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Auslander bounds and
homological conjectures

Jiaqun Wei

Abstract

Inspired by recent works on rings satisfying Auslander’s conjec-
ture, we study invariants, called Auslander bounds, and prove that
they have strong relations to some homological conjectures.

1. Introduction

Throughout this paper, rings are associative with nonzero identities and
modules are left modules unless otherwise specified. Let R be a ring, we
denote by ModR the category of all left R-modules, and we denote by modR
the full subcategory of all R-modules having finitely generated projective
resolutions.

Auslander posed the following conjecture (cf. [8]).

Auslander Conjecture: Let R be an artin algebra. Then for every M ∈
modR, there exists an integer bM such that Exti

R(M, N) = 0 for all i > bM

and for all R-modules N ∈ modR satisfying Extj
R(M, N) = 0 for all suffi-

ciently large j.

It is known that if the Auslander conjecture holds for all finite dimen-
sional algebras then the finitistic dimension conjecture is true for all finite
dimensional algebras [8]. However, the Auslander conjecture fails in general
by counterexamples in [11, 17]. Rings satisfying the assertion in the Aus-
lander conjecture are studied in [4, 9, 16]. In [4] the authors investigate in
detail the relationship between such rings and some homological conjectures,
for instance, the Auslander-Reiten conjecture, which we recall as follows.

Auslander-Reiten Conjecture: Let R be a ring. If M ∈ modR and
Exti

R(M, M ⊕ R) = 0 for all i > 0, then M is projective.
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In this paper, we continue the study and focus on the number bM , which
we called the left Auslander bound of M and denote by lAbM , for the
fixed module M . Note that the Auslander bound can be ∞. We prove the
following result.

Theorem. If M ∈ modR and Exti
R(M, M ⊕ R) = 0 for all sufficiently

large i, then lAbM coincides with the projective dimension of M .

The result has clear relation with the Auslander-Reiten conjecture. More
generally, it relates Auslander bounds with an equivalent version of the
Wakamatsu-tilting conjecture (EWTC for short, see Section 3 for details),
which asserts that an R-module T ∈ modR is tilting if and only if

(1) Exti
R(T, T ) = 0 for all i > 0 and

(2) there is an exact sequence 0 → R → T0 → · · · → Tn → 0 for some n,
where each Ti ∈ addT .

We refer to [1] for the history and development of tilting theory. In fact, we
obtain that if R satisfies the condition that lAbM < ∞ for every M ∈ modR,
then R satisfies the conjecture (EWTC). This extends [4, Theorem A]. As
we see, all rings with finite global repetition index, in particular, the finite
dimensional algebra O/πO, where O is a classical order of finite global
dimension over a discrete valuation ring D with uniformizing parameter π
and residue class field K, satisfies the condition in the last result.

The above theorem is proved in Section 2, after some investigations on
basic properties of Auslander bounds. Relations between homological con-
jectures and Auslander bounds are presented in Section 3, where we also
formulate some new homological conjectures.

We introduce some notions in the following.

Let R be a ring and C, D ∈ ModR. Let t be a non-negative integer.
By Ext>t

R (C, D) = 0 we mean that Exti
R(C, D) = 0 for all i > t. By

Ext�R (C, D) = 0 we mean that Ext>t
R (C, D) = 0 for some t. Given an

R-module M and an integer t ≥ 0, we denote by M>t (>tM , resp.) the
subcategory of all modules N such that Ext>t

R (M, N) = 0 (Ext>t
R (N, M) = 0,

resp.). The notions M� and �M are defined similarly.

For an R-module M , we denote by addM the class of all modules isomor-
phic to direct summands of finite direct sums of copies of T . We use pdM
(idM , fdM , resp.) to denote projective (injective, flat, resp.) dimension
of M .

We denote by Ro the opposite ring of R. Thus ModRo is the category of
all right R-modules. In case that R is an artin algebra, we denote by D the
usual dual functor between modR and modRo.
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2. Auslander bounds

Throughout this section, we fix R a ring. If a class C consists of a single
R-module, say C, then we use C instead of C.

