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Partial regularity for subquadratic
parabolic systems by A-caloric

approximation

Christoph Scheven

Abstract

We establish a partial regularity result for weak solutions of non-
singular parabolic systems with subquadratic growth of the type

∂tu − div a(x, t, u,Du) = B(x, t, u,Du),

where the structure function a satisfies ellipticity and growth condi-
tions with growth rate 2n

n+2 < p < 2. We prove Hölder continuity
of the spatial gradient of solutions away from a negligible set. The
proof is based on a variant of a harmonic type approximation lemma
adapted to parabolic systems with subquadratic growth.

1. Introduction and statement of the result

Throughout this paper, we assume that Ω ⊂ R
n is a bounded smooth domain

of dimension n ≥ 2 and we fix T > 0 and N ≥ 1. We consider weak solutions
u : Ω × (−T, 0) → R

N of nonsingular parabolic systems of the type

(1.1) ∂tu(z) − div a(z, u,Du) = B(z, u,Du) for z ∈ Ω × (−T, 0),

where the structure function a satisfies some standard ellipticity and growth
conditions with polynomial growth rate p ∈ ( 2n

n+2
, 2). For the inhomogene-

ity B, we consider either a controllable growth condition or the natural
growth condition under an additional smallness assumption on the solution.
For the precise statement of the assumptions, we refer to Section 2.
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In general, solutions of parabolic systems (1.1) can not be expected to
be regular everywhere on the domain. Even in the elliptic case, various
examples of solutions with singularities are known [15, 27, 43], see also [42,
40, 39] for some examples in the parabolic case. Everywhere regularity can
only be expected for systems with special structure such as the evolutionary
p-Laplacian system

∂tu− div(|Du|p−2Du) = 0,

for which the regularity problem was settled by the fundamental contribu-
tions of DiBenedetto and Friedman [12, 13, 11], see [32] for some further
generalizations. Other situations in which an everywhere regularity result is
available are the case of a low-dimensional domain [35, 28, 34] or the case of
bounded solutions [41, 25]. In the general case, however, one can only expect
partial regularity results, that is regularity away from a singular set that is in
some sense small. Results of this type have been established for quasilinear
systems with a(z, u,Du) = ã(z, u)Du, cf. [26], or for systems of p-Laplacian
type structure [33]. The partial regularity for general parabolic systems
of the type (1.1) was a longstanding open problem until it was solved by
Duzaar and Mingione [20] for parabolic systems with quadratic growth and
by Duzaar, Mingione and Steffen [22] for systems with polynomial growth
with growth rate p > 2, cf. also [17, 4, 5] for results on boundary regular-
ity. Their proofs are based on an adaptation of the harmonic approximation
method to the parabolic setting. The harmonic approximation lemma in its
basic form can be found in the book of Simon [38] and goes back to ideas
of de Giorgi developed for the regularity theory of minimal surfaces [14].
Until now, the technique of harmonic approximation has been developed
further and adapted to various settings in the regularity theory, cf. [21]
for a survey on the numerous applications of harmonic type approximation
lemmas. One of the advantages of the harmonic approximation method is
that it avoids the application of reverse Hölder inequalities, which are not
available in the nonquadratic parabolic case due to the anisotropic scaling
of the system (1.1) in the case p �= 2, see [30] for related problems.

All results on partial regularity stated above are concerned with nonde-
generate parabolic systems. The degenerate case, as treated in the elliptic
setting in [18, 19, 21], contains serious difficulties that are due to the ap-
pearance of degenerate parabolic cylinders. First results in this direction
were achieved in [6]. In the subquadratic case 2n

n+2
< p < 2 however, the

question of partial regularity remained open so far even for nonsingular
parabolic systems. This case has been treated only in the elliptic setting,
cf. [10, 8, 9, 16, 2]. In the present paper, we fill this gap in the theory and
prove partial regularity for nonsingular parabolic systems with subquadratic
growth.
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Our main result is the following.

Theorem 1.1. Let u ∈ C0(−T, 0;L2(Ω,RN )) ∩ Lp(−T, 0;W 1,p(Ω,RN)) be
a weak solution of the parabolic system (1.1), where the structure function
satisfies the conditions (A1) to (A5) stated in Section 2, and furthermore
one of the following conditions is satisfied.

(i) (Controllable growth) The inhomogeneity B satisfies condition (B1),
or

(ii) (Natural growth) the inhomogeneity satisfies condition (B2), and the
solution is bounded by supΩT

|u| ≤ Mu, where Mu is small enough to
ensure 2Mu Λ1(Mu) < ν.

Then there is an open subset Ωu ⊂ ΩT with

Du ∈ C
β,β/2
loc (Ωu,RNn) and |ΩT \ Ωu| = 0.

Moreover, the solution satisfies u ∈ C
α,α/2
loc (Ωu,RN) for every α ∈ (0, 1).

We point out that our proof requires only minimal assumptions on the
derivative Dξa of the structure function, see (A4) and (A5). Moreover, the
Hölder exponent β of the gradient of the solution is the optimal one that
is prescribed by the Hölder exponent of the structure function. In general,
no higher regularity of the solution can be expected, as demonstrated by a
counterexample in [2] in the elliptic setting.

Moreover, we have the following characterization of the singular set. We
use the notation Qρ(z0) for parabolic cylinders as introduced in Section 3
below.

Proposition 1.2. In the situation of the preceding theorem, the singular set
satisfies moreover

ΩT \ Ωu ⊂ Σu
1 ∪ Σu

2 ,

where

Σu
1 :=

{
z0 ∈ ΩT : lim inf

ρ↘0
−
∫
Qρ(z0)

∣∣Du− (Du)z0,ρ
∣∣p dz > 0

}
and

Σu
2 :=
{
z0 ∈ ΩT : lim sup

ρ↘0

(|uz0,ρ| + |(Du)z0,ρ|
)

= ∞
}
.

In the case of a structure function a(z, u, ξ) ≡ a(z, ξ) that does not depend
on u, the above statement remains true if we replace the set Σu

2 by

Σ̂u
2 :=
{
z0 ∈ ΩT : lim sup

ρ↘0
|(Du)z0,ρ| = ∞

}
.
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Finally, we can characterize the singular set also in terms of the function

V (ξ) = ξ(1 + |ξ|2) p−2
4 .

This characterization will be more useful for the dimension reduction of the
singular set that we will address in a forthcoming paper [36].

Proposition 1.3. Under the assumptions of Theorem 1.1, there holds

ΩT \ Ωu ⊂ Su1 ∪ Su2 ,
where

Su1 :=

{
z0 ∈ ΩT : lim inf

ρ↘0
−
∫
Qρ(z0)

∣∣V (Du) − [V (Du)]z0,ρ
∣∣2 dz > 0

}
and

Su2 :=
{
z0 ∈ ΩT : lim sup

ρ↘0

(|uz0,ρ| + |[V (Du)]z0,ρ|
)

= ∞
}
.

Again, if the structure function a is independent from u, the set Su2 can be
replaced by

Ŝu2 :=
{
z0 ∈ ΩT : lim sup

ρ↘0

∣∣[V (Du)]z0,ρ
∣∣ = ∞
}
.

Next, we shortly describe the strategy of the proof and the organization
of the paper. We start by stating our general assumptions in Section 2
and by gathering some necessary basic material in Section 3. The first step
in the proof is the derivation of a Caccioppoli type inequality, which will
be established in Section 4. Because of the time derivative appearing in
the system (1.1), the Caccioppoli inequality holds only with the L2-norm
of u on the right-hand side, see (4.2). This is the reason why throughout
the paper, we will use the L2-excess for the solution u itself, while the
gradient Du will be measured in terms of the function V , cf. (6.1). In
particular, this principle is expressed in the specific form of the A-caloric
approximation lemma that we state in Section 5. In Section 6 we use a
linearization argument in order to prove that weak solutions of (1.1) are
approximately A-caloric provided their excess is small. Consequently, we
may use the A-caloric approximation lemma to find an A-caloric map that
is close to the solution. Using an elementary estimate for A-caloric maps
from Section 7, we thus derive the crucial decay estimate in Section 8. This
yields the first Regularity Theorem 8.3, which characterizes the singular
set in terms of the L2-excess of the solution. In order to conclude that
the singular set is negligible, we need a Poincaré-Sobolev-type inequality
for solutions which bounds the L2-excess of u in terms of only the spatial
gradient Du. This will be established in Section 9. The final characterization
of the singular set, which implies in particular Theorem 1.1, is given in
Section 10.
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2. General assumptions

On a domain ΩT := Ω×(−T, 0), where Ω ⊂ R
n is a bounded smooth domain

and T > 0, we consider weak solutions u : ΩT → R
N of parabolic systems

of the form

(2.1) ∂tu(z)−div a(z, u(z), Du(z))=B(z, u(z), Du(z)) for z=(x, t) ∈ ΩT

in the distributional sense, and where

a : ΩT × R
N × R

Nn → R
Nn,

B : ΩT × R
N × R

Nn → R
N .

Here and in the sequel, we identify R
Nn with the space of linear functions

R
n → R

N . The scalar product on R
Nn will be denoted by 〈·, ·〉, while the

scalar product on R
N will written by a single dot.

Assumptions on the structure function a. We assume that the total
derivative Dξa(z, u, ξ) with respect to the ξ-variable exists and impose the
following ellipticity and growth conditions on a, for some 2n

n+2
< p < 2.〈

Dξa(z, u, ξ)ζ, ζ
〉 ≥ ν(1 + |ξ|2) p−2

2 |ζ |2(A1) ∣∣a(z, u, ξ)∣∣ ≤ Λ(1 + |ξ|2) p−1
2(A2)

for all z ∈ ΩT , u ∈ R
N and ξ, ζ ∈ R

Nn, where 0 < ν ≤ Λ are given constants.
With respect to the variables (z, u), we assume the following continuity
property. We write dpar for the standard parabolic distance, cf. (3.1).

(A3)
|a(z, u, ξ) − a(z0, u0, ξ)|

(1 + |ξ|2) p−1
2

≤ 2Λ θ
(|u| + |u0|, dpar(z, z0) + |u− u0|

)
for all z, z0 ∈ ΩT , u, u0 ∈ R

N and ξ ∈ R
Nn, with a modulus of continuity

θ(y, r) = min
{
1, Kθ(y)r

β
}
, for all y, r ∈ [0,∞)

for some non-decreasing function Kθ : [0,∞) → [1,∞) and β ∈ (0, 1). In
the following, we will frequently use the fact

(2.2) θ
(|u|+|u0|, dpar(z, z0)+|u−u0|

) ≤ Kθ(2|u0|+1)(dpar(z, z0)+|u−u0|)β,
which can easily be checked by distinguishing the cases |u − u0| ≤ 1 and
|u− u0| > 1. Concerning the growth of the derivative Dξa, we assume only
that there is a nondecreasing function KD : [0,∞) → (0,∞) with

(A4) |Dξa(z, u, ξ)| ≤ ΛKD(|u| + |ξ|)
for all z ∈ ΩT , u ∈ R

N and ξ ∈ R
Nn.
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Moreover we assume that the map (z, u, ξ) �→ Dξa(z, u, ξ) is continuous
with local moduli of continuity ωM : [0,∞) → [0, 1] with lims↘0 ωM(s) = 0
for all M > 0 such that

(A5)
|Dξa(z, u, ξ) −Dξa(z0, u0, ξ0)| ≤

≤ 2ΛKD(M)ωM
(
d2

par(z, z0) + |u− u0|2 + |ξ − ξ0|2
)

for all z, z0 ∈ ΩT , u, u0 ∈ R
N and ξ, ξ0 ∈ R

Nn with |u| + |ξ| ≤ M and
|u0|+ |ξ0| ≤M . We can assume without loss of generality that M �→ ωM(s)
is non-decreasing for every s > 0 and that s �→ ω2

M(s) is a concave and
non-decreasing function for every fixed M > 0.

Assumptions on the inhomogeneity B. For the inhomogeneity, we
consider one of the following two alternative conditions. We will assume
that B satisfies either the controllable growth condition

(B1) |B(z, u, ξ)| ≤ Λ(1 + |ξ|2) p
4

for all z ∈ ΩT , u ∈ R
N and ξ ∈ R

Nn, or the natural growth condition

(B2) |B(z, u, ξ)| ≤ Λ1(M)|ξ|p + Λ2(M)

for any M > 0 and all (z, u, ξ) ∈ ΩT × R
N × R

Nn with |u| ≤ M , where
Λ1(M),Λ2(M) > 0 depend only on M . In the case of the latter condition,
we will need to restrict ourselves to bounded solutions of (2.1), where the
bound Mu := supΩT

|u| satisfies the smallness assumption

(2.3) 2Λ1(Mu)Mu < ν.

Such a smallness condition is necessary for a partial regularity result even
in the elliptic case, see [24, Chapter VI]. In the parabolic case, a similar
assumption has been used e.g. in [25, 26].

By classical results, we may assume that weak solutions exist in the func-
tion space C0(−T, 0;L2(Ω,RN)) ∩ Lp(−T, 0;W 1,p(Ω,RN)) for every given
Cauchy-Dirichlet boundary data, see e.g. [31].

3. Preliminary material

Notation. Throughout this paper, we will denote the space variable with x
and the time variable with t; moreover, we will use notations like z = (x, t)
or z0 = (x0, t0) for points in space-time.

For x0 ∈ R
n and ρ > 0, we will write Bρ(x0) for the open ball with

radius ρ and center x0 in R
n. If the center is zero, we will often omit it for

the sake of brevity. Furthermore, we will work with parabolic cylinders

Qρ(z0) := Bρ(x0) × (t0 − ρ2, t0),
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where z0 = (x0, t0) ∈ R
n × R. These cylinders can be interpreted as the

half-balls with respect to the parabolic metric

(3.1) dpar(z1, z2) := max
{|x1 − x2|,

√
|t1 − t2|

}
for zi = (xi, ti), i = 1, 2. For a general cylinder Q := B × (s, t), where
B ⊂ R

n and s < t, we write

∂parQ = (B × {s}) ∪ (∂B × [s, t])

for the parabolic boundary of Q, while the set Q\∂parQ is called the parabolic
interior of Q.

For a function f ∈ L1(Qρ(z0),R
k) we abbreviate as usually fz0,ρ :=

−
∫
Qρ(z0)

f dz. In the case z0 = 0 we will frequently omit the parameter z0 and

simply write fρ.

The functions V and W. We define functions

(3.2) V (A) =
A

(1 + |A|2) 2−p
4

and W (A) =
A

(1 + |A|) 2−p
2

for all A ∈ R
k, where k ∈ N. First of all we note that both functions are

equivalent in the sense

(3.3) 2
p−2
4 |V (A)| ≤ |W (A)| ≤ |V (A)| for all A ∈ R

k.

