(b±j,n)j,±∈R2N

with (∑
j,±

b±j,n
2
)1/2
≤ Ce−σ3/2

0 Sn ,

and such that the solution un to (2.5) is defined on the interval [T0, Sn], and
satisfies

∀t ∈ [T0, Sn], ‖un(t)− R(t)‖H1 ≤ Ce−σ3/2
0 t.
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Assuming this Proposition, we now deduce the proof of Theorem 1. The
proof of Proposition 1 is postponed to Section 2.3.

Proof of Theorem 1 assuming Proposition 1. It follows closely the
proof of Theorem 1 in [16]. We may assume n0 = 0 in Proposition 1 without
loss of generality.

Step 1: Compactness argument. From Proposition 1, there exists a sequence
un(t) of solutions to (gKdV), defined on [T0, Sn] and C0, σ0 > 0 such that
the following uniform estimates hold:

(2.7) ∀n ∈ N, ∀t ∈ [T0, Sn], ‖un(t)− R(t)‖H1 ≤ C0e
−σ3/2

0 t.

We claim the following compactness result on the sequence un(T0).

Claim.
lim
A→∞

sup
n∈N

∫
|x|≥A
u2
n(T0, x)dx = 0.

Proof. Let ε > 0, T (ε) ≥ T0 be such that C0e
−σ3/2

0 T (ε) ≤ √ε and n large
enough so that Sn ≥ T (ε). Then

∫
(un(T (ε))− R(T (ε))2 ≤ ε.

Let A(ε) be such that
∫
|x|≥A(ε)R(T (ε))2(x)dx ≤ ε ; we get
∫
|x|≥A(ε)

u2
n(T (ε), x)dx ≤ 4ε.

Let g(x) ∈ C3 be such that g(x) = 0 if x ≤ 0, g(x) = 1 if x ≥ 2, and
furthermore 0 ≤ g′(x) ≤ 1, |g′′′(x)| ≤ 1.

Recall that for f(x) ∈ C3, we have (Kato’s identity [13])

d

dt

∫
u2
nf = −3

∫
(unx)2fx +

∫
u2
nfxxx +

2p
p+ 1

∫
up+1
n fx.

For C(ε) > 1 to be determined later, we thus have:

d

dt

∫
u2
n(t, x)g

(
x− A(ε)
C(ε)

)
= − 3
C(ε)

∫
(unx)2g′

(
x− A(ε)
C(ε)

)

+ 1
C(ε)3

∫
u2
ng
′′′
(
x− A(ε)
C(ε)

)
+ 2p

(p+ 1)C(ε)

∫
up+1
n g

′
(
x− A(ε)
C(ε)

)
.
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For t ≥ T0 ≥ 0, un satisfies ‖un(t)‖H1 ≤ C0 +∑Nj=1 ‖Qcj‖H1 ≤ C0, and so:
∣∣∣∣∣ ddt
∫
u2
n(t, x)g

(
x− A(ε)
C(ε)

)∣∣∣∣∣
≤ 1
C(ε)

(
3
∫
un

2
x(t) +

∫
u2
n(t) +

2p
p + 1

‖un‖p−1
L∞

∫
u2
n(t)
)

≤ 1
C(ε)

(
3C02 + 2p

p+ 1
2(p−1)/2C0p+1

)
.

Now choose C(ε) = max
{

1, T (ε)−T0
ε

(
3C02 + 2p

p+12(p−1)/2C0p+1)}, so that
∣∣∣∣∣ ddt
∫
u2
n(t, x)g

(
x− A(ε)
C(ε)

)∣∣∣∣∣ ≤ ε

T (ε)− T0
.

By integration on [T0, T (ε)]:
∫
x≥2C(ε)+A(ε)

u2
n(T0, x) ≤

∫
u2
n(T0, x)g

(
x−A(ε)
C(ε)

)
≤ 5ε.

Now considering d
dt

∫
u2
n(t, x)g

(−A(ε)−x
C(ε)

)
, we get in a similar way

∫
x≤−2C(ε)−A(ε)

u2
n(T0, x) ≤ 5ε.

Therefore, setting Aε = 2C(ε/10) + A(ε/10), we obtain:

∀n ∈ N,
∫
|x|≥Aε

u2
n(T0, x) ≤ ε.

�
By (2.7), the sequence (un(T0)) is bounded in H1, thus we can extract a

subsequence (still denoted by (un)) which converges weakly to ϕ0 ∈ H1(R).
The previous compactness result ensures that the convergence is strong in
L2(R). Indeed, let ε > 0 and let A be such that

∫
|x|≥Aϕ

2
0(x)dx ≤ ε and

∀n ∈ N,
∫
|x|≥A
u2
n(T0, x) ≤ ε.

By the compact embedding H1([−A,A]) → L2([−A,A]),
∫
|x|≤A |un(T0, x) −

ϕ0(x)|2dx→ 0 as n→ +∞. We thus derive that

lim sup
n∈N

‖un(T0)− ϕ0‖2L2(R) ≤ 4ε.

Since this is true for all ε > 0, un(T0) → ϕ0 in L2(R) as n → +∞. By
interpolation, un(T0) converges strongly to ϕ0 in Hs for all s ∈ [0, 1).
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Step 2. Construction of the multi-soliton u∗. Denote u∗(t) the solution to{
u∗t + (u∗xx + (u∗)p)x = 0,
u∗(T0) = ϕ0.

Due to [14], the Cauchy problem for (gKdV) is locally well-posed in Hs for
s ≥ 1/2: we will work in H1/2 (which is not a critical space) and H1. Let
u∗ ∈ C([T0, T

∗), H1) be the maximal solution to (gKdV). Recall the blow up
alternative: either T ∗ = +∞ or T ∗ <∞ and then ‖u∗(t)‖H1 →∞ as t ↑ T ∗.

Since the flow is continuous in H1/2, for any t ∈ [T0, T
∗), un(t) is de-

fined for n large enough and un(t) → u∗(t) in H1/2 as n → +∞. By the
uniform H1 bound, we also obtain un(t)⇀ u∗(t) in H1-weak. Hence, using
Proposition 1,

∀t ∈ [T0, T
∗), ‖u∗(t)− R(t)‖H1 ≤ lim inf

n→∞ ‖un(t)− R(t)‖H1 ≤ Ce−σ3/2
0 t.

In particular, we deduce that

∀t ∈ [T0, T
∗), ‖u∗(t)‖H1 ≤ Ce−σ3/2

0 t + ‖R(t)‖H1 ≤ C +
N∑
j=1
‖Qcj‖H1 .

