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Pseudo-localisation of
singular integrals in Lp

Tuomas P. Hytönen

Abstract

As a step in developing a non-commutative Calderón–Zygmund
theory, J. Parcet [7] established a new pseudo-localisation principle
for classical singular integrals, showing that Tf has small L2 norm
outside a set which only depends on f ∈ L2 but not on the arbitrary
normalised Calderón–Zygmund operator T . Parcet also asked if a
similar result holds true in Lp for p ∈ (1,∞). This is answered in
the affirmative in the present paper. The proof, which is based on
martingale techniques, even somewhat improves on the original L2

result.

1. Introduction

The analogies and direct relations between the mapping properties of Calde-
rón–Zygmund singular integrals and martingale transforms have well-known
and far-reaching consequences. One useful property, which at first sight
seems to belong to the latter class of operators only, is localisation: the
supports of martingale differences are preserved by the associated martin-
gale transforms. The regularity of the Calderón–Zygmund kernels, which
gives an advantage in various other contexts, here seems to play against us
by producing a diffusion-type effect which appears to destroy all hopes of
reasonable localisation.

In view of this, the recent pseudo-localisation theorem of J. Parcet [7]
is quite remarkable. Given f ∈ L2(Rn) and s ∈ N, it provides an explic-
itly described set Σf,s ⊆ Rn (see Definition 2.3), so that every normalised
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Calderón–Zygmund operator T maps f into a function essentially concen-
trated on Σf,s, in the sense that [7, Section 0.V]

(1.1)
(ˆ

Σc
f,s

|Tf(x)|2 dx
)1/2

� (1 + s)2−sγ/4‖f‖2,

where γ ∈ (0, 1] is the Hölder exponent from the standard estimates. While
the set Σf,s directly obtained by the construction may easily be all of Rn

for some f ∈ L2(Rn), it can then be replaced by another set which still
satisfies the estimate (1.1) and is also controlled in size, being roughly a
2s(1+γ/2n)-fold expansion of a cube Q such that ‖1Qcf‖2 � 2−sγ/4‖f‖2 [7,
Section A.1].

Perhaps surprisingly, as the boundedness of Calderón–Zygmund opera-
tors in L1(Rn) usually fails, the pseudo-localisation still holds, with the same
set Σf,s and even with the faster decay

(1.2)

ˆ
Σc

f,s

|Tf(x)| dx � 2−sγ‖f‖1.

This inequality, obtained as [7, Theorem A.5], is in fact far easier than (1.1);
the tedious almost-orthogonality estimates leading to (1.1) are replaced by
a straightforward application of the additivity of the L1 norm on disjointly
supported functions. However, the procedure in L2(Rn) of replacing Σf,s by
a set of controlled size while retaining the pseudo-localisation estimate, does
not carry over to L1(Rn) [7, Remark A.6].

Motivated by the two results (1.1) and (1.2), Parcet also asked [7, Sec-
tion A.4] whether a pseudo-localisation principle might hold in Lp(Rn) for
p ∈ (1, 2), and suggested a couple of concievable estimates in this direction.
Below, I take the freedom of referring to them as “conjectures”, although
this word was not explicitly used in [7]. Of course, given the non-linear
dependence of the left sides of (1.1) and (1.2) on f via the set Σf,s, no
usual form of interpolation will be directly applicable. The case p ∈ (2,∞)
was also raised in [7, Remark A.8] as a natural question, but an intrinsic
difficulty in a potential approach via duality was pointed out.

Nevertheless, in this paper, the Lp estimates analogous to (1.1) and (1.2)
will be established for all p ∈ (1,∞). The proof will deal with the full range
of p ∈ (1,∞) at once in a unified manner, without resorting to interpolation
or duality arguments. This is made possible by the use of various martingale
techniques, which were originally developed to handle the difficulties aris-
ing in harmonic analysis of Banach space -valued functions in the works of
Figiel [1, 2], McConnell [5], and the author [3]. Their successful application
also to the problem at hand displays the power of these methods even in the
context of classical analysis.
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Besides providing this extended scope of the pseudo-localisation prin-
ciple, the new proof should already be of some interest in view of the L2

result (1.1) only. Recall that the original proof of Parcet for this estimate
is, remarkably, completely “elementary”: it only uses Cotlar’s lemma and
Schur’s lemma, the assumptions of which are checked through a sequence of
estimates involving nothing but tedious calculus for more than 25 pages [7,
pp. 528–554]. (A part of the original argument was subsequently simplified
by Mei and Parcet [6], who extended it to the case of Hilbert space-valued
kernels. See the discussion after [6, Lemma A.2].) The present proof is
somewhat shorter, admittedly at the cost of applying much deeper machin-
ery, but I feel that the identification of these known theorems as ingredients
of the pseudo-localisation principle makes the phenomena behind this result
more transparent than proving it from scratch.

The new method also yields a faster decay in the L2 estimate than (1.1).
This is at least partially due to the directness of (here employed) Figiel’s [2]
approach to the T (1) theorem (a version of which underlies the pseudo-
localisation principle), as compared to the more usual proofs based on Cot-
lar’s lemma: instead of attacking the operator T itself, as Figiel does, the
Cotlar-based approaches are in effect concerned with the estimation of T ∗T .
While in principle equivalent in L2, it seems that some of the decay involved
in the pseudo-localisation is lost for practical purposes in the complicated
computations of the kernels for the composite operators.

2. The set-up and the main result

Let us agree to use the �∞ metric on Rn and denote it simply by | · |; this
is more convenient than the Euclidean metric when dealing with cubes, as
we will. Let D :=

⋃
k∈Z Dk with Dk := {2−k([0, 1)n + m) : m ∈ Zn} be the

system of dyadic cubes in Rn. A function on Rn is called Dk-measurable if it
is constant on the cubes I ∈ Dk; a subset of Rn is called Dk-measurable if it
is a union of some cubes I ∈ Dk. Acting on any locally integrable function
f ∈ L1

loc(R
n), one defines the dyadic conditional expectation operators and

their differences: (Note that there is a shift of the index in the present
notation for the differences in comparison to Parcet’s usage in [7].)

Ekf :=
∑
I∈Dk

1I

 
I

f dx, Dkf := Ek+1f − Ekf,

where the integral average notation
 

I

f dx :=
1

|I|
ˆ

I

f dx
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was employed. In consistence with this, the notation �Lp(I) with the Polish �L
will be used for the space Lp(I) equipped with the normalised norm

‖f‖�Lp(I) :=
( 

I

|f |p dx
)1/p

.

We can further write

Dkf =
∑
I∈Dk

1IDkf =:
∑
I∈Dk

DIf.

The range of the projection DI consists of functions supported on I, constant
on J ∈ D with �(J) = 1

2
�(I), and with a vanishing integral. This linear

space has dimension 2n − 1. Recall the definition of the Haar functions hη
I :

For n = 1,

h0
I := |I|−1/21I , h1

I := |I|−1/2(1I�
− 1Ir),

where I� and Ir are the left and right halves of I, and in general

hη
I(x) = h

(η1,...,ηn)
I1×...×In

(x1, . . . , xn) :=
n∏

i=1

hηi

Ii
(xi), η ∈ {0, 1}n.

It is immediate that any two of them are orthogonal. Since hη
I = DIh

η
I for

all the 2n−1 choices of η ∈ {0, 1}n \{0}, it follows that these functions form
an orthonormal basis of the range of DI . Thus

DIf =
∑

η∈{0,1}n\{0}
hη

I〈hη
I , f〉 =:

∑
η∈{0,1}n\{0}

D
η
If.

The frequently appearing summation over η ∈ {0, 1}n \ {0}, like above,
will henceforth be abbreviated as

∑
η. The rank-one projections D

η
I satisfy

D
η
ID

θ
J = δIJδηθD

η
I .

For f ∈ Lp(Rn), p ∈ (1,∞), one has

Ekf −→
k→∞

f, Ekf −→
k→−∞

0

both pointwise a.e. and in Lp(Rn), and hence

f = lim
N→+∞
M→−∞

(ENf − EMf) =
∑
k∈Z

Dkf.

Since the Dkf = Ek+1f−Ekf are martingale differences, this series converges
unconditionally in Lp(Rn) by a well-known theorem of Burkholder.
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Remark 2.1. The Haar expansion

(2.2) f =
∑
I∈D

∑
η

D
η
If =

∑
I∈D

∑
η

hη
I〈hη

I , f〉

is also unconditionally convergent in Lp(Rn), p ∈ (1,∞).