We introduce the following notion.

Definition 2.1 Let C and D be two classes of R-modules. The Auslander
bound of the pair (C,D), denoted by Ab(C,D), is defined in the follow-
ing way:

• If there are no C ∈ C and D ∈ D such that Ext�R (C, D) = 0, then
Ab(C,D) = −1;

• Otherwise, Ab(C,D) is the minimal non-negative integer m such that
Ext>m

R (C, D) = 0 for any C ∈ C and D ∈ D with Ext�R (C, D) = 0,
or ∞ if no such minimal integer exists.

It is easy to see that Ab(C, D) < ∞ for any two R-modules C, D.
Let M ∈ ModR. It is also easy to see that Ab(M, C) is just the minimal

non-negative integer m such that M� ⋂ C = M>m
⋂ C, or ∞ if no such

integer exists, or −1 if M� ⋂ C = Ø. Similarly Ab(C, M) is just the minimal
non-negative integer m such that C ⋂�M = C ⋂

>mM , or ∞ if no such
integer exists, or −1 if C ⋂ �M = Ø.

We use the following simple notions for M ∈ ModR.

• LAbM := Ab(M, ModR) (called the big left Auslander bound of M);

• lAbM := Ab(M, modR) (the small left Auslander bound of M);

• RAbM := Ab(ModR, M) (the big right Auslander bound of M);

• rAbM := Ab(modR, M) (the small right Auslander bound of M).

It is easy to see that the above Auslander bounds are non-negative.

Remark 2.2 (1) LAbM is just the minimal bound on the vanishing of
ExtR(M,−) in [5]. In [9, 16], lAbM is also denoted by eR(M,−) in case
M ∈ modR.

(2) One can similarly define the Tor-Auslander bound of a pair (C,D),
denoted by tAb(C,D), by the bifunctor TorR

i>m(−,−). Then tAb(M, ModR)
for a right R-module M is just the minimal bound on the vanishing of
TorR(M,−) in [13].

(3) Obviously, LAbM ≤ pdM and RAbM ≤ idM with the equality
holds if the latter is finite. If M ∈ modR, then lAbM = pdM provided that
pdM < ∞.
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We say that C has the two-out-of-three property provided that any two
terms in a short exact sequence are in C implies the third term is also in C.
The proof of the following lemma is easy.

Lemma 2.3 Let M ∈ ModR.

(1) All subcategories modR, M�, and �M have the two-out-of-three prop-
erty.

(2) All subcategories modR, M�,and �M are closed under direct sum-
mands and finite direct sums. Moreover, M� (�M, resp.) is closed
under arbitrary direct products (direct sums, resp.).

(3) M� = (ΩiM)�, where ΩiM denotes an i-th syzygy of M .

(4) �M = �(Ω−iM), where Ω−iM denotes an i-th cosyzygy of M .

(5) If R is an artin algebra and M ∈ modR, then D(M�) = �(D(M)).

Lemma 2.4 Let M, N ∈ ModR and C be a class of R-modules.

(1) Ab(M ⊕ N, C) ≤ max{Ab(M, C), Ab(N, C)}.
(2) rAb(C, M ⊕ N) ≤ max{Ab(C, M), Ab(C, N)}.
(3) If R is an artin algebra and M ∈ modR, then lAbM = rAb(D(M)).

Proof. (1) Clearly we can assume that

k := max{Ab(M, C), Ab(N, C)} < ∞.

Now note that

(M ⊕ N)�
⋂

C = M� ⋂
N� ⋂

C = M>k
⋂

N>k
⋂

C = (M ⊕ N)>k
⋂

C,

so we have that Ab(M ⊕ N, C) ≤ k.

The proof of (2) is dual to that of (1). The proof of (3) follows from
Lemma 2.3(5). �

Proposition 2.5 Let C,D, E ,F be four classes of R-modules. If C ⊆ D and
E ⊆ F , then

Ab(C, E) ≤ Ab(C,F) ≤ Ab(D,F).