The blow-up alternative implies T ∗ = ∞. Hence u∗ ∈ C([T0,∞), H1) and
moreover ‖u∗(t)− R(t)‖H1 ≤ Ce−σ3/2

0 t for all t ≥ T0. �

2.3. Proof of Proposition 1

The proof proceeds in several steps. For the sake of simplicity, we will drop
the index n for the rest of this section (except for Sn). We possibly drop the
first terms of the sequence Sn, so that for all n, Sn is large enough for our
purposes.
Step 1. Choice of a set of initial data.

Lemma 2 (Modulation for time independent function). Let 0 < c1 <...<cN .
There exist C, ε > 0 such that the following holds. Given (αi)i=1,...N such
min{|αi − αj| i �= j} ≥ 1/ε, if u(x) ∈ L2 is such that

∥∥∥∥ u−
N∑
j=1
Qcj (x− αj)

∥∥∥∥
L2
≤ ε,

then there exist modulation parameters y = (yj)j=1,...,N such that setting

v = u−
N∑
j=1
Qcj(x− αj − yj),
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the following holds

‖v‖L2 +
N∑
j=1
|yj| ≤ C

∥∥∥∥ u−
N∑
j=1
Qcj (x− αj)

∥∥∥∥
L2
,(2.8)

and ∀j = 1, . . . , N,
∫
v(x)(Qcj)x(x− αj − yj)dx = 0.(2.9)

Furthermore, u �→ (v,y) is a smooth diffeomorphism.

Notation. For b small, from (2.5) and continuity in H1, u(t) is defined
and modulable (in the sense of the previous lemma) for t close to Sn. As
long as u(t) is modulable around R(t), we denote by y(t) = (yj(t))j=1,...,N
the modulation parameters, and

R̃j(t) = Rj(t, x− yj(t)), R̃(t) =
N∑
j=1
R̃j(t), Z̃±j (t, x) = Z±j (t, x− yj(t)),

v(t) = u(t)− R̃(t) so that ∀j = 1, . . . , N,
∫
v(t)(R̃j)x(t) = 0,

a±(t) = (a±j (t))j=1,...,N , where a±j =
∫
v(t, x)Z̃±j (t, x)dx.

We also set Lj = −∂xx − pR̃p−1
j (t) + cj.

We consider RN equipped with the �2 norm. We denote by BB(P, r)
the closed ball of the Banach space B, centered at P and of radius r ≥ 0.
If P = 0, we simply write BB(r). Finally, SRN (r) denotes the sphere of
radius r in RN .

In view of Lemma 1, we have to control the functions a±(t) on some
time interval [T0, Sn]. Since Z+ and Z− are not orthogonal and because
of the interactions between the various solitons, the values of a±(Sn) are
not directly related to b. The next lemma allows us to establish a one-to-
one mapping between the choice of b in (2.5) and the suitable constraints
a+(Sn) = a+, a−(Sn) = 0, for any choice of a+.

Lemma 3 (Modulated final data). There exists C > 0 (independent of n)
such that for all a+ ∈ BRN (e−(3/2)σ3/2

0 Sn) there exists a unique b with ‖b‖ ≤
C‖a+‖ and such that the modulation (v(Sn),y(Sn)) of u(Sn) satisfies

a+(Sn) = a+ and a−(Sn) = 0.

Proof. See Appendix. �
Let T0 to be determined later in the proof, independent of n. Let a+ to

be chosen, b be given by Lemma 3 and let u be the corresponding solution
of (2.5). We now define the maximal time interval [T (a+), Sn] on which
suitable exponential estimates hold.
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Definition 1. Let T (a+) be the infimum of T ≥ T0 such that the following
properties hold for all t ∈ [T, Sn]:
• Closeness to R(t):

‖u(t)−R(t)‖H1 ≤ ε.
In particular, this ensures that u(t) is modulable around R(t) in the
sense of Lemma 2.

• Estimates on the modulation parameters:

eσ
3/2
0 tv(t) ∈ BH1(1), eσ

3/2
0 ty(t) ∈ BRN (1),

e(3/2)σ3/2
0 ta−(t) ∈ BRN (1), e(3/2)σ3/2

0 ta+(t) ∈ BRN (1).

Observe that Proposition 1 is proved if for all n, we can find a+ such
that T (a+) = T0. The rest of the proof is devoted to prove the existence of
such a value of a+.

We claim the following preliminary results on the modulation parameters
of u(t).
Claim.

(2.10) vt +
(
vxx + (v + R̃)p −

N∑
j=1
R̃pj

)
x
−
N∑
j=1

dyj
dt
R̃jx = 0,

(2.11) ∀t ∈ [T (a+), Sn],
∥∥∥∥dydt (t)

∥∥∥∥ ≤ C‖v(t)‖L2 + Ce−2σ3/2
0 t.

(2.12)

∀t ∈ [T (a+), Sn], ∀j,
∣∣∣∣∣da
±
j

dt
(t)± e0c3/2j a±j (t)

∣∣∣∣∣ ≤ C‖v(t)‖2H1 + Ce−3σ3/2
0 t.

Proof. The equation of v(t) is obtained by elementary computations from
the equation of u(t). Taking the scalar product of this equation with R̃jx,
we see that yj(t) satisfy

dyj
dt
‖Qcjx‖2L2 =

∫ (
vxx + (v + R̃)p −

N∑
k=1
R̃pk

)
x

R̃jx −
(
cj + dyj

dt

)∫
vR̃jxx.

For t ≥ T0 large enough
∣∣∣∫ vR̃jxx

∣∣∣ ≤ ‖Qcjxx‖L2‖v(t)‖L2 ≤ Ce−σ3/2
0 t ≤

1
2‖Qcjx‖2L2. Using integration by parts to have all the derivatives on R̃jx
and using Cauchy-Schwarz inequality, we get (2.11).

Now, we prove (2.12). First, note that
∫
R̃jxZ̃

±
j = 0 follows from

(2.13)
∫
QxZ

± = ±e−1
0

∫
QxL(Z±x ) = ±e−1

0

∫
L(Qx)Z±x = 0.
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Using the equation of v(t) and next the equations of Z±,
da±j
dt

(t) =
∫
vtZ̃

±
j +
∫
vZ̃±j t

= −
∫

(vxx + (v + R̃)p −∑
k

R̃pk)xZ̃±j

+
∑
k

dyk
dt

∫
R̃kxZ̃

±
j − (cj +

dyj
dt

)
∫
vZ̃±j x

= −
∫

(vxx + pR̃p−1
j v)xZ̃±j − cj

∫
vZ̃±j x

−
∫

((v + R̃)p −∑
k

R̃pk − pR̃p−1
j v)xZ̃±j

+
∑
k �=j

dyk
dt

∫
R̃kxZ̃

±
j −
dyj
dt

∫
vZ̃±j x

= −
∫
vLj(Z̃±j x) +

∫
((v + R̃)p −∑

k

R̃pk − pR̃p−1
j v)Z̃±j x

+
∑
k �=j

dyk
dt

∫
R̃kxZ̃

±
j −
dyj
dt

∫
vZ̃±j x

= ∓e0c3/2j a±j (t) +
∫

((v + R̃)p −∑
k

R̃pk − pR̃p−1
j v)Z̃±j x

+
∑
k �=j

dyk
dt

∫
R̃kxZ̃

±
j −
dyj
dt

∫
vZ̃±j x.

