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Finiteness of endomorphism algebras
of CM modular abelian varieties

Josep González

Abstract
Let Af be the abelian variety attached by Shimura to a normalized

newform f ∈ S2(Γ1(N))new. We prove that for any integer n > 1 the
set of pairs of endomorphism algebras

(
EndQ(Af )⊗Q,EndQ(Af )⊗Q

)
obtained from all normalized newforms f with complex multiplica-
tion such that dimAf = n is finite. We determine that this set has
exactly 83 pairs for the particular case n = 2 and show all of them.
We also discuss a conjecture related to the finiteness of the set of
number fields EndQ(Af ) ⊗ Q for the non-CM case.

1. Introduction

For an abelian variety A defined over a field L, we denote by EndL(A) the
ring of all its endomorphisms defined over L and End0

L(A) := EndL(A) ⊗ Q
denotes is endomorphism algebra over L. There is the following conjecture
attributed to Robert Coleman.

Conjecture 1.1 Let n,m ≥ 1 be positive integers. Then, up to isomor-
phism, there is only finitely many Q-algebras M such that M � End0

L(A)
for some abelian variety A of dimension n defined over a number field L of
degree m.

This conjecture is the starting point of this article and, next, we focus our at-
tention on modular abelian varieties. Let us denote by Af/Q the abelian va-
riety attached by Shimura to a normalized newform f ∈ S2(Γ1(N))new with
Fourier expansion

∑
n>0 anq

n, where q = e2π i z. It is well-known that Af is a
simple quotient over Q of the jacobian of the modular curve X1(N), whose
endomorphism algebra End0

Q(Af) is isomorphic to the number field Ef =
Q({an}) and, moreover, [Ef : Q] = dimAf . Also, we know that any simple
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quotient over Q of Jac(X1(M)) is isogenous over Q to Af for some f ∈
S2(Γ1(N))new with N |M .

The modular abelian varieties Af can be classified in three types accord-
ing to their endomorphism algebras over Q. Indeed, every Af is isogenous
over Q to a power of an absolutely simple abelian variety Bf . The center
of the algebra A = End0

Q
(Af ) is either an imaginary quadratic field K or

the totally real number field F = Q
({a2

p/ε(p)}p�N
)
. In the first case, A is a

matrix algebra over K, Bf is an elliptic curve with complex multiplication
by K and it is said that f has CM by K. Otherwise, either A is a matrix
algebra over F, i.e. Bf has real multiplication by F (RM), or A is a matrix
algebra over a quaternion algebra B with center F, i.e. Bf has quaternionic
multiplication by B (QM).

For an integer n ≥ 1, we consider the set Sn consisting of the pairs of
isomorphic classes of Q-algebras (End0

Q
(Af ),End0

Q(Af)), where f runs over
the set of normalized newforms with dimAf = n. As we show in Section 2,
the set of degrees of the smallest number fields where the abelian varieties Af
of dimension n have all their endomorphisms defined is bounded. According
to Conjecture 1.1, the set Sn should be finite. Of course, we know that for
n = 1 this is true and, more precisely, S1 has exactly 10 pairs: (Q,Q) and the
pairs (K,Q), where K is an imaginary quadratic field of class number one.

Since the algebra of endomorphisms defined over Q of a simple abelian
variety over Q of dimension n is a Q-vector space of dimension at most n, the
modular abelian varieties Af can be viewed as those with a richer arithmeti-
cal structure. Thus, the finiteness of the sets Sn appears as an interesting
case to test Coleman’s conjecture. This finiteness has been studied for mod-
ular abelian varieties with quaternionic multiplication, and partial results
can be found in [17] and, for the particular case of surfaces, in [3]. Here, we
center our attention on the CM case.

The plan of this paper is as follows. Section 2 is preliminary and devoted
to introduce notation and summarize some known facts concerning modular
abelian varieties with CM. In Section 3 we prove the modular conjecture
for this class of modular abelian varieties and we also determine the set
of pairs (End0

Q
(Af ), End0

Q(Af )) for the particular case dimAf = 2, which
turns out to be the most laborious part of this article. In the last section
we discuss the non-CM case. For every integer n > 1, we introduce a
value B̃(n) ∈ N ∪ {+∞} which depends on the Fourier coefficients of the
normalized newforms f without CM with dimAf = n. We present some

evidence that show that B̃(n) could be finite and prove that if this is the
case, then the set of number fields Ef with dimAf = n is finite, which
implies the finiteness of the set Sn for the RM case. We finish this paper by
giving a lower bound for B̃(2).
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2. On modular abelian varieties with CM

Let us denote by NewN the set of normalized newforms of S2(Γ1(N)). For
a given f ∈ NewN with Fourier expansion

∑
n>0 anq

n and a Dirichlet char-
acter ν of conductor M , we denote by f ⊗ ν the only normalized newform
with q-expansion

∑
n>0 bnq

n that satisfies bn = ν(n) an for all integers n
with (n,N M) = 1.

Let K be an imaginary quadratic field in a fixed algebraic closure Q. We
denote by O its ring of integers and by χ the Dirichlet character attached
to K. Let f =

∑
n>0 anq

n ∈ NewN . By [16], we know that the following
three conditions are equivalent:

(i) The newform f has CM by K.

(ii) The newform f satisfies f = f ⊗ χ, i.e. an = χ(n)an for all positive
integers with (n,N) = 1.