Proof. We may assume that 0 ≤ Ab(C,F) = t < ∞. Then Ext>t
R (C, F ) = 0

for any C ∈ C and F ∈ F with Ext�R (C, F ) = 0, by the definition. In parti-
cular, since E ⊆ F , we have that Ext>t

R (C, E) = 0 for any C ∈ C and E ∈ E
with Ext�R (C, E) = 0. This shows that Ab(C, E) ≤ t. The remaining part is
proved similarly. �
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Let C,D be two classes of R-modules. We have the following result.

Lemma 2.6

Ab(C,D) = sup {Ab(M,D) | M ∈ C}
= sup {Ab(C, N) | N ∈ D}
= sup {Ab(C, D) | C ∈ C, D ∈ D}.

Proof. By Proposition 2.5, we have that

sup {Ab(C, D) | C ∈ C, D ∈ D} ≤ sup {Ab(M,D) | M ∈ C}
≤ Ab(C,D).

To prove the other part, we may assume that 0 ≤ sup {Ab(C, D) | C ∈ C,
D ∈ D} = t < ∞. Take any C ∈ C and D ∈ D with Ext�R (C, D) = 0, then
we easily see that Ext>t

R (C, D) = 0. Hence, we have that Ab(C,D) ≤ t.
�

We call Ab(C, C) the global Auslander bound of the class C. We denote by
GAbR the global Auslander bound of ModR and by gAbR the global Aus-
lander bound of modR. Note that gAbR is just the Ext-index of R in [9, 16].

If R is an artin algebra, then there is a duality D between modR and
modRo. Hence we can easily obtain that gAbR = gAbRo in this case.

To calculate the Auslander bound of a module, it is enough to calculate
the Auslander bound of its syzygies, as the follow result shows.

Lemma 2.7 Let M ∈ ModR and C be a class of R-modules.

(1) 0 ≤ Ab(M, C) ≤ m if and only if Ab(ΩmM, C) = 0, where ΩmM
denotes an m-th syzygy of M .

(2) 0 ≤ Ab(C, M) ≤ m if and only if Ab(C, Ω−mM) = 0, where Ω−mM
denotes an m-th cosyzygy of M .

Proof. (1) Since M� = (ΩmM)� by Lemma 2.3 (3) and M>m = (ΩmM)≥1

by dimension shifting, we see that

0 ≤ Ab(M, C) ≤ m ⇐⇒ Ø �= M� ⋂
C ⊆ M>m

⋂
C

⇐⇒ Ø �= (ΩmM)�
⋂

C ⊆ (ΩmM)≥1
⋂

C
⇐⇒ Ab(ΩmM, C) = 0.

The proof of (2) is dual to that of (1). �
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By the above lemma, we easily obtain the following result.

Proposition 2.8 The following are equivalent for a class C such that
Ab(C, C) �= −1.

(1) The global Auslander bound of C is not more than n.

(2) Ab(ΩnC, C) = 0, where ΩnC denotes the class of all n-th syzygies of
R-modules in C.

(3) Ab(C, Ω−nC) = 0, where Ω−nC denotes the class of all n-th cosyzygies
of R-modules in C.

In some cases, the Auslander bound of a module can be tested by special
modules, as the following theorem shows.

Theorem 2.9 Let M ∈ ModR.

(1) If lAbM < ∞ and R ∈ M�, then lAbM = min{t|R ∈ M>t}.
(2) If LAbM < ∞ and R(κ) ∈ M� for all cardinals κ, then LAbM =

min{t|R(κ) ∈ M>t for all cardinals κ}.
(3) If RAbM < ∞ and I ∈ �M for all injective R-modules I, then

RAbM = min{t|I ∈ >tM for all injective R-modules I}.
Proof. (1) Assume that lAbM = m < ∞. Let t = min{t|R ∈ M>t}. Then
t < ∞, since R ∈ M� by the assumption.