Proof. For the convenience of the reader, I derive this well-known result
from Burkholder’s theorem. (I give an argument which is equally valid for
vector-valued functions f ∈ Lp(Rn; X), as long as Burkholder’s theorem
holds in Lp(Rn; X), i.e., the Banach space X is a so-called UMD space.)
Let αη

I be arbitrary signs, and let εI be independent random signs with
P(εI = +1) = P(εI = −1) = 1

2
; write Eε for the corresponding expectation.

Then∥∥∥ ∑
I∈D

∑
η

αη
ID

η
If

∥∥∥
p
≤

∑
η

∥∥∥ ∑
I∈D

αη
ID

η
If

∥∥∥
p

�
∑

η

(
Eε

∥∥∥∑
I∈D

εID
η
If

∥∥∥p

p

)1/p

,

where the last estimate follows from Burkholder’s theorem and the fact that
D

η
I = DID

η
I . Next, we further write

D
η
If = D

η
IDIf = hη

I〈hη
I , DIf〉.

By using that |hη
I | = h0

I = 1I/|I|1/2, and the fact that the distribution of εI

and −εI is equal, we have

Eε

∥∥∥ ∑
I∈D

εIh
η
I〈hη

I , DIf〉
∥∥∥p

p
= Eε

∥∥∥ ∑
I∈D

εIh
0
I〈hη

I , DIf〉
∥∥∥p

p

= Eε

∥∥∥ ∑
I∈D

εIEI

(|I|1/2hη
I · DIf

)∥∥∥p

p
,

where EIφ := 1I

ffl
I
φ dx. Thanks to Stein’s inequality for the expectation

operators EI , I ∈ D , followed by Kahane’s contraction principle applied to
the functions |I|1/2hη

I which are bounded in absolute value by 1, we may
continue the estimate with

� Eε

∥∥∥ ∑
I∈D

εI |I|1/2hη
I · DIf

∥∥∥p

p
≤ Eε

∥∥∥ ∑
I∈D

εIDIf
∥∥∥p

p
.

Another application of Burkholder’s theorem shows that this is bounded
by ‖f‖p

p, completing the proof. �
Thus the collection {hη

I : I ∈ D , η ∈ {0, 1}n \{0}}, which is an orthonor-
mal basis of L2(Rn), is also an unconditional basis of Lp(Rn), p ∈ (1,∞), so
the series in (2.2) sums up to the same limit irrespective of the summation
order. Note that the non-cancellative Haar functions h0

I do not appear as
part of this basis, but they are still handy for related considerations.
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Given I ∈ D and s ∈ N, the notation I(s) will stand for the sth dyadic
ancestor of I, i.e., the unique I(s) ∈ D such that I(s) ⊇ I and �(I(s)) = 2s�(I),
where �(I) is the side-lenght of I. For I ∈ D and m ∈ Zn, the notation I+̇m
indicates the dyadic cube of the same size obtained by translating I by m
times its side-length, i.e., I+̇m := I + �(I)m.

Definition 2.3 (Σf,s and related sets, [7, p. 517]). Let f ∈ L1
loc(R

n) and
s ∈ N := {0, 1, 2, . . .}. For each k ∈ Z, let Ωk (its dependence on f and s is
supressed from the notation) be the smallest Dk-measurable set which con-
tains the support of Dk+sf , i.e., Ωk is the union of those cubes I ∈ Dk where
Dk+sf is not identically zero. Let 9Ωk be the union of the corresponding
concentric 9-fold expansions 9I, which is still Dk-measurable. (The factor 9
is important for this last conclusion; 8 or 10 would not do.) Then finally

Σf,s :=
⋃
k∈Z

9Ωk.

A standard kernel K(x, y) is a function on Rn × Rn \ {x = y} with the
estimates

|K(x, y)| ≤ C

|x − y|n , x �= y, and

|K(x+h, y)− K(x, y)|+|K(x, y+h) − K(x, y)| ≤ C|h|γ
|x−y|n+γ

, |x−y|>2|h|,
where γ ∈ (0, 1] is a fixed parameter. The kernel is said to be normalised
if these estimates hold with C = 1. For this paper, a Calderón–Zygmund
operator is an operator T sending f ∈ Lp(Rn), p ∈ [1,∞), to the function Tf
defined on (supp f)c by the formula

Tf(x) =

ˆ
Rn

K(x, y)f(y) dy, x /∈ supp f.

Recall that the support of a measurable function f is the complement of
the union of all balls in which f vanishes almost everywhere; hence it is a
closed set.

As it turns out, this weak definition suffices for the pseudo-localisation
principle. Note that supp f ⊆ Σf,s, so that the formula (1.1) only involves
Tf(x) for x /∈ supp f , and this assertion makes perfect sense without even
having Tf globally defined. Besides being defined pointwise, Calderón–
Zygmund operators automatically enjoy the following off-diagonal bounded-
ness property:

Remark 2.4. Let F be a closed set of Rn and K a compact set disjoint from F
(and hence at a positive distance from F ). Given any Calderón–Zygmund
operator T , the operator 1KT maps Lp(F ) := {φ ∈ Lp(Rn) : supp φ ⊆ F}
boundedly into Lp(Rn) for p ∈ [1,∞).
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Proof. Let δ := dist(K, F ) > 0. Then for x ∈ K and f ∈ Lp(F ),

|Tf(x)| ≤
(ˆ

F

|K(x, y)|p′ dy
)1/p′

‖f‖p

�
(ˆ

|y−x|≥δ

C dy

|x − y|np′

)1/p′

‖f‖p � δ−n/p‖f‖p,

and hence ‖1KTf‖p � δ−n/p|K|1/p‖f‖p. �

If T is a Calderón–Zygmund operator for which Tf(x) is also defined
for a.e. x ∈ supp f , in such a way that the mapping T : f �→ Tf is linear
and bounded on Lp(Rn) for one (and then all) p ∈ (1,∞), then T is said
to be a bounded Calderón–Zygmund operator. It is called normalised if
‖Tf‖2 ≤ ‖f‖2.

Theorem 2.5. Let p ∈ (1,∞), f ∈ Lp(Rn), s ∈ N. Then every Calderón–
Zygmund operator T with a normalised kernel satisfies

(2.6)
(ˆ

Σc
f,s

|Tf(x)|p dx
)1/p

� (1 + s)2−smin(γ,1/2,1/p′)‖f‖p.

If, moreover, T is bounded and normalised, this estimate also holds with Σf,s

replaced by

(2.7) 100 · 2s[1+min(γ,1/2,1/p′)·p′/n]Qf,s,

where Qf,s is any cube such that

‖1Qc
f,s

f‖p ≤ (1 + s)2−smin(γ,1/2,1/p′)‖f‖p.

Here and below, the notation A � B stands for A ≤ CB, where the
constant C is only allowed to depend on the dimension n, the Lebesgue
exponent p, and the Hölder exponent γ, but never on f , s, or T .

Note that (2.6) is stronger than Parcet’s conjecture [7, (A.3)], where the
decay exponent involved the product, rather than the minimum, of the three
small numbers γ, 1/2, 1/p′ ∈ (0, 1]. Theorem 2.5 fails to prove, however, the
unnumbered displayed formula preceding [7, (A.3)], which was suggested
by näıve interpolation between Parcet’s estimates (1.1) and (1.2). Indeed
the decay exponent given by (2.6) vanishes in the limit p → 1, rather than
approaching the L1 decay rate of (1.2).

The heart of the matter is the bound (2.6) concerning the set Σf,s. Once
this estimate is obtained, the variant with Qf,s follows straightforwardly by
essentially repeating the argument of [7, Section A.1].

We then turn to the proof of the main estimate (2.6).
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3. Reduction to an operator boundedness problem

In this section, the pseudo-localisation estimate involving the restricted oper-
ator 1Σc

f,s
T will be reduced to a new question concerning the Lp(Rn) bound-

edness of certain globally defined operators derived from T and Σc
f,s. This

still essentially follows the argument of Parcet from the L2(Rn) case [7, Sec-
tions 2.2–2.3]. To begin with, the following technical lemma will save some
trouble of worrying about the convergence issues in the coming manipu-
lations. It has a reasonably standard flavour, but recall that the Lp(Rn)
boundedness of T is not assumed, which makes the reasoning slightly more
complicated.