(iii) There is a primitive Hecke character ψ : I(m) → Q
∗

of conductor an
integral ideal m of K such that

f =
∑

a∈I(m),a⊂O
ψ(a)qN(a) ,

where I(m) denotes the multiplicative group of fractional ideals of K
relatively prime to m and N(a) denotes the norm of the ideal a.

Moreover, for a Hecke character ψ as above, the level N of f is N(m) timesD,
where D is the absolute value of the discriminant of K. Attached to ψ we
also have:

• The number fields Ef = Q({an}) and E = Q({ψ(a)}). One has

E = EfK.

• The character ηψ : (O/m)∗ → Q
∗

defined by ηψ(a) = ψ((a))/a, which
is also primitive of conductor m and satisfies ηψ(u) = 1/u for u ∈ O∗.
For every primitive character η of conductor m satisfying the last condi-
tion we have η = ηψ for some primitive Hecke character ψ of conductor
m. When there is no risk of confusion, we shall write η instead of ηψ.

• The Nebentypus ε of f , which is the Dirichlet character mod N defined
by ε(d) = χ(d)η(d).

• The totally real number field Lε = Q
ker ε

. Here ε is viewed as a char-
acter of the absolute Galois group Gal (Q/Q).
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Let us denote by Φ the set of K-embeddings E ↪→ Q. In [10] the following
is proved:

(i) There is a quotient abelian variety A of Af defined over K equipped

with an isomorphism ι : E
�−→ EndK(A) ⊗ Q such that (A, ι) is of

CM-type Φ over K.

(ii) The abelian varieties Af and A are K-isogenous if and only if K 	⊆ Ef .
Otherwise, Af is K-isogenous to A × A, where the bar stands for
complex conjugation.

(iii) The smallest number field L where A has all its endomorphisms defined
is a cyclic extension of the Hilbert class field H of K which is contained
in the ray class field of K mod m and such that [L : H] = ord η/|O∗|.
The extension L/K is characterized by the property that a prime ideal
p ∈ I(m) splits completely in L if and only if ψ(p) ∈ K.

(iv) There exists an elliptic curve E defined over L with CM by O such
that EdimA and A are isogenous over L.

We say that a number field is the splitting field of an abelian variety if it is
the smallest number field where the abelian variety has all its endomorphisms
defined. Thus, the number field L in (iii) is the splitting field of A.

Given a Hecke character ψ of conductor m, the character ψc : I(m) → Q
defined by ψc(a) = ψ(a)) is a Hecke character of conductor m whose attached
newform is f . The condition K 	⊆ Ef is equivalent to the equality ψc = σψ
for some σ ∈ Φ and, in this case, L is the splitting field of Af .

In the next section we will use the following result.

Proposition 2.1 Let ψ be a Hecke character of K of conductor m whose at-
tached newform f =

∑
n≥0 anq

n ∈ NewN has Nebentypus ε. Assume K 	⊆Ef .
We have that

(i) The ideal m coincides with m.

(ii) The extension L/Q is Galois.

(iii) The number field Lε is contained in L.

(iv) There exists an elliptic curve E with CM by O defined over L0 such
that EdimAf and Af are isogenous over L0, where L0 is the maximal
real subfield of L.

Moreover, the following conditions are equivalent:

(a) The Nebentypus ε is trivial, i.e., f ∈ S2(Γ0(N)).

(b) The number field Ef is totally real.

(c) The Hecke characters ψ and ψc agree.

(d) For all positive integers n coprime to N we have η(n) = χ(n).
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Proof. Part (i) is proved in Lemma 2.1 in [10]. Since ψc = σψ for σ ∈ Φ,
ker η = ker ηψc and, thus, ker η is stable under complex conjugation. This
fact implies L = L (cf. Section 3 in [10]) and, therefore, L/Q is a Galois
extension. Next, we give two proofs for the inclusion Lε ⊂ L, because the
arguments involved in both of them will be used in the sequel.

Since L/Q is a Galois extension, it suffices to prove that every rational
prime p � N which splits completely in L, also splits completely in Lε. Let p
and p be the prime ideals of K over such a prime p. Due to the fact that p
and p split completely in L, we have ψ(p), ψ(p) ∈ K. The condition ψc = σψ
for some σ ∈ Φ implies ψ(p) = ψ(p) and, thus, ap = ψ(p) + ψ(p) ∈ Z.
Since all elliptic curves with CM by O are ordinary at every prime of good
reduction over a rational prime which splits in K and Af has good reduction
at all primes not dividing N , ap 	≡ 0 (mod p) (see Proposition 5.2 in [2])
and, in particular, ap 	= 0. Hence, ε(p) = ap/ap = 1 and it follows that p
splits completely in Lε.

Now, we present an alternative proof of part (iv). The Weil involu-
tion WN of X1(N) is defined over the N -th cyclotomic field Q(ζN) and
satisfies τdWN = WN 〈d〉 for all d ∈ (Z/NZ)∗, where τd is the element of
Gal (Q(ζN)/Q) mapping ζN to ζdN and 〈d〉 denotes the diamond automor-
phism of X1(N), which is defined over Q. The Weil involution and the
diamonds induce automorphisms on Af . Since 〈d〉 acts trivially on Af if
and only if ε(d) = 1, Lε is the smallest field of definition for WN acting
on Af and, thus, Lε ⊂ L.