Using (2.6), for k �= j,
|R̃k(t, x)|(|Z̃±j (t, x)|+ |Z̃±j x(t, x)|) ≤ Ce−2√σ0(|x−ckt|+|x−cjt|)

≤ Ce−3σ3/2
0 te−

√
σ0|x−cjt|.(2.14)

Hence we have∣∣∣∣∣
∫

(|v + R̃|p−1(v + R̃)−
N∑
k=1
R̃pk − pR̃p−1

j v)Z̃±j x

∣∣∣∣∣ ≤ C‖v(t)‖2H1 + Ce−3σ3/2
0 t,

∣∣∣∣∣∣
∑
k �=j

dyk
dt

∫
R̃kxZ̃

±
j

∣∣∣∣∣∣ ≤ Ce−3σ3/2
0 t‖v(t)‖H1 + Ce−4σ3/2

0 t

≤ C‖v(t)‖2H1 + Ce−4σ3/2
0 t.

The term dyj
dt

∫
vZ̃±j x is controlled using (2.11). �

Step 2. Conditional stability of v and y under the control of a±.
We claim the following improvement of the estimates for v(t) and y

on [T (a+), Sn].
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Lemma 4 (Control of v and y). For T0 large enough (independent of n)
and for all a+ ∈ BRN (e−(3/2)σ3/2

0 Sn), the following holds

∀t ∈ [T (a+), Sn], ‖u(t)−R(t)‖H1 ≤ Ce−σ3/2
0 t ≤ ε0/2,(2.15)

eσ
3/2
0 t‖v(t)‖H1 ≤ 1/2, eσ

3/2
0 t‖y(t)‖ ≤ 1/2.(2.16)

The proof of Lemma 4 is postponed to the end of this section. It is very
similar to the proofs in the subcritical case (see [16] or [20]).
Step 3. Control of a−(t).
Lemma 5 (Control of a−(t)). For T0 large enough (independent of n) and
for all a+ ∈ BRN (e−(3/2)σ3/2

0 Sn), the following holds

∀t ∈ [T (a+), Sn], e(3/2)σ3/2
0 t‖a−(t)‖ ≤ 1/2.

Proof. It follows from (2.12), (2.16) and a−j (Sn) = 0 that for all t ∈
[T (a−), Sn],

|a−j (t)| ≤ Cee0c3/2
j t
∫ Sn
t
e−e0c

3/2
j s
(
e−2σ3/2

0 s + e−3σ3/2
0 s
)
ds ≤ Ce−2σ3/2

0 t.

Hence, for T0 large enough,

∀t ∈ [T (a+), Sn], ‖a−(t)‖ ≤ Ce−2σ3/2
0 t ≤ 1

2
e−(3/2)σ3/2

0 t.
�

Step 4. Control of a+(t) by a topogical argument.
Finally we turn to the control of a+(t) which will provide us with a

suitable value of a+. This is the new key argument of this paper.
Lemma 6 (Control of a+(t)). For T0 large enough, there exists

a+ ∈ BRN (e−(3/2)σ3/2
0 Sn) such that T (a+) = T0.

Proof. We argue by contradiction.
Assume that for all a+ ∈ BRN (e−(3/2)σ3/2

0 Sn), one has T (a+) > T0. From
Lemmas 4 and 5
u(T (a+))−R(T (a+)) ∈ BH1(ε0/2), eσ

3/2
0 T (a+)v(T (a+)) ∈ BH1(1/2),

eσ
3/2
0 T (a+)y(T (a+)) ∈ BRN (1/2), e(3/2)σ3/2

0 T (a+)a−(T (a+)) ∈ BRN (1/2).
Hence by definition of T (a+) and continuity of the flow, one must have

(2.17) e(3/2)σ3/2
0 T (a+)a+(T (a+)) ∈ SRN (1).

Let T < T (a+) be close enough to T (a+) so that the solution u(t) and
its modulation are well-defined on [T, Sn]. For t ∈ [T, Sn], let

(2.18) N (a+(t)) = N (t) =
∥∥∥ e(3/2)σ3/2

0 ta+(t)
∥∥∥2
.
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Then, by (2.12) and (2.16), we have

dN
dt

(t) = e3σ
3/2
0 t
∑
j

(
3σ3/2

0 − 2
da+j
dt

)
a+j

= e3σ
3/2
0 t
∑
j

(
3σ3/2

0 − 2e0c3/2j
)
|a+j |2

+O
(
e3σ

3/2
0 t‖a+‖(‖v(t)‖2H1 + e−3σ3/2

0 t)
)
.

In view of the definition of σ0 (see (2.6)), for all j,

2e0c3/2j − 3σ3/2
0 ≥ e0c3/21 ≥ 4e0σ3/2

0 .

For t ∈ [T (a+), Sn], due to the bound on ‖v‖H1, we have

e3σ
3/2
0 t‖a+‖(‖v(t)‖2H1 + e−3σ3/2

0 t) ≤ Ce−(1/2)σ3/2
0 t
√
N (t).

Hence we get
dN
dt

(t) ≤ −4e0σ3/2
0 N (t) + Ce−(1/2)σ3/2

0 t
√
N (t).

We consider this estimate at t = T (a+) ≥ T0 (so large that Ce−(1/2)σ3/2
0 t ≤

2e0σ3/2
0 ), and using N (T (a+)) = 1, we get

(2.19) ∀a+ ∈ BRN (e−(3/2)σ3/2
0 Sn), dN

dt
(T (a+)) ≤ −2e0σ3/2

0 .