Lemma 3.1. It suffices to prove the pseudo-localisation estimate for all f
with a finite Haar expansion.

Proof. Letf∈Lp(Rn) and consider the closed set F :=
⋃

k≤0Ω̄k∪suppf ⊆Σf,s.
Fix a compact K disjoint from F , and let

F ′ := F + 1
2
dist(F, K)[−1, 1]n,

which is still separated from K. Note that supp Ekf ⊆ supp f + 2−k[−1, 1]n

⊆ F ′ for all large k, while

supp Ekf = supp
∑
j<k

Djf ⊆
⋃
j<k

supp D(j−s)+sf ⊆
⋃
j<k

Ω̄j−s ⊆ F ⊆ F ′

for all k ≤ s + 1. Thus the functions 1E(Eaf − Ebf), with a ≥ a0 > s ≥ b
and E a bounded Db-measurable set, have a finite Haar expansion, belong
to Lp(F ′), and converge to f in this space as a → ∞, b → −∞, and E ↑ Rn.

Denoting by f̃ one of these approximations, and assuming the pseudo-
localisation for functions with a finite Haar expansion, there holds

‖1Σc
f,s

1KT f̃‖p ≤ ‖1Σc
f̃,s

T f̃‖p � (1 + s)2−smin(γ,1/2,1/p′)‖f̃‖p,

where the first estimate follows from the fact that Σf̃ ,s ⊆ Σf,s, since

supp Dk+sf̃ ⊆ supp Dk+sf.

Letting f̃ → f along the family of functions as considered, and using the
continuity of 1KT : Lp(F ′) → Lp(Rn) (Remark 2.4), it follows that

‖1Σc
f,s

1KTf‖p � (1 + s)2−smin(γ,1/2,1/p′)‖f‖p.

As K ↑ F c ⊇ Σc
f,s, this gives the pseudo-localisation estimate for f . �
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Let f be henceforth a function with a finite Haar expansion. The object
to be estimated can then be written as

1Σc
f,s

Tf = 1Σc
f,s

(∑
k

EkTDk+sf +
∑

k

(id−Ek)TDk+sf
)
.

Using the facts that 9Ωk ⊆ Σf,s is Dk-measurable (so that the multipli-
cation operator of its indicator commutes with Ek), and that the distance
of the sets (9Ωk)

c and Ωk ⊇ supp Dk+sf is 4 · 2−k, we have

1Σc
f,s

∑
k

(id−Ek)TDk+sf = 1Σc
f,s

∑
k

(id−Ek)1(9Ωk)cTDk+sf

= 1Σc
f,s

∑
k

(id−Ek)1(9Ωk)cT4·2−kDk+sf = 1Σc
f,s

∑
k

(id−Ek)T4·2−kDk+sf,

where Tε is the truncated singular integral

Tεg(x) =

ˆ
|y−x|>ε

K(x, y)g(y) dy,

which is automatically globally defined on Lp(Rn). Putting the previous
equalities together gives Parcet’s decomposition

1Σc
f,s

Tf = 1Σc
f,s

(∑
k

EkTDk+sf +
∑

k

(id−Ek)T4·2−kDk+sf
)

=: 1Σc
f,s

(
Φsf + Ψsf

)
.

(3.2)

Let us have a closer look at the first term by expanding the operators Ek

and Dk+s in terms of the Haar functions:

Φsf =
∑

I,J∈D
�(J)=2s�(I)

∑
η

h0
J〈h0

J , Thη
I〉〈hη

I , f〉

=
∑

m∈Zn

∑
η

∑
I∈D

h0
I(s)+̇m〈h0

I(s)+̇m, Thη
I〉〈hη

I , f〉.

Observe that, if 〈hη
I , f〉 �= 0, then I(s) ⊆ Σf,s, and hence 1Σc

f,s
h0

I(s) = 0.
Thus one can virtually subtract some terms without affecting the value of
1Σc

f,s
Φsf , to the result that

1Σc
f,s

Φsf = 1Σc
f,s

∑
m∈Zn

∑
η

∑
I∈D

(
h0

I(s)+̇m − h0
I(s)

)〈h0
I(s)+̇m, Thη

I〉〈hη
I , f〉

=: 1Σc
f,s

Φ̃sf,(3.3)

and therefore

(3.4) 1Σc
f,s

Tf = 1Σc
f,s

(
Φ̃sf + Ψsf

)
.
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To prove the pseudo-localisation estimate, it hence suffices to bound the
operator norms of Φ̃s and Ψs appropriately, which will be the concern of the
following two sections.

Let us notice, although it will not be used here, that the replacement
of Φs by Φ̃s was in effect the removal of a paraproduct associated with T ∗1,
and these operators agree globally (rather than just on Σc

f,s) in case T ∗1 = 0.
See [7, Sec. 2.3].

4. The operator Φ̃s

This section is devoted to the analysis of the operator Φ̃s. When s = 0,
the following bound already appears as part of Figiel’s [2] proof of the T (1)
theorem. I will be able to exploit some intermediate results of his proof, but
obtaining the decay in s will also depend on some new estimates.

Proposition 4.1. Let p ∈ (1,∞) and T be a Calderón–Zygmund operator
with a normalised kernel. Then the operator Φ̃s defined in (3.3) satisfies

‖Φ̃s‖p→p � (1 + s)2−smin(γ,1/2,1/p′).

It is convenient to start by controlling the Haar coefficients of T ap-
pearing in the definition (3.3) of Φ̃s. Similar estimates of course appear in
Parcet’s paper [7], but it seems that expressing the bounds in terms of the
dyadic cubes rather than some reference points inside them will simplify the
presentation. Note that one may take the outer summation in (3.3) over
m ∈ Zn \ {0} only, since the first factor of the summand vanishes for m = 0.

Remark 4.2. For any cube I, we have

ˆ
3I\I

ˆ
I

dy dx

|x − y|n � |I|.

Proof. By a change-of-variable and an obvious decomposition of 3I \ I,
it suffices to prove this for I = [0, 1)n and an adjacent unit cube in place
of 3I \ I. Let i be one of the coordinate directions in which this adjacent
cube projects onto a unit interval [a, a + 1) with a �= 0 (thus a ∈ {−1, +1},
and without loss of generality a = 1), and consider first the integral with
respect to dyi dxi. We write x′, y′ for the (n− 1)-vectors obtained from x, y
by deleting the entries xi, yi, and observe that |x − y| � |x′ − y′| + |x − y|.
Then, for n ≥ 3,

ˆ 1

0

(ˆ 2

1

dxi

[|x′ − y′| + (xi − yi)]n

)
dyi ≤

ˆ 1

0

(n − 1)−1

[|x′ − y′| + (1 − yi)]n−1
dyi

≤ (n − 1)−1(n − 2)−1|x′ − y′|−(n−2).
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This may be integrated with respect to x′ ∈ [0, 1)n−1 with a finite bound
which may be taken independent of y′, since the remaining singularity has
a lower order n− 2 than the remaining dimension n− 1. For n ∈ {1, 2}, the
argument needs an elementary modification, since the logarithm appears as
a primitive from the integrals above; this is left to the reader. �

Lemma 4.3. For I, J ∈ D with �(I) ≤ �(J) and I ∩ J = ∅,

|〈h0
J , Thη

I〉| �
( �(I)

�(J)

)n/2

⎧⎪⎨
⎪⎩

�(I)γ�(J)n dist(I, J)−n−γ, dist(I, J) ≥ �(J),

�(I)γ dist(I, ∂J)−γ , �(I)≤dist(I, J)≤�(J),

1, dist(I, J) ≤ �(I).

Proof. If dist(I, J) ≥ �(J), then, writing yI for the centre of I,

|〈h0
J , Thη

I〉| =
∣∣∣¨ h0

J (x)[K(x, y) − K(x, yI)]h
η
I(y) dy dx

∣∣∣
� �(I)γ

dist(J, I)n+γ
‖h0

J‖1‖hη
I‖1 �

�(I)γ+n/2�(J)n/2

dist(J, I)n+γ
.