Let us prove part (iv). We know that Af is isogenous over L to EdimAf for
some elliptic curve E with CM by O. Since L is the splitting field of Af , we
can take E with j-invariant j(O) together with an isomorphism μ : E → E
defined over L. Due to the action of μ and μ on regular differentials of E
and E, we obtain that μ ◦ μ = id. Therefore, by Weil’s descent criterion
(cf. [18]) we know that E admits a descent over L0 and, we can assume
that E is defined over L0. By Faltings’s criterion, to prove the statement
it suffices to check, that for every prime P0 of L0 over a prime p � N with
NL0/Q(P0) = pm, the reductions of Af and EdimAf modulo P0 are isogenous
over Fpm . When P0 splits in L, this fact is obvious. Since p � N , P0 does not
ramify in L so we can assume that P0 is inert in L. The prime p is also inert
in K because L = L0 K and, thus, m is the residue degree of pO over L.
Since Lε ⊂ L0, ε(p

m) = 1 and amp2 = ψ(pO)m = η(pm) pm = (−1)mpm.
Due to the fact that the residue degree of any prime ideal p ∈ I(m) in L
is the smallest positive exponent e such that ψ(p)e ∈ K, m is odd. Let us
denote by P the prime ideal of L over P0. By the Eichler-Shimura congru-
ence, the characteristic polynomial of the endomorphism FrobP acting on
the l-adic Tate module of the reduction of Af/L modulo P is (x+pm)2 dimAf
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and, consequently, the characteristic polynomial of the endomorphism FrobP

corresponding to the reduction of E/L modulo P is (x + pm)2. It follows
that the characteristic polynomials of the endomorphism FrobP0 acting on
the l-adic Tate modules of the reductions of Af/L0 and E/L0 modulo P0

are (x2 + pm)dimAf and x2 + pm respectively, which completes the proof of
part (iv).

Finally, note that the equivalence between (a) and (b) holds for any
newform in NewN . Indeed, if ε is trivial, then it is obvious that Ef is totally
real. For the converse, see the proof of Lemma 6.17 of [1]. The remaining
equivalences of the statement are immediate. �

Remark 2.1 Observe that the splitting field of Af is L Lε. Indeed, by
part (iii) of the above proposition, it is immediate for K 	⊆ Ef . When
K ⊆ Ef , it follows from the fact that L is the splitting field of A and
K Lε is the smallest field of definition of the induced morphism by the Weil
involution WN between A and A.

Proposition 2.2 Let n be a positive integer. The set of degrees of the split-
ting fields of all abelian varieties Af of dimension n (with or without CM)
is bounded.

Proof. Assume that dimAf = n and let us denote by M the splitting field
of Af . Let k be the greatest integer such that ϕ(k) | 2n, where ϕ stands for
Euler’s function. It is clear that [Lε : Q] ≤ k.

First, we consider the CM case. With the above notation, M = L Lε

and, moreover, ord η ≤ k since Q(η) ⊆ E. Due to the fact that the class
number of K divides [E : K] (cf. Theorem 3.1 of [19]) and [E : K] divides n,
we obtain

[M : Q] ≤ [L : Q] [Lε : Q] ≤ [H : Q] ord η k ≤ 2nk2 .

For the non-CM case, the number field M is described in Proposition 2.1
of [9] and it is easy to check that [M : Q] ≤ 2n k. �

3. Finiteness for the CM case

Let us denote by Newcm
N the subset of NewN consisting of the newforms

with CM by an imaginary quadratic field. For every integer n > 0, let us
define Scm

n as the set of pairs of number fields (K,M) such that K is an
imaginary quadratic field, M � Ef for some f ∈ Newcm

N with CM by K and
[M : Q] = n. It is clear that the map Scm

n → Sn sending a pair (K,M) to
(Mn(K),M) yields a bijection between Scm

n and the subset of Sn obtained
from newforms with CM.
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Theorem 3.1 For any n > 0, the set Scm
n is finite.

Proof. Let us prove that the set {(K,M · K) : (K,M) ∈ Scm
n } is finite,

which is equivalent to the statement. Take f ∈ Newcm
N attached to a Hecke

character ψ of an imaginary quadratic field K such that dimAf = n. By
Theorem 3.1 of [19], the class number h of K divides n and, moreover, the
order k of η satisfies that ϕ(k) | 2n.

We set N = {m ∈ Z+ : ϕ(m) | 2n} and denote by K the set of imaginary
quadratic fields whose class number divides n. It is clear that both sets are
finite and, consequently, it suffices to prove that, for every pair (K, k) ∈
K × N , the set of number fields Q(ψ) = Q({ψ(a)}) obtained when ψ runs
over the set of Hecke characters of K whose attached character η has order k
is finite (even without fixing the degree of Q(ψ)).

We denote by ζm a primitive m-th root of unity. Given a pair (K, k) ∈
K × N , take a Hecke character ψ of K of conductor m for which η has
order k. Let {a1, . . . , ah} be a set of representative ideals of the class group
of K and let us denote by ni, 1 ≤ i ≤ h, the order of ai in Gal (H/K).
For every positive integer i ≤ h, we take ai ∈ Q such that ani

i ∈ K and
ani
i O = ani

i . Choose αi ∈ K such that αiai is relatively prime to m. Then,
Q(ψ) = K(ζk)(ψ(α1a1), . . . , ψ(αhah)). Since ψ(αiai)

ni = ani
i α

ni
i η(aiαi)

ni, the
statement follows from the fact that Q(ψ) is a subfield of the number field
K(ζk h)(a1, . . . , ah). �

Next, we focus our attention on the two dimensional case. In order to
simplify the notation, we represent an element (K,M) ∈ Scm

2 by the pair
(−d,m), where d is the positive square-free integer such that K = Q(

√−d)
and m 	= 1 is the square-free integer such that M = Q(

√
m).