The reason why we will sometimes use the function W instead of V is the
fact that

(3.4) R
k � A→ |W (A)|2 is a convex function,

cf. for example [16, Sect. 3]. We recall the following standard inequalities
for later reference.

Lemma 3.1. ([8]). Let 1 < p < 2 and V as defined above. Then we have
for any A,B ∈ R

k and r > 0

(i) 2
p−2
4 min{|A|, |A|p/2} ≤ |V (A)| ≤ min{|A|, |A|p/2}

(ii) |V (rA)| ≤ max{r, rp/2}|V (A)|

(iii)
p

2

|B −A|
(1 + |A|2 + |B|2) 2−p

4

≤|V (B) − V (A)|≤c(k, p) |B − A|
(1 + |A|2 + |B|2) 2−p

4

(iv) |V (A) − V (B)| ≤ c(k, p)|V (A− B)|
(v) |V (A− B)| ≤ c(p,M)|V (A) − V (B)| if |A| ≤M , B ∈ R

k.
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The inequalities (i) and (ii) readily follow from the definition of V , the
estimates (iii) are proved in [1, Lemma 2.2] and the claim (iv) is a conse-
quence of (iii). Finally, the proof of (v) can be found in [8, Lemma 2.1].

Furthermore, we will need the following

Lemma 3.2. ([1, Lemma 2.1]). For every 1 < p < 2 there holds

1 ≤
∫ 1

0
(1 + |A+ s(B −A)|2) p−2

2 ds

(1 + |A|2 + |B|2) p−2
2

≤ 8

p− 1
for any A,B ∈ R

k.

Affine Functions. For a given function u ∈ L2(Qρ(z0),R
N) we write

�z0,ρ(z) = �z0,ρ(x) for the unique affine function R
n → R

N minimizing the
functional

� �→ −
∫
Qρ(z0)

|u− �|2 dz.

We recall some properties of this function. A straightforward calculation
shows that �z0,ρ(x) = uz0,ρ + Az0,ρ(x− x0), where

D�z0,ρ = Az0,ρ =
n+ 2

ρ2
−
∫
Qρ(z0)

u⊗ (x− x0) dz.

The following lemma can be proven analogously to [29, Lemma 2].

Lemma 3.3. For u ∈ L2(Qρ(z0),R
N) and τ ∈ (0, 1), let �z0,ρ and �z0,τρ

be the affine functions R
n → R

N defined as above for the radii ρ and τρ,
respectively. Then we have

(3.5)
∣∣D�z0,ρ −D�z0,τρ

∣∣2 ≤ n(n + 2)

(τρ)2
−
∫
Qτρ(z0)

|u− �z0,ρ|2 dz

and furthermore

(3.6)
∣∣D�z0,ρ−(Du)z0,ρ

∣∣2≤ n(n+ 2)

ρ2
−
∫
Qρ(z0)

∣∣u(z)−uz0,ρ−(Du)z0,ρ(x−x0)
∣∣2 dz.

Analogously to the estimate (3.5), we get

(3.7) |uz0,ρ − uz0,τρ|2 =

∣∣∣∣−∫
Qτρ(z0)

(u− �z0,ρ) dz

∣∣∣∣2 ≤ −
∫
Qτρ(z0)

|u− �z0,ρ|2 dz,

where we used the fact
∫
Qρ(z0)

A(x−x0) dz = 0 for all A ∈ R
Nn and Jensen’s

inequality. For later reference, we state the following consequence of (3.5)
and (3.7).

(3.8) (τρ)−2|uz0,ρ−uz0,τρ|2+
∣∣D�z0,ρ−D�z0,τρ∣∣2≤(n+ 1

τρ

)2
−
∫
Qτρ(z0)

|u−�z0,ρ|2 dz

for all u ∈ L2(Qρ(z0),R
N) and τ ∈ (0, 1).
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Finally, we state a well-known elementary lemma which will be useful in
several situations. Its proof can be found in [24, Lemma V.3.1].

Lemma 3.4. For R0 < R1, let f : [R0, R1] → [0,∞) be a bounded function
and assume that for all R0 < σ < ρ < R1, there holds

f(σ) ≤ ϑf(ρ) +
A

(ρ− σ)α
+B

for nonnegative constants A,B, α and a parameter ϑ ∈ (0, 1). Then we have
the estimate

f(σ0) ≤ c
( A

(ρ0 − σ0)α
+B
)

for all R0 ≤ σ0 < ρ0 ≤ R1 and some constant c = c(α, ϑ).

4. A Caccioppoli type inequality

The first step in the proof of partial regularity is to establish a Caccioppoli
type inequality. The same proof also yields an estimate for the L2-norms
of u on the time slices. The precise statement is as follows.

Theorem 4.1. Let M > 0 and consider a map u ∈ C0(−T, 0;L2(Ω,RN ))∩
Lp(−T , 0;W 1,p(Ω,RN)) that weakly solves the system (2.1), under the as-
sumptions (A1) to (A4). Furthermore, we require that one of the following
alternatives hold.

(i) Controllable growth. The inhomogeneity satisfies (B1), or

(ii) Natural growth. The inhomogeneity satisfies (B2), and the solution u
and the map � are bounded by |u|, |�| ≤ Mu on ΩT , where the bound
satisfies the smallness condition

2Mu Λ1(Mu) < ν.

We choose an arbitrary parabolic cylinder Qρ(z0) ⊂ ΩT with ρ ∈ (0, 1), a
radius σ ∈ [ρ

2
, ρ) and an affine function � : R

n → R
N with |�(x0)|+|D�| ≤M .

Then there holds

sup
t∈(t0−σ2,t0)

−
∫
Bσ(x0)

∣∣∣u(x, t) − �(x)

σ

∣∣∣2 dx+ −
∫
Qσ(z0)

|V (Du−D�)|2 dz

≤ c0ρ
2

(ρ− σ)2
−
∫
Qρ(z0)

∣∣∣u− �

ρ

∣∣∣2 dz + c0ρ
2β.(4.1)

Here, the constant c0 depends only on M,Kθ(·), KD(·), n,N, p,Λ and ν, and
in the case of (ii) additionally on Mu,Λ1(Mu) and Λ2(Mu).
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If in the case of (i), the structure function a(z, u, ξ) ≡ a(z, ξ) does not
depend on u, the above estimate holds for all affine maps � : R

n → R
N

satisfying the weaker assumption |D�| ≤M .

Remark 4.2. In particular, the estimate from the above lemma implies the
following Caccioppoli type inequality on any parabolic cylinder Qρ(z0) ⊂ ΩT .

(4.2) −
∫
Qρ/2(z0)

|V (Du−D�)|2 dz ≤ 4c0 −
∫
Qρ(z0)

∣∣∣u− �

ρ

∣∣∣2 dz + c0ρ
2β ,

where the constant c0 may depend on �. This inequality is weaker than
the corresponding statement in the elliptic case, where instead of |u−	

ρ
|2,

the term |V (u−	
ρ

)|2 appears on the right-hand side, see [8, 16, 2]. However,

the evolutionary term in the parabolic system (1.1) enforces a term which
is quadratic in u, so that (4.2) can not be expected to be improved. At
this point the assumption p > 2n

n+2
is crucial in order to guarantee that the

right-hand side in (4.2) is finite.

The peculiar form (4.2) of the Caccioppoli inequality makes it natural
to work with the standard L2-excess solution u, while for the gradient Du,
we will define the excess by means of the function V as introduced in (6.1)
below.

Proof. Unless stated differently, we write c for constants that depend at
most on the structure constants listed in the theorem. In order to facilitate
the notation, we may assume z0 = 0. We fix an affine function � : R

n → R
N

with |�| + |D�| ≤ M .
The idea is to test the system (2.1) with functions of the form

ϕ(x, t) := ζε(t)ψ
2(x)
(
u(x, t) − �(x)

)
,

where ψ ∈ C∞
cpt(Bρ, [0, 1]) is a cut-off function in space with ψ ≡ 1 on

Bσ and |Dψ| ≤ 2
ρ−σ on Bρ, while ζε ∈ C∞(R), for any s ∈ (−σ2, 0) and

ε ∈ (0, σ2 + s), is a Lipschitz-continuous cut-off function in time with the
following properties.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ζε ≡ 0 on (−∞,−ρ2]

|ζ ′ε| ≤ 2
(ρ−σ)2

on (−ρ2,−σ2]

ζε ≡ 1 on (−σ2, s− ε]

ζε(t) = −1
ε
(t− s) on (s− ε, s]

ζε ≡ 0 on (s,∞)

These test functions are formally not admissible since they are not smooth,
and not even weakly differentiable in the time direction. Nevertheless, their
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use as test function can be justified by standard approximation techniques or
by the use of Steklov averages. Here we will shortly sketch the first method.
For any function f and δ > 0, we write fδ for the mollification of f by a
standard symmetric mollifier with smoothing radius δ. For sufficiently small
values of δ, we may test (2.1) with

ϕδ :=
[
ζεψ

2
(
u− �
)
δ

]
δ
.

Keeping in mind that � does not depend on t, we deduce the equation∫
Qρ

〈a(z, u,Du), Dϕδ〉 dz =

∫
Qρ

(u− �) · ∂tϕδ dz +

∫
Qρ

B(z, u,Du) · ϕδ dz

=

∫
Qρ

(u− �)δ · ∂t(ζεψ2(u− �)δ) dz(4.3)

+

∫
Qρ

[
B(z, u,Du)

]
δ
· ζεψ2(u− �)δ dz.

Here we compute for the first integral on the right-hand side∫
Qρ

(u− �)δ·∂t(ζεψ2(u− �)δ) dz =

=
1

2

∫
Qρ

ζεψ
2 ∂

∂t
|(u− �)δ|2 dz +

∫
Qρ

ζ ′εψ
2|(u− �)δ|2 dz

=
1

2

∫
Qρ

ζ ′εψ
2|(u− �)δ|2 dz,(4.4)

by an integration by parts in the last step. Next we note that we have the
following convergences as δ ↘ 0.

ϕδ → ζεψ
2(u− �) in W 1,p

(u− �)δ → u− � in L2 and almost everywhere

[B(·, u,Du)]δ → B(·, u,Du) almost everywhere.

Consequently, by plugging (4.4) into (4.3) and letting δ ↘ 0, we deduce∫
Qρ

ζεψ
2
〈
a(z, u,Du), Du−D�

〉
dz =(4.5)

= −2

∫
Qρ

ζεψ
〈
a(z, u,Du), Dψ ⊗ (u− �)

〉
dz

+
1

2

∫
Qρ

ζ ′εψ
2|u− �|2 dz +

∫
Qρ

ζεψ
2B(z, u,Du) · (u− �) dz.



762 C. Scheven

Next we note that we have the following pointwise estimate, which is a
consequence of the ellipticity condition (A1) on the structure function a.〈

a(z, u,Du) − a(z, u,D�), Du−D�
〉

=(4.6)

=

∫ 1

0

〈
Dξa(z, u,D�+ s(Du−D�))(Du−D�), Du−D�

〉
ds

≥ ν

∫ 1

0

(1 + |D�+ s(Du−D�)|2) p−2
2 |Du−D�|2 ds

≥ ν(1 + |D�|2 + |Du|2) p−2
2 |Du−D�|2,

where we used Lemma 3.2 in the last step. Writing ϕ := ζεψ
2(u − �) and

putting together (4.6) and (4.5), we infer

ν

∫
Qρ

ζεψ
2(1 + |D�|2 + |Du|2) p−2

2 |Du−D�|2 dz ≤

≤
∫
Qρ

ζεψ
2
〈
a(z, u,Du) − a(z, u,D�), Du−D�

〉
dz

= −2

∫
Qρ

ζεψ
〈
a(z, u,Du) − a(z, u,D�), Dψ ⊗ (u− �)

〉
dz

−
∫
Qρ

〈
a(z, u,D�), Dϕ

〉
dz

+
1

2

∫
Qρ

ζ ′εψ
2|u− �|2 dz

+

∫
Qρ

ζεψ
2B(z, u,Du) · (u− �) dz

=: I + II + III + IV.(4.7)

The rest of the proof consists of the estimation of the terms I to IV .

Estimate for I. We decompose I = I1 + I2 + I3, where

I1 := −2

∫
Qρ

ζεψ
〈
a(z, u,Du) − a(z, �,Du), Dψ ⊗ (u− �)

〉
dz

I2 := −2

∫
Qρ

ζεψ
〈
a(z, �,Du) − a(z, �,D�), Dψ ⊗ (u− �)

〉
dz

I3 := −2

∫
Qρ

ζεψ
〈
a(z, �,D�) − a(z, u,D�), Dψ ⊗ (u− �)

〉
dz.

For the first and the last term, we employ the continuity assumption (A3)
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on a, the properties of ψ and the assumption |D�| ≤M in order to estimate

I1+I3 ≤ c(p) Λ

∫
Qρ

ζεψ θ(|u| + |�|, |u− �|) (1 + |Du|p−1 + |D�|p−1)
∣∣∣u− �

ρ− σ

∣∣∣ dz
≤ c(p)Λ

∫
Qρ

ζεψ θ(|u| + |�|, |u− �|)(1 +Mp−1)
∣∣∣u− �

ρ− σ

∣∣∣ dz
+ c(p)Λ

∫
Qρ∩{|Du−D	|>1}

ζεψ θ(|u| + |�|, |u− �|)|Du−D�|p−1
∣∣∣ u− �

ρ− σ

∣∣∣ dz
=: I ′ + I ′′.