Estimating slightly differently when �(I) ≤ dist(I, J) ≤ �(J),

|〈h0
J , Thη

I〉| � ‖h0
J‖∞‖hη

I‖1

ˆ
J

�(I)γ

dist(x, I)n+γ
dx

�
( �(I)

�(J)

)n/2
ˆ ∞

dist(J,I)

�(I)γ

tn+γ
tn−1 dt � �(I)n/2+γ

�(J)n/2 dist(J, I)γ
.

Finally, for any disjoint position of I and J (but this estimate will be
used only when dist(I, J) ≤ �(I)), we have the following bounds involving
Remark 4.2:

|〈h0
J , Thη

I〉| ≤
≤ |〈h0

J13I , Thη
I〉| +

∣∣∣¨ h0
J1(3I)c(x)[K(x, y) − K(x, yI)]h

η
I(y) dy dx

∣∣∣
� ‖h0

J‖∞‖hη
I‖∞

(ˆ
3I\I

ˆ
I

dy dx

|x − y|n +

ˆ
(3I)c

�(I)γ

dist(x, I)n+γ
|I| dx

)

� |J |−1/2|I|−1/2
(
|I| + |I|

ˆ ∞

�(I)

�(I)γ

tn+γ
tn−1 dt

)
�

( �(I)

�(J)

)n/2

.

Combining these estimates gives the assertion. �
The above bound is not very good when the smaller cube is close to the

boundary of the bigger one. This is a common source of pain in related
considerations, and different methods have been devised to overcome it in
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various situations. In the present case it will suffice to obtain the following
average bound, which exhibits required decay. For J ∈ D and m ∈ Zn, let
J+̇m := J + �(J)m be the dyadic cube translated in each direction by a
multiple of its side-length.

Lemma 4.4. For I, J ∈ D with �(I) ≤ �(J) and m ∈ Zn \ {0}, there holds∥∥∥ ∑
K⊆J

�(K)=�(I)

〈h0
J+̇m, Thη

K〉hη
K

∥∥∥
�Lr(J)

�

� |J |−1/2
( �(I)

�(J)

)min(γ,1/r)(
1 + log

�(J)

�(I)

)δγ,1/r ·1/r

(1 + |m|)−n−γ,

where δγ,1/r is Kronecker’s delta, i.e., 1 if γ = 1/r and 0 otherwise.

Proof. If m /∈ {−1, 0, 1}n, then �(J) ≤ dist(K, J+̇m) � �(J)|m| for K ⊆ J ,
so all the pairings with T are bounded by

�(I)n/2+γ�(J)−n/2−γ |m|−n−γ.

Also the hη
K are disjointly supported and bounded by |K|−1/2 = �(I)−n/2.

Hence even the L∞(J+̇m) norm, and thus the �Lr(J+̇m) norm, is dominated
by the product of these numbers, which is exactly as claimed.

If m ∈ {−1, 0, 1}n \ {0}, so that J+̇m and J are adjacent, then one
observes that there are O((�(J)/�(I))n−1) cubes K with

dist(K, ∂(J+̇m)) = k�(I)

for each k = 0, . . . , �(J)/�(I), and hence∥∥∥ ∑
K⊆J

�(K)=�(I)

〈h0
J+̇m, Thη

K〉hη
K

∥∥∥
�Lr(J)

�

�
( �(I)

�(J)

)n/2{ 1

|J |
(�(J)

�(I)

)n−1
�(J)/�(I)∑

k=0

( �(I)

(1 + k)�(I)

)γr |I|
|I|r/2

}1/r

= �(J)−n/2
{ �(I)

�(J)

�(J)/�(I)∑
k=0

(1 + k)−γr
}1/r

� �(J)−n/2
{ �(I)

�(J)

(�(J)

�(I)

)(1−γr)+(
1 + log

�(J)

�(I)

)δγr,1
}1/r

� �(J)−n/2
( �(I)

�(J)

)min(γ,1/r)(
1 + log

�(J)

�(I)

)δγ,1/r ·1/r

,

which is again as claimed. �
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Now we can start with the proof of Proposition 4.1 where, we recall,

(4.5) Φ̃sf =
∑

m∈Zn\{0}

∑
η

∑
I∈D

(
h0

I(s)+̇m − h0
I(s)

)〈h0
I(s)+̇m, Thη

I〉〈hη
I , f〉.

Let us denote by Λs,m and Um the linear operators acting on the Haar
basis as follows:

Λs,m : hη
I �→ 〈h0

I(s)+̇m, Thη
I〉hη

I(s), Um : hη
I �→ h0

I+̇m − h0
I .

Then (4.5) says that

Φ̃sf =
∑

m∈Zn

UmΛs,mf.

The operators Um were considered by Figiel, who showed [1, Theorem 1]
that

‖Um‖p→p � log(2 + |m|).
The proof of Proposition 4.1 is obviously completed once it is shown that
the operators Λs,m satisfy

(4.6) ‖Λs,m‖p→p � (1 + s)2−smin(γ,1/2,1/p′)(1 + |m|)−n−γ,

since ∑
m∈Zn

log(2 + |m|)
(1 + |m|)n+γ

� 1.

So let us turn to this task.
Let s, m and η be fixed and abbreviate λI := 〈h0

I(s)+̇m
, Thη

I〉, αI := 〈hη
I , f〉

and hI := hη
I . Then Λs,mf is a sum of 2n − 1 series (corresponding to the

different values of η) of the form∑
J∈D

∑
I⊆J

�(I)=2−s�(J)

λIαIhJ .

By the unconditionality of the Haar basis, the Lp norm of this quantity is
comparable to the following, where the εJ designate independent random
signs on some probability space (Ω, P), with the distribution P(εJ = −1) =
P(εJ = 1) = 1

2
, and Eε is the related expectation operator:(

Eε

∥∥∥ ∑
J∈D

εJ

∑
I⊆J

�(I)=2−s�(J)

λIαIhJ

∥∥∥p

p

)1/p

=

=
(ˆ

Rn

Eε

∣∣∣ ∑
J∈D

εJ

∑
I⊆J

�(I)=2−s�(J)

λIαI
1J(x)

|J |1/2

∣∣∣p dx
)1/p

,

(4.7)
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where we used the pointwise equality |hJ(x)| = h0
J(x) = 1J(x)/|J |1/2 and the

fact that the possible change of sign does not affect the randomised norms
with the multiplicative random sign εJ in front in any case. (Note, however,
that hJ = hη

J for some η �= 0.)
Consider the above integrand for a fixed x ∈ Rn, introducing auxiliary

variables yJ ∈ J for each J ∈ D . By the orthogonality relations of the Haar
functions,

Eε

∣∣∣ ∑
J∈D

εJ

∑
I⊆J

�(I)=2−s�(J)

λIαI
1J(x)

|J |1/2

∣∣∣p =

= Eε

∣∣∣ ∑
J∈D

εJ

 
J

(
|J |1/2

∑
I

λIhI(yJ)
)(∑

I

αIhI(yJ)
)

dyJ1J(x)
∣∣∣p,

(4.8)

where the summation condition on I is as before.
We make use of the following estimate, where (S, ν) is an abstract σ-finite

measure space:

Lemma 4.9. Let p ∈ [1,∞) and t ∈ [1, 2]. For fj ∈ Lt(ν), φj ∈ Lt′(ν),
there holds(

Eε

∣∣∣ ∑
j

εj

ˆ
S

φj(s)fj(s) dν(s)
∣∣∣p)1/p

� sup
j

‖φj‖t′Eε

∥∥∥ ∑
j

εjfj

∥∥∥
t
.

Proof. Using the equivalence of the randomised and quadratic sums (i.e.,
the well-known Khintchine inequality), the left side is comparable to(∑

j

∣∣∣ ˆ
S

φjfj dν
∣∣∣2)1/2

≤ sup
{∑

j

ˆ
S

|φj||fj| dν|λj| :
( ∑

j

|λj|2
)1/2

≤ 1
}
.

Then ∑
j

ˆ
S

|φj||fj| dν|λj| ≤
∥∥∥(∑

j

|λjφj |2
)1/2∥∥∥

t′

∥∥∥(∑
j

|fj|2
)1/2∥∥∥

t

where the second factor is comparable to the second factor in the assertion.
Since t′ ≥ 2, using the triangle inequality in Lt′/2 for the first factor, it is
estimated by( ∑

j

‖|λj|2|φj|2‖t′/2

)1/2

≤ sup
j

‖φj‖t′
(∑

j

|λj|2
)1/2

≤ sup
j

‖φj‖t′ .