From (2.19), a standard argument says that the map a+ �→ T (a+) is
continuous. Indeed, by (2.19), for all ε > 0, there exists δ > 0 such that
N (T (a+) − ε) > 1 + δ and, for all t ∈ [T (a+) + ε, Sn] (possibly empty),
N (t) < 1− δ. By continuity of the flow of the (gKdV) equation, it follows
that there exist η > 0 such that for all ‖ã+ − a+‖ ≤ η, the corresponding
ã+(t) satisfies |N (ã+(t)) − N (a+(t))| ≤ δ/2 for all t ∈ [T (a+) − ε, Sn]. In
particular, T (a+)− ε ≤ T (ã+) ≤ T (a+) + ε.

Now, we consider the continuous map

M : BRN (e−(3/2)σ3/2
0 Sn)→ SRN (e−(3/2)σ3/2

0 Sn),

a+ �→ e−(3/2)σ3/2
0 (Sn−T (a+))a+(T (a+)).

Let a+ ∈ SRN (e−(3/2)σ3/2
0 Sn). From (2.19), it follows that T (a+) = Sn and

soM(a+) = a+, which means thatM restricted to SRN (e−(3/2)σ3/2
0 Sn) is the

identity. But the existence of such a map M contradicts Brouwer’s fixed
point theorem. In conclusion, there exists a+ ∈ BRN (e−(3/2)σ3/2

0 Sn) such that
T (a+) = T0. �
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The end of this section is devoted to the proof of Lemma 4.

Proof of Lemma 4. Let ψ be defined by

ψ(x) = 0 for x ≤ −1, ψ(x) = 1 for x ≥ 1,

ψ(x) =
1
c0

∫ x
−1
e
− 1

1−y2 dy for x ∈ (−1, 1),

where c0 =
∫ 1
−1 e

− 1
1−y2 dy. Then ψ ∈ C∞(R) is non-decreasing and 0 ≤ ψ ≤ 1.

Define mj(t) = 1
2 ((cj + cj+1)t+ xj + xj+1) for j = 1, . . . , N − 1 and

for j = 1, . . . , N − 1, ψj(t, x) = ψ
(

1√
t
(x−mj(t))

)
, ψN (t) = 1;

for j = 2, . . . , N φj = ψj − ψj−1, φ1 = ψ1;

Mj(t) =
∫
u2(t)φj(t), Ej(t) =

∫ (1
2
u2
x −

1
p+ 1

up+1
)

(t)φj(t).(2.20)

By the decay properties of R̃k(t), and the support properties of φj and
its derivatives, we have

∀j �= k, (|R̃k(t, x)|+ |(R̃k)x(t, x)|)|φj(t, x)| ≤ Ce−3σ3/2
0 te−

√
σ0|x−yj(t)|,(2.21)

∀j, (|R̃j(t, x)|+ |(R̃j)x(t, x)|)|φj(t, x)− 1| ≤ Ce−3σ3/2
0 te−

√
σ0|x−yj(t)|,(2.22)

∀j, k, |R̃k(t, x)|(|φjx(t, x)|+ |φjxxx(t, x)|+ |φjt(t, x)|) ≤(2.23)

≤ C√
t
e−3σ3/2

0 te−
√
σ0|x−yk(t)|,

∀j, |φjx(t, x)| + |φjxxx(t, x)|+ |φjt(t, x)| ≤
C√
t
.(2.24)

We begin with some technical claims.

Claim. ∣∣∣∣ ddtMj(t)
∣∣∣∣ ≤ C√

t
‖v(t)‖2H1 + Ce−3σ3/2

0 t,(2.25)
∣∣∣∣ ddt

N∑
j=1

(
Ej(t) + cj

2
Mj(t)

) ∣∣∣∣ ≤ C√
t
‖v(t)‖2H1 + Ce−3σ3/2

0 t.(2.26)

Proof. By direct computations,

d

dt

∫
u2φj = −3

∫
u2
xφjx +

∫
u2
(
φjxxx + φjt

)
+ 2p
p+ 1

∫
up+1φjx.
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Thus, expanding u(t) = R̃(t) + v(t), and using (2.23) and (2.24), the first
two integrals are estimated as desired. For the last term it suffices to ob-
serve additionally that ‖u(t)‖L∞ ≤ C(‖v(t)‖H1 + ‖R̃(t)‖H1) ≤ C. This
proves (2.25).

Estimate (2.26) is a consequence of (2.25), the conservation of energy
and ∑Nj=1 φj = 1. �

Claim.

(2.27)
∣∣∣∣
(
Ej(t) +

cj
2
Mj(t)

)
−
(
E(Qcj ) +

cj
2

∫
Q2
cj

)
− 1

2
Hj(t)

∣∣∣∣
≤ Ce−3σ3/2

0 t + Ce−σ
3/2
0 t‖v(t)‖2L2,

where Hj(t) =
∫

(v2x(t)− pR̃p−1
j (t)v2(t) + cjv2(t))φj(t).

Proof. First, we claim

(2.28)
∣∣∣∣Mj(t)−

(∫
Q2
cj

+ 2
∫
v(t)R̃j(t) +

∫
v2(t)φj(t)

)∣∣∣∣ ≤ Ce−3σ3/2
0 t,

∣∣∣∣Ej(t)− E(Qcj)−
(1

2

∫
(v2x(t)− pR̃p−1

j (t)v2(t))φj(t)− cj
∫
v(t)R̃j(t)

)∣∣∣∣
(2.29) ≤ Ce−3σ3/2

0 t + Ce−σ
3/2
0 t‖v(t)‖2L2,

Indeed, expanding u(t) = v(t) +∑k R̃k(t) in Mj(t) and Ej(t), we get

Mj(t) =
∫
u2φj(t) =

∫ (
v2 + 2vR̃+

(
N∑
k=1
R̃k

)2)
φj(t),

Ej(t) =
∫ (1

2
(v2x + 2vxR̃x + R̃2

x)−
1
p+ 1

(v + R̃)p+1
)
φj(t)

=
∫ (1

2
(v2x − pR̃p−1v2)

)
φj +

∫ (1
2
R̃2
x −

1
p+ 1

R̃p+1
)
φj(t)

−
∫
v(R̃xx + R̃p)φj −

∫
R̃xvφjx

+ 1
p+ 1

∫ (
(−(v + R̃)p+1 + R̃p+1) + (p+ 1)vR̃p + p(p+1)

2
R̃p−1v2

)
φj(t).

Now, estimates (2.21) and (2.22) give (for k �= j)
∣∣∣∣
∫
R̃2
jφj(t)−

∫
Q2
cj

∣∣∣∣+
∫
R̃2
kφj(t)+

∣∣∣∣∣
∫ (1

2
R̃2
x −

1
p+ 1

R̃p+1
)
φj(t)− E(Qcj )

∣∣∣∣∣
≤ Ce−3σ3/2

0 t.



