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The Jet of an Interpolant
on a Finite Set

Charles Fefferman and Arie Israel

Abstract

We study functions F ∈ Cm(Rn) having norm less than a given
constant M, and agreeing with a given function f on a finite set E.

Let Γf(S,M) denote the convex set formed by taking the (m − 1)-
jets of all such F at a given finite set S ⊂ R

n. We provide an efficient
algorithm to compute a convex polyhedron Γ̃f(S,M), such that

Γf(S, cM) ⊂ Γ̃f(S,M) ⊂ Γf (S,CM) ,

where c and C depend only on m and n.

Fix m, n ≥ 1, and let f : E −→ R be given, where E ⊂ R
n. For a given

real number M > 0, we are interested in functions F ∈ Cm(Rn) with norm
at most M, such that F = f on E. To understand how F behaves, we fix
a finite set S ⊂ R

n, and compute the (m − 1)rst order Taylor polynomial1

of F at each point of S. What can we say about the resulting family of
polynomials?

To answer this question, we introduce some notation and definitions. As
usual, Cm(Rn) consists of all m times continuously differentiable functions
F : R

n −→ R for which the norm

‖ F ‖= sup
x∈Rn

max
|α|≤m

|∂αF(x)|

is finite. For F ∈ Cm(Rn) and x ∈ R
n, we write Jx(F) (the “jet” of F at x) to

denote the (m−1)rst order Taylor polynomial of F at x. Thus, Jx(F) belongs
to P, the vector space of (real-valued) (m − 1)rst degree polynomials on R

n.
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1We use (m − 1)rst degree Taylor polynomials, since nothing useful can be inferred
regarding the mth derivatives of F.
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A “Whitney field” on a finite set S ⊂ R
n is a family �P = (Px)x∈S of

polynomials Px ∈ P, indexed by the points of S. We write Wh(S) to denote
the vector space of all Whitney fields on S. For F ∈ Cm(Rn) and S ⊂ R

n

finite, we write JS(F) to denote the Whitney field

JS(F) = (Jx(F))x∈S ∈ Wh(S).

Now let f : E −→ R with E ⊂ R
n, and let M > 0 be a real number. For

x ∈ R
n, we define

Γf(x, M) = {Jx(F) : F ∈ Cm(Rn), ‖ F ‖≤ M, F = f on E} ⊂ P.

More generally, for finite S ⊂ R
n, we define

Γf(S, M) = {JS(F) : F ∈ Cm(Rn), ‖ F ‖≤ M, F = f on E} ⊂ Wh(S) .

Thus, Γf(x, M) and Γf(S, M) are (possibly empty) convex sets.

Fefferman-Klartag [2] gave an efficient algorithm to compute a convex
polyhedron Γ̃f(x, M) ⊂ P that approximates Γf(x, M).

Our purpose here is to compute a convex polyhedron ˜Γf(S, M) ⊂ Wh(S)

that approximates Γf(S, M).
Our algorithms, here and in [2, 3], are to be run on an (idealized) digital

computer with standard von Neumann architecture [6], able to store and
perform arithmetic operations on exact real numbers. See [2] for a more
careful discussion of our model of computation. We are interested in the
number of elementary operations used by our algorithms, and also in the
number of memory cells required. (We suppose each memory cell can hold
one real number.) We refer to the number of elementary operations, and
the number of memory cells, as the “work” and “storage”, respectively.

We will be working below with finite sets E, S ⊂ R
n. We write NE and NS

to denote the number of elements of the sets E and S, respectively.
We write c, C, C′, etc., to denote constants depending only on m and n.

These symbols may denote different constants in different occurrences.
One of the main results of Fefferman-Klartag [2] is as follows.

Theorem 1. Fix m, n ≥ 1. Given f : E → R with E ⊂ R
n finite, and given

M > 0 real, we can perform one-time work less than CNE log(NE+ 1) using
storage CNE, after which we can answer queries as follows.

A query consists of a point x ∈ R
n. In response to a query x, we produce

a (possibly empty) convex polyhedron ˜Γf(x, M) ⊂ P, defined by at most C

linear constraints, such that

Γf(x, cM) ⊂ Γ̃f(x, M) ⊂ Γf(x, CM) .