This completes the proof. �
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Lemma 4.9 is applied to (4.8) (for each fixed x) using the product measure
space S :=

∏
J∈D J , which is equipped with the product of the normalised

Lebesgue measures restricted to each J (i.e., exactly the measures with
respect to which one integrates in (4.8)). This gives

LHS(4.8) � sup
J∈D

∥∥∥|J |1/2
∑
I⊆J

�(I)=2−s�(J)

λIhI

∥∥∥
�Lt′ (J)

× Eε

∥∥∥ ∑
J∈D

εJ

∑
I⊆J

�(I)=2−s�(J)

αIhI(yJ)1I(x)
∥∥∥

Lt(S)
,

(4.10)

where we choose

t := min(2, p).

By Lemma 4.4 (recalling the definition of the coefficients λI), the first factor
above is bounded by

(1 + s)δγ,1/t′ ·1/t′2−smin(γ,1/t′)(1 + |m|)−n−γ,

min(γ, 1/t′) = min(γ, 1/2, 1/p′).

In the second factor, simply by Hölder’s inequality, one may estimate the
Lt(S) norm by the Lp(S) norm. Substituting back to (4.7), whose estimation
was the original goal, it is found that

LHS(4.7) � (1 + s)δγ,1/t′ ·1/t′2−s min(γ,1/t′)(1 + |m|)−n−γ

×
(

Eε

¨
Rn×S

∣∣∣ ∑
J∈D

εJ

∑
I⊆J

�(I)=2−s�(J)

αIhI(yJ)1J(x)
∣∣∣p dx dν(y)

)1/p

,

where ν is the product of the normalised Lebesgue measures on S =
∏

J∈D J .
Let us reorganise the summation over J ∈ D as follows:

∑
J∈D

=

s∑
j=0

∑
J∈D

log2 �(J)≡j(mod s+1)

By standard estimates for random series (in the Banach space language, by
the fact that Lp has type t), we then have

(
Eε

¨ ∣∣∣ ∑
J∈D

εJ · · ·
∣∣∣p dx dν

)1/p

�
{ s∑

j=0

(
Eε

¨ ∣∣∣ ∑
J∈D

log2 �(J)≡j

εJ · · ·
∣∣∣p dx dν

)t/p}1/t

.
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Consider one of the new J-summations restricted by the condition that
log2 �(J) ≡ j mod s + 1. Since hI is constant on the dyadic cubes of side-
length 1

2
�(I), one finds that each function

(4.11) fJ :=
∑
I⊆J

�(I)=2−s�(J)

αIhI ,

obviously supported on J , is also constant on the cubes of side-length
2−s−1�(J), and thus on all K ∈ D with �(K) < �(J) and log2 �(K) ≡
log2 �(J) ≡ j mod s + 1.

These are exactly the conditions under which the following “tangent
martingale trick” is applicable. Its essence goes back to McConnell [5] in
the context of decoupling estimates for stochastic integrals, and it was for-
mulated as below in [3, Theorem 6.1] in order to facilitate its use in the
estimation of singular integrals.

Lemma 4.12. Let (E, M , μ) be a σ-finite measure space equipped with par-
titions Ak ⊂ M consisting of sets of finite positive measure, where Ak+1

refines Ak for each k ∈ Z. For each A ∈ Ak, k ∈ Z, let fA be a function
supported on A and constant on any A′ ∈ Ak+1, let NA be the σ-algebra of
A for which all such functions are measurable, and let νA := μ(A)−1 · μ|NA

.
Let (F, N , ν) be the space F :=

∏
k∈Z

∏
A∈Ak

A equipped with the product
σ-algebra and measure induced by the NA and νA. Denote a generic point of
F by y = (yA)A∈A . Then the following norm equivalence holds with implied
constants only depending on p ∈ (1,∞):ˆ

E

Eε

∣∣∣∑
k∈Z

εk

∑
A∈Ak

fA(x)
∣∣∣p dμ(x) �

�

¨
E×F

Eε

∣∣∣ ∑
k∈Z

εk

∑
A∈Ak

fA(yA)1A(x)
∣∣∣p dμ(x) dν(y).

Indeed, on (E, M , dμ) = (Rn, Borel(Rn), dx), take Ak := Dk(s+1)+j for
a fixed j ∈ {0, 1, . . . , s}, and fA = fJ to be the functions defined in (4.11)
for all A = J ∈ Ak, k ∈ Z. We apply Lemma 4.12 separately for each j to
deduce that{ s∑

j=0

(
Eε

¨
Rn×S

∣∣∣ ∑
J∈D

log2 �(J)≡j

εJfJ(yJ)1J(x)
∣∣∣p dx dν(y)

)t/p}1/t

�

�
{ s∑

j=0

(
Eε

ˆ
Rn

∣∣∣ ∑
J∈D

log2 �(J)≡j

εJfJ(x)
∣∣∣p dx

)t/p}1/t

.
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With an application of Hölder’s inequality and another standard esti-
mate for the random series involving the exponent q = max(2, p) (in the
Banach space language, the fact that Lp has cotype q), this computation is
continued with

� (s + 1)1/t−1/q
{ s∑

j=0

(
Eε

ˆ
Rn

∣∣∣ ∑
J∈D

log2 �(J)≡j

εJfJ(x)
∣∣∣p dx

)q/p}1/q

� (s + 1)1/t−1/q
(

Eε

ˆ
Rn

∣∣∣ ∑
J∈D

εJfJ(x)
∣∣∣p dx

)1/p

� (s + 1)|1/2−1/p|
(ˆ

Rn

∣∣∣ ∑
J∈D

fJ(x)
∣∣∣p dx

)1/p

� (s + 1)|1/2−1/p|‖f‖p,

where, in the last two steps, the signs εJ were dropped by the unconditional-
ity of the Haar functions and, recalling the definition of fJ from (4.11), it was
observed that the resulting double sum over J and I is just a reorganisation
of the summation over all I ∈ D .

Substituting everything back, and observing that

(1 + s)δγ,1/t′ ·1/t′(1 + s)|1/2−1/p| ≤ (1 + s)1/t′+1/t−1/q = (1 + s)1−1/q ≤ (1 + s),

it is seen that (4.6), and then Proposition 4.1, has been completely proven.
Indeed, a slightly smaller power for the factor (1 + s) would have been
obtained, but this seems more like a curiosity, as this is only a fine-tuning
of the decay rate of the exponential factor.

5. The operator Ψs

It remains to bound the operator Ψs, defined in (3.2) as

Ψs :=
∑

k

(id−Ek)T4·2−kDk+s.

The relevant estimate to be proven is stated in the following. It is somewhat
simpler than that for Φ̃s, in that the form of the upper bound does not
depend on the exponent p, except via the implied multiplicative constant.

Proposition 5.1. Let p ∈ (1,∞) and T be a Calderón–Zygmund operator
with a normalised kernel. Then the operator Ψs defined above satisfies

‖Ψs‖p→p � (1 + s)2−sγ.

Since E∗
k = Ek and (id−Ek)(1) = 0 = Dk(1), it follows that Ψs(1) =

Ψ∗
s(1) = 0. This suggests trying to deduce the norm bound for Ψs from the

special T (1) theorem. However, the roughness of the conditional expecta-
tions implies that the kernel of Ψs would not satisfy the standard estimates
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in their usual form. Instead, it will be checked the operator Ψs satisfies cer-
tain intermediate estimates involved in Figiel’s proof of the T (1) theorem [2],
and this suffices by inspection of the mentioned proof.

Let me elaborate a little on this strategy. Figiel shows (under the as-
sumption that T (1) = T ∗(1) = 0) that the Calderón–Zygmund standard
estimates and the usual weak boundedness property for an operator T im-
ply the following estimates for its action on the Haar functions:

|〈hθ
I+̇m, Thζ

I〉| � (1 + |m|)−n−γ,

I ∈ D , m ∈ Zn, (θ, ζ) ∈ {0, 1}2n \ (0, 0).
(5.2)

This in turn trivially implies that∑
m∈Zn

sup
I∈D

|〈hθ
I+̇m, Thζ

I〉| log(2 + |m|) � 1,

(θ, ζ) ∈ {0, 1}2n \ (0, 0).

(5.3)

Finally, Figiel proves the following step, which is most relevant for the
present application:

Lemma 5.4 (Figiel [2]). Suppose that an operator T satisfies T (1)=T ∗(1)=0
and the estimate (5.3). Then ‖T‖p→p � 1 for all p ∈ (1,∞).