Theorem 3.2 With the above notation, the set Scm
2 has exactly the follow-

ing 83 pairs:

(i) For the values of d such that Q(
√−d) has class number h = 1:

d 1 3 2, 7, 11, 19, 43, 67, 163
m −1,±2,±3 −1,±3 −1,−3,±d, 3d

(ii) For the values of d such that Q(
√−d) has class number h = 2:

d 3·5, 7·5, 3·17, 7·13, 5·23, 3·41, 11·17, 5·47, 3·89, 13·31, 7·61
m ±p1

where p1 is the unique prime dividing d such that p1 ≡ 1 (mod 4), and
also

d 5, 13, 37 2 · 3, 2·11 2·5, 2·29
m −1, d −1,±2 −1,±d/2 .
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Proof. We know that all f ∈ Newcm
N with dimAf = 2 have CM by an imag-

inary quadratic field whose class number is either 1 or 2. From now on, K
is an imaginary quadratic field of discriminant −D and class number h ≤ 2.
The square-free part d of D is either D or D/4 depending on whether D
is odd or not. Let us denote by w the order of O∗, namely w is 2, 4 or 6
according to D > 4, D = 4 or D = 3, respectively.

Firstly, we prove that (−d,−d) ∈ Scm
2 if and only if h = 1. Indeed,

if (−d,−d) ∈ Scm
2 then Ef = K and [E : K] = 1, which implies h = 1.

Conversely, assume h = 1 and let p be a prime ideal over an odd prime p
which splits in K, so that p ≡ 1 (mod w). We can choose p such that
p ≡ 1 + w (mod w2) and, thus, there exists a character η of conductor p

and order w satisfying η(u) = 1/u for all u ∈ O∗. A Hecke character ψ
of conductor m = p and character η provides a newform f with E = K.
Since m 	= m, part 2 of Proposition 2.1 implies that K ⊆ Ef , and then
Ef = E = K. Therefore, for h = 1 all pairs (−d,−d) lie in Scm

2 .
From now on, we focus our attention on Hecke characters ψ whose num-

ber field E is a biquadratic field Q(
√−d,√m) for which Ef = Q(

√
m ). We

recall that, in this case, Proposition 2.1 applies and L is the splitting field
of Af . We split the proof in two cases according to the class number h, and
for each of them we examine all possibilities for the values of ord(η).

(1) Case h = 1. In this case, E = K(η) and [K(η) : K] = 2. There-
fore, ϕ(k)/ϕ(w) = 2, where k is the order of η. So we have the following
possibilities for k, E and m:

d = 1 d = 3 d 	= 1, 3

k 8 ; 12 12 4 ; 6

E Q(
√−1,

√−2 ); Q(
√−1,

√−3) Q(
√−1,

√−3) Q(
√−d,

√−1); Q(
√−d,

√−3)

m −2, 2 ; − 3, 3 −1, 3 −1, d ; − 3, 3d

Next, we prove that all these possibilities for (−d,m) do occur. Let l be the
prime ideal of K over the unique rational prime � dividing D and consider
the integral ideal m0 defined by

m0 =

⎧⎪⎪⎨
⎪⎪⎩

l if D 	= 3 is odd,
l2 if D = 3,
l3 if D = 4,
l5 if D = 8 .

Let η0 be a character mod m0 satisfying the following three conditions:
the order of η0 is w, η0(u) = 1/u for all u ∈ O∗ and η0(n)χ(n) is the
trivial Dirichlet character mod D. Note that η0 is unique except for D = 8.
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Let ψ0 be the unique Hecke character of conductor m0 with character η0.
Since Q(ψ0) = K and the newform f0 attached to ψ0 has trivial Nebenty-
pus, dimAf0 = 1. By taking Dirichlet characters χ1 of order 4 if d 	= 1
and χ2 of order 3 if d 	= 3, the newforms f0 ⊗ χ1 and f0 ⊗ χ2 have CM
by K and provide the values m = −1 and m = −3, respectively. This yields
(−d,−1), (−d,−3) ∈ Scm

2 for all d when h = 1.
For d 	= 3, take an inert prime p in K such that p ≡ −1 (mod 3).

Choose a character η′ mod pO of order 3. The newform obtained from a
Hecke character of conductor m = m0 · pO and character η = η0 × η′ has
trivial Nebentypus. Since E = Q(

√−d,√−3), it follows (−d, 3d) ∈ Scm
2 .

For d 	= 1, take an inert prime p in K such that p ≡ −1 (mod 4) and
choose a character η′ mod pO of order 4. Proceeding as before for the
character η0 × η′, we obtain (−d, d) ∈ Scm

2 .
For d = 1, take p = 7 and the character η′ mod pO of order 8 defined

by η′(2 + i) = (1 + i)
√

2/2. For the character η = η0 × η′, we obtain
(−1, 2) ∈ Scm

2 .
To complete the case h = 1, we need to prove (−1,−2) ∈ Scm

2 . Take the
characters η2 and η3 mod 2O and 3O, respectively, defined by η2(i) = −1
and η3(1−i) = (1+i)

√
2/2. The newform f obtained from a Hecke character

with character η2 × η3 satisfies Ef = Q(
√−2).