The work used to answer a query is at most C log(NE + 1).
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The main result of this paper is the following generalization of Theorem 1.

Theorem 2. Fix m, n ≥ 1. Given f : E → R with E ⊂ R
n finite, and given

M > 0 real, we can perform one-time work less than CNE log(NE+ 1) using
storage CNE, after which we can answer queries as follows.

A query consists of a finite set S ⊂ R
n. In response to a query S, we

produce a (possibly empty) convex polyhedron Γ̃f(S, M) ⊂ Wh(S), defined by
at most CNS linear constraints, such that

Γf(S, cM) ⊂ Γ̃f(S, M) ⊂ Γf(S, CM) .

The work used to answer a query is at most CNS log(NE + NS).

We were pleasantly surprised to learn that Theorem 2 follows easily from
Theorem 1, thanks to a lemma in [3] and the following simple observation.

Lemma 1. Let f : E −→ R with E ⊂ R
n, let M > 0 be a real number, and

let �P = (Px)x∈S ∈ Wh(S), with S ⊂ R
n finite. Suppose that, for each x ∈ S,

there exists Fx ∈ Cm(Rn), such that

(1) ‖ Fx ‖≤ M , Fx = f on E , and Jx(F
x) = Px .

Suppose also that

(2) |∂α(Px − Py)(y)| ≤ M|x − y|m−|α| for |α| ≤ m − 1 , x, y ∈ S distinct .

Then there exists F ∈ Cm(Rn) such that

(3) ‖ F ‖≤ CM , F = f on E , and JS(F) = �P .

The proof of Lemma 1 will be given below. The lemma from [3] used
here is as follows.

Lemma 2. Given a finite set S ⊂ R
n, we can compute a finite list (x′

1, x
′′
1) . . .

(x′
L, x

′′
L) ∈ S × S � Diagonal, with

(4) L ≤ CNS,

such that the following holds. Let �P = (Px)x∈S ∈ Wh(S), and let M > 0 be
a real number. If

|∂α(Px′
� − Px′′

� )(x′′
�)| ≤ M|x′

� − x′′
� |

m−|α| for |α| ≤ m − 1, 1 ≤ � ≤ L ,

then

|∂α(Px − Py)(y)| ≤ CM|x − y|m−|α| for |α| ≤ m − 1 , x, y ∈ S distinct.

The computation of the pairs (x′
1, x

′′
1), · · · , (x′

L, x
′′
L) requires work at most

CNS log(NS + 2), and storage at most CNS.

Here, the (x′
�, x

′′
�) are “representatives” arising from a “well-separated

pairs decomposition” of S×S�Diagonal. See Callahan-Kosaraju [1], and
compare with the computation of Lipschitz norms in Har-Peled-Mendel [4].
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In a moment, we prove our new results, namely Lemma 1 and Theorem 2.
First, it is a pleasure to thank Bo’az Klartag, Garving (Kevin) Luli and
Nahum Zobin for valuable conversations, and Gerree Pecht for LATEXing our
manuscript to her usual impeccable standards.

Let us see how to prove Theorem 2, once we know Theorem 1 and Lem-
mas 1 and 2. Given M > 0 and f : E → R, we perform the same one-time
work as in Theorem 1. Now suppose we are given a query S ⊂ R

n. We
compute the list (x′

1, x
′′
1), . . . , (x

′
L, x

′′
L) as in Lemma 2. Also, for each x ∈ S

we compute Γ̃f(x, M), as in Theorem 1. We define Γ̃f(S, M) to consist of all

Whitney fields �P = (Px)x∈S, such that: Px ∈ Γ̃f(x, M) for each x ∈ S; and

|∂α(Px′
� − Px′′

� )(x′′
�)| ≤ M|x′

� − x′′
� |

m−|α| for |α| ≤ m , 1 ≤ � ≤ L .

Recall that each Γ̃f(x, M) is a convex polyhedron, defined by at most C

linear constraints. Hence, by (4), Γ̃f(S, M) is a convex polyhedron defined
by at most CNS constraints. Moreover, one checks easily that the work and
storage used to compute Γ̃f(S, M) are as asserted in Theorem 2. Finally, the
desired inclusions

Γf(S, cM) ⊂ Γ̃f(S, M) ⊂ Γf(S, CM)

follow trivially from Theorem 1, Lemmas 1 and 2, Taylor’s theorem, and
the definitions of Γf(x, M), Γf(S, M) and Γ̃f(S, M). Thus, Theorem 2 follows
from Theorem 1 and Lemmas 1 and 2.