For the first integral, we use the estimate (2.2) for θ and |�| ≤ M , which
yields

I ′ ≤ c(p)ΛKθ(2M + 1)(1 +Mp−1)

∫
Qρ

ρβ
∣∣∣u− �

ρ− σ

∣∣∣1+β dz
≤ c

∫
Qρ

(
ρ

2β
1−β +
∣∣∣ u− �

ρ− σ

∣∣∣2) dz ≤ c
(
ρ2β|Qρ| +

∫
Qρ

∣∣∣ u− �

ρ− σ

∣∣∣2 dz),(4.8)

where we used Young’ inequality with exponents 2
1−β and 2

1+β
. For the

term I ′′, we simply estimate θ ≤ 1 and get

I ′′ ≤ c(p)Λ

∫
Qρ∩{|Du−D	|>1}

ζεψ |Du−D�|p−1
∣∣∣ u− �

ρ− σ

∣∣∣ dz
≤ c(p)Λ

∫
Qρ∩{|Du−D	|>1}

ζεψ |Du−D�| p
2

∣∣∣ u− �

ρ− σ

∣∣∣ dz
≤ c(p)Λ

∫
Qρ

ζεψ |V (Du−D�)|
∣∣∣u− �

ρ− σ

∣∣∣ dz
≤ κ

2

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz + c(p, κ)Λ

∫
Qρ

∣∣∣u− �

ρ− σ

∣∣∣2 dz(4.9)

for every κ ∈ (0, 1), where we used first p−1 ≤ p
2
, then applied Lemma 3.1 (i)

and finally Young’s inequality. For the estimate of I2, we distinguish the
cases |Du − D�| ≤ 1 and |Du − D�| > 1. In the first case, we employ the
growth property (A4) of Dξa and the fact |�|+ |D�|+ |Du−D�| ≤ 2M + 1,
with the result

−2
〈
a(z, �,Du) − a(z, �,D�), Dψ ⊗ (u− �)

〉
=

= −2

∫ 1

0

〈
Dξa(z, �,D�+ s(Du−D�))(Du−D�), Dψ ⊗ (u− �)

〉
ds

≤ 2ΛKD(2M + 1) |Du−D�|
∣∣∣u− �

ρ− σ

∣∣∣
≤ c(p)ΛKD(2M + 1) |V (Du−D�)|

∣∣∣u− �

ρ− σ

∣∣∣
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by Lemma 3.1(i). In the case |Du − D�| > 1, we simply make use of the
growth assumption (A2) on a in order to estimate

−2
〈
a(z, �,Du) − a(z, �,D�), Dψ ⊗ (u− �)

〉 ≤
≤ c(p)Λ(2 + |Du|p−1 +Mp−1)

∣∣∣u− �

ρ− σ

∣∣∣
≤ c(p)Λ(1 +Mp−1) |Du−D�|p−1

∣∣∣ u− �

ρ− σ

∣∣∣
≤ c(p)Λ(1 +Mp−1) |V (Du−D�)|

∣∣∣u− �

ρ− σ

∣∣∣
since

|Du−D�|p−1 ≤ |Du−D�| p
2 ≤ c(p)|V (Du−D�)|,

provided |Du − D�| > 1. Putting together the last two estimates, we
arrive at

I2 ≤ c

∫
Qρ

ζεψ|V (Du−D�)|
∣∣∣u− �

ρ− σ

∣∣∣ dz
≤ κ

2

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz + c(κ)

∫
Qρ

∣∣∣ u− �

ρ− σ

∣∣∣2 dz(4.10)

by Young’s inequality, for every κ ∈ (0, 1), where c(κ) depends only on κ
and the data listed in the theorem. Collecting the estimates (4.8) to (4.10),
we arrive at

I = I2 + I ′ + I ′′(4.11)

≤ κ

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz + c(κ)

(∫
Qρ

∣∣∣u− �

ρ− σ

∣∣∣2 dz + ρ2β |Qρ|
)
.

Estimate for II. Since the test function ϕ has compact support in Qρ,
integrating by parts on the time slices yields∫

Qρ

〈
a(0, t, �(0), D�), Dϕ

〉
dx dt = 0.

Consequently, we can write

II = −
∫
Qρ

〈
a(z, u,D�) − a(z, �,D�), Dϕ

〉
dz

−
∫
Qρ

〈
a(x, t, �,D�) − a(0, t, �(0), D�), Dϕ

〉
dx dt

=: II1 + II2.
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For the estimate of the first term, we employ the continuity (A3) of a with
respect to the second variable, together with the assumption |D�| ≤ M ,
which yields

II1 ≤ c(p)Λ(1 +Mp−1)

∫
Qρ

θ(|u| + |�|, |u− �|) |Dϕ| dz

≤ c

∫
Qρ∩{|u−	|≤1}

θ(|u| + |�|, |u− �|) |Dϕ| dz + c

∫
Qρ∩{|u−	|>1}

|Dϕ| dz

=: II1,1 + II1,2.

Here, we used the fact θ ≤ 1 in the estimate of the last integral. For the
estimate of II1,1, we employ the property (2.2) of θ and infer

II1,1 ≤ cKθ(2M + 1)

∫
Qρ∩{|u−	|≤1}

|u− �|β
(
ζεψ

2|Du−D�| +
∣∣∣u− �

ρ− σ

∣∣∣) dz
≤ c

∫
Qρ∩{|u−	|≤1}

ζεψ
2|u− �|β(|V (Du−D�)| + |V (Du−D�)|2/p) dz

+

∫
Qρ

ρβ
∣∣∣ u− �

ρ− σ

∣∣∣1+β dz.
Here we applied Lemma 3.1(i), distinguishing the cases |Du−D�| ≤ 1 and
|Du − D�| > 1. Next, we apply Young’s inequality to each of the three
summands. Keeping in mind that p

p−1
> 2 and |u− �| ≤ 1 on the domain of

integration, we deduce

II1,1 ≤ κ

3

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz + c(κ)

∫
Qρ

|u− �|2β dz

+ cρ
2β

1−β |Qρ| + c

∫
Qρ

∣∣∣ u− �

ρ− σ

∣∣∣2 dz
for any κ ∈ (0, 1). Applying Young’s inequality once more, we arrive at

(4.12)

II1,1 ≤ κ

3

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz

+ c(κ)
(
ρ

2β
1−β |Qρ| +

∫
Qρ

∣∣∣u− �

ρ− σ

∣∣∣2 dz).
The term II1,2 can be estimated by means of Lemma 3.1(i) and Young’s
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inequality as follows.

II1,2 ≤
∫
Qρ∩{|u−	|>1}

(
ζεψ

2|Du−D�| +
∣∣∣ u− �

ρ− σ

∣∣∣) dz
≤ κ

3

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz + c(κ)

∫
Qρ∩{|u−	|>1}

(
1 +
∣∣∣ u− �

ρ− σ

∣∣∣2) dz
≤ κ

3

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz + c(κ)

∫
Qρ

∣∣∣ u− �

ρ− σ

∣∣∣2 dz.
(4.13)

Here we used |u− �| > 1 and ρ−σ ≤ 1 in the last step. For the term II2, we
employ again the continuity assumption (A3) and the property (2.2) with
the result

II2 ≤ c(p)Λ(1 +Mp−1)

∫
Qρ

θ(|�| + |�(0)|, |x| + |�− �(0)|) |Dϕ| dz

≤ c

∫
Qρ

Kθ(2M + 1)(1 +M)βρβ
(
ζεψ

2|Du−D�| +
∣∣∣u− �

ρ− σ

∣∣∣) dz
= c
(∫

Qρ

ζεψ
2ρβ |Du−D�| dz +

∫
Qρ

ρβ
∣∣∣ u− �

ρ− σ

∣∣∣ dz)
=: II2,1 + II2,2.

Lemma 3.1(i) yields, similarly as above,

II2,1 ≤ c

∫
Qρ

ζεψ
2
(
ρβ |V (Du−D�)| + ρβ |V (Du−D�)|2/p

)
dz,

from which we infer by Young’s inequality, keeping in mind that ρ ≤ 1
and p ≤ 2,

(4.14) II2,1 ≤ c(κ)ρ2β |Qρ| + κ

3

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz.

Finally, we apply Young’s inequality to the term II2,2 with the result

(4.15) II2,2 ≤ c
(
ρ2β |Qρ| +

∫
Qρ

∣∣∣ u− �

ρ− σ

∣∣∣2 dz).
Combining the estimates (4.12) to (4.15), we infer

(4.16) II ≤ c(κ)
(
ρ2β |Qρ|+

∫
Qρ

∣∣∣ u− �

ρ− σ

∣∣∣2 dz)+κ

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz.
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Estimate for III. By the choice of ζε, in particular since |ζ ′ε| ≤ 2
(ρ−σ)2

on [−ρ2,−σ2], we have

(4.17) III ≤
∫ −σ2

−ρ2

∫
Bρ

ψ2
∣∣∣ u− �

ρ− σ

∣∣∣2 dx dt− 1

ε

∫ s

s−ε

∫
Bρ

ψ2|u− �|2 dx dt.

Estimate for IV in the case of controllable growth. In the case
of (B1), we can estimate, using |D�| ≤M ,

IV ≤ Λ

∫
Qρ

ζεψ
2(1 + |Du|2) p

4 |u− �| dz

≤ c

∫
Qρ

|u− �| dz + c

∫
Qρ∩{|Du−D	|>1}

ζεψ
2|Du−D�| p

2 |u− �| dz.

Keeping in mind the estimate |Du−D�| p
2 ≤ c(p)|V (Du−D�)|, which holds

under the assumption |Du−D�| > 1 according to Lemma 3.1(i), we deduce
after an application of Young’s inequality

(4.18) IV ≤ κ

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz+c(κ)

(∫
Qρ

∣∣∣ u− �

ρ− σ

∣∣∣2 dz+ρ2|Qρ|
)
,

for any κ ∈ (0, 1).

Estimate for IV in the case of natural growth. In this case we use
the assumption |u| ≤Mu in order to estimate

IV ≤
∫
Qρ

ζεψ
2|B(z, u,Du)| |u− �| dz(4.19)

≤ Λ1(Mu)

∫
Qρ

ζεψ
2|Du|p |u− �| dz + Λ2(Mu)

∫
Qρ

|u− �| dz.

Here we estimate by Young’s inequality for an arbitrary δ > 0

|Du|p ≤ (1 + |D�|2 + |Du|2) p2(4.20)

≤ [1 + (1 + δ)|Du−D�|2 + (2 + δ−1)|D�|2](1 + |D�|2 + |Du|2) p−2
2

≤ (1 + δ)|Du−D�|2(1 + |D�|2 + |Du|2)p−2
2 + (2 + δ−1)(1 +M2)

p
2 ,

where we used the assumption |D�| ≤ M and p ≤ 2 in the last step. We
determine δ > 0 by requiring that ν̃ := (1 + δ)2MuΛ1(Mu) is the arithmetic
mean of 2MuΛ1(Mu) and ν, that is

δ :=
ν − 2MuΛ1(Mu)

4MuΛ1(Mu)
.
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Note that δ > 0 because of the smallness condition (2.3), and furthermore
there holds ν̃ < ν. We apply the estimate (4.20) with this choice of δ and
plug it into (4.19). Keeping in mind that |u− �| ≤ 2Mu by assumption, we
infer

IV ≤ (1 + δ)2Mu Λ1(Mu)

∫
Qρ

ζεψ
2
(
1 + |D�|2 + |Du|2)p−2

2 |Du−D�|2 dz

+ c

∫
Qρ

|u− �| dz

≤ ν̃

∫
Qρ

ζεψ
2
(
1 + |D�|2 + |Du|2) p−2

2 |Du−D�|2 dz

+ c
(∫

Qρ

∣∣∣u− �

ρ

∣∣∣2 dz + ρ2|Qρ|
)
,(4.21)

where the constant c depends on p,M,Λ1(Mu),Λ2(Mu) and ν.

Final conclusion in the case of controllable growth. Recalling the
estimate (4.7), the estimates (4.11), (4.16), (4.17) and (4.18) yield

1

ε

∫ s

s−ε

∫
Bρ

ψ2|u− �|2 dz + ν

∫
Qρ

ζεψ
2(1+|D�|2+|Du|2) p−2

2 |Du−D�|2 dz ≤

≤ c(κ)
(
ρ2β |Qρ| +

∫
Qρ

∣∣∣ u− �

ρ− σ

∣∣∣2 dz)+ 3κ

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz.(4.22)

Here we can estimate the left-hand side from below by means of Lemma 3.1
(iii) and (v). Keeping in mind the assumption |D�| ≤ M , we deduce the
pointwise bound

ν(1 + |D�|2 + |Du|2) p−2
2 |Du−D�|2 ≥ c(Nn, p, ν)|V (Du) − V (D�)|2

≥ c(Nn, p, ν,M)|V (Du−D�)|2.
Plugging this into (4.22) and choosing κ ∈ (0, 1) small enough, depending
on Nn, p, ν and M , we can absorb the last integral appearing in (4.22).
Letting ε tend to zero, we thus deduce∫

Bσ×{s}
|u− �|2 dx+

∫ s

−σ2

∫
Bσ

|V (Du−D�)|2 dz ≤

≤
∫
Bρ×{s}

ψ2|u− �|2 dx+

∫ s

−σ2

∫
Bρ

ψ2|V (Du−D�)|2 dz

≤ c
(
ρ2β |Qρ| +

∫
Qρ

∣∣∣u− �

ρ− σ

∣∣∣2 dz)
for all s ∈ (−σ2, 0). After taking means, this yields the desired estimate.
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Final conclusion in the case of natural growth. In this case we em-
ploy (4.21) in order to estimate IV , and as above the estimates (4.7), (4.11),
(4.16) and (4.17). This yields, similarly to (4.22),

1

ε

∫ s

s−ε

∫
Bρ

ψ2|u− �|2 dz + ν

∫
Qρ

ζεψ
2(1 + |D�|2 + |Du|2) p−2

2 |Du−D�|2 dz

≤ c(κ)
(
ρ2β |Qρ| +

∫
Qρ

∣∣∣u− �

ρ− σ

∣∣∣2 dz)+ 2κ

∫
Qρ

ζεψ
2|V (Du−D�)|2 dz

+ ν̃

∫
Qρ

ζεψ
2(1 + |D�|2 + |Du|2) p−2

2 |Du−D�|2 dz.(4.23)

Here, the last integral can be absorbed since ν̃ < ν by the choice of ν̃. The
remaining integrals can be treated exactly in the same way as in the case of
controllable growth above, and we arrive at the same estimate, now with a
constant that may depend additionally on Mu,Λ1(Mu) and Λ2(Mu).

In the case of a system without u-dependence, a careful inspection of
the proof shows that we do not need a bound on |�(x0)|. This is due to the
fact that the functions Kθ and KD in the assumptions (A3) and (A4) can
be chosen independently from u in this case. �

5. Subquadratic A-caloric approximation

The technique of the A-caloric approximation has been developed in [20, 22]
for the proof of partial regularity for parabolic systems. We also refer to [3]
for a higher-order analogue. Here we give a version of an A-caloric approx-
imation lemma that is tailored to the case of subquadratic growth.

We consider bilinear forms A on R
Nn that are positive and bounded in

the sense

(5.1) A(ξ, ξ) ≥ λ|ξ|2 and A(ξ, η) ≤ L|ξ| |η|
for all ξ, η ∈ R

Nn.

Definition 5.1. A map h ∈ L1(t0 − R2, t0;W
1,1(BR(x0),R

N)) is called
A-caloric iff it satisfies the linear parabolic system

(5.2)

∫
QR(z0)

(
h · ∂tϕ−A(Dh,Dϕ)

)
dz = 0,

for arbitrary ϕ ∈ C∞
0 (QR(z0),R

N).

By classical results, A-caloric maps are smooth, cf. Section 7. The
main result in this section is the following lemma, which will provide suit-
able A-caloric comparison maps. Similar results have been proven in the
case p ≥ 2 in [20, 22] and in the elliptic case for p < 2 in [16].