292 R. Côte, Y. Martel and F. Merle

By Qxx +Qp = Q, we have∫
v(t)(R̃xx + R̃p)φj = cj

∫
v(t)R̃j(t) +O(e−3σ3/2

0 t).

Using also (2.23) and for k ≥ 3∫
|v(t)|kφj(t) ≤ ‖v(t)‖k−2

L∞

∫
v(t)2φj(t) ≤ Ce−σ

3/2
0 t‖v‖2L2,

we obtain (2.28) and (2.29).
Estimate (2.27) is obtained by summing (2.28) and (2.29). Note that in

particular that the scalar products
∫
v(t)R̃j(t) cancel. �

Claim. For T0 large enough, there exists K > 0 such that for all t ∈ [T0, Sn],

(2.30) ‖v(t)‖2H1 ≤ K
∑
j

Hj(t) +K2∑
j

(( ∫
v(t)Z̃+

j (t)
)2

+
(∫
v(t)Z̃−j (t)

)2)
.

Proof. Estimate (2.30) is a standard consequence of Lemma 1 and
∫
vR̃jx=0.

See e.g. [21, Lemma 4]. �
Now, we finish the proof of Lemma 4. Let t ∈ [T (a+), Sn]. Integrat-

ing (2.26) on [t, Sn],∣∣∣∣
N∑
j=1

{(
Ej(Sn) +

cj
2
Mj(Sn)

)
−
(
Ej(t) +

cj
2
Mj(t)

)} ∣∣∣∣ ≤
≤ Ce−3σ3/2

0 t + C
∫ Sn
t
‖v(s)‖2H1

ds√
s
.

From (2.27), we get:∣∣∣∣
N∑
j=1

(Hj(Sn)−Hj(t))
∣∣∣∣ ≤

≤ Ce−3σ3/2
0 t + Ce−σ

3/2
0 t(‖v(t)‖2L2 + ‖v(Sn)‖2L2) + C

∫ Sn
t
‖v(s)‖2H1

ds√
s
.

Note that from Lemmas 2 and 3, and from the definition of T (a+),

|Hj(Sn)| ≤ C‖v(Sn)‖2H1 ≤ C‖b‖2 ≤ Ce−3σ3/2
0 t and ‖v(t)‖2H1 ≤ e−2σ3/2

0 t.

By (2.30) and the above estimates

‖v(t)‖2H1 ≤ K
N∑
j=1
Hj(t) +K2∑

j,±
a±j (t)2

≤ Ce−3σ3/2
0 t + C

∑
j,±
a±j (t)2 + C

∫ Sn
t
‖v(s)‖2H1

ds√
s

≤ C0e
−3σ3/2

0 t +
C0√
t
e−2σ3/2

0 t.(2.31)
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Hence, for T0 large enough so that C0e
−σ3/2

0 T0 ≤ 1/8 and C0/
√
T0 ≤ 1/8

we get
eσ

3/2
0 t‖v(t)‖H1 ≤ 1/2.

By (2.11) and (2.31),

‖yt(t)‖ ≤ Ce−2σ3/2
0 t + C‖v(t)‖L2 ,

‖y(t)‖ ≤ ‖y(Sn)‖+ C
∫ Sn
t

⎛
⎝e−(3/2)σ3/2

0 s +
e−σ

3/2
0 s

s1/4

⎞
⎠ ds

≤ Ce−(3/2)σ3/2
0 t +

C

t1/4
e−σ

3/2
0 t,(2.32)

and we deduce eσ
3/2
0 t‖y(t)‖ ≤ 1/2 by possibly taking a larger T0. Finally, we

have:

‖u(t)− R(t)‖H1 ≤ ‖R(t)− R̃(t)‖H1 + ‖v(t)‖H1 ≤ C‖y(t)‖+ ‖v(t)‖H1

≤ Ce−σ3/2
0 t ≤ ε0/2,(2.33)

by possibly taking a larger T0. This concludes the proof of Lemma 4. �

3. Generalizations

3.1. The gKdV equations with general nonlinearities

We now present extensions of Theorem 1 to a more general form of the KdV
equation, i.e.

(gKdV) ut + (uxx + f(u))x = 0, (t, x) ∈ R×R.

In order to have both local well-posedness in H1 from [14] and the exis-
tence of eigenvalues for the linearized operator in the instable case from [26],
we assume

(3.1) f is C3, convex on R+, and f(0) = f ′(0) = 0,

but these assumptions can probably be relaxed. Concerning the solitons, we
consider velocities cj > 0 such that

a solution Qc of (Qc)xx + f(Qc) = cQc exists for all c close to cj

and d
dc

∫
Q2
c |c=cj

�= 0.
(3.2)

Then, combining the proof of Theorem 1 and [16], we claim the following
extension of Theorem 1.
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Theorem 3. Let 0 < c1 < · · · < cN and x1, . . . , xN ∈ R be such that
for all j, (3.2) holds. There exist T0 ∈ R, C, σ0 > 0, and a solution u ∈
C([T0,∞), H1) to (gKdV) such that

∀t ∈ [T0,∞),
∥∥∥∥ u(t)−

N∑
j=1
Rcj ,xj(t)

∥∥∥∥
H1
≤ Ce−σ3/2

0 t.

Remark 3. The critical case d
dc

∫
Q2
c |c=cj = 0 is treated in [16] for the pure

power case. We leave open the case where for a general f(u), d
dc

∫
Q2
c |c=cj = 0

for some cj, but it probably can be treated by similar techniques.
From the techniques developped in [25], [7] and [8] concerning the (BBM)

equation

(BBM) (u− uxx)t + (u+ up)x = 0, (t, x) ∈ R×R,

and from the construction of suitable eigenfunctions of the linearized equa-
tion by Pego and Weinstein [26] (see page 74), one can also extend the results
obtained in this paper to the (BBM) equation for any p > 1.

3.2. The non linear Schrödinger equations

In this section, we sketch the proof of Theorem 2. It is an extension of the
proof of Theorem 1 in the present paper and of the main result in [20].

3.2.1. Preliminaries

Let v = v1 + iv2, we define the operator L by

(3.3) Lv = −L−v2 + iL+v1,

where the self-adjoint operators L+ and L− are defined by

(3.4) L+v1 := −Δv1 + v1 − pQp−1v1, L−v2 := −Δv2 + v2 −Qp−1v2,

From [29], [11] and [28], there exist e0 > 0, Y ± ∈ S(R) (Ȳ + = Y −),
normalized so that ‖Y ±‖L2 = 1 and such that

(3.5) LY ± = ±e0Y ±;

moreover, for some K > 0, for any v = v1 + iv2 ∈ H1 ((f, g) = Re
∫
f ḡ)

(3.6) ‖v‖2H1 ≤ K(L+v1, v1) +K(L−v2, v2) +K2
(∫

(∇Q)v1
)2

+K2
(∫
Qv2

)2
+K2

(
Im
∫
Y +v̄

)2
+K2

(
Im
∫
Y −v̄

)2
.