Since Theorem 1 and Lemma 2 are known, our task here reduces to the
proof of Lemma 1, which we now provide.

Thus, let f : E → R, M > 0, �P = (Px)x∈S and Fx (each x ∈ S) satisfy the
hypotheses of Lemma 1. We must construct an F ∈ Cm(Rn) satisfying (3).

To do so, we adapt the standard proof [5, 7] of the Whitney extension
theorem, which we now recall.

First, we define a collection Ω of “Whitney cubes” Q. The Whitney
cubes form a partition of R

n
� S. Each Q ∈ Ω satisfies

cδQ ≤ distance (S, Q∗) ≤ CδQ .

Here, δQ denotes the side-length of Q, and Q∗ denotes the cube Q dilated
about its center by a factor of 3.

The Whitney cubes have “good geometry”: If Q∗∩Q̂∗ �= ∅ with Q, Q̂∈Ω,
then cδQ ≤ δQ̂ ≤ CδQ.

Next, for each Q ∈ Ω, we pick a “representative” xQ ∈ S, such that
distance (xQ, Q∗) ≤ CδQ.

We then introduce the “Whitney partition of unity” 1 =
∑

Q∈Ω θQ on
R

n
� S. Here, each θQ belongs to Cm(Rn) and satisfies supp θQ ⊂ Q∗; and

|∂αθQ| ≤ Cδ
−|α|
Q on R

n, for |α| ≤ m.
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Whitney’s proof then defines

(5) F̃ =
∑
Q∈Ω

θQ · PxQ on R
n

� S , F̃(x) = Px(x) for x ∈ S .

The derivatives of F̃ up to order m can be controlled on R
n

� S, thanks
to the estimate

(6) |∂α(PxQ − PxQ̂)| ≤ CMδ
m−|α|
Q on Q∗ ∩ Q̂∗, for |α| ≤ m .

Estimate (6) follows easily from hypothesis (2).
We will slightly modify Whitney’s proof by defining

(7) F =
∑
Q∈Ω

θQ · FxQ on R
n

� S, F(x) = Fx(x) for x ∈ S ,

in place of (5). From hypothesis (1) and Taylor’s theorem, we see that

(8) |∂α(FxQ − PxQ)| ≤ CM δ
m−|α|
Q on Q∗ , for |α| ≤ m .

Similarly

(9) |∂α(FxQ̂ − PxQ̂)| ≤ CM δ
m−|α|

Q̂
on Q̂∗, for |α| ≤ m .

Since cδQ ≤ δQ̂ ≤ CδQ for Q∗ ∩ Q̂∗ �= ∅, we learn from (6), (8), (9) that

(10) |∂α(FxQ − FxQ̂)| ≤ CMδ
m−|α|
Q on Q∗ ∩ Q̂∗, for |α| ≤ m .

Estimate (10) is useful when δQ ≤ 1. For δQ > 1, we use instead the
estimate

(11) |∂α(FxQ − FxQ̂)| ≤ CM on Q∗ ∩ Q̂ for |α| ≤ m ;

this estimate is immediate from hypothesis (1) .
By using (10) and (11) in place of (6), we learn from Whitney’s classic

argument that

(12) F ∈ Cm
�oc(R

n
� S), and |∂α F| ≤ CM on R

n
� S , for |α| ≤ m .

Also, from (1) and (7), we see at once that

(13) F = f on E � S .

On the other hand, let x ∈ S. Since S is finite, x has a small open
neighborhood Ux with the following property: Let Q ∈ Ω, and suppose
Q∗ ∩ Ux �= ∅. Then xQ = x.

Hence, by (7), we have F = Fx on Ux.
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Hypothesis (1) therefore tells us that

F ∈ Cm
�oc(Ux), |∂

αF| ≤ M on Ux for |α| ≤ m , Jx(F) = Px, and(14)

F(x) = f(x) if x ∈ E ∩ S.(15)

The desired properties (3) of the function F now follow trivially from
(12)-(15). The proof of Lemma 1 is complete �
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