Note that R ∈ modR, so we have that R ∈M>t
⋂

modR ⊆ M� ⋂
modR.

Now take any N ∈ M� ⋂
modR and any projective resolution of N : · · · →

P1 → P0 → N → 0 with each Pi finitely generated projective. Then we have
all Pi ∈ M>t

⋂
modR, and hence all ΩiN ∈ M� ⋂

modR, by Lemma 2.3 (1).
Therefore, for all i > t, we obtain that

Exti
R(M, N) � Exti+1

R (M, ΩN) � · · · � Exti+m
R (M, ΩmN) = 0,

by dimension shifting and the definition of lAbM .

It follows that N ∈ M>t
⋂

modR. Consequently,

M>t
⋂

modR = M� ⋂
modR,

that is, lAbM ≤ t.
On the other hand, since R ∈ M� ⋂

modR by assumptions, we have
that R ∈ M>m by the definition of lAbM . It follows that t ≤ m too. Hence
the conclusion follows.

The proof of (2) is similar as (1) and the proof of (3) is dual to (2). �
Immediately, we obtain the following corollary [16, Corollary 3.3].
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Corollary 2.10 Assume that idR < ∞.

(1) If lAbM < ∞ for every M ∈ modR, then gAbR = idR.

(2) If R is left noetherian and LAbM < ∞ for every M ∈ ModR, then
GAbR = idR.

We note that assumptions in Theorem 2.9 (1) can not be removed.
For example, let R be an artin algebra of finite representation type with
idR = ∞. Then it is easy to see that gAbR < ∞. However, it is obvious
that there are modules M ∈ modR such that min{t|R ∈ M>t} = ∞. Thus
the condition R ∈ M� is needed. Now let R be a Gorenstein ring with
gAbR = ∞ (such rings exist by [11]). Then there are modules M ∈ modR
such that lAbM = ∞ by Corollary 2.10 (1). However, it is easy to see that
min{t|R ∈ M>t} ≤ idR < ∞ for any M ∈ modR. So the condition that
lAbM < ∞ is also needed.

We remark that it is an open question whether GAbR = gAbR if R is
left noetherian.

The following theorem is our main result which relates Auslander bounds
to Auslander-Reiten conjecture as claimed in the introduction.

Theorem 2.11 Let M ∈ ModR.

(1) Assume that M ⊕ R ∈ M� ⋂
modR, then lAbM = pdM .

(2) Assume that M ⊕R(κ) ∈ M� for any cardinal κ, then LAbM = pdM .

(3) Assume that M, I ∈ �M for any injective R-module I, then RAbM =
idM .

Proof. (1) Clearly we need only prove that pdM ≤ lAbM .

We can assume that lAbM = m < ∞. Since M ∈ modR, we can take a
projective resolution of M : · · · → P1 → P0 → M → 0 with each Pi finitely
generated projective. Then each ΩiM ∈ M� ⋂

modR by Lemma 2.3 (1),
as M ⊕ R ∈ M� ⋂

modR. It follows that ΩiM ∈ M>m for each i, by
the definition of lAbM . Now by applying the functor HomR(−, Ωm+1M)
to the exact sequence 0 → ΩmM → Pm−1 → · · · → P0 → M → 0,
we obtain that Ext1

R(ΩmM, Ωm+1M) � Ext2
R(Ωm−1M, Ωm+1M) � · · · �

Extm+1
R (M, Ωm+1M) by dimension shifting. The latter is 0 since Ωm+1M ∈

M>m by the above argument. It follows that the exact sequence 0 →
Ωm+1M → Pm → ΩmM → 0 splits, and consequently, pdM ≤ m.