770 C. Scheven

Lemma 5.2. Let 0 < λ ≤ L be given. Then for any ε > 0 there is a δ > 0,
depending on p, n,N, λ, L and ε, such that the following holds. Assume
that A is a bilinear form on R

Nn with the properties (5.1) and assume that
w ∈ L∞(t0 − ρ2, t0;L

2(Bρ(x0),R
N)) ∩ Lp(t0 − ρ2, t0;W

1,p(Bρ(x0),R
N)) is

approximately A-caloric in the sense

(5.3)

∣∣∣∣−∫
Qρ(z0)

(
w · ∂tϕ−A(Dw,Dϕ)

)
dz

∣∣∣∣ ≤ δ sup
Qρ(z0)

|Dϕ|

for all ϕ ∈ C∞
0 (Qρ(z0),R

N). If furthermore, w satisfies

(5.4) sup
t∈(t0−ρ2,t0)

−
∫
Bρ(x0)

∣∣∣∣w(x, t)

ρ

∣∣∣∣2 dx+ −
∫
Qρ(z0)

|V (Dw)|2 dz ≤ 1,

then there exists an A-caloric map h ∈ C∞(Qρ/2(z0),R
N) with

−
∫
Qρ/2(z0)

( ∣∣∣ h
ρ/2

∣∣∣2 + |V (Dh)|2
)
dz ≤ 2n+5

and

−
∫
Qρ/2(z0)

∣∣∣w − h

ρ/2

∣∣∣2 dz ≤ ε.

Remark 5.3. We point out that if the map w solves a parabolic system
and thus satisfies a Caccioppoli inequality as in Theorem 4.1, an analogous
statement holds if (5.4) is replaced by the weaker assumption

ρ−2−
∫
Qρ(z0)

|w|2 dz ≤ 1.

In the general case however, a bound on both integrals in (5.4) is crucial
in order to show strong compactness in L2 by a compactness principle of
Simon [37].

Proof. By scaling invariance, it suffices to prove the lemma in the case ρ = 1
and z0 = (0, 0). The general case can be deduced from this by rescaling in
the way

wz0,ρ(x, t) :=
w(x0 + ρx, t0 + ρ2t)

ρ
for all (x, t) ∈ Q1,

applying the lemma on the cylinder Q1 in order to get an A-caloric map
hz0,ρ ∈ C∞(Q1/2,R

N) and scaling back by

h(x, t) := ρ hz0,ρ

(x− x0

ρ
,
t− t0
ρ2

)
for all (x, t) ∈ Qρ/2(z0).



Partial regularity for subquadratic parabolic systems 771

Thus, we assume for contradiction that the lemma is not valid on Q1. In
that case, we could find an ε > 0, sequences Ak of bilinear forms with (5.1)
and maps wk ∈ L∞(−1, 0;L2(B1,R

N)) ∩ Lp(−1, 0;W 1,p(B1,R
N)) such that

for every k ∈ N, the map wk is approximately Ak-caloric in the sense

(5.5)

∣∣∣∣−∫
Q1

(
wk∂tϕ−Ak(Dwk, Dϕ)

)
dz

∣∣∣∣ ≤ 1

k
sup
Q1

‖Dϕ‖L∞

for all ϕ ∈ C∞
0 (Q1,R

N), and satisfies the estimate

(5.6) sup
t∈(−1,0)

−
∫
B1

|wk(x, t)|2 dx+ −
∫
Q1

|V (Dwk)|2 dz ≤ 1,

but for all Ak-caloric maps h ∈ C∞(Q1/2,R
N) with

−
∫
Q1/2

(
4|h|2 + |V (Dh)|2) dz ≤ 2n+5,

there holds

(5.7) 4−
∫
Q1/2

|wk − h|2 dz > ε.

By an approximation argument, we can assume that (5.5) holds for all ϕ ∈
W 1,∞(Q1,R

N) with zero boundary values. The estimate (5.6) implies in
particular

(5.8) −
∫
Q1

|wk|2 dz ≤ 1,

and, in view of Lemma 3.1(i),∫
Q1

|Dwk|p dz =

∫
Q1∩{|Dwk|≤1}

|Dwk|p dz +

∫
Q1∩{|Dwk|>1}

|Dwk|p dz

≤ c(p)

(∫
Q1

|V (Dwk)|p dz +

∫
Q1

|V (Dwk)|2 dz
)

≤ c(p)|Q1|,(5.9)

where we used Hölder’s inequality and (5.6) in the last step. By this esti-
mate and (5.8), we can achieve convergence in the following sense, if nec-
essary after passing to a subsequence. There is a map w ∈ L2(Q1,R

N) ∩
Lp(−1, 0;W 1,p(B1,R

N)) and a bilinear form A satisfying (5.1), such that

(5.10)

⎧⎪⎨⎪⎩
wk ⇀ w weakly in L2(Q1,R

N)

Dwk ⇀ Dw weakly in Lp(Q1,R
Nn)

Ak → A as bilinear forms

as k → ∞.
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By lower semicontinuity of the Lp-norm with respect to weak conver-
gence, we infer from (5.8) and (5.9) that

−
∫
Q1

(|w|2 + |Dw|p) dz ≤ c(p).

First, we check that w is A-caloric. To this end, we write for an arbitrary
map ϕ ∈ C∞

0 (Q1,R
N)∫

Q1

(
w · ∂tϕ−A(Dw,Dϕ)

)
dz =

∫
Q1

(
(w−wk) · ∂tϕ−A(Dw−Dwk, Dϕ)

)
dz

+

∫
Q1

(Ak −A)(Dwk, Dϕ) dz +

∫
Q1

(
wk · ∂tϕ−Ak(Dwk, Dϕ)

)
dz.

Letting k → ∞, the first integral tends to zero by the weak convergence
wk ⇀ w in L2 and Dwk ⇀ Dw in Lp, the second integral tends to zero
by the convergence Ak → A and the uniform bound (5.9), while the last
integral vanishes in the limit because of (5.5). We arrive at

(5.11)

∫
Q1

(
w · ∂tϕ−A(Dw,Dϕ)

)
dz = 0

for all ϕ ∈ C∞
0 (Q1,R

N), which means that w is A-caloric. In particular,
classical theory implies w ∈ C∞(Q1,R

N).
Next we want to prove strong convergence wk → w in L2(Q1/2,R

N).
For this we employ a technique from [20] in order to show some uniform
continuity property of wk in the time direction. For fixed times −1 < r <
s < 0, we test (5.5) with functions of the form ϕ(x, t) = ζκ(t)ψ(x), where
ψ ∈ C∞

0 (B1,R
N) is arbitrary and ζκ is defined by

ζκ(t) :=

⎧⎪⎨⎪⎩
1
κ
(t− s) for s ≤ t ≤ s+ κ

1 for s+ κ ≤ t ≤ r − κ

− 1
κ
(t− r) for r − κ ≤ t ≤ r

and extended by zero elsewhere. This defines a Lipschitz-continuous map
for every 0 < κ < 1

2
(r − s). Plugging this choice of ϕ into (5.5) we infer,

keeping in mind that |ζκ| ≤ 1,∣∣∣ ∫
Q1

wk(x, t) · ζ ′κ(t)ψ(x) dx dt
∣∣∣ ≤

≤
∫ r

s

∫
B1

|Ak(Dwk, Dψ)| dx dt+ |Q1|
k

‖Dψ‖L∞(B1)

≤
(
L

∫ r

s

∫
B1

|Dwk| dx dt+ |Q1|
k

)
‖Dψ‖L∞(B1)

≤ c(n, p, L)
(
(r − s)

p−1
p +

1

k

)
‖Dψ‖L∞(B1),



Partial regularity for subquadratic parabolic systems 773

where we applied Hölder’s inequality and the bound (5.9) in the last step.
On the other hand, the left-hand side of this inequality can be written as∣∣∣∣ ∫

Q1

wk(x, t)·ζ ′κ(t)ψ(x) dx dt

∣∣∣∣ =
=

∣∣∣∣∫
B1

(
1

κ

∫ s+κ

s

wk(x, t) dt− 1

κ

∫ r

r−κ
wk(x, t) dt

)
ψ(x) dx

∣∣∣∣
−→
κ↘0

∣∣∣∣∫
B1

(wk(·, s) − wk(·, r))ψ dx
∣∣∣∣

for almost all times −1 < s < r < 0. Putting together the last two formulas,
we arrive at∣∣∣∣∫

B1

(wk(·, s) − wk(·, r))ψ dx
∣∣∣∣ ≤ c(n, p, L)

(
(r − s)

p−1
p +

1

k

)
‖Dψ‖L∞(B1)

for every ψ ∈ C∞
0 (B1,R

N). Now we fix some l > n+2
2

and employ the Sobolev
embedding W l,2(B1,R

N) ↪→ W 1,∞(B1,R
N) and the fact that C∞

0 (B1,R
N) is

dense in W l,2
0 (B1,R

N). We deduce that the above estimate holds for every
ψ ∈W l,2

0 (B1,R
N) in the form∣∣∣∣∫

B1

(wk(·, s) − wk(·, r))ψ dx
∣∣∣∣ ≤ c(n, p, L, l)

(
(r − s)

p−1
p +

1

k

)
‖ψ‖W l,2

0 (B1).

This implies in particular that for almost every s ∈ (−1, 0) and h ∈ (0, |s|),
we have the estimate

‖wk(·, s) − wk(·, s+ h)‖W−l,2(B1) ≤ c(n, p, L, l)
(
h

p−1
p +

1

k

)
,

and consequently,∫ −h

−1

‖wk(·, s) − wk(·, s+ h)‖p
W−l,2(B1)

ds ≤ c(n, p, L, l)
(
hp−1 +

1

kp

)
.

This, together with the uniform estimates (5.8) and (5.9), enables us to
apply a compactness principle of Simon (see [37, Thm. 5]) to the triple of
Banach spaces

W 1,p(B1,R
N) ↪→ L2(B1,R

N) ↪→W−l,2(B1,R
N),

where in particular the first embedding is compact because of the assumption
p > 2n

n+2
. From the cited theorem we infer the compactness

wk → w strongly in Lp(−1, 0;L2(B1,R
N)), as k → ∞.
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Combining this with the property (5.6) of the maps wk, we derive∫
Q1/2

|wk − w|2 dz ≤

≤
(

sup
t∈(−1/4,0)

∫
B1/2

|wk − w|2 dx
)1− p

2
∫ 0

−1/4

[ ∫
B1/2

|wk − w|2 dx
] p

2
dt

−→
k→∞

0

since the first factor on the right-hand side is bounded independently from
k ∈ N because of (5.6) and the fact that w is smooth in the parabolic interior
of Q1, while the second factor tends to zero because of the convergence
wk → w in the Lp-L2-norm. We thus have shown

(5.12) wk → w strongly in L2(Q1/2,R
N), as k → ∞.

The next step is the construction of Ak-caloric comparison maps. We choose
the maps vk ∈ C0(−1/4, 0;L2(B1/2,R

N)) ∩ L2(−1/4, 0;W 1,2(B1/2,R
N)) as

the unique solutions of the Cauchy-Dirichlet problems

(5.13)

⎧⎨⎩
∫
Q1/2

(
vk · ∂tϕ−Ak(Dvk, Dϕ)

)
dz=0 for all ϕ ∈ C∞

0 (Q1/2,R
N)

vk = w on ∂parQ1/2

For the existence we refer to [31]. By classical results, the comparison maps
satisfy vk ∈ C∞(Q1/2,R

N), since w is smooth in the parabolic interior of the
cylinder Q1.

We claim that Dvk → Dw strongly in L2(Q1/2,R
N), as k → ∞. Since vk

and w are smooth, we may integrate by parts with respect to the time
variable in the equations (5.11) and (5.13). Testing the resulting equations
with ϕ = vk − w ∈ C∞(Q1/2,R

N
)
, we infer, since vk − w vanishes on the

parabolic boundary of Q1/2,∫
Q1/2

∂t(vk − w) · (vk − w) dz +

∫
Q1/2

Ak(Dvk −Dw,Dvk −Dw) dz(5.14)

=

∫
Q1/2

(A−Ak)(Dw,Dvk −Dw) dz.

Furthermore, since∫
Q1/2

∂t(vk − w) · (vk − w) dz =
1

2

∫ 0

−1/4

d

dt

∫
B1/2

|vk − w|2 dx dt

=
1

2

∫
B1/2

|vk(·, 0) − w(·, 0)|2 dx ≥ 0,
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we infer from (5.14) and the properties (5.1) of Ak

λ

∫
Q1/2

|Dvk −Dw|2 dz ≤
∫
Q1/2

Ak(Dvk −Dw,Dvk −Dw) dz

≤ |Ak −A|
∫
Q1/2

|Dw| |Dvk −Dw| dz.

Applying Young’s inequality and absorbing one of the resulting terms on the
left-hand side, this yields

λ

2

∫
Q1/2

|Dvk −Dw|2 dz ≤ |Ak −A|2
2λ

∫
Q1/2

|Dw|2 dz −→
k→∞

0.

Sobolev embedding on the time slices yields furthermore

(5.15) lim
k→∞

∫
Q1/2

(|vk − w|2 + |Dvk −Dw|2) dz = 0,

which implies in turn by Lemma 3.1(iii)

(5.16) lim
k→∞

∫
Q1/2

(|vk − w|2 + |V (Dvk) − V (Dw)|2) dz = 0.

From the equivalence of V and W and the convexity of |W |2, stated in (3.3)
respectively (3.4), we infer the following lower semicontinuity property.

−
∫
Q1

(
4|w|2 + |V (Dw)|2) dz ≤ 4 −

∫
Q1

(|w|2 + |W (Dw)|2) dz
≤ 4 lim inf

k→∞
−
∫
Q1

(|wk|2 + |W (Dwk)|2
)
dz.

Because of |W | ≤ |V | by (3.3) and the uniform estimate (5.6), this implies

−
∫
Q1

(
4|w|2 + |V (Dw)|2) dz ≤ 4.