(2) Case h = 2. If [E : Q] = 4, then the order k of η can only be 2, 4 or 6
and, moreover, k must divide 2D (cf. Theorem 3.5 of [19]). Note that, in
this particular setting, Ef is a quadratic field if and only if ψc = σψ for some

σ ∈ Φ. Therefore, for all α ∈ (O/m)∗, we have η(α) = η(α) if ε is trivial
and, otherwise, η(α) = ση(α) = η(α) for the non-trivial σ ∈ Gal (E/K) (for
k = 2, both conditions agree). In particular, if m = m1·m2 with (m1,m2) = 1,
mi = mi for i ≤ 2, and η = η1 × η2, where ηi is a character mod mi, then
each ηi has to satisfy the same condition as η for all α ∈ (O/mi)

∗.
When h = 2, D has exactly two prime divisors. Let � be such a prime

satisfying that the prime ideal of K over � is non-principal. For a given
non-principal prime ideal p ∈ I(m), we have p2 = α2 �O for some α ∈ K∗

and, thus, ψ(p)2 = α2 �η(α2 �) and
√
� η(α2 �) ∈ E. Therefore, we have to

consider the only following possibilities for k and E:

D 4 | D 3 | D
k 2 4 6

E Q(
√−d,√�) , Q(

√−d,√−�) Q(
√−d,√−1) Q(

√−d,√−3)

Next, we split the proof according to the value of k.

(i) Subcase k = 2. In this case, L = H and, again by Theorem 3.5 of [19],
we know that [E : K] = 2 for any Hecke character of K with k = 2.
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Let p1 be the prime that divides d such that the field K′ = Q(
√
p1) is the

real quadratic subfield of H. Let us now prove that, for h = 2 and k = 2,
the pair (−d,m) lies in Scm

2 if and only if D 	≡ 4 (mod 8) and | m |= p1.

Let ψ be a Hecke character such that ord η = 2 and Ef = Q(
√
m).

Since H is the splitting field of Af , there exists an elliptic curve defined
over H with CM by O which has all the isogenies to its Galois conjugates
defined over H. The case D ≡ 4 (mod 8), i.e. D = 4 · p1 with p1 ≡ 1
(mod 4), cannot occur because there are no elliptic curves with CM by O
satisfying this property (see 11.3 in [11]). If D 	≡ 4 (mod 8), then d/p1

is the other prime p2 that divides D and, moreover, the number field E
is either Q(

√−d,√p1) or Q(
√−d,√−p1), which implies | m |∈ {p1, p2}.

By Proposition 2.1, there exists an elliptic curve E with CM by O de-
fined over K′ such that Af is isogenous over Q to the Weil restriction
ResK′ E. Since Ef = Q(

√
m), for the non-trivial σ ∈ Gal (K′/Q) there

is μ ∈ HomK′(E, σE) ⊗ Q such that μ ◦ σμ = [m], which implies that m is
a norm of K′. Due to the fact that neither p2 nor −p2 are norms of K′, it
follows that | m |= p1.

Next, we prove that, for D 	≡ 4 (mod 8), the pairs (d,±p1) ∈ Scm
2 . Let

us denote by p1 and p2 the ideals over p1 and p2, respectively. Take the
integral ideals

m0 =

⎧⎨
⎩

p1 · p2 if p1 and p2 are odd,
p1 · p5

2 if p2 = 2,
p5

1 · p2 if p1 = 2,
and m1 =

{
p2 if p2 is odd,
p5

2 if p2 = 2.

For a quadratic character η0 of conductor m0 such that η0(n) = χ(n) for
all integers n coprime to D, we obtain a Hecke character ψ whose newform
has trivial Nebentypus and, thus, Ef is a real quadratic field. Therefore
m = p1. For an odd quadratic character η1 of conductor m1, we obtain
a Hecke character ψ whose newform f has non-trivial Nebentypus and its
Fourier coefficient ap1 satisfies a2

p1
= −p1. Therefore, E = K(

√−p1). It can
be easily proved that, for a prime p of K, one has ψ(p) = ψc(p) ∈ K when p

is principal and, otherwise, ψ(p) = −ψc(p) and ψ(p)
√−p1 ∈ K. Hence,

ψc = σψ for the non-trivial σ ∈ Gal (E/K) and, thus, Ef = Q(
√−p1).

(ii) Subcase k = 4. For a Hecke character with k = 4, we know by [19]
that [E : K] = 2 if and only if 4 | D and η(2α2) has order 4 for some (and
every) α ∈ K∗ such that 2α2O ∈ I(m). The last condition amounts to saying
that, for any generator β of the square of some (and every) non-principal
prime ideal p ∈ I(m), η(β) has order 4. If this is the case, E = Q(

√−d,√d)
and we only have to consider the cases m = −1 and m = d. So we can
assume 4 | D and, in this case, D has a unique odd prime divisor p1. We
denote by p1 and p2 the prime ideals over p1 and 2, respectively.
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We first prove that, for k = 4, (−d, d) ∈ Scm
2 if and only if d is odd, i.e.,

D ≡ 4 (mod 8).

For d odd, take m = p1 · p3
2 and η = η1 × η2, where η1 is the quadratic

character mod p1 and η2 is a character mod p3
2 of order 4 ( η2(

√−p1) = ±i).
For each possible value of d (d = 5, 13, 37), it is easy to find a generator β of
the square of a non-principal prime ideal p and check that its real part is even.
So η(β) = ±η2(β) has order 4 because η2(β

2) = −1 and E = Q(
√−d,√d ).

Since ε = 1, we obtain (−d, d) ∈ Scm
2 .