The proof of (2) is similar as (1) and the proof of (3) is dual to (2). �
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3. Homological conjectures

As pointed out in [11, 17], Auslander’s conjecture fails for artin algebras
in general. However, we can consider a finitistic version of Auslander’s
conjecture. Let R be a ring. We set

• FLAb(R) := sup {LAbM | LAbM < ∞}, and

• flAb(R) := sup {lAbM | M ∈ modR and lAbM < ∞}.
Similarly, we have notions FRAb(R) and frAb(R) defined by right Auslander
bounds. Note that flAb(R) = frAb(Ro) in case that R is an artin algebra.

Now we formulate the following conjecture.

Finitistic Auslander Conjecture (FAC for short):

• (lFAC): flAb(R) < ∞ for every artin algebra R, or dually

• (rFAC): frAb(R) < ∞ for every artin algebra R.

It is easy to see that the finitistic Auslander conjecture implies the fini-
tistic dimension conjecture for artin algebras by Remark 2.2 (3).

It is also clear that

flAbR = frAbR < ∞ if gAbR < ∞,

by Lemma 2.6. Similarly,

FLAbR = FRAbR < ∞ if GAbR < ∞.

For example, every group algebra kG with k a field and G finite has the
property GAb(kG) < ∞, see [3, Theorem 2.4] and [4, Appendix A].

As the finitistic dimension conjecture fails for commutative noetherian
rings in general, the conjecture (FAC) fails in the case, too. Moreover, it is
pointed out in [4] that there is a commutative notherian ring R with infinite
Krull dimension such that lAbM < ∞ for every M ∈ modR but gAbR = ∞.

It is unknown whether gAbR < ∞ if R is an artin algebra such that
lAbM < ∞ for every M ∈ modR.

The following result gives a partial answer to the conjecture (FAC).

Proposition 3.1 Let R be a ring.

(1) If idR < ∞, then flAb(R) < ∞.

(2) If R is left noetherian and idR < ∞, then FLAb(R) < ∞.

Proof. (1) Indeed, we have that lAbM = min{t|R ∈ M>t} ≤ idR provided
lAbM < ∞ and M ∈ modR, by Theorem 2.9.

(2) If R is left noetherian and idR < ∞, then idR(κ) < ∞ for any
cardinal κ. Now the conclusion follows from Theorem 2.9 again. �
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Now we turn to other related homological conjectures.

Let R be a ring and T ∈ ModR with S = EndRT . Recall from [18]
that T is Wakamatsu-tilting if it satisfies

(1) T ∈ modR and TS ∈ modSo,

(2) R � End(TS), and

(3) Exti
R(T, T ) = 0 = Exti

So(T, T ) for all i > 0.

Equivalently, as shown in [18], T is Wakamatsu-tilting if

(W1) T ∈ modR,

(W2) Exti
R(T, T ) = 0 for all i > 0, and

(W3) there is an exact sequence 0 → R →f0 T0 →f1 T1 →f2 · · · with each
Ti ∈ addT and each Imfi ∈ >0T , for all i ≥ 0.

It is clear that T is Wakamatsu-tilting if and only if TS is Wakamatsu-
tilting.

Recall also that T is tilting [2, 15] if it satisfies

(T1) T ∈ modR and pdT < ∞,

(T2) Exti
R(T, T ) = 0 for all i > 0, and

(T3) there is an exact sequence 0 → R → T0 → · · · → Tn → 0 with each
Ti ∈ addT , for some integer n.

We note that T is tilting if and only if TS is tilting, where S = EndRT [15].
The following conjecture is cited from [14].

Wakamatsu Tilting Conjecture (WTC for short): Every Wakamatsu-
tilting module of finite projective dimension is tilting.

It is pointed out in [14] that, if the finitistic dimension conjecture holds
for a ring R, then the conjecture (WTC) holds for R. We have an equiva-
lent version of the conjecture (WTC) (and so we denote this conjecture by
EWTC, where E means equivalent).

Proposition 3.2 The conjecture (WTC) holds for all rings if and only if
the following conjecture (EWTC) holds for all rings R.

(EWTC): An R-module T ∈ modR is tilting if it satisfies condi-
tions (T2) and (T3) in the definition of tilting modules.
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Proof. Let R be a ring and T ∈ modR with S = EndRT .