See [5, 6] for the proof of (3.6).
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3.2.2. Proof of Theorem 2 assuming uniform estimates

We denote

R(t, x) =
N∑
j=1
Rj(t, x) where Rj(t, x) = Rcj ,γj ,vj ,xj(t, x),

Y ±j (t, x) = c
1
p−1
j Y

±(√cj(x− vjt− xj))ei( 1
2vj ·x− 1

4‖vj‖2t+cjt+γj).

(3.7)

Let Sn → ∞ be an increasing sequence of time. We claim the existence of
final data giving suitable uniform estimates.

Proposition 2. There exist n0≥0, σ0>0, T0>0, C >0 (independent of n)
such that the following holds. For each n ≥ n0, there exists b = (b±j,n)j,± ∈
R2N with ‖b‖ ≤ e−σ3/2

0 Sn , and such that the solution un to

(3.8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
iunt + Δun + |un|p−1un = 0,

un(Sn) = R(Sn) + i
∑

j∈{1,...,N},±
b±j,nY

±
j (Sn)

is defined on the interval [T0, Sn], and satisfies

∀t ∈ [T0, Sn], ‖un(t)− R(t)‖H1 ≤ Ce−σ
3/2
0 t.

The proof of Theorem 2 assuming Proposition 2 is completely similar to
Section 2.2 in the present paper and to Section 2 in [20], thus it is omitted
(note that for this part, as in [20], we use the local Hs Cauchy theory due
to Cazenave and Weissler [4]).

3.2.3. Proof of the uniform estimates

We are reduced to prove Proposition 2. We only sketch the proof since it
is very similar to Section 2.3 of the present paper combined with Section 3
in [20].

The first step of the proof is to reduce (without loss of generality) to the
special case where

v1,1 < v2,1 < · · · < vN,1,
where vj,k (j ∈ {1, . . . , N}, k ∈ {1, . . . , d}) represents the k− th component
of the velocity vector vj ∈ Rd. It is a simple observation, based on the
invariance by rotation of the (NLS) equation, see [20, Claim 1, page 855].

Next, in the (NLS) case, modulation theory for u(t) close to R(t) says
that there exist parameters y(t) = (y1(t), . . . , yN(t)) ∈ (Rd)N and μ(t) =
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(μ1(t), . . . , μN(t)) ∈ R
N such that

R̃j(t) = Rj(t, x− yj(t))eiμj(t), R̃(t) =
N∑
j=1
R̃j(t),

Ỹ ±j (t, x) = Y ±j (t, x− yj(t))eiμj(t),
and v(t) = u(t)− R̃(t) satisfies

∀j = 1, . . . , N, Re
∫
v(t)(∇R̃j)(t) = Im

∫
v(t)R̃j(t) = 0.

Note that the parameter μj(t) is used to control the direction Im
∫
v(t)R̃j(t).

In view of (3.6), we are led to set

a±(t) = (a±j (t))j=1,...,N , where a±j (t) = Im
∫
Ỹ ∓j (t, x)v̄(t, x)dx.

For given a+ ∈ R
N , we define b ∈ R

2N as for the (gKdV) case in Lemma 3.
We define T (a+) as in Definition 1, with the additional requirement eσ

3/2
0 tμ(t)

∈ BRN (1). By standard computations, the following holds on [T (a+), Sn].
Claim. For some σ0 > 0,∥∥∥∥∥dydt (t)

∥∥∥∥∥ +
∥∥∥∥∥dμdt (t)

∥∥∥∥∥ ≤ C‖v(t)‖L2 + Ce−2σ3/2
0 t,(3.9)

∣∣∣∣∣da
±
j

dt
(t)± e0c3/2j a±j (t)

∣∣∣∣∣ ≤ C‖v(t)‖2L2 + Ce−3σ3/2
0 t.(3.10)

Proof. The proof follows from the equation of v

ivt + Δv +
∑
j

(
|R̃j|p−1v + (p− 1)|R̃j|p−2Re(R̃jv)

)

+O(‖v‖2H1 + e−4σ3/2
0 t)−∑

j

dyj
dt
R̃jx −

∑
j

dμj
dt
R̃j = 0,

and direct computations using the definition of Y ±. �
Now we follow exactly the same strategy as in the proof of Theorem 1,

by proving analogues of Lemmas 4, 5 and 6.
For the proof of the estimate on v(t), we use a functional adapted to

the (NLS) equations, as in [20] and [22]:

G(t) =
∑
j

⎡
⎣ ∫
(

1
2
|∇u|2 − 1

p+ 1
|u|p+1

)
φj

+
(
cj + |vj|

2

4

) ∫
|u|2φj − vj · Im

∫
ū∇uφj

⎤
⎦,
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where

ψj(t, x) = ψ
(

1√
t
(x1 −mj(t))

)
, mj(t) =

1
2

((vj,1 + vj+1,1)t+ xj,1 + xj+1,1);

φ1 = ψ1, φj = ψj − ψj−1.

Note that G(t) controls the size of v(t) in H1 up to a±(t) as a consequence
of (3.6). As for (gKdV), the following claim allows us to prove the estimate
on ‖v(t)‖H1.

Claim. ∣∣∣∣dGdt (t)
∣∣∣∣ ≤ C√

t
‖v(t)‖2H1 + Ce−3σ3/2

0 t.

The estimates of a±(t) are exactly the same as in Lemmas 5 and 6,
using (3.10).

A. Appendix

Proof of Lemma 2. We use the following notation y = (yj)j=1,...,N and

Rj(x) = Qcj (x− αj), R(x) =
N∑
j=1
Rj(x),

R̃j(x) = Rj(x− yj), R̃(x) =
N∑
j=1
R̃j(x).

Let w = u− R small in L2. Consider

Φ : L2 × RN → RN ,

(w,y) �→
(∫

(w +R− R̃)R̃jx
)
j=1,...,N

.

Let z = (zj)j=1,...,N . By the decay properties of R̃j ,

(dyΦ(w,y).z)j =
N∑
k=1
zk

∫
R̃kxR̃jx − zj

∫
(w +R− R̃)R̃jxx

= zj‖Qcjx‖2L2 +O
(∑
k �=j
e−σ0|αk−αj ||zk|

)
+O(|zj|‖w‖L2) +O(|zj|‖y‖).