Assume now that d is even and Ef = Q(
√
d). Since m = m, η is primitive

of conductor m and η(n) = χ(n) for all integers n coprime to the level N
of f , it must be that:

• The ideal m is of the form p1 · p5
2 ·

∏r
i=1 p

′
iO for some primes p′i with

(p′i, D) = 1,

• The character η is of the form η1 × η2 ×
∏r

i=1 η
′
i, where η1 is quadratic

mod p1, η2 is of order 2 or 4 mod p5
2, and each η′i is of order 2 or 4 and

primitive of conductor p′iO,

• The following conditions have to be satisfied:

(i) η1(n) · η2(n) = χ(n) for all integers n coprime to D ,

(ii) for each i ≤ r, η′i(n) = 1 for all integers n coprime to p′i and
η′(α) = η′(α) for all α ∈ (O/p′iO)∗.

If m were the ideal p1 × p5
2 and η2 a character of order 4, then η2(1 +√−d )2 = −1. In this case, the degree [E : Q] would be greater than 4 since

for each possible value of d (d = 6, 10, 22, 58) it can be found a generator β
of the square of a non-principal prime ideal p ∈ I(m) and checked that
η2(β)2 = 1. So η′(β) must necessarily have order 4, which leads to a contra-
diction. Indeed, for an inert prime p′i in K, NK/Q(β) = p2 implies that β is
a square in the finite field O/p′iO and, thus, η′i(β)2 = 1. For the split case,
the conditions NK/Q(β) = p2 and η′i(β) = η′i(β) also implies that η′i(β)2 = 1.
So (−d, d) /∈ Scm

2 for d even.

Let us now prove that, for k = 4, (−d,−1) ∈ Scm
2 for all d.

Assume p1 ≡ 1 (mod 4). We take m = p1 and let η be a character mod p1

of order 4. It is clear that η(α) = η(α) for all α ∈ (O/m)∗. Moreover, since
p1 	≡ 1 (mod 8), η(−1) = −1 and η(2) = ±i . Due to the fact that η(2)
has order 4, for any Hecke character ψ with attached character η we have
E = Q(

√−d,√d ) and, moreover, ψ(p2) = ±(1 ± i). Let p be a prime ideal
over a prime p which splits in K. By using the fact that p is either principal
or p = αp2 with (α) ∈ I(m), we obtain ap ∈ Q(i) and, thus, Ef = Q(i).
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For p1 	≡ 1 (mod 4), we take m = p1 · p7
2 and η = η1 × η2, where η1 is a

quadratic character mod p1 and η2 is an even character of conductor p7
2 and

order 4 such that η2(1 +
√−d) = η2(5) = ±i. It is easy to check that for

any Hecke character ψ with character η we have ord ε = 4 and Ef = Q(i).

(iii) Subcase k = 6. By [19], we know that [E : K] = 2 implies 3 | D.
Assume 3 | D and set p1 = 3, so that p2 = d/p1 is the other prime divisor
of D. Now, H = K(

√
p2). Let p1 and p2 be the prime ideals over p1 and p2,

respectively.
Although we have already proved that (−d, p2) ∈ Scm

2 when k = 2, we
point out that, for k = 6, this pair is also attained. Let us now prove that
(−d,−3) 	∈ Scm

2 . Assume that there exists a Hecke character for which η has
order 6 and Ef = Q(

√−3). The Nebentypus ε is non-trivial and its order
divides 6. Since the newform g = f ⊗ ε has CM by K, Eg = Q(

√−3) and
its Nebentypus is ε3, which must have order 2. So, we can assume that ε
has order 2. Due to the fact that ε 	= 1, the Weil involution WN acting on
Af is non-trivial and, thus, provides an elliptic quotient E of the abelian
surface Af defined over the real quadratic field K′ = Lε. The curve E has
CM by an order O′ of K and the ring class field of O′, which contains H, is
K′ K. Therefore, H = K′ K and K′ must be Q(

√
p

2
). Since Af is isogenous

over Q to ResK′/Q E and Ef = Q(
√−3), −3 should be a norm of K′ but this

condition does not occur when 3 | D. �

4. On the finiteness for endomorphism algebras over Q

This section is devoted to present evidences about a behavior of the Fourier
coefficients of normalized newforms. We show that this conjectural behavior
implies the finiteness of the set of number fields Ef with degree n and, thus,
the finiteness of the set Sn for the RM case.

For f ∈ NewN , we denote by S2(Af) the C-vector space generated by the
Galois conjugates of f , whose dimension is dimAf . We consider the positive
integer defined by

B(f) := max
{

ordi∞ h : h ∈ S2(Af )
}
.

In other words, B(f) is the positive integer for which there is a single cuspidal
form in S2(Af) whose q-expansion is qB(f) +

∑
m>B(f) am q

m.

Since Ω1(Af) � S2(Af) dq/q ⊆ Ω1(X1(N)), we know that

dimAf ≤ B(f) ≤ 2g1 − 1 ,

where g1 denotes the genus ofX1(N). If there exists a curve C defined over C
along with a morphism π : X1(N) � C such that S2(Af ) dq/q ⊆ π∗(Ω1(C)),
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then we can improve the upper bound of B(f) since B(f) ≤ 2g(C) − 1,
where g(C) denotes the genus of C. But, we cannot ensure the existence
of such a curve with a genus less or equal than a constant depending on
dimAf . In fact there is a conjecture about the finiteness of such curves (see
Conjecture 1.1 in [1]).