Combining this with (5.16), we deduce

(5.17) −
∫
Q1/2

(
4|vk|2 + |V (Dvk)|2

)
dz ≤ 2n+5

for all sufficiently large values of k ∈ N. From the convergence established
in (5.12) and (5.15), we know furthermore

−
∫
Q1/2

|wk − vk|2 dz ≤ 2 −
∫
Q1/2

|wk − w|2 dz + 2 −
∫
Q1/2

|w − vk|2 dz ≤ ε

4

for large values of k ∈ N. Because of (5.17), this estimate is in contradiction
to (5.7), since vk is an Ak-caloric map. This completes the proof. �
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6. Approximate A-caloricity by linearization

Definition 6.1. Let u ∈ L2(QR(z0),R
N)∩Lp(t0−ρ2, t0;W

1,p(Bρ(x0),R
N)),

A : R
n → R

N a linear function and � : R
n → R

N an affine function. We
define excess functionals

(6.1) ΦV (z0, ρ, A) := −
∫
Qρ

|V (Du−A)|2 dz and Ψ2(z0, ρ, �) := −
∫
Qρ

∣∣∣u− �

ρ

∣∣∣2dz
and abbreviate furthermore Ψ̃2(z0, ρ, �) := Ψ2(z0, ρ, �)+ρ

2β. When the choice
of z0 and � is clear from the context, we will frequently omit these arguments
and write, for example, ΦV (ρ) := ΦV (z0, ρ, �).

Lemma 6.2. Let u ∈ C0(−T, 0;L2(Ω,RN)) ∩ Lp(−T, 0;W 1,p(Ω,RN)) be a
weak solution of (2.1), under the general assumptions stated in Section 2.
Let � : R

n → R
N be any affine function with |�(x0)| + |D�| ≤ M and

Q2ρ(z0) ⊂ ΩT a parabolic cylinder with ρ ∈ (0, 1). We define the bilinear
form A on R

Nn by

(6.2) A(ξ, η) :=
〈
Dξa(z0, �(x0), D�)ξ, η

〉
for all ξ, η ∈ R

Nn.

Then, the function u− � : (x, t) �→ u(x, t) − �(x) satisfies

−
∫
Qρ(z0)

(
(u− �) · ∂tϕ−A(Du−D�,Dϕ)

)
dz ≤

≤ c1

[
ωM+1

(
ΦV (ρ)
)
Φ

1/2
V (ρ) + ΦV (ρ) + Ψ2(ρ) + ρβ

]
sup
Qρ(z0)

|Dϕ|

≤ c2

[
ωM+1

(
Ψ̃2(2ρ)

)
Ψ̃

1/2
2 (2ρ) + Ψ2(2ρ) + ρβ

]
sup
Qρ(z0)

|Dϕ|

for all test functions ϕ ∈ C∞
0 (Qρ(z0),R

N). The constants c1 and c2 depend
only on M,Kθ(·), KD(·), n,N, p,Λ and ν, and in the case of the natural
growth condition (B2) additionally on Mu,Λ1(Mu) and Λ2(Mu).

Again, in the case of controllable growth (B1) and systems without u-
dependence, the estimate holds for all affine maps with |D�| ≤ M .

Proof. We note that in both the cases of controllable and of natural growth,
the right-hand side of the system (2.1) satisfies an estimate of the form

(6.3) |B(z, u,Du)| ≤ c(1 + |Du|p)
with a constant c depending only on the data stated in the lemma. In this
proof, we do not need any further information on B. Let ϕ∈C∞

0 (Qρ(z0),R
N)

be a test function with supQρ(z0) |Dϕ| ≤ 1. Because of the homogeneity of
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the claimed estimate, it suffices to prove it under this constraint on ϕ. We
use the fact that u is a solution of (2.1) together with the identities

−
∫
Qρ(z0)

〈
a(z0, �(z0), D�), Dϕ

〉
dz = 0 and −

∫
Qρ(z0)

� · ∂tϕdz = 0

and deduce

−
∫
Qρ(z0)

(
(u− �) · ∂tϕ−A(Du−D�,Dϕ)

)
dz =(6.4)

=−
∫
Qρ(z0)

〈
a(z0, �(z0), Du)− a(z0, �(z0), D�)

−Dξa(z0, �(z0), D�)(Du−D�), Dϕ
〉
dz

+ −
∫
Qρ(z0)

〈
a(z, u,Du) − a(z, �,Du), Dϕ

〉
dz

+ −
∫
Qρ(z0)

〈
a(z, �,Du) − a(z0, �(z0), Du), Dϕ

〉
dz

−−
∫
Qρ(z0)

B(z, u,Du) · ϕdz

=: I + II + III − IV.

We will estimate the integrand of I in different ways depending on whether
|Du−D�| ≤ 1 or |Du−D�| > 1. In the first case, we use (A5) in order to
estimate∣∣a(z0, �(z0), Du) − a(z0, �(z0), D�) −Dξa(z0, �(z0), D�)(Du−D�)

∣∣ =
=
∣∣∣ ∫ 1

0

Dξa(z0, �(z0), D�+ s(Du−D�)) −Dξa(z0, �(z0), D�) ds (Du−D�)
∣∣∣

≤ 2ΛKD(M + 1)ωM+1(|Du−D�|2) |Du−D�|
≤ c(p)ΛKD(M + 1)ωM+1

(
2

2−p
2 |V (Du−D�)|2) |V (Du−D�)|

by Lemma 3.1(i), since |Du − D�| ≤ 1. In the case |Du − D�| > 1, we
simply employ the growth assumptions (A2) and (A4) on a and Dξa in
order to estimate, using |�(z0)| + |D�| ≤M by assumption,∣∣a(z0, �(z0),Du) − a(z0, �(z0), D�) −Dξa(z0, �(z0), D�)(Du−D�)

∣∣ ≤
≤ Λ(1 + |Du|2) p−1

2 + Λ(1 + |D�|2) p−1
2 + ΛKD(M)|Du−D�|

≤ cΛ(1 +Mp−1 +KD(M))|Du−D�|p
≤ cΛ(1 +Mp−1 +KD(M))|V (Du−D�)|2,

where we used |Du−D�| > 1 and Lemma 3.1(i) in the last two steps.
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Combining the last two estimates and keeping in mind that |Dϕ| ≤ 1, we
infer

|I| ≤ c −
∫
Qρ(z0)

ωM+1

(
2

2−p
2 |V (Du−D�)|2) |V (Du−D�)| dz + cΦV (ρ)

≤ c

(
−
∫
Qρ(z0)

ω2
M+1

(
2

2−p
2 |V (Du−D�)|2) dz)1/2

ΦV (ρ)1/2 + cΦV (ρ)

≤ c ωM+1

(
2

2−p
2 ΦV (ρ)

)
ΦV (ρ)1/2 + cΦV (ρ)

by the Cauchy-Schwarz inequality and Jensen’s inequality for the concave
function s �→ ω2

M+1(s). The concavity of ωM+1 and ωM+1(0) = 0 imply
furthermore ωM+1(rs) ≤ rωM+1(s) for every r ≥ 1. Thus, we can simplify
the above estimate to

(6.5) |I| ≤ c ωM+1(ΦV (ρ))ΦV (ρ)1/2 + cΦV (ρ).

Next we turn our attention to the estimate of II. Here we use the continuity
assumption (A3) on a and (2.2) in order to estimate

|II| ≤ c(p)ΛKθ(2M + 1)−
∫
Qρ(z0)

|u− �|β (1 + |Du|p−1) dz

≤ c

|Qρ|
∫
Qρ(z0)∩{|Du−D	|>1}

ρβ
∣∣∣u− �

ρ

∣∣∣β|Du−D�|p−1 dz

+ c(1 +Mp−1)−
∫
Qρ(z0)

ρβ
∣∣∣u− �

ρ

∣∣∣β dz
≤ c

|Qρ|
∫
Qρ(z0)∩{|Du−D	|>1}

|Du−D�|p dz + c−
∫
Qρ(z0)

∣∣∣u− �

ρ

∣∣∣2 dz + cρβ

≤ c
(
ΦV (ρ) + Ψ2(ρ) + ρβ

)
,(6.6)

where we used Young’s inequality, once with exponents 2p
2−pβ > 1, 2

β
and p

p−1
,

and once with exponents 2
2−β > 1 and 2

β
, and furthermore the facts ρ ≤ 1

and Lemma 3.1(i). Similarly we estimate, using dpar(z, z0)+ |�(z)− �(z0)| ≤
(1 +M)ρ for all z ∈ Qρ(z0),

|III| ≤ c(p)ΛKθ(2M + 1)−
∫
Qρ(z0)

(1 +M)βρβ(1 + |Du|p−1) dz

≤ c

|Qρ|
∫
Qρ(z0)∩{|Du−D	|>1}

ρβ |Du−D�|p−1 dz + cρβ

≤ c

|Qρ|
∫
Qρ(z0)∩{|Du−D	|>1}

|Du−D�|p dz + cρβ

≤ cΦV (ρ) + cρβ .(6.7)
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Here we used again Young’s inequality, ρ ≤ 1 and Lemma 3.1(i) in the last
two steps. Finally, we can bound the term IV with the help of (6.3) by

|IV | ≤ sup
Qρ(z0)

|ϕ| −
∫
Qρ(z0)

|B(z, u,Du)| dz ≤ cρ−
∫
Qρ(z0)

(1 + |Du|p) dz,

where we used supQρ(z0) |ϕ| ≤ cρ supQρ(z0) |Dϕ| ≤ cρ in the last step. Using
Lemma 3.1(i) and |D�| ≤M , we can estimate this term further by

|IV | ≤ cρ(1 +Mp) + cρ−
∫
Qρ(z0)∩{|Du−D	|>1}

|Du−D�|p dz

≤ cρ(1 +Mp) + cρ−
∫
Qρ(z0)

|V (Du−D�)|2 dz

= cρ+ cρΦV (ρ).(6.8)

Putting together (6.5), (6.6), (6.7) and (6.8), we infer from (6.4)

−
∫
Qρ(z0)

(
(u− �) · ∂tϕ−A(Du−D�,Dϕ)

)
dz ≤

≤ c
[
ωM+1(ΦV (ρ))ΦV (ρ)1/2 + ΦV (ρ) + Ψ2(ρ) + ρβ

]
for all ϕ ∈ C∞

0 (Qρ(z0),R
N) with supQρ(z0) |Dϕ| ≤ 1. This implies the first

inequality claimed in the lemma. For the second one, we estimate the right-
hand side with the help of the Caccioppoli inequality from Theorem 4.1 in
the form of (4.2). This yields the bound

ωM+1(ΦV (ρ))ΦV (ρ)1/2 + ΦV (ρ) + Ψ2(ρ) + ρβ ≤
≤ 2c

1/2
0 ωM+1(4c0Ψ̃2(2ρ))Ψ̃

1/2
2 (2ρ) + (4c0 + 2n+4)(Ψ2(2ρ) + ρβ).

Using once more the concavity of ωM+1 in the form ωM+1(4c0s)≤4c0ωM+1(s),
we establish the second estimate. �

7. Estimates for linear problems

In this section, we derive an excess estimate for A-caloric maps, which will be
used as comparison maps for the original problem. This estimate has been
established in [7, 4] for smooth maps or maps in L2(−T, 0;W 1,2(Ω,RN)).
For our purposes, we need the same estimate under the weaker assumption
u ∈ Lp(−T, 0;W 1,p(Ω,RN)). For this we employ an approximation argument
similar to the one in [8]. The precise result reads as follows.
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Lemma 7.1. Assume that h ∈ L1(t0−R2, t0;W
1,1(BR(x0),R

N)) is A-caloric,
with A satisfying (5.1). Then there holds h ∈ C∞(QR(z0),R

N) and we have
the following excess estimate for every ρ ∈ (0, R) and τ ∈ (0, 1

2
).

(7.1) −
∫
Qτρ(z0)

∣∣∣∣h− �
(h)
z0,τρ

τρ

∣∣∣∣2 dz ≤ c3τ
2−
∫
Qρ(z0)

∣∣∣∣h− �
(h)
z0,ρ

ρ

∣∣∣∣2 dz
with the affine functions �

(h)
z0,r(x) := (h)z0,r + (Dh)z0,r(x−x0) for r = τρ and

r = ρ and a constant c3 = c3(n,N, L/λ).

Proof. It only remains to prove that u ∈ L2
loc(t0−R2, t0;W

1,2
loc (BR(x0),R

N)),
since under this assumption, a proof of the assertion can be found e.g. in
[7, 4]. By a scaling argument, we may assume z0 = 0 and R = 1. We fix a
radius S ∈ (1

2
, 1) and consider mollifications

hε(x) := ϕε ∗ h(x) for all x ∈ QS,

where ϕ ∈ C∞
0 (Q1) denotes a standard smoothing kernel and the smooth-

ing radius satisfies ε ∈ (0, 1 − S). The maps hε ∈ C∞(QS,R
N) are again

A-caloric because of the linearity of the differential equation (5.2). We claim
that for all radii σ < S, they satisfy the uniform estimates

(7.2) sup
Qσ

|Dhε| ≤ cσ−
∫
QS

|Dhε| dz ≤ cσ−
∫
Q1

|Dh| dz

with a constant cσ independent from ε. For this we use the Caccioppoli-type
estimate ∫

Qσ

|∂jtDkDhε|2 dz ≤ c

(ρ− σ)4j+2k

∫
Qρ

|Dhε|2 dz

which holds for all radii 0 < σ < ρ < S and all j, k ∈ N. This estimate can
be derived for the smooth A-caloric maps hε by standard arguments (see
e.g. [7, Chapter 5]). By the Sobolev embedding W n+2,2 ↪→ L∞, the above
bound implies for all radii σ < ρ with ρ, σ ∈ (S

2
, S)

sup
Qσ

|Dhε|2 ≤ c(n)
∑

j+k≤n+2

σ4j+2k −
∫
Qσ

|∂jtDkDhε|2 dz

≤ c(n)

(ρ− σ)4(n+2)
−
∫
Qρ

|Dhε|2 dz

≤ 1

2
sup
Qρ

|Dhε|2 +
c(n)

(ρ− σ)8(n+2)

(
−
∫
QS

|Dhε| dz
)2
,

where we used the facts σ ≤ 1, ρ− σ ≤ 1 and Young’s inequality. The first
term in the last line can be absorbed with the help of Lemma 3.4. This yields
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the first estimate of the claim (7.2). The second one is a standard estimate
for convolutions. Letting ε ↘ 0 in (7.2), we infer that Dh ∈ L∞(Qσ,R

Nn)
for every σ < S, and since S ∈ (1

2
, 1) was arbitrary, we have in particular

h ∈ L2
loc(−1, 0;W 1,2

loc (B1,R
N)), as desired. �

8. A decay estimate

In the sequel, for a given map u and any z0 ∈ ΩT and r > 0 we will
abbreviate �z0,r = �

(u)
z0,r for the unique affine function R

n → R
N minimizing

the functional

� �→ −
∫
Qr(z0)

|u− �|2 dz.