Hence

(A.1) dyΦ(w,y) = diag(‖Qcjx‖2L2)+O(
∑
k �=j
e−σ0|αk−αj |)+O(‖w‖L2)+O(‖y‖).
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Therefore, if min{|αk−αj |, i �= j} is large enough then dyΦ(0, 0) is invertible.
Since Φ(0, 0) = 0, by the implicit function theorem, it follows that there
exists ε > 0, ε ≤ η and a C1 function φ : BL2(0, ε) → BRN (0, η) such that
Φ(w,y) = 0 in BL2(0, ε) × φ(BL2(0, ε)) is equivalent to y = φ(w). Finally
we set v = v(w) = w +R−∑Nj=1Rj(· − φ(w)j). �
Proof of Lemma 3. Consider the maps:

I : R2N → H1

b �→ ∑j,± b±j Z
±
j (Sn)

Θ :V → H1 ×RN

w �→ (v,y)
S :H1 × RN → R2N

(v,y) �→
(∫
vZ̃±j
)
j,±

where, in the definition of Θ, (v,y) represents the modulation of u = w +
R(Sn) and V = BH1(ε) (ε being defined in the proof Lemma 2), and in the
definition of S, we have set Z̃±j (x) = Z±j (Sn, x− yj).

Then I(0) = 0, Θ(0) = (0, 0) and S(0, 0) = 0. Recall also from Lemma 2
that

‖v‖L2 + ‖y‖+ ‖Rj(Sn)− R̃j(Sn)‖H1 ≤ C‖w‖L2.

To prove Lemma 3, we claim that Ψ = S ◦ Θ ◦ I is a diffeomorphism on a
fixed neighbourhood of 0 ∈ R2N by computing dΨ = dS ◦ dΘ ◦ dI. Indeed,
we claim
Claim.

dΨ(b) =
(

A (
∫
Z+Z−)A

(
∫
Z+Z−)A A

)
+O(e−σ

3/2
0 Sn + ‖b‖),

where A = diag((‖Zj‖2L2)j) = diag((c
5−p

2(p−1)
j )j).

Remark 4. Note that if N = 1 (only one soliton), with e.g. c1 = 1, then
the map Ψ is represented by the matrix

B =
( ∫

(Z+)2 ∫
Z+Z−∫

Z+Z−
∫

(Z−)2

)
= Gramm(Z±).

Indeed, the functions Z± are orthogonal to Qx, so that y = 0 in this case
and Ψ is linear. Since Z± are linearly independent (see proof of Lemma 1),
the matrix B is invertible.

The claim means that for the general case N ≥ 2, we obtain a similar
behavior around each soliton plus small terms due to the interaction of the
various solitons.
Proof. We start with the computation of differentials of I, Θ and S. First,
I is affine so that dI(b) = I for all b. Second, for h ∈ H1, z ∈ RN ,

(dS(v,y).(h, z))j,± = −zj
∫
vZ̃±j x +

∫
hZ̃±j .
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Finally, we consider Θ. Let Φ and φ be defined as in the proof of the
Lemma 2 above for R(Sn). Then, by (A.1), dyΦ(w,y) is a diagonally domi-
nant matrix and thus it is invertible. Denoting by M its inverse, it follows
from (A.1) that

M = diag((‖Qcjx‖−2
L2 )j) +O(‖w‖L2 + ‖y‖+ e−σ

3/2
0 Sn).

Differentiating Φ(w, φ(w)) = 0 with respect to w, we find dφ = −M ◦ dwΦ.
Since (dwΦ(w,y).h)j =

∫
hR̃jx(Sn) and

Θ(w) =
(
w +R −∑

j

Rj(Sn, · − φ(w)j), φ(w)
)
,

we obtain

dΘ(w).h = (h−∑
j

(R̃jx(Sn)((M ◦ dwΦ).h)j ,−M ◦ dwΦ.h)

=
(
h +

N∑
j=1
‖R̃jx(Sn)

∫
hR̃jx(Sn)
Qcjx‖2L2

,

(
−
∫
hR̃jx(Sn)
‖Qcjx‖2L2

)
j=1,...,N

)

+O(‖h‖L2(e−σ
3/2
0 Sn + ‖w‖L2)).

Let b̃ ∈ R2N . Since I is linear, we have

dΨ(b).b̃ = dS(Θ(I(b))).(dΘ(I(b)).I(b̃)).

By the previous computations, we derive

dΘ(I(b)).I(b̃) =

=
(
I(b̃) +

N∑
j=1
R̃jx(Sn)

∫ I(b̃)R̃jx(Sn)
‖Qcjx‖2L2

,

(
−
∫ I(b̃)R̃jx(Sn)
‖Qcjx‖2L2

)
j=1,...,N

)

+O(‖b̃‖(e−σ3/2
0 Sn + ‖b‖)).

Inserting the expression of I(b̃), using ‖y‖ ≤ C‖b‖, ∫ Z±Qx = 0 and the
decay properties of the functions Q and Z, we get

dΘ(I(b)).I(b̃) = (I(b̃), 0) +O(‖b̃‖(e−σ3/2
0 Sn + ‖b‖)).

Therefore, using the expression of dS, we finally obtain

dΨ(b) = Gramm((Z±j )j,±) +O(e−σ
3/2
0 Sn + ‖b‖) = P +O(e−σ

3/2
0 Sn + ‖b‖)

where Gramm((Z±j )j,±) is the Gramm matrix of the family (Z±j )j,±

Gramm((Z±j )j,±)(j1,±1),(j2,±2) =
∫
Z±1
j1 Z

±2
j2 ,
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and

P =
(

A (
∫
Z+Z−)A

(
∫
Z+Z−)A A

)
,

where A = diag((‖Zj‖2L2)j) = diag((c
5−p

2(p−1)
j )j) (recall that ‖Z±‖L2 = 1). This

finishes the proof of the claim. �

Since P is invertible (Z+ and Z− are independent, see proof of Lemma 1),
we deduce that dΨ is invertible on some ball BR2N (η) (η > 0 independent
of n for n ≥ n0 large enough). As a consequence, Ψ is a diffeomorphism
from BR2N (η) to some neighbourhood W of 0 ∈ R2N . Let δ > 0 be such
that BR2N (δ) ⊂ W. For any a+ ∈ BRN (δ), there exist a unique b = b(a+) ∈
BR2N (η) such that Ψ(b(a+)) = (a+, 0) and ‖b(a+)‖ ≤ C‖a+‖. �

Acknowledgement. The authors would like to thank Galina Perelman for
useful discussions and comments and the anonymous referee for his careful
reading.