It is natural to ask about the asymptotic behavior of B(f) when f runs
over the set of normalized newforms f whose abelian varieties Af have a
given dimension.

For every integer n > 0 and every x ∈ R we define

B(n, x) := max{B(f) : f ∈ NewN , dimAf = n, N ≤ x} ,
B(n) := lim

x→+∞
B(n, x) .

Of course, B(1) = 1. After computing B(f) for n = 2 and N ≤ 3000 with f
running over the set of all normalized newforms with trivial Nebentypus, we
obtained the results displayed in the following table:

B(f) 2 3 5 7 11 13 17 19
#{Af} 1372 1536 1155 504 139 43 11 2

Note that if dimAf = 2, then B(f) = k if and only if ai ∈ Z for all i < k and
ak 	∈ Z, where f =

∑
m>0 amq

m. By the properties of the Fourier coefficients,
if the order of the Nebentypus of f is 1 or 2, then B(f) is a prime.

With regard to the above computational table, one could think that
B(n) < +∞ for n > 1. Nevertheless, this assertion is not right. In fact,
B(n) would be +∞ if we only took into account newforms with CM to define
B(n, x). Indeed, take for instance K = Q(

√−7) and n = 2. For any integer
k > 7, let p1 < · · · < pr be the primes ≤ k and let p > k be a prime such
that p ≡ −1 (mod 4) and splits in K. Choose a prime pi over each pi and a
prime p over p. Let m′ = p2

1 ·
∏r

i=2 pi. We take m to be either m′ or m′ · p,
depending on whether the primitive quadratic character of conductor m′ is
odd or not. Let η be the primitive quadratic character of conductor m and
let ψ be the corresponding Hecke character. It is clear that Ef = Q(

√−7)
and am = 0 for all 1 < m ≤ k. It follows that ordi∞ f − f > k and,
thus, B(f) > k.

For newforms without CM, we can use a similar procedure that consists
on twisting a newform f by suitable quadratic Dirichlet characters of large
conductor to obtain newforms g with B(g) > k and dimAf = dimAg.
For this reason, we shall refine the above definitions to avoid the distortion
caused by the effect of twists.

In the sequel χ stands for a Dirichlet character of any conductor and
order. For an integer n ≥ 1, we say that a normalized newform f without CM
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is n-primitive if dimAf = n and dimAf⊗χ ≥ n for all Dirichlet characters χ.
The reason to exclude the CM case in this definition is the following. For
two Hecke characters ψ and ψ′ of K, ψ′ can be viewed as a twist of ψ by a
character of Gal (Q/K) and it may be that the corresponding newforms f
and f ′ satisfy that dimAf ′ < dimAf = n and dimAf⊗χ ≥ n for all Dirichlet
characters χ.

Now, we define

B̃(f) := min
{
B(f ⊗ χ) : dimAf⊗χ = dimAf

}
,

B̃(n, x) := max
{
B̃(f) : f ∈ NewN \Newcm

N , N ≤ x , f is n-primitive
}
,

B̃(n) := lim
x→+∞

B̃(n, x) .

The range N ≤ 3000 is too small to detect the effect of twists, but
we can see in the above table the quick decrease in the number of abelian
surfaces Af when B(f) increases. Now, one suspects that an affirmative

answer to the question B̃(n) < +∞ should be considered. Next, we show
two important consequences about this hypothesis.

Proposition 4.1 Let n > 1 be an integer. Assume that B̃(m) < +∞ for
all positive integers m ≤ n. Then,

(i) The set of number fields Ef of degree n obtained when f runs over the
set of all normalized newforms is finite.

(ii) If n = 2, then 4 B̃(2) − 1 is an upper bound for all primes p ≡ 1
(mod 4) such that the modular curve X+

0 (p) = X0(p)/〈wp〉 has non
cuspidal rational points without CM.

Proof. Let us prove (i). By Theorem 3.1 we can restrict our attention to
the non-CM case. First, we assume that f ∈ NewN \Newcm

N is n-primitive.
Let g = f ⊗ χ =

∑
m>0 am q

m be such that dimAf = dimAg and B(g) =

B̃(f). Let us denote by τ1, . . . , τn the Q-embeddings of Eg into Q. The
matrix (τiaj)i≤n,j≤B(g)+1 has rank n and, thus, {a1, . . . , aB(g)+1} is a system

of generators of the Q-vector space Eg. Under the assumption B̃(n) < +∞,
we have that Eg is the field Q(a2, . . . , aB̃(n)+1). For any integer m > 1, am
is an algebraic integer of degree at most n such that | τiam |≤ σ0(m)

√
m

for all i ≤ n, where σ0(m) =
∑

0<d|m 1. Therefore, there are only finitely
many possibilities for the values am and, thus, finitely many possibilities
for Eg. The condition dimAg⊗χ−1 = n implies that the order k of χ satisfies
ϕ(k) | n. Therefore the number field Ef is a subfield of the compositum
of Eg with the k-th cyclotomic field, and it follows that the set of number
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fields Ef obtained for n-primitive newforms f is finite. If dimAf = n and f
is not n-primitive, let χ be a Dirichlet character such that f0 = f ⊗ χ is m-
primitive for some m < n. By using that there are finitely many possibilities
for Ef0 and for Q(χ), it follows that the set of number fields Ef for the case
that dimAf = n and f is not n-primitive is also finite.