Proof. I sketch the argument from [2] for the convenience of the reader.
For two functions f and g with a finite Haar expansion, we have

〈g, Tf〉 = lim
N→+∞
M→−∞

[〈ENg, TENf〉 − 〈EMg, TEMf〉]

=
∑
k∈Z

[〈Ek+1g, TEk+1f〉 − 〈Ekg, TEkf〉]

=
∑
k∈Z

[〈Dkg, TDkf〉 + 〈Ekg, TDkf〉 + 〈Dkg, TEkf〉].

(5.5)

The first term is expanded as∑
k∈Z

〈Dkg, TDkf〉 =
∑
k∈Zn

∑
I,J∈D

�(I)=�(J)=k

∑
ζ,η

〈g, hζ
J〉〈hζ

J , Thη
I〉〈hη

I , f〉

=
∑

m∈Zn

∑
ζ

〈
g,

∑
I∈D

∑
η

hζ

I+̇m
〈hζ

I+̇m
, Thη

I〉〈hη
I , f〉

〉

=
∑

m∈Zn

∑
ζ

〈
g,

∑
I∈D

∑
η

T ζ
mΘζ

mhη
I〈hη

I , f〉
〉

=
∑

m∈Zn

∑
ζ

〈
g, T ζ

mΘζ
mf

〉
,

where Θζ
m and T ζ

m are the linear operators acting on the Haar basis accord-
ing to

Θζ
m : hη

I → 〈hζ

I+̇m
, Thη

I〉hη
I , T ζ

m : hη
I → hζ

I+̇m
.
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They satisfy

‖Θζ
m‖p→p � sup

I∈D
η∈{0,1}n\{0}

|〈hζ

I+̇m
, Thη

I〉|, ‖T ζ
m‖p→p � log(2 + |m|),

where the first estimate is essentially just the unconditionality of the Haar
basis in Lp(Rn), and the second is [1, Theorem 1].

The second term on the right of (5.5) can similarly be written as∑
k∈Z

〈Ekg, TDkf〉 =
∑

m∈Zn

〈
g,

∑
I∈D

∑
η

h0
I+̇m〈h0

I+̇m, Thη
I〉〈hη

I , f〉
〉

=
∑

m∈Zn

〈
g,

∑
I∈D

∑
η

[h0
I+̇m − h0

I ]〈h0
I+̇m, Thη

I〉〈hη
I , f〉

〉
=

∑
m∈Zn

〈g, UmΘ0
mf〉

with
Θ0

m : hη
I → 〈h0

I+̇m, Thη
I〉hη

I , Um : hη
I → h0

I+̇m − h0
I ,

since the total contribution of the subtracted correction terms is∑
I∈D

∑
η

〈g, h0
I〉

〈 ∑
m∈Zn

h0
I+̇m, Thη

I

〉
〈hη

I , f〉 =

=
∑
I∈D

∑
η

〈g, h0
I〉

〈 1

|I|1/2
, Thη

I

〉
〈hη

I , f〉 = 0

by the assumption that T ∗1 = 0. The new operators again satisfy

‖Θ0
m‖p→p � sup

I∈D
η∈{0,1}n\{0}

|〈h0
I+̇m, Thη

I〉|, ‖Um‖p→p � log(2 + |m|),

by the unconditionality of the Haar basis and [1, Theorem 1].
The third term on the right of (5.5) is essentially dual to the second;

thus ∑
k∈Z

〈Dkg, TEkf〉 =
∑

m∈Zn

〈UmΘmg, f〉 =
∑

m∈Zn

〈g, Θ∗
mU∗

mf〉,

where
Θm : hη

I → 〈h0
I+̇m, T ∗hη

I〉hη
I = 〈hη

I , Th0
I+̇m〉hη

I

has norm

‖Θ∗
m‖p→p = ‖Θm‖p′→p′ � sup

I∈D
η∈{0,1}n\{0}

|〈hη
I , Th0

I+̇m〉|.

The assumption (5.3) ensures that the formal expansion thus obtained,

T =
∑

m∈Zn

(∑
ζ

T ζ
mΘζ

m + UmΘ0
m + Θ∗

mU∗
m

)
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converges in the Lp(Rn) operator norm, with the bound for ‖T‖p→p given
by the very quantity on the left of (5.3) summed over the finitely many
parameters θ, ζ ∈ {0, 1}2n \ (0, 0). �

Now we return to the problem at hand, i.e., proving Proposition 5.1. The
operator Ψs does not satisfy the standard estimates nor (5.2) which, after
all, is essentially just a dyadic version of the Calderón–Zygmund conditions.
However, it will satisfy (5.3), with (1 + s)2−sγ in place of the constant 1 on
the right, which suffices to provide the same bound for ‖Ψs‖p→p by Figiel’s
Lemma 5.4. Besides giving what is needed here, this argument also shows
the usefulness of (5.3) as a weaker replacement of the Calderón–Zygmund
standard estimates in the T (1) theorem. I am not aware of any interesting
earlier application of this condition.

Let us then turn to the realisation of the sketched programme, which
requires the estimation of the Haar coefficients of T appearing in (5.3) with
Ψs in place of T . The following computations will have the same spirit as
those of Parcet [7, Sec. 2.5], but I feel that the present point of view of Haar
coefficients somewhat simplifies matters.

Expanding the projections Ek and Dk+s in terms of the Haar functions,
one gets

Ψs =
∑

k

(
id−

∑
I∈Dk

h0
I〈h0

I , ·〉
)
T4·2−k

∑
J∈Dk+s

η∈{0,1}n\{0}

hη
J〈hη

J , ·〉

=
∑
J∈D

∑
η

(T4·2s�(J)h
η
J)〈hη

J , ·〉 −
∑

I,J∈D
�(I)=2s�(J)

∑
η

h0
I〈h0

I , T4·2s�(J)h
η
J〉〈hη

J , ·〉.

Consequently, the orthogonality properties of the Haar functions imply, for
K, L ∈ D with �(K) = �(L) and θ, ζ ∈ {0, 1}n \ {0}, the following identities:
(The three types of Haar coefficients of Ψs listed are precisely those that one
needs in (5.3).)

〈hθ
K , Ψsh

ζ
L〉 = 〈hθ

K , T4·2s�(L)h
ζ
L〉 −

∑
�(I)=2s�(L)

=2s�(K)

〈hθ
K , h0

I〉〈h0
I , T4·2s�(L)h

ζ
L〉

= 〈hθ
K , T4·2s�(L)h

ζ
L〉,

(5.6)

and

〈h0
K , Ψsh

ζ
L〉 = 〈h0

K , T4·2s�(L)h
ζ
L〉 −

∑
�(I)=2s�(K)

〈h0
K , h0

I〉〈h0
I , T4·2s�(L)h

ζ
L〉

=
〈
h0

K − 2−ns/2h0
K(s), T4·2s�(L)h

ζ
L

〉
,

(5.7)
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and finally

〈hθ
K , Ψsh

0
L〉 =

∑
J�L,η

〈hθ
K , T4·2s�(J)h

η
J〉〈hη

J , h0
L〉

−
∑

I�K,J�L,η
�(I)=2s�(J)

〈hθ
K , h0

I〉〈h0
I , T4·2s�(J)h

η
J〉〈hη

J , h0
L〉

=
∑

J�L,η

〈hθ
K , T4·2s�(J)h

η
J〉〈hη

J , h0
L〉,

(5.8)

where it was observed that the second summation is actually empty, since
I � K and J � L imply �(I) < �(K) = �(L) < �(J) which contradicts with
�(I) = 2s�(J).

Lemma 5.9. For L ∈ D and ζ ∈ {0, 1}n \ {0}, there holds

|T4·2s�(L)h
ζ
L(x)| � �(L)γ+n/2

|x − yL|n+γ
1|x−yL|>3·2s�(L) +

�(L)n/2

|x − yL|n 1∣∣|x−yL|−4·2s�(L)

∣∣<�(L)
,

where yL is the centre of L.