(EWTC) ⇒ (WTC): Assume that T is a Wakamatsu-tilting R-module
with pdT < ∞. Then we have an exact sequence 0 → Pn → · · · → P0 →
T → 0 for some n. Applying the functor HomR(−, T ), we obtain an in-
duced exact sequence 0 → S → T0 → · · · → Tn → 0 in modSo, since
Exti

R(T, T ) = 0 for all i > 0. Since T is a Wakamatsu-tilting R-module,
T is also a Wakamatsu-tilting So-module and so Exti

So(T, T ) = 0 for all
i > 0. Hence we get that TS is tilting provided that (EWTC) holds for So.
Consequently, T is also a tilting R-module.

(WTC) ⇒ (EWTC): If (T2) and (T3) in the definition of tilting modules
hold for T ∈ modR, then T is Wakamatsu-tilting. Moreover, by applying
the functor HomR(−, T ) to the exact sequence in (T3), we easily see that TS

is Wakamatsu-tilting with finite projective dimension. It follows that TS is
tilting provided that (WTC) holds for So. Now by the left-right symmetry,
we get that T is tilting. �

If we specify n = 0 in the condition (T3), then R ∈ addT . In this case,
the conjecture (EWTC) is just the Auslander-Reiten conjecture.

The following result gives a partial answer to the conjecture (EWTC),
which extends [4, Theorem A].

Proposition 3.3 Let R be a ring. If lAbM < ∞ for every M ∈ modR,
then the conjecture (EWTC) holds for R.

Proof. Assume that T ∈ modR satisfies conditions (T2) and (T3). Then we
easily obtain that T ⊕R ∈ T�. Now by the assumption and Theorem 2.11,
we get that pdT = lAbT < ∞. It follows that T is tilting. �

We now consider another homological conjecture.

Gorenstein Symmetry Conjecture: Let R be an artin algebra. Then
idR < ∞ if and only if id(RR) < ∞.

Gorenstein Symmetry conjecture clearly makes sense for any ring. It was
proved in [4] that if R is a two-sided noetherian ring such that lAbM < ∞
for every M ∈ modR and lAbN < ∞ for every N ∈ modRo, and (1) R is an
artin algebra, or (2) R has a dualizing complex, then idR < ∞ if and only if
idRoR < ∞ (whence, idR = idRoR by [10]). The following result also gives
a similar answer to the Gorenstein Symmetry conjecture. Note that we do
not know if LAbM < ∞ for every M ∈ ModR provided that lAbM < ∞
for every M ∈ modR, even when R is an artin algebra. We do not know
whether LAbM < ∞ for every M ∈ ModR implies that RAbM < ∞ for
every M ∈ ModR.
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Proposition 3.4 Let R be a two-sided noetherian ring. Assume that

(1) LAbM < ∞ for every M ∈ ModR and every M ∈ ModRo, or

(2) R has a dualizing complex and rAbM < ∞ for every M ∈ modR and
every M ∈ modRo.

Then idR < ∞ if and only if idRo < ∞.

Proof. Assume (1) holds. If idR < ∞, then GAbR < ∞ by assumptions
and Corollary 2.10 (2). It follows that FRAb(R) < ∞. Using the fact that
RAbM = idM for any R-module M with idM < ∞ in Remark 2.2 (3), we
further obtain that the injective version of the finitistic dimension conjecture
holds for R. This shows that idRo < ∞ by [6, Proposition 7]. Similarly, we
can prove that if idRo < ∞ then idR < ∞.

Assume now (2) holds. If idR < ∞, then for any M ∈ modR and any
injective Ro-module N , it holds that

TorR
(idR)+1(N, M) � HomRo(Ext

(idR)+1
R (M, R), N) = 0.