Lemma 8.1. We assume that the hypotheses listed in Section 2 are in force
and let M > 0 and α ∈ (β, 1). Then there are constants κM , τ ∈ (0, 1),
depending only on α,M,Kθ(·), KD(·), p, n,N,Λ, ν and in the case of natural
growth (B2) additionally on Mu,Λ1(Mu) and Λ2(Mu), such that the following
holds. For all z0 = (x0, t0) ∈ R

n × R and ρ ∈ (0, 1) and any weak solution
u ∈ C0(t0−ρ2, t0;L

2(Bρ(x0),R
N))∩Lp(t0−ρ2, t0;W

1,p(Bρ(x0),R
N)) of (2.1)

that satisfies

(8.1) |uz0,ρ| + |D�z0,ρ| ≤M

together with the smallness assumption

(8.2) Ψ2(z0, ρ, �z0,ρ) + ρβ ≤ κM ,

we have the excess estimate

Ψ2(z0, τρ, �z0,τρ) ≤ τ 2α
[
Ψ2(z0, ρ, �z0,ρ) + ρ2β

]
.

In the case of systems without u-dependence, the assumption (8.1) can be
replaced by |D�z0,ρ| ≤M .

Proof. In this proof, we will abbreviate Ψ2(r) := Ψ2(z0, r, �z0,ρ), Ψ̃2(r) :=
Ψ2(r) + r2β and ΦV (r) := ΦV (z0, r, D�z0,ρ) for any r ∈ (0, ρ). We let A be
the bilinear form given in (6.2), with the choice � = �z0,ρ. By the growth
and ellipticity conditions (A1) and (A4) it satisfies

A(ξ, ξ) ≥ ν(1 +M2)
p−2
2 |ξ|2 and A(ξ, η) ≤ ΛKD(M) |ξ| |η|

for all ξ, η ∈ R
Nn. For an ε > 0 to be chosen later, we apply Lemma 5.2 with

λ = ν(1 + M2)
p−2
2 and L = ΛKD(M), which specifies the constant δ > 0,
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depending at most on ε, p, n,N, ν,M,Λ and KD(M). With the constants c0
and c2 determined by Theorem 4.1 and Lemma 6.2, respectively, we define

μ := max
{3c2
δ
, 2

n
2
+2, 2

√
c0

}
Ψ̃

1/2
2 (ρ)

and choose

κM := min
{ δ2

9c22
,

1

2n+4
,

1

4c0

}
∈ (0, 1).

Assuming (8.2) with this choice of κM , which implies in particular Ψ̃2(ρ) ≤
κM , we infer

μ ≤ max
{3c2
δ
, 2

n
2
+2, 2

√
c0

}
κ

1/2
M = 1.

By Lemma 6.2, the rescaled map w := μ−1(u− �z0,ρ) satisfies

−
∫
Qρ/2(z0)

(
w · ∂tϕ−A(Dw,Dϕ)

)
dz ≤

≤ c2
μ

[
ωM+1(Ψ̃2(ρ))Ψ̃2(ρ)

1/2 + Ψ2(ρ) + ρβ
]

sup
Qρ/2(z0)

|Dϕ|

≤ 3c2
μ

Ψ̃
1/2
2 (ρ) sup

Qρ/2(z0)

|Dϕ|

≤ δ sup
Qρ/2(z0)

|Dϕ|,(8.3)

where we subsequently used ωM+1 ≤ 1, Ψ2(ρ) ≤ κM ≤ 1 and the definition
of μ in the last two steps. Since μ ∈ (0, 1), Lemma 3.1(ii) implies |V (Dw)| ≤
μ−1|V (Du −D�z0,ρ)|. Consequently, the Caccioppoli inequality established
in Theorem 4.1 implies

sup
t∈(t0−ρ2/4,t0)

−
∫
Bρ/2(x0)

∣∣∣∣w(x, t)

ρ/2

∣∣∣∣2 dx+ −
∫
Qρ/2(z0)

|V (Dw)|2 dz ≤

≤ 1

μ2

[
sup

t∈(t0−ρ2/4,t0)

−
∫
Bρ/2(x0)

∣∣∣∣u(x, t) − �z0,ρ(x)

ρ/2

∣∣∣∣2 dx
+ −
∫
Qρ/2(z0)

|V (Du−D�z0,ρ)|2 dz
]

≤ 4c0
μ2

Ψ̃2(ρ) ≤ 1

by the choice of μ. Because of the last two estimates, we may apply the
A-caloric approximation Lemma 5.2 on the cylinder Qρ/2(z0), which provides
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an A-caloric function h ∈ C∞(Qρ/4(z0),R
N) with

(8.4) −
∫
Qρ/4(z0)

(∣∣∣ h
ρ/4

∣∣∣2 + |V (Dh)|2
)
dz ≤ 2n+5

and

(8.5) −
∫
Qρ/4(z0)

∣∣∣w − h

ρ/4

∣∣∣2 dz ≤ ε.

We write �
(h)
z0,r(x) := (h)z0,r+(Dh)z0,r(x−x0) for any r ∈ (0, ρ). For τ ∈ (0, 1

8
)

to be chosen small later, we estimate

−
∫
Qτρ(z0)

∣∣∣∣w − �
(h)
z0,τρ

τρ

∣∣∣∣2 dz ≤
≤ 2(4τ)−n−4 −

∫
Qρ/4(z0)

∣∣∣w − h

ρ/4

∣∣∣2 dz + 2 −
∫
Qτρ(z0)

∣∣∣∣h− �
(h)
z0,τρ

τρ

∣∣∣∣2 dz.
Here, we can estimate by Lemma 7.1

−
∫
Qτρ(z0)

∣∣∣∣h− �
(h)
z0,τρ

τρ

∣∣∣∣2 dz ≤ c3τ
2 −
∫
Qρ/4(z0)

∣∣∣∣h− �
(h)
z0,ρ/4

ρ/4

∣∣∣∣2 dz ≤ cτ 2,

where we used (8.4) in the last step. Combining the last three estimates, we
arrive at

(8.6) −
∫
Qτρ(z0)

∣∣∣∣w − �
(h)
z0,τρ

τρ

∣∣∣∣2 dz ≤ c(τ−n−4ε+ τ 2)

for every τ ∈ (0, 1
8
). Scaling back, we find by the minimizing property of

�z0,τρ, the definition of w, (8.6) and the definition of μ

−
∫
Qτρ(z0)

∣∣∣u− �z0,τρ
τρ

∣∣∣2 dz ≤ −
∫
Qτρ(z0)

∣∣∣u− �z0,ρ − μ�
(h)
z0,τρ

τρ

∣∣∣2 dz
= μ2−
∫
Qτρ(z0)

∣∣∣w − �
(h)
z0,τρ

τρ

∣∣∣2 dz ≤ cμ2(τ−n−4ε+ τ 2) ≤ c(τ−n−4ε+ τ 2)Ψ̃2(ρ).

For a given α ∈ (β, 1), we now choose first τ ∈ (0, 1
8
) and then ε ∈ (0, 1)

sufficiently small in order to ensure

−
∫
Qτρ(z0)

∣∣∣u− �z0,τρ
τρ

∣∣∣2 dz ≤ τ 2αΨ̃2(ρ).

This is the claimed estimate. We point out that the choices of ε and τ
depend only on n, δ, c0, c2 and c3, and consequently only on the data listed
in the lemma. �
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Lemma 8.2. Under the assumptions listed in Section 2, we let M > 2.
Then there are constants ε0, ρ0 ∈ (0, 1) and c4 > 0, depending only on
M,Kθ(·), KD(·), p, n,N,Λ, ν, and in the case (B2) of natural growth addi-
tionally on Mu,Λ1(Mu) and Λ2(Mu), with the following property. For any
u ∈ C0(−T, 0;L2(Ω,RN)) ∩ Lp(−T, 0;W 1,p(Ω,RN)) that is a weak solution
of the system (2.1) and QR(z0) ⊂⊂ Ω, assume that we have the bound

(8.7) |uz0,R| + |(Du)z0,R| < M − 2

and the smallness properties R ≤ ρ0 and

R−2−
∫
QR(z0)

∣∣u− uz0,R − (Du)z0,R(x− x0)
∣∣2 dz < ε2

0.

Then there is a neighborhood U of z0 such that for all w ∈ U and all ρ ∈
(0, R

2
], there holds

−
∫
Qρ(w)

|Du− (Du)w,ρ|p dz ≤ c4

( ρ
R

)pβ
.

In case the structure function a in the system (2.1) does not depend on u,
we may replace the condition (8.7) by |(Du)z0,R| < M − 2.

Proof. We may fix an arbitrary α ∈ (β, 1), for convenience we choose
α = 1+β

2
. Furthermore we let κM , τ ∈ (0, 1) be the constants determined by

Lemma 8.1. We choose the constants ε0, ρ0 ∈ (0, 1) so small that

(8.8) ε2
0 +

ρ2β
0

τ 2β − τ 2α
+ ρβ0 ≤ κM and ε2

0 +
ρ2β

0

τ 2β − τ 2α
≤ τn+4 (1 − τβ)2

2(n+ 1)2
.

By the absolute continuity of the integral, we can choose a neighborhood U
of z0 such that for all w ∈ U

(8.9) |uw,R| + |(Du)w,R| < M − 2

and

(8.10) R−2−
∫
QR(w)

∣∣u− uw,R − (Du)w,R(x− x0)
∣∣2 dz < ε2

0.

First we note that (8.9) and (8.10) imply by (3.6)

|uw,R| + |D�w,R| ≤ |uw,R| + |(Du)w,R|

+

[
n(n+ 2)

R2
−
∫
QR(w)

∣∣u− uw,R − (Du)w,R(x− x0)
∣∣2 dz]1/2

≤M − 2 +
√
n(n + 2) ε0 ≤ M − 1(8.11)

since ε2
0 ≤ 1

(n+1)2
≤ 1

n(n+2)
by the choice of ε0.
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Moreover, by the minimizing property of �w,R we have

(8.12) Ψ2(w,R, �w,R) ≤ R−2−
∫
QR(w)

∣∣u− uw,R − (Du)w,R(x− x0)
∣∣2 dz ≤ ε2

0.

Now we apply Lemma 8.1, which is possible since ε2
0 + ρβ0 ≤ κM . We infer,

with τ ∈ (0, 1) determined by the lemma,

(8.13) Ψ2(w, τR, �w,τR) ≤ τ 2α
[
Ψ2(w,R, �w,R) +R2β

]
.

In particular,

(8.14) Ψ2(w, τR, �w,τR) + (τR)β ≤ (ε2
0 + ρ2β

0 ) + ρβ0 ≤ κM .

By (3.8), we can estimate

|uw,τR| + |D�w,τR| ≤

≤ |uw,R| + |D�w,R| +
√

2
n+ 1

τR

[
−
∫
QτR(w)

|u− �w,R|2 dz
]1/2

≤M − 1 +
√

2
n+ 1

τn/2+2
Ψ

1/2
2 (w,R, �w,R) ≤M(8.15)

by (8.11), (8.12) and the choice of ε0 in (8.8). By (8.14) and (8.15), we may
apply Lemma 8.1 again on the ball QτR(w). Continuing in this fashion, we
successively derive the estimates

Ψ2(w, τ
kR, �w,τkR) ≤ τ 2αkΨ2(w,R, �w,R) + τ 2βkR2β

k∑
j=1

τ 2αj−2βj

≤ τ 2βk
[
Ψ2(w,R, �w,R) +

τ 2α

τ 2β − τ 2α
R2β
]

≤ τ 2βk
[
ε2
0 +

ρ2β
0

τ 2β − τ 2α

]
(8.16)

for every k ∈ N. This implies in particular, by our choice of the constants
in (8.8),

(8.17) Ψ2(w, τ
kR, �w,τkR) + (τkR)β ≤ ε2

0 +
ρ2β

0

τ 2β − τ 2α
+ ρβ0 ≤ κM .

Similarly to (8.15) we infer furthermore, using (8.11) and (8.16),

|uw,τkR| + |D�w,τkR| ≤ |uw,R| + |D�w,R| +
√

2
n+ 1

τn/2+2

k−1∑
j=0

Ψ
1/2
2 (w, τ jR, �w,τ jR)

≤ M − 1 +
√

2
n + 1

τn/2+2

k−1∑
j=0

τβj
[
ε2
0 +

ρ2β
0

τ 2β − τ 2α

]1/2
≤M(8.18)

by the choice of ε0 and ρ0 according to (8.8).
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During the iteration, the last two estimates (8.17) and (8.18) guarantee
that Lemma 8.1 is applicable in each step. Furthermore, the inequality (8.18)
ensures that we may apply the Caccioppoli inequality from Theorem 4.1 to
infer, for all k ∈ N0,

−
∫
Q

τkR/2
(w)

∣∣V (Du−D�w,τkR

)∣∣2 dz ≤(8.19)

≤ c
(
Ψ2(w, τ

kR, �w,τkR) + τ 2βkR2β
) ≤ cτ 2βk

by the decay estimate (8.16). Combining this with Lemma 3.1(i), we infer,
distinguishing the cases |Du−D�w,τkR| ≤ 1 and |Du−D�w,τkR| > 1

−
∫
Q

τkR/2
(w)

|Du− (Du)w,τkR/2|p dz ≤

≤ c−
∫
Q

τkR/2
(w)

|Du−D�w,τkR|p dz

≤ c−
∫
Q

τkR/2
(w)

∣∣V (Du−D�w,τkR

)∣∣p dz + c−
∫
Q

τkR/2
(w)

∣∣V (Du−D�w,τkR

)∣∣2 dz
≤ c(τ pβk + τ 2βk) ≤ cτ pβk,

where we applied Hölder’s inequality and (8.19) in the penultimate estimate.
This is the claim for radii of the form ρ = τkR/2, k ∈ N0. For general
ρ ∈ (0, R

2
], the claim follows by a standard argument. �

By the characterization of Hölder continuous maps with respect to the
parabolic metric by Campanato–Da Prato [23], the last lemma yields a first
characterization of the singular set.

Theorem 8.3. Let u ∈ C0(−T, 0;L2(Ω,RN )) ∩ Lp(−T, 0;W 1,p(Ω,RN)) be
a weak solution to (2.1), under the assumptions stated in Section 2. Then

there is an open set Ωu ⊂ ΩT with Du ∈ C
β,β/2
loc (Ωu,RNn), and the singular

set satisfies ΩT \ Ωu ⊂ Σ̃u
1 ∪ Σu

2 , where

Σ̃u
1 :=
{
z0 ∈ ΩT : lim inf

ρ↘0
ρ−2−
∫
Qρ(z0)

∣∣u− uz0,ρ − (Du)z0,ρ(x− x0)
∣∣2 dz > 0

}
and

Σu
2 :=
{
z0 ∈ ΩT : lim sup

ρ↘0

(|uz0,ρ| + |(Du)z0,ρ|
)

= ∞
}
.

In the case of systems without u-dependence, the set Σu
2 can be replaced by

Σ̂u
2 :=
{
z0 ∈ ΩT : lim sup

ρ↘0
|(Du)z0,ρ| = ∞

}
.