Proof. By the cancellation of hζ
L, one obtains

T4·2s�(L)h
ζ
L(x) =

ˆ
|x−y|>4·2s�(L)

K(x, y)hζ
L(y) dy

=

ˆ
[K(x, y)1|x−y|>4·2s�(L)−K(x, yL)1|x−yL|>4·2s�(L)]h

ζ
L(y) dy

=

ˆ
[K(x, y) − K(x, yL)]1|x−y|>4·2s�(L)h

ζ
L(y) dy

+

ˆ
K(x, yL)[1|x−y|>4·2s�(L) − 1|x−yL|>4·2s�(L)]h

ζ
L(y) dy,

and hence, by the standard estimates and the size of the Haar functions,

|T4·2s�(L)h
ζ
L(x)| �

ˆ
�(L)γ

|x − y|n+γ
1|x−y|>4·2s�(L)

1L(y)

|L|1/2
dy

+

ˆ
1

|x − yL|n1∣∣|x−yL|−4·2s�(L)

∣∣<�(L)

1L(y)

|L|1/2
dy

� �(L)γ+n/2

|x − yL|n+γ
1|x−yL|>3·2s�(L) +

�(L)n/2

|x − yL|n 1∣∣|x−yL|−4·2s�(L)

∣∣<�(L)
,

which is the assertion. �
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Now we estimate the quantity in (5.6), and the first half of that in (5.7).

Lemma 5.10. Let K, L∈D with K =L+̇m and θ ∈ {0, 1}n, ζ∈{0, 1}n\{0}.
Then

|〈hθ
K , T4·2s�(L)h

ζ
L〉| � |m|−n−γ1|m|>2·2s + |m|−n1∣∣|m|−4·2s

∣∣<2
.

Proof. Integrating the estimate of Lemma 5.9 against |hζ
K | = |K|−1/21K =

|L|−1/21K , it follows that

|〈hθ
K , T4·2s�(L)h

ζ
L〉| � �(L)γ+n

|xK − yL|n+γ
1|xK−yL|>2·2s�(L)

+
�(L)n

|xK − yL|n1∣∣|xK−yL|−4·2s�(L)

∣∣<2�(L)
,

where xK is the centre of K. Substituting xK = yL + �(L)m, the assertion
follows. �

The estimate required in (5.3), for θ, ζ ∈ {0, 1}n \ {0}, now follows from∑
m∈Zn

sup
L∈D

|〈hθ
L+m�(L), Ψsh

ζ
L〉| log(2 + |m|) �

�
∑

|m|>2·2s

|m|−n−γ log(2 + |m|) +
∑

||m|−4·2s|<2

|m|−n log(2 + |m|)

� (1 + s)2−sγ + (1 + s)2−s � (1 + s)2−sγ.

(5.11)

In bounding the second series, it was observed that all the summands are
of the order (1 + s)2−sn, and their number is of the order 2s(n−1), as they
are essentially on the surface of a cube of side-length 8 · 2s. The obtained
estimate exhibits desired exponential decay in s.

One still requires analogous estimates for the series where one of θ and ζ
is allowed to be zero. To this end, we first look at the second half of the
quantity in (5.7) involving the Haar function h0

K(s):

Lemma 5.12. Let K, L ∈ D with K = L+̇m and ζ ∈ {0, 1}n \ {0}. Then

2−ns/2|〈h0
K(s), T4·2s�(L)h

ζ
L〉| � |m|−n−γ1|m|>2·2s + 2−s(n+1)1∣∣|m|−4·2s

∣∣<(1+2s)
.

Proof. One has to integrate the estimate of Lemma 5.9 against

2−ns/2|h0
K(s)| = 2−ns|L|−1/21K(s).

The first term of the mentioned estimate admits the upper bound

2−ns �(L)γ�(K(s))n

|xK − yL|n+γ
1|xK−yL|>2·2s�(L) =

�(L)γ+n

|xK − yL|n+γ
1|xK−yL|>2·2s�(L),

which gives the desired form upon substituting xK = yL + �(L)m.
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In estimating the second term, observe that∣∣∣{x :
∣∣|x − yL| − 4 · 2s�(L)

∣∣ < �(L)
}∣∣∣ �

� �(L)
(
2s�(L)

)n−1
= 2s(n−1)�(L)n,

(5.13)

and on this set one has �(L)n/2|x − yL|−n � 2−sn�(L)−n/2. Hence the inte-
gration against 2−ns�(L)−n/21K(s) gives at most 2−s(n+1). On the other hand,
for the integration to give a non-zero result at all, the set in (5.13) and K(s)

must intersect, which implies that∣∣|xK − yL| − 4 · 2s�(L)
∣∣ < �(L) + �(K(s)) = (1 + 2s)�(L),

and a combination of these observations gives the claim. �
Now everything is prepared for the verification of (5.3) in the case when

θ = 0. Note that the first half of 〈h0
K , Ψsh

ζ
L〉 on the right side of (5.7) is

estimated in the same way as in (5.11), with the same result. Also the first
term on the right of the upper bound in Lemma 5.12 was already estimated
there. Hence it follows that∑

m∈Zn

sup
L∈D

|〈h0
L+�(L)m, Ψsh

ζ
L〉| log(2 + |m|) �

� (1 + s)2−sγ +
∑

∣∣|m|−4·2s

∣∣<(1+2s)

2−s(n+1)(1 + s)

� (1 + s)[2−sγ + 2sn2−s(n+1)] � (1 + s)2−sγ,

(5.14)

where it simply used that the number of the summands is of the order 2sn.
It remains to estimate the third type of Haar coefficients of Ψs, namely

those in (5.8). (Note that for the usual Calderón–Zygmund operators, with
assumptions symmetric with respect to the operator and its adjoint, one
could have simply resorted to the symmetry and the case (5.7) which was
already handled.)

Lemma 5.15. For J, K, L ∈ D, where L = K+̇m and J � L, and θ, η ∈
{0, 1}n \ {0}, there holds

|〈hθ
K , T4·2s�(J)h

η
J〉〈hη

J , h0
L〉| � |m|−n−γ1|m|>2·2s+j+2−sn2−j(n+1)1||m|−4·2s+j|<1+2j ,

where j = log2

(
�(J)/�(K)

)
.

Proof. Let us start by observing that

〈hθ
K , T4·2s�(J)h

η
J〉 = 〈T ∗

4·2s+j�(K)h
θ
K , hη

J〉,
where adjoint truncated singular integral T ∗

4·2s+j�(K) satisfies exactly the same
assumptions as T4·2s+j�(K).
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Hence Lemma 5.9 shows that the first factor of the above pairing is
pointwise dominated by

�(K)γ+n/2

|x − xK |n+γ
1|x−xK |>3·2s+j�(K) +

�(K)n/2

|x − xK |n 1∣∣|x−xK |−4·2s+j�(K)

∣∣<�(K)
.

Integrating this bound against |hη
J | = �(J)−n/21J , where J � L, it follows

that

|〈T ∗
4·2s+j�(K)h

θ
K , hη

J〉| � �(K)γ+n/2�(J)n/2

|yL − xK |n+γ
1|yL−xK |>2·2s�(J)

+
�(K)n/2

(2s�(J))n

�(K)�(J)n−1

�(J)n/2
1∣∣|yL−xK |−4·2s�(J)

∣∣<�(K)+�(J)
,

where a crucial observation was that the intersection of the cube J (of length
�(J) in each coordinate direction) and the set{

x :
∣∣|x − xK | − 4 · 2s+j�(K)

∣∣ < �(K)
}

(which has locally width 2�(K) in one of the coordinate directions) has
measure at most of the order �(K)�(J)n−1.

Multiplying the previous estimate by |〈hη
J , h0

L〉| = 2−jn/2 and substituting
yL = xK + �(K)m, the assertion follows. �

By using Lemma 5.15 in order to estimate the expression in (5.8), it
follows that∑

m∈Zn

sup
K∈D

|〈hθ
K , Ψsh

0
K+m�(K)〉| log(2 + |m|)

�
∑

m∈Zn

∞∑
j=1

(
|m|−n−γ1|m|>2·2s+j

+ 2−sn2−j(n+1)1∣∣|m|−4·2s+j

∣∣<1+2j

)
log(2 + |m|)

=
∞∑

j=1

∑
m∈Zn

· · ·

�
∞∑

j=1

(
2−γ(s+j) + 2−sn2−j(n+1) · 2j(2s+j)n−1

)
(s + j)

=
∞∑

j=1

(
2−γ(s+j) + 2−(s+j)

)
(s + j) � (1 + s)2−γs.