References
[1] Berestycki, H. and Lions, P.-L.: Nonlinear scalar field equations. I.

Existence of a ground state. Arch. Rational Mech. Anal. 82 (1983), no. 4,
313–345.

[2] Bona, J. L., Souganidis, P. E. and Strauss, W. A.: Stability and
instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc.
London Ser. A 411 (1987), no. 1841, 395–412.

[3] Cazenave, T. and Lions, P.-L.: Orbital stability of standing waves
for some nonlinear Schrödinger equations. Comm. Math. Phys. 85 (1982),
no. 4, 549–561.

[4] Cazenave, T. and Weissler, F.: The Cauchy problem for the critical
nonlinear Schrödinger equation in Hs. Nonlinear Anal. 14 (1990), 807–836.

[5] Duyckaerts, T. and Merle, F.: Dynamics of threshold solutions for
energy-critical wave equation. Int. Math. Res. Pap. IMRP 2007, no. 4,
Art. ID rpn002, 67 pp. (2008).

[6] Duyckaerts, T. and Roudenko, S.: Threshold solutions for the fo-
cusing 3D cubic Schrödinger equation. Rev. Mat. Iberoam. 26 (2010),
no. 1, 1–56.

[7] El Dika, K.: Asymptotic stability of solitary waves for the Benjamin-
Bona-Mahony equation. Discrete Contin. Dyn. Syst. 13 (2005), 583–622.

[8] El Dika, K. and Martel, Y.: Stability of N solitary waves for the
generalized BBM equations. Dyn. Partial Differ. Equ. 1 (2004), 401–437.



Multi-soliton solutions for gKdV and NLS equations 301

[9] Gidas, B., Ni, W. M. and Nirenberg, L.: Symmetry of positive solu-
tions of nonlinear elliptic equations in R

n. In Mathematical analysis and
applications, Part A, 369–402. Adv. in Math. Suppl. Stud. 7. Academic
Press, New York, 1981.

[10] Ginibre, J. and Velo, G.: On a class of nonlinear Schrödinger equa-
tions. I. The Cauchy problem, general case. J. Funct. Anal. 32 (1979),
no. 1, 1–32.

[11] Grillakis, M.: Analysis of the linearization around a critical point of
an infinite dimensional hamiltonian system. Comm. Pure Appl. Math. 43
(1990), no. 3, 299–333.

[12] Grillakis, M., Shatah, J. and Strauss, W.: Stability theory of soli-
tary waves in the presence of symmetry. I. J. Funct. Anal. 74 (1987),
no. 1, 160–197.

[13] Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries
equation. In Studies in applied mathematics, 93–128. Adv. Math. Suppl.
Stud. 8. Academic Press, New York, 1983.

[14] Kenig, C. E., Ponce, G. and Vega, L.: Well-posedness and scattering
result for the generalized Korteweg-De Vries equation via the contraction
principle. Comm. Pure Appl. Math. 46 (1993), 527–620.

[15] Kwong, M. K.: Uniqueness of positive solutions of Δu−u+up = 0 in R
n.

Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266.
[16] Martel, Y.: Asymptotic N -soliton-like solutions of the subcritical and

critical generalized Korteweg-de Vries equations. Amer. J. Math. 127
(2005), no. 5, 1103–1140.

[17] Martel, Y. and Merle, F.: Asymptotic stability of solitons for sub-
critical generalized KdV equations. Arch. Ration. Mech. Anal. 157 (2001),
no. 3, 219–254.

[18] Martel, Y. and Merle, F.: Instability of solitons for the critical
generalized Korteweg-De Vries equation. Geom. Funct. Anal. 11 (2001),
no. 1, 74–123.

[19] Martel, Y. and Merle, F.: Stability of blow-up profile and lower bounds
for blow-up rate for the critical generalized KdV equation. Ann. of Math. (2)
155 (2002), no. 1, 235–280.

[20] Martel, Y. and Merle, F.: Multi solitary waves for nonlinear
Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 23
(2006), 849–864.

[21] Martel, Y., Merle, F. and Tsai, T.-P.: Stability and asymptotic
stability in the energy space of the sum of n solitons for subcritical gKdV
equations. Comm. Math. Phys. 231 (2002), 347–373.

[22] Martel, Y., Merle, F. and Tsai, T.-P.: Stability inH1 of the sum ofK
solitary waves for some nonlinear Schrödinger equations. Duke Math. J. 133
(2006), no. 3, 405–466.



302 R. Côte, Y. Martel and F. Merle

[23] Merle, F.: Construction of solutions with exactly k blow-up points for
the Schrödinger equation with critical nonlinearity. Comm. Math. Phys.
129 (1990), no. 2, 223–240.

[24] Miura, R. M.: The Korteweg-de Vries equation: a survey of results. SIAM
Rev. 18 (1976), 412–459.

[25] Mizumachi, T.: Asymptotic stability of solitary wave solutions to the reg-
ularized long-wave equation. J. Differential Equations 200 (2004), 312–341.

[26] Pego, R. L. and Weinstein, M. I.: Eigenvalues, and instabilities of
solitary waves. Philos. Trans. Roy. Soc. London Ser. A 340 (1992),
no. 1656, 47–94.

[27] Pego, R. L. and Weinstein, M. I.: Asymptotic stability of solitary
waves. Comm. Math. Phys. 164 (1994), 305–349.

[28] Schlag, W.: Spectral theory and nonlinear partial differential equations:
a survey. Discrete Contin. Dyn. Syst. 15 (2006), no. 3, 703–723.

[29] Weinstein, M. I.: Modulational stability of ground states of nonlinear
Schrödinger equations. SIAM J. Math. Anal. 16 (1985), 472–491.

[30] Weinstein, M. I.: Lyapunov stability of ground states of nonlinear dis-
persive evolution equations. Comm. Pure Appl. Math. 39 (1986), 51–68.

Recibido: 28 de abril de 2009
Revisado: 16 de septiembre de 2009

Raphaël Côte
CNRS and CMLS, UMR 7640

Ecole Polytechnique
91128 Palaiseau, France

cote@math.polytechnique.fr

Yvan Martel
Mathématiques, UMR 8100
Univ. Versailles–St. Quentin

78035 Versailles, France
yvan.martel@math.uvsq.fr

Frank Merle
Mathématiques, UMR 8088

Univ. Cergy-Pontoise
95302 Cergy-Pontoise, France and IHES

Frank.Merle@u-cergy.fr

This research was supported in part by the Agence Nationale de la Recherche (ANR
ONDENONLIN).