Note that it is a priori not clear if
∣∣Σ̃u

1

∣∣ = 0. This will be established in
the next section.
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9. A Poincaré type inequality for solutions

In order to deduce the regularity of u outside of a negligible set, we need a
Poincaré type inequality for the solution that involves only spatial deriva-
tives. For this we will need some control on the change of the mean values
over the time slices with respect to the time. This will be accomplished in
the following lemma.

We begin with the observation that in both the cases of the controllable
growth condition (B1) and the natural growth condition (B2), we can assume
that the inhomogeneity satisfies

(9.1) |B(z, u, ξ)| ≤ ΛB(1 + |ξ|p)
for all z ∈ ΩT , u ∈ R

N and ξ ∈ R
Nn, where the constant ΛB depends on Λ

and p in the case of controllable growth and on Λ1(Mu) and Λ2(Mu) in the
case of natural growth.

Lemma 9.1. For every M > 0 there is a constant c5, depending only on
p, n,N , M,Kθ(·) and KD(·), with the following property. Assume that we
have a weak solution u ∈ C0(−T, 0;L2(Ω,RN)) ∩ Lp(−T, 0;W 1,p(Ω,RN))
of (2.1), where the assumptions (A2) to (A4) and (9.1) are in force. Fur-
thermore let u0 ∈ R

N be a constant and A ∈ R
Nn a linear map with

|u0| + |A| ≤M , and let Qσ(z0) ⊂ ΩT be a parabolic cylinder with σ ∈ (0, 1].
Then, at all times r, s ∈ (t0 − σ2, t0), we have the following estimate for an
arbitrary test function ψ ∈W 1,p

0 ∩ L∞(Bσ(x0),R
N).∣∣∣ ∫

Bσ(x0)

[
u(·, r) − u(·, s)] · ψ dx∣∣∣ ≤

≤ c5Λ|r − s| 1
p |Qσ|

p−1
p ‖Dψ‖Lp

([
−
∫
Qσ(z0)

|Du− A|p dz
] p−1

p
+ min{1, Y }

)
+ ΛB‖ψ‖L∞ |Qσ| −

∫
Qσ(z0)

(1 + |Du|p) dz,

where

Y := Y (σ, z0; u0) := σβ̃
[
−
∫
Qσ(z0)

(
1 +
∣∣∣u− u0

σ

∣∣∣2) dz ] β̃
2

with β̃ := min{β, 2(p− 1)/p}.
In the case of systems without u-dependence, the term Y may be replaced

by σβ̃.

Proof. Throughout this proof, we assume z0 = 0 for notational convenience
and write c for universal constants depending at most on p, n,N,M,Kθ(·)
and KD(·). We test equation (2.1) with functions of the form ϕ(x, t) :=
ζh(t)ψ(x), where ψ ∈ C∞

0 (Bσ,R
N) is arbitrary and ζh is a Lipschitz conti-
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nuous cut-off function in time that is defined as follows, for arbitrary times
s < r in the interval (−σ2, 0).

ζh(t) :=

⎧⎪⎨⎪⎩
1
h
(t− s) for s < t ≤ s+ h

1 for s+ h < t ≤ r − h

− 1
h
(t− r) for r − h < t ≤ r

and ζh ≡ 0 elsewhere. Here we assumed that 0 < h < 1
2
(r − s). Testing the

parabolic system with this choice of ϕ, we find∫
Qσ

u(z) · ζ ′h(t)ψ(x) dx dt =

=

∫
Qσ

〈
a(z, u,Du), Dψ(x)

〉
ζh(t) dx dt−

∫
Qσ

B(z, u,Du) · ψ(x) ζh(t) dx dt,

where we abbreviate as usually z = (x, t). Letting h tend to zero, we infer
that for all times s < r, we have∣∣∣ ∫

Bσ

(u(x, r)−u(x, s)) · ψ(x) dx
∣∣∣ ≤

≤‖ψ‖L∞

∫ r

s

∫
Bσ

|B(z, u,Du)| dx dt

+
∣∣∣ ∫ r

s

∫
Bσ

〈
a(z, u,Du), Dψ(x)

〉
dx dt
∣∣∣

≤ΛB‖ψ‖L∞

∫ r

s

∫
Bσ

(1 + |Du|p) dx dt

+ (r − s)
1
p

[ ∫ r

s

∣∣∣ ∫
Bσ

〈
a(z, u,Du), Dψ(x)

〉
dx
∣∣∣ p

p−1
dt

] p−1
p

.(9.2)

Here we used (9.1) and Hölder’s inequality in the last step. Next we estimate
the inner integral in the last line at a fixed time t. For this we use the fact∫

Bσ

〈
a(0, t, u0, A), Dψ

〉
dx = 0,

from which we infer∣∣∣∣ ∫
Bσ

〈
a(x, t, u,Du), Dψ(x)

〉
dx

∣∣∣∣ ≤
≤
∫
Bσ

∣∣〈a(x, t, u,Du) − a(0, t, u0, Du), Dψ(x)
〉∣∣ dx

+

∫
Bσ

∣∣〈a(0, t, u0, Du) − a(0, t, u0, A), Dψ(x)
〉∣∣ dx

=: I + II.
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The first term can be estimated by the continuity assumption (A3) as

I ≤ c(p)Λ

∫
Bσ×{t}

θ(|u| + |u0|, |x| + |u− u0|)(1 + |Du|p−1)|Dψ| dx

≤ c(p)Λ

∫
Bσ×{t}

θ(|u| + |u0|, |x| + |u− u0|)(1 +Mp−1)|Dψ| dx

+ c(p)Λ

∫
Bσ×{t}

θ(|u| + |u0|, |x| + |u− u0|)|Du−A|p−1|Dψ| dx

=: I1 + I2.

Here we used the assumption |A| ≤ M for the last estimate. In order to
bound the term I1, we first apply Hölder’s inequality and then the fact that
θ ≤ 1 and β̃ ≤ β by definition, which yields

(9.3) I1≤ c(p,M) Λ ‖Dψ‖Lp

(∫
Bσ×{t}

[
θ(|u|+|u0|, |x|+|u−u0|)

] β̃
β

p
p−1 dx
)p−1

p
.

For the estimate of I2, we simply use θ ≤ 1 and Hölder’s inequality, which
implies

I2 ≤ c(p)Λ‖Dψ‖Lp

(∫
Bσ×{t}

|Du− A|p dx
) p−1

p

.(9.4)

The term II will be estimated in different ways depending on whether |Du−
A| ≤ 1 or |Du−A| > 1. In the first case, we observe |u0|+|A+τ(Du−A)| ≤
|u0| + |A| + |Du− A| ≤M + 1 for all τ ∈ (0, 1), so that by (A4),∣∣〈a(0, t, u0, Du) − a(0, t, u0, A), Dψ(x)

〉∣∣ ≤
≤
∫ 1

0

∣∣〈Dξa(0, t, u0, A+ τ(Du− A))(Du− A), Dψ
〉∣∣ dτ

≤ ΛKD(M + 1)|Du−A| |Dψ| ≤ ΛKD(M + 1)|Du− A|p−1 |Dψ|
since |Du−A| ≤ 1 and p < 2. In the case |Du−A| > 1, we use instead the
growth assumption (A2) on a, which implies∣∣〈a(0, t, u0, Du)− a(0, t, u0, A), Dψ(x)

〉∣∣ ≤
≤ c(p)Λ(1 +Mp−1 + |Du|p−1) |Dψ|
≤ c(p)Λ(1 +Mp−1)|Du− A|p−1 |Dψ|.

Combining the last two estimates, we arrive at

II ≤ cΛ

∫
Bσ×{t}

|Du− A|p−1 |Dψ| dx(9.5)

≤ cΛ‖Dψ‖Lp

(∫
Bσ×{t}

|Du− A|p dx
)p−1

p
,
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by Hölder’s inequality. Putting together the estimates (9.3), (9.4) and (9.5),
we have shown∣∣∣ ∫

Bσ

〈
a(x, t, u,Du), Dψ(x)

〉
dx
∣∣∣ p

p−1 ≤

≤ cΛ
p

p−1 ‖Dψ‖
p

p−1

Lp

∫
Bσ×{t}

|Du− A|p dx

+ cΛ
p

p−1 ‖Dψ‖
p

p−1

Lp

∫
Bσ×{t}

[
θ(|u| + |u0|, |x| + |u− u0|)

] β̃
β

p
p−1 dx.

Integrating with respect to time, we infer from (9.2)∣∣∣∣ ∫
Bσ

(u(x, r) − u(x, s)) · ψ(x) dx

∣∣∣∣ ≤
≤ ΛB‖ψ‖L∞

∫ r

s

∫
Bσ

(1 + |Du|p) dx dt

+ cΛ(r − s)
1
p‖Dψ‖Lp

([∫
Qσ

|Du− A|p dz
] p−1

p

+
[ ∫

Qσ

[
θ(|u| + |u0|, |x| + |u− u0|)

] β̃
β

p
p−1 dz
] p−1

p

)
≤ ΛB‖ψ‖L∞ |Qσ| −

∫
Qσ

(1 + |Du|p) dz

+ cΛ(r − s)
1
p ‖Dψ‖Lp |Qσ|

p−1
p

([
−
∫
Qσ

|Du− A|p dz
] p−1

p

+
[
−
∫
Qσ

[
θ(|u| + |u0|, |x| + |u− u0|)

] 2
β dz
] β̃

2

)
by Hölder’s inequality, since β̃ p

p−1
≤ 2 by definition. The last integral can

be estimated by the property (2.2) of θ, combined with the assumption
|u0| ≤M . We get

−
∫
Qσ

[
θ(|u|+|u0|, |x| + |u− u0|)

] 2
β dz ≤

≤ Kθ(2M + 1)
2
β −
∫
Qσ

(
σ + |u− u0|

)2
dz

= Kθ(2M + 1)
2
β σ2 −
∫
Qσ

(
1 +
∣∣∣u− u0

σ

∣∣∣2) dz = cY 2/β̃

with Y as in the statement of the lemma. Alternatively, we can estimate
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the integral using the fact θ ≤ 1. Combining both estimates, we arrive at∣∣∣∣ ∫
Bσ

(u(x, r) − u(x, s)) · ψ(x) dx

∣∣∣∣
≤ΛB‖ψ‖L∞|Qσ| −

∫
Qσ

(1 + |Du|p) dz

+ cΛ(r − s)
1
p‖Dψ‖Lp|Qσ|

p−1
p

([
−
∫
Qσ

|Du−A|p dz
] p−1

p
+ min{1, Y }

)
for all ψ ∈ C∞

0 (Bσ,R
N) and all times r < s in (−σ2, 0). By an approximation

argument, the above estimate also holds for all ψ ∈W 1,p
0 ∩L∞(Bσ,R

N). This
establishes the claim. �

Lemma 9.2 (Poincaré-Sobolev inequality for solutions). Assume that the
function u∈C0(−T, 0;L2(Ω,RN ))∩Lp(−T, 0;W 1,p(Ω,RN )) weakly solves the
system (2.1), under the assumptions stated in Section 2, and Q2R(z0) ⊂ ΩT

for some R ∈ (0, 1). Furthermore assume that A : R
n → R

N is a linear map
and |uz0,R| + |A| ≤M for some M > 0. Then there holds

R−2−
∫
QR(z0)

|u− uz0,R − A(x− x0)|2 dz ≤

≤ c6

(
−
∫
Q2R(z0)

|Du− A|p dz
) 2

p

+ c6

(
−
∫
Q2R(z0)

|Du− A|p dz
) 2

p
(p−1)

+ c6R
2β̃

(
−
∫
Q2R(z0)

(1 + |Du|p) dz
)2

,

where β̃ = min{β, 2(p − 1)/p}, with a constant c6 that depends only on
M,Kθ(·), KD(·), n,N, p,Λ, ν, and in the case of natural growth additionally
on Mu,Λ1(Mu) and Λ2(Mu).

In the case of a system without u-dependence, the estimate holds without
a condition on |uz0,R|.

Proof. We assume again that z0 = 0. Let σ and ρ be two radii with
R ≤ σ < ρ ≤ 2R. We choose a symmetric smoothing kernel ψ ∈ C∞

0 (B1)
with
∫
B1
ψ dx = 1 and ‖ψ‖L∞ + ‖Dψ‖L∞ ≤ 2(n + 2)|Bn|−1. The rescaled

functions ψR(x) := R−nψ( x
R
) satisfy

‖DψR‖Lp ≤ c(n)R−1−n p−1
p ≤ c(n)σ−1−n p−1

p(9.6)

‖ψR‖L∞ ≤ c(n)R−n ≤ c(n)σ−n.(9.7)
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In the sequel, we will employ several different notions of means of u. For
means over the time slice at time t ∈ (−R2, 0), we shall write

ũR(t) := −
∫
BR

u(x, t) dx and ũψR(t) :=

∫
BR

u(x, t)ψR(x) dx,

and for means over the cylinder QR, we will use the notations

uR := −
∫
QR

u(z) dz = −
∫ 0

−R2

ũR(t) dt and uψR := −
∫ 0

−R2

ũψR(t) dt.

We will refer to the means involving ψ as ψ-means later. At first, we want to
compare the different notions of means. We apply Lemma 9.1 with u0 = uR,
using |uR| + |A| ≤ M . Since ψR ∈ C∞

0 (Bσ), the lemma yields for any
t ∈ (−σ2, 0)∣∣ũψR(t) − uψR

∣∣ ≤(9.8)

≤ −
∫ 0

−R2

∣∣ũψR(t) − ũψR(s)
∣∣ ds ≤ 4−

∫ 0

−σ2

∣∣ũψR(t) − ũψR(s)
∣∣ ds

≤ cσ2/p
(
σn+2
) p−1

p ‖DψR‖Lp

([
−
∫
Qσ

|Du−A|p dz
] p−1

p
+ min{1, Y }

)
+ cσn+2‖ψR‖L∞−

∫
Qσ

(1 + |Du|p) dz

≤ cσ
([

−
∫
Q2R

|Du− A|p dz
] p−1

p
+ min{1, Y }

)
+ cσ2−
∫
Q2R

(1 + |Du|p) dz

by (9.6) and (9.7), where Y = Y (σ, 0; uR) with the notation introduced in
Lemma 9.1. Furthermore, we note that by Jensen’s and Poincaré’s inequal-
ities, there holds

∣∣uR − uψR
∣∣p ≤ −
∫ 0

−R2

|ũR(t) − ũψR(t)|p dt

≤ 2p−1−
∫
QR

(|u(x, t) − ũR(t) − Ax|p + |u(x, t) − ũψR(t) −Ax|p) dz
≤ c(p, n)Rp−

∫
QR

|Du−A|p dz ≤ c(p, n)σp−
∫
Q2R

|Du−A|p dz.(9.9)

Here we applied the Poincaré inequality separately on the time slices, once
for functions with vanishing mean value and once for those with vanishing
ψ-mean value.
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Next, we give an estimate for the behavior of the ψ-means under a change
of the radius. For this we subsequently use the symmetry of ψ, Jensen’s
inequality and the fact σ ∈ [R, 2R], which leads to the estimate

−
∫ 0

−σ2

|ũψR(t) − ũψσ (t)|p dt = −
∫ 0

−σ2

∣∣∣∣∫
BR

(u(x, t) − ũψσ (t) − Ax)ψR(x) dx

∣∣∣∣p dt
≤ c−
∫ 0

−σ2

(
−
∫
Bσ

|u(x, t) − ũψσ (t) − Ax|2 dx
) p

2

dt.