(5.16)

The estimates (5.11), (5.14) and (5.16) provide the required bound (5.3),
with Ψs in place of T and (1 + s)2−sγ in place of 1. With Figiel’s [2] proof
of the T (1) theorem, this implies the assertion of Proposition 5.1.
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6. A vector-valued extension

An inspection of the proof of Theorem 2.5 provides the following vector-
valued extension. It involves the notion of type of a Banach space; recall
that X has type t ∈ (1, 2] if the randomised series enjoy the improved triangle
inequality

Eε

∣∣∣ k∑
j=1

εjxj

∣∣∣
X

�
( k∑

j=1

|xj |tX
)1/t

.

(In this section, the implicit constants involved in the notation “�” are also
allowed to depend on the Banach space X and its type t, in addition to n, p,
and γ.) As the scalar field has type 2, the following statement is indeed
recognised, up to the polynomial factor, as a generalisation of Theorem 2.5.

Corollary 6.1. Let X be a UMD space of type t ∈ (1, 2], let p ∈ (1,∞),
f ∈ Lp(Rn; X), and s ∈ N. Then every Calderón–Zygmund operator T with
a normalised kernel satisfies

(6.2)
(ˆ

Σc
f,s

|Tf(x)|pX dx
)1/p

� (1 + s)22−smin(γ,1/t′,1/p′)‖f‖p.

If, moreover, T is bounded and normalised, this estimate also holds with Σf,s

replaced by

(6.3) 100 · 2s[1+min(γ,1/t′,1/p′)·p′/n]Qf,s,

where Qf,s is any cube such that

‖1Qc
f,s

f‖p ≤ (1 + s)22−smin(γ,1/t′,1/p′)‖f‖p.

Indeed, most parts of the proof of Theorem 2.5 employed methods and
results which were developed for the UMD space -valued situation from
the beginning, so that they can be simply repeated in the present context.
This is in particular the case for Figiel’s T (1) theorem [1, 2], and also for
the tangent martingale inequality [3, 5]. However, a step which requires
additional explanation is the estimate (4.10), based on Lemma 4.9.

The following distributional variant of Lemma 4.4 will be needed.

Lemma 6.4. For I, J ∈ D with �(I) ≤ �(J) and m ∈ Zn \ {0}, there holds

1

|J |
∣∣∣{x ∈ J :

∣∣∣|J |1/2
∑
K⊆J

�(K)=�(I)

〈h0
J+̇m, Thη

K〉hη
K(x)

∣∣∣ > λ
}∣∣∣ �

�
{

1[0,C(�(I)/�(J))γ (1+|m|)−n−γ ](λ), m /∈ {−1, 0, 1}n,

min{λ−1/γ�(I)/�(J), 1} × 1[0,C](λ), m ∈ {−1, 0, 1}n \ {0}.
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Proof. For m /∈ {−1, 0, 1}n, the above bound is just a reformulation of
the L∞ estimate pointed out in the beginning of the proof of Lemma 4.4.
Let then m ∈ {−1, 0, 1}n \ {0}, so that J+̇m and J are adjacent. For each
k = 0, . . . , �(J)/�(I), there are O((�(J)/�(I))n−1) cubes K with

dist(K, ∂(J+̇m)) = k�(I),

and on such a K, Lemma 4.3 gives∣∣∣|J |1/2〈h0
J+̇m, Thη

K〉hη
K(x)

∣∣∣� |J |1/2
( �(I)

�(J)

)n/2( �(I)

(1 + k)�(I)

)γ 1

|I|1/2
=(1+k)−γ.

Thus the number of cubes, where the value of the function exceeds Ck−γ, is

at most C min{k, �(J)/�(I)}(�(J)/�(I)
)n−1

for k ∈ Z+, and hence their nor-
malised measure is at most C min{k�(I)/�(J), 1}. Also notice that the value
of the function is never bigger than some absolute constant C. The change
of variable into λ := Ck−γ, thus k = (C/λ)1/γ , proves the assertion. �

Lemma 4.9 has the following analogue, based on a result of Veraar and
the author [4, Lemma 3.1].

Lemma 6.5. Let X have type t ∈ (1, 2]. Then for fj ∈ Lt(μ; X) and
φj ∈ Lt′,1(μ) (the Lorentz space), there holds

Eε

∣∣∣ ∑
j

εj

ˆ
S

φj(s)fj(s) dμ(s)
∣∣∣
X

�

�
ˆ ∞

0

sup
j

μ({s : |φj(s)| > λ})1/t′ dλ · Eε

∥∥∥ ∑
j

εjfj

∥∥∥
t
.

Note that, without the supremum over j, the integral would be the
Lorentz Lt′,1(μ) norm of φj.

Proof. Using the duality of the randomised norms, the left side is compa-
rable to

sup
{∣∣∣∑

j

〈
x∗

j ,

ˆ
S

φj(s)fj(s) dμ(s)
〉∣∣∣ : Eε

∣∣∣∑
j

εjx
∗
j

∣∣∣
X∗

≤ 1
}
.

Then∣∣∣ ∑
j

〈
x∗

j ,

ˆ
S

φj(s)fj(s) dμ(s)
〉∣∣∣= ∣∣∣ ˆ

S

Eε

〈∑
j

εjφj(s)x
∗
j ,

∑
j

εjfj(s)
〉

dμ(s)
∣∣∣

≤
∥∥∥ ∑

j

εjφj(·)x∗
j

∥∥∥
Lt′(μ⊗P;X∗)

∥∥∥ ∑
j

εjfj

∥∥∥
Lt(μ⊗P;X)
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where the second factor is comparable to the second factor in the assertion.
Since the dual space X∗ has cotype t′ ∈ [2,∞), the first factor can be
estimated by [4, Lemma 3.1], which gives∥∥∥ ∑

j

εjφj(·)x∗
j

∥∥∥
Lt′(μ⊗P;X∗)

�
ˆ ∞

0

sup
j

μ({s : |φj(s)| > λ})1/t′ dλ · Eε

∣∣∣ ∑
j

εjx
∗
j

∣∣∣
X∗

.

This completes the proof. �
In (4.10), the right side is now replaced by

ˆ ∞

0

sup
J∈D

( 1

|J |
∣∣∣{x ∈ J :

∣∣∣|J |1/2
∑
I⊆J

�(I)=2−s�(J)

λIhI(x)
∣∣∣ > λ

}∣∣∣)1/u′

dλ

× Eε

∥∥∥ ∑
J∈D

εJ

∑
I⊆J

�(I)=2−s�(J)

αIhI(yI)1I(x)
∥∥∥

Lu(S)
,

(6.6)

where we choose u := min(t, p). Recalling that λI = 〈h0
I(s)+̇m

, Thη
I〉, one

finds from Lemma 6.4 that

1

|J |
∣∣∣{x ∈ J :

∣∣∣|J |1/2
∑
I⊆J

�(I)=2−s�(J)

λIhI(x)
∣∣∣ > λ

}∣∣∣ �

�
{

1[0,C2−sγ(1+|m|)−n−γ ](λ), m /∈ {−1, 0, 1}n,

min{λ−1/γ2−s, 1} · 1[0,C](λ), m ∈ {−1, 0, 1}n \ {0}.
where the right side is independent of J ∈ D . Hence the first factor in (6.6)
is dominated by

ˆ 2−sγ

0

dλ +

ˆ C

2−sγ

(λ−1/γ2−s)1/u′
dλ � 2−smin(γ,1/u′)(1 + s)δγ,1/u′

if m ∈ {−1, 0, 1}n \ {0}, and by C2−sγ(1 + |m|)−n−γ for m /∈ {−1, 0, 1}n.
Substituting back to (6.6) and recalling that this was the replacement of
the right side of (4.10) in the vector-valued situation under consideration,
it follows that

LHS(4.8) � (1+s)δγ,1/u′2−smin(γ,1/u′)(1 + |m|)−n−γ×
× Eε

∥∥∥ ∑
J∈D

εJ

∑
I⊆J

�(I)=2−s�(J)

αIhI(yI)1I(x)
∥∥∥

Lu(S)
.
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The proof of Corollary 6.1 is then completed just like that of Theorem 2.5;
now Lp(Rn; X) has type min(t, p) and some cotype q ∈ [2,∞), and one
checks that this suffices to get the bound with the asserted quadratic poly-
nomial factor instead of the linear one in Theorem 2.5.
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