Hence fdRoN < ∞. By the definition of dualizing complex [4, Section 3.4], Ro

has a dualizing complex if so is R. In this case, we have that all Ro-modules
of finite flat dimension have finite projective dimension, by [12, Theorem].
It follows that N ∈ �

RoR for any injective Ro-module N . Now applying
Theorem 2.11 to the Ro-module R, we obtain that idRoR = rAbR and the
latter is finite by assumptions. Thus, we have that idRo < ∞. The proof of
the other part is also similar. �

In the remaining part, we discuss a class of rings with finite global Aus-
lander bound.

Let R be a ring and M an R-module. Assume that n is a nonneg-
ative integer. Following Goodearl and Zimmermann-Huisgen [7], we say
that a projective resolution of M is repetitive at degree n if there exists
a decomposition Ωn(M) = P ⊕ Ai such that P is projective and each Ai

occurs as a direct summand of infinitely many Ωj(M). The repetition in-
dex of M , denoted rep(M), is the least nonnegative integer k such that
there is a projective resolution of M which is repetitive at degree k (if such
a k exists), or ∞ (otherwise). The corresponding global repetition index is
Grep(R) = sup {rep(M)|M ∈ ModR}.

We have the following result which relates the repetition index to the
Auslander bound.

Lemma 3.5 Let R be a ring and M ∈ ModR. If rep(M) = m < ∞, then
LAbM ≤ m.
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Proof. Since rep(M) = m < ∞, M has a projective resolution such that
Ωm(M) = P ⊕ Ai with P projective and that each Ai occurs as a direct
summand of infinitely many Ωj(M). So we have that ΩmM ∈ add(P ⊕
(⊕i>tΩ

iM)), for any t. Now take any N ∈ M� and assume that N ∈
M>t for some t. It follows that Ext1

R(ΩmM, N) ≤ Ext1
R(⊕i>tΩ

iM, N) �∏
i>t Exti+1

R (M, N) = 0 by dimension shifting and the definition of M>t.
Note that (ΩmM)� = M� by Lemma 2.3, so LAb(ΩmM) = 0. It follows
that LAbM ≤ m by Lemma 2.7. �

Consequently, we obtain the following result.

Proposition 3.6 If R is a ring with GrepR < ∞, then GAbR < ∞. In
this case, the conjecture (EWTC) holds. In particular, the Auslander-Reiten
conjecture holds in this case.

Proof. By Lemma 3.5 and Proposition 3.3. �
Let R be an artin ring. Recall that M ∈ modR has a ultimately

closed projective resolution if there is some m such that the m-th syzygy
ΩmM � ⊕Mi with each Mi ∈ add(ΩmiM) for some mi < m. In this
case, we have that rep(M) ≤ m, see [7]. One defines artin rings such that
every finitely generated module has an ultimately closed projective resolu-
tion to be of projective ultimately closed type. It was proved in [2] that the
Auslander-Reiten conjecture holds for artin algebras of projective ultimately
closed type. Lemma 3.5 and Proposition 3.3 together also imply that the
conjecture (EWTC) and Auslander’s conjecture hold for such artin algebras.

In [7], the authors studied finite dimensional algebra R=O/πO, where O
is a classical order over a discrete valuation ring D with uniformizing pa-
rameter π and residue class field K. The homological properties of O are to
a great extent determined by those of R while the latter algebra is substan-
tially easier to handle. In their paper, it was shown that, if gdO = d < 1,
then GrepR = d − 1, in particular, the finitistic dimension of R is finite.
Combining these with results in this paper and [4], we also know that in
case O has finite global dimension, the algebra O/πO also satisfies the Aus-
lander conjecture, the conjecture (FAC), the Auslander-Reiten conjecture,
Gorenstein Symmetry conjecture and the conjecture (EWTC).

Results in this section suggest the following conjecture which generalizes
Auslander-Reiten conjecture.

Generalized Auslander-Reiten Conjecture: Let R be a ring and M ∈
modR. If M ⊕ R ∈ M�, then pdM < ∞.

By Lemma 3.5, the conjecture holds for artin algebras of projective ulti-
mately closed type.
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