Let us prove (ii). The existence of a non cuspidal point in X+
0 (p)(Q)

without CM implies the existence of an elliptic curve E without CM defined
over a quadratic field K along with a p-isogeny μ : E → σE, where σ is
the non-trivial element of Gal (K/Q). If p ≡ 1 (mod 4), then p is a norm
of K (cf. [8]) and, thus, we can choose E such that μ is defined over K
and μ ◦ σμ = [p]. Therefore, the Weil restriction A = ResK/Q(E) is an
abelian surface such that EndQ(A) ⊗ Q is Q(

√
p), i.e., A is of GL2-type

with real multiplication by
√
p. Due to recent results on Serre’s modularity

conjecture by Khare-Wintenberger [12], Dieulefait [5] and Kissin [13], the
abelian surface A is modular and there exists a normalized newform f with
trivial Nebentypus such that A is Q-isogenous to Af . It is clear that f is
2-primitive. Let χ be a quadratic Dirichlet character such that the newform
g = f ⊗ χ = q +

∑
m>1 am q

m satisfies B̃(f) = B(g). Due to the fact
that g has an inner-twist by the quadratic character attached to K and its
Nebentypus is trivial, the Fourier coefficients of g satisfy the next condition:
If am /∈ Z then a2

m/p ∈ Z. Let p0 be the least prime such that ap0 	∈ Z.

Hence, p0 ≤ B̃(2). The statement follows from the inequality p ≤ a2
p0 ≤

(2
√
p0)

2 ≤ 4 B̃(2). �
Remark 4.1 In view of the results in [15], in the QM case we do not see
any reason to derive the finiteness of the set Sn from the finiteness of the set
of number fields Ef of degree n and, thus, from the condition B̃(n) < +∞.

We conclude by giving a better lower bound for B̃(2) than the one pro-
vided by the above computations for newforms of level ≤ 3000 and trivial
Nebentypus.

Proposition 4.2 There is a 2-primitive normalized newform f ∈ S2(Γ0(2 ·
52 · 311592)) such that B̃(f) = B(f) = 59. In particular, B̃(2) ≥ 59.

Proof. Consider the elliptic curve E : y2 = x3 + Ax+B, where

A = 13709960(2643250204357 − 285242082633
√−D)

B = 348980800
( − 18224167668804803284533 + 63802091292233830777

√−D
)
,

and D = 31159. It can be checked that the conductor of E is the integral
ideal of K = Q(

√−D) generated by 2 ·52 ·31159. The pair (E,E) provides a
non-CM rational point on the curve X+

0 (137), i.e. E is a quadratic Q-curve
without CM of degree 137 (cf. [6]).
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We claim that the isogeny μ : E → E of degree 137 is defined over K.
Indeed, let x1, . . . , x136 be the x-coordinates of the non-trivial points of the
kernel of μ. By [7], it suffices to prove that −137 · NK/Q(s1) ∈ (K∗)2, where

s1 =
∑136

i=1 xi. One way to determine s1 is to compute the 137-th division
polynomial of E, which has degree 9384, and then to factorize it over K.
A better though approximate way is to determine a basis {ω1, ω2} of pe-
riods of E such that τ = ω1/ω2 is in the upper half-plane and satisfies
j(137 τ) = j(τ). Then, s1 =

∑136
i=1 ℘(i/ω2;ω1, ω2), where ℘(z;ω1, ω2) de-

notes the Weierstrass function attached to the period lattice of E. After
computing, we obtain

ω1 = −0.0000059349200452413239. . . − 0.0000134040043086026752 . . . i,

ω2 = 0.0003360230301664207601. . . + 0.0008081258226439434557 . . . i ,

s1 = 103120(1152883 + 56273
√−D) .

It is now immediate to check that −137 NK/Q(s1) is a square in K∗.
Since μ is defined over K and μ ◦ μ = [137], the Weil restriction A =

ResK/Q(E) satisfies EndQ(A) ⊗ Q = Q(
√

137) and, thus, A/Q is modular.
By Milne’s formula in [14], the conductor of A is

NK/Q(cond(E)) ·D2 = 22 · 54 · 311594

and, thus, there exists a normalized newform f =
∑

n>0 anq
n ∈ S2(Γ0(N))

such that Af is Q-isogenous to A, where

N =
√

cond(A) = 2 · 52 · 311592

(cf. [4]). The newform f has an inner-twist by the quadratic Dirichlet char-
acter attached to K. The Fourier coefficients an lie in Q(

√
137) and we know

that, if ap /∈ Z for a prime p, then A has good reduction at p, p is inert in K
and ap/

√
137 ∈ Z. Then, we have to determine the first inert prime p0 such

that ap0 	= 0. By the Eichler-Shimura congruence, for a prime p � N , the
polynomial (x2 − ap x + p)(x − σap x + p) is the characteristic polynomial
of Frobp acting on the l-adic Tate module of the reduction of A mod p.
Therefore, the characteristic polynomial of Frobp2 acting on the on the l-
adic Tate module of the reduction of E mod p is x2 − (a2

p−2 p) x+p2. After

computing, we obtain p0 = 59 and a59 = ±√
137. Then, the q-expansion of

(f − σf)/(2
√

137) is ±q59 +O(q60) and, thus, B(f) = 59.

Let g = f⊗χ =
∑

n>0 bmq
m, where χ is any quadratic Dirichlet character.

For every inert prime p < 59 of K at which Ag has god reduction, we know
that Af has also good reduction at p. Therefore, bp = χ(p) ap = 0 and, thus,

B̃(f) = B(f). �
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