Combining this with the Minkowski inequality, we infer

−
∫ 0

−σ2

(
−
∫
Bσ

∣∣∣∣u(x, t) − ũψR(t) −Ax

σ

∣∣∣∣2 dx) p
2

dt ≤

≤ c−
∫ 0

−σ2

(
−
∫
Bσ

∣∣∣u(x, t) − ũψσ (t) − Ax

σ

∣∣∣2 dx) p
2

dt.

Now we slicewise apply the Poincaré inequality for functions with vanishing
ψ-mean value to the right-hand side of the above estimate, using p > 2n

n+2
.

This leads to

(9.10) −
∫ 0

−σ2

(
−
∫
Bσ

∣∣∣∣u(x, t) − ũψR(t) − Ax

σ

∣∣∣∣2 dx) p
2

dt ≤ c −
∫
Qσ

|Du− A|p dz.

We apply Minkowski’s inequality and employ the estimates (9.10), (9.8)
and (9.9) with the result

−
∫ 0

−σ2

(
−
∫
Bσ

∣∣∣u(x, t) − uR −Ax

σ

∣∣∣2 dx) p
2

dt ≤

≤ c −
∫ 0

−σ2

(
−
∫
Bσ

∣∣∣u(x, t) − ũψR(t) − Ax

σ

∣∣∣2 dx) p
2

dt

+ c −
∫ 0

−σ2

σ−p|ũψR(t) − uψR|p dt+ cσ−p|uψR − uR|p

≤ c −
∫
Q2R

|Du− A|p dz + c
[
−
∫
Q2R

|Du− A|p dz
]p−1

+ cmin{1, Y p} + cRp
[
1 + −
∫
Q2R

|Du|p dz
]p
.

We introduce the abbreviations

ΨA
2 (r) := −

∫
Qr

∣∣∣u(z) − uR − Ax

r

∣∣∣2 dz



794 C. Scheven

and

Φ̂A
p (r) := −

∫
Qr

|Du− A|p dz +
[
−
∫
Qr

|Du−A|p dz
]p−1

for all r ∈ [R, 2R]. With this notation, the last inequality reads

−
∫ 0

−σ2

(
−
∫
Bσ

∣∣∣u(x, t) − uR − Ax

σ

∣∣∣2 dx) p
2

dt ≤(9.11)

≤ c

(
Φ̂A
p (2R) + min{1, Y p} +Rp

[
1 + −
∫
Q2R

|Du|p dz
]p)

.

From Theorem 4.1 with �(x) = uR + Ax we know, since |uR| + |A| ≤M ,

sup
−σ2<s<0

−
∫
Bσ

∣∣∣u(x, s) − uR − Ax

σ

∣∣∣2 dx ≤

≤ c0
(2R)2

(ρ− σ)2
−
∫
Qρ

∣∣∣u(x, t) − uR −Ax

ρ

∣∣∣2 dz + c0(2R)2β.(9.12)

Combining the estimates (9.12) and (9.11), we infer

ΨA
2 (σ) = −

∫
Qσ

∣∣∣u− uR −Ax

σ

∣∣∣2 dz
≤ c sup

−σ2<s<0

(
−
∫
Bσ

∣∣∣u(x, s) − uR − Ax

σ

∣∣∣2 dx)1− p
2

×

×−
∫ 0

−σ2

(
−
∫
Bσ

∣∣∣u(x, t) − uR −Ax

σ

∣∣∣2 dx) p
2

dt

≤ c
( R2−p

(ρ− σ)2−p
[
ΨA

2 (ρ)
]1− p

2 +Rβ(2−p)
)
×

×
(

Φ̂A
p (2R) + min

{
1, Y p
}

+Rp
[
1 + −
∫
Q2R

|Du|p dz
]p)

.

Applying Young’s inequality with exponents 2
2−p and 2

p
, we conclude

ΨA
2 (σ) ≤ 1

2
ΨA

2 (ρ) +R2β(9.13)

+ c
( R

ρ− σ

) 2
p
(2−p)([

Φ̂A
p (2R)
] 2

p + min
{
1, Y 2
}

+R2
[
1 + −
∫
Q2R

|Du|p dz
]2)
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for all σ < ρ in the interval [R, 2R]. In order to estimate the term Y , we
apply this estimate with the choice A = 0 and infer from Young’s inequality,
since p− 1 ∈ [0, 1],

Ψ0
2(σ) ≤ 1

2
Ψ0

2(ρ) +R2β

+ c
( R

ρ− σ

) 2
p
(2−p)([

Φ̂0
p(2R)
] 2

p +
[
1 + −
∫
Q2R

|Du|p dz
]2)

≤ 1

2
Ψ0

2(ρ) + c
( R

ρ− σ

) 2
p
(2−p)[

1 + −
∫
Q2R

|Du|p dz
]2
,

where we used the facts R ≤ 1 and R
ρ−σ ≥ 1 in the last step. Since the above

estimate holds for all radii σ < ρ in [R, 2R], we may apply Lemma 3.4 with
σ0 = σ and ρ0 = ρ, which gives

−
∫
Qσ

∣∣∣u− uR
σ

∣∣∣2 dz = Ψ0
2(σ) ≤ c

( R

ρ− σ

) 2
p
(2−p)[

1 + −
∫
Q2R

|Du|p dz
]2

for all σ < ρ in [R, 2R]. We can thus estimate, since σ ≤ 2R and R
ρ−σ ≥ 1,

Y 2 = σ2β̃
[
−
∫
Qσ

(
1 +
∣∣∣u− uR

σ

∣∣∣2) dz]β̃
≤ cR2β̃

( R

ρ− σ

) 2
p
(2−p)β̃[

1 + −
∫
Q2R

|Du|p dz
]2β̃

.

Plugging this estimate into (9.13) and keeping in mind that R
ρ−σ ≥ 1, R ≤ 1

and β̃ < 1, we conclude

ΨA
2 (σ) ≤ 1

2
ΨA

2 (ρ) +R2β

+ c
( R

ρ− σ

) 2
p
(2−p)(1+β̃)

([
Φ̂A
p (2R)
] 2

p +R2β̃
[
1 + −
∫
Q2R

|Du|p dz
]2)

.

We apply again Lemma 3.4, now with σ0 = R and ρ0 = 2R, and arrive at

−
∫
QR

∣∣∣u− uR − Ax

R

∣∣∣2 dz = ΨA
2 (R)

≤ c

([
Φ̂A
p (2R)
] 2

p +R2β̃
[
1 + −
∫
Q2R

|Du|p dz
]2)

,

since R ≤ 1 and β̃ ≤ β. Recalling the definition of Φ̂A
p , we derive the

claim. �
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10. Characterization of the singular set

In this section, we will complete the proofs of Theorem 1.1 and the Propo-
sitions 1.2 and 1.3.

Proof of Proposition 1.2. For the proof of the proposition, we will show
that every point z0 ∈ ΩT \(Σu

1 ∪Σu
2) is a regular point. First we observe that

for any such point z0, by the definition of Σu
1 and Σu

2 we can find a sequence
ρk ↘ 0 with

lim
k→∞

−
∫
Q2ρk

(z0)

|Du− (Du)z0,2ρk
|p dz = 0 and

M := lim
k→∞
(|uz0,ρk

| + |(Du)z0,ρk
|) <∞.

Consequently, there also holds

(10.1) lim
k→∞

−
∫
Q2ρk

(z0)

|Du− (Du)z0,ρk
|p dz = 0,

and

lim sup
k→∞

−
∫
Q2ρk

(z0)

|Du|p dz ≤(10.2)

≤ 2p−1 lim
k→∞

−
∫
Q2ρk

(z0)

|Du− (Du)z0,ρk
|p dz + 2p−1 lim

k→∞
|(Du)z0,ρk

|p <∞.

Applying the Poincaré inequality from Lemma 9.2 with R = ρk and A =
(Du)z0,ρk

, we thus infer for some β̃ > 0 and the function ϕ(t) := t2/p+t2(p−1)/p

ρ−2
k −
∫
Qρk

(z0)

∣∣u− uz0,ρk
− (Du)z0,ρk

(x− x0)
∣∣2 dz ≤

≤ c ϕ

(
−
∫
Q2ρk

(z0)

|Du− (Du)z0,ρk
|p dz
)

+ cρ2β̃
k

(
−
∫
Q2ρk

(z0)

(1 + |Du|p) dz
)2

−→
k→∞

0,

where we applied (10.1) and (10.2) in the last step. Thus, Theorem 8.3
yields that Du is of class Cβ,β/2 in a neighborhood of z0, as claimed. �

Proof of Theorem 1.1. Lebesgue’s differentiation theorem implies |Σu
1 | =

0 = |Σu
2 |. Consequently, Proposition 1.2 implies that the singular set is negli-

gible, more precisely Du∈Cβ,β/2
loc (Ωu,RNn) for an open set with |ΩT \ Ωu|= 0.

In order to show that u ∈ C
α,α/2
loc (Ωu,RN) for every α ∈ (0, 1), we note
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that for every w0 ∈ Ωu there is a neighborhood U of w0 and a constant
L = L(w0) ≥ 1 with ‖Du‖Cβ,β/2(U) ≤ L on U . The Poincaré inequality from
Lemma 9.2 thus implies for every parabolic cylinder Q2ρ(z0) ⊂ U with ρ ≤ 1

ρ−2−
∫
Qρ(z0)

∣∣u− uz0,ρ − (Du)z0,ρ(x− x0)
∣∣2 dz ≤

≤ c(Lρβ)2 + c(Lρβ)2(p−1) + cρ2β̃(1 + Lp)2 ≤ c(1 + L2p),

since ρ ≤ 1 and β̃ > 0. From this we infer

−
∫
Qρ(z0)

∣∣u− uz0,ρ|2 dz ≤

≤ 2−
∫
Qρ(z0)

∣∣u− uz0,ρ − (Du)z0,ρ(x− x0)
∣∣2 dz + 2ρ2|(Du)z0,ρ|2

≤ c(1 + L2p)ρ2

for all z0 ∈ U and all sufficiently small radii ρ > 0. By the characterization
of Hölder continuous maps by Campanato-Da Prato [23], this implies the

claim u ∈ C
α,α/2
loc (Ωu,RN) for all α ∈ (0, 1). �

Proof of Proposition 1.3. We choose an arbitrary point z0 ∈ ΩT \(Su1∪Su2 )
and claim that z0 is a regular point. By the choice of z0, we can find a
sequence ρk ↘ 0 with

(10.3) lim
k→∞

−
∫
Q2ρk

(z0)

∣∣V (Du) − [V (Du)]z0,2ρk

∣∣2 dz = 0

and

lim sup
k→∞

−
∫
Q2ρk

(z0)

|V (Du)|2 dz <∞.

Here we argued similarly as in the derivation of (10.2) for the last estimate.
By Lemma 3.1(i), we know furthermore

(10.4) lim sup
k→∞

−
∫
Q2ρk

(z0)

|Du|p dz <∞.

Next we employ Lemma 3.1(iii), which yields for any Ak ∈ R
Nn

|Du− Ak|p ≤ c(1 + |Ak|2 + |Du|2) 2−p
2

p
2 |V (Du) − V (Ak)|p
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so that by Hölder’s inequality,

lim sup
k→∞

−
∫
Q2ρk

(z0)

|Du− (Du)z0,ρk
|p dz ≤

≤ c lim sup
k→∞

−
∫
Q2ρk

(z0)

|Du−Ak|p dz

≤ c lim sup
k→∞

(
1 + |Ak|p + −

∫
Q2ρk

(z0)

|Du|p dz
) 2−p

2

×

×
(
−
∫
Q2ρk

(z0)

|V (Du) − V (Ak)|2 dz
) p

2

.

Here, we choose Ak ∈ R
Nn with V (Ak) = [V (Du)]z0,2ρk

, which satisfies

(10.5) lim sup
k→∞

|Ak| <∞

because of Lemma 3.1(i) and z0 �∈ Su2 . Plugging this choice of Ak in the
above estimate and using (10.5), (10.4) and (10.3), we deduce

(10.6) lim
k→∞

−
∫
Q2ρk

(z0)

|Du− (Du)z0,ρk
|p dz = 0.

In the same fashion as in the proof of Proposition 1.2, we deduce from (10.6)
and (10.4) that

lim
k→∞

ρ−2
k −
∫
Qρk

(z0)

∣∣u− uz0,ρk
− (Du)z0,ρk

(x− x0)
∣∣2 dz = 0.

Thus, Lemma 8.2 and the characterization of Hölder continuous maps by
Campanato-Da Prato [23] imply that z0 is a regular point. �
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degenerate parabolic systems. J. Reine Angew. Math. 357 (1985), 1–22.

[14] De Giorgi, E.: Frontiere orientate di misura minima. Seminario di
Matematica della Scuola Normale Superiore di Pisa, 1960-61. Editrice Tec-
nico Scientifica, Pisa, 1961.

[15] De Giorgi, E.: Un esempio di estremali discontinue per un problema
variazionale di tipo ellittico. Boll. Un. Mat. Ital. 1 (1968), 135–137.

[16] Duzaar, F., Grotowski, J.and Kronz, M.: Regularity of almost mini-
mizers of quasi-convex variational integrals with subquadratic growth. Ann.
Mat. Pura Appl. 184 (2005), no. 4, 421–448.

[17] Duzaar, F., Kristensen, J. and Mingione, G.: The existence of
regular boundary points for non-linear elliptic systems. J. Reine Angew.
Math. 602 (2007), 17–58.

[18] Duzaar, F. and Mingione, G.: The p-harmonic approximation and the
regularity of p-harmonic maps. Calc. Var. Partial Differential Equations 20
(2004), no. 3, 235–256.

[19] Duzaar, F. and Mingione, G.: Regularity for degenerate elliptic prob-
lems via p-harmonic approximation. Ann. Inst. H. Poincaré Anal. Non
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