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Nonnegative solutions of the heat
equation on rotationally symmetric

Riemannian manifolds and
semismall perturbations

Minoru Murata

Abstract

Let M be a rotationally symmetric Riemannian manifold, and Δ
be the Laplace-Beltrami operator on M . We establish a necessary
and sufficient condition for the constant function 1 to be a semismall
perturbation of −Δ + 1 on M , and give optimal sufficient conditions
for uniqueness of nonnegative solutions of the Cauchy problem to the
heat equation. As an application, we determine the structure of all
nonnegative solutions to the heat equation on M × (0, T ).

1. Introduction

We consider nonnegative solutions of the heat equation

(1.1) ∂tu = Δu in M × (0, T ),

where 0 < T ≤ ∞ and M is a rotationally symmetric Riemannian manifold.
The structure of all nonnegative solutions of (1.1) is well understood in the
following two cases [SSP] and [UP] (for precise statements, see Fact AT and
Theorem 1.4 below):

[SSP] (semismall perturbation) The constant function 1 is a semismall per-
turbation of −Δ + 1 on M (see [11]).
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[UP] (uniqueness for the positive Cauchy problem) Any nonnegative solu-
tion of the Cauchy problem to the heat equation is determined uniquely
by the initial data (see [1]).

The purpose of this paper is to establish a necessary and sufficient con-
dition for [SSP], and to give optimal sufficient conditions for [UP].

Now, in order to state our main results, we fix notations and recall several
notions and facts. Let M be an n-dimensional (n ≥ 2) smooth Riemannian
manifold with a pole p which is rotationally symmetric at p (see [3]). Then
the Riemannian metric in terms of geodesic polar coordinates at p is given by

(1.2) ds2 = dr2 + f(r)2dΘ2,

where dΘ2 is the standard metric of the unit sphere Sn−1 and f is a nonnega-
tive smooth function on [0,∞) such that f > 0 in (0,∞), f(0) = 0, f ′(0) = 1
and f ′′(0) = 0. The Laplace-Beltrami operator Δ on M is represented in
the polar coordinates by

(1.3) Δ = f 1−n∂/∂r(fn−1∂/∂r) + f−2Λ,

where Λ is the standard Laplace-Beltrami operator on Sn−1. The Rieman-
nian measure ν of M is given by dν = fn−1(r)drdσ, where dσ is the standard
Riemannian volume element on Sn−1. In what follows, we shall identify M
and the pole p with R

n and the origin 0 of R
n, respectively.

Let G be the Green function of −Δ+1 on M . In our setting, the notion
of [SSP] is stated as follows.

[SSP] For any ε > 0 there exists a compact subset K of M such that

∫
M\K

G(0, z)G(z, y) dν(z) ≤ εG(0, y), y ∈M \K.

It is well-known (see, for example, [18]) that [SSP] implies the following
condition [NUP] (non-uniqueness for the positive Cauchy problem).

[NUP] The Cauchy problem

(1.4) ∂tu = Δu in M × (0, T ), u(x, 0) = 0 on M

admits a non-zero nonnegative solution.

We say [UP] (uniqueness for the positive Cauchy problem) holds for (1.4)
when any nonnegative solution of (1.4) is identically zero. Let us recall that
when [UP] holds for (1.4), the structure of all nonnegative solutions to (1.1)
is extremely simple. Namely, the following theorem holds (see [1]).
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Fact AT. Assume [UP]. Then, for any nonnegative solution u of (1.1), there
exists a unique Borel measure μ on M such that

(1.5) u(x, t) =

∫
M

p(x, y, t) dμ(y), (x, t) ∈M × (0, T ),

where p(x, y, t) is the minimal fundamental solution for (1.1). Conversely
for any Borel measure μ on M satisfying

(1.6)

∫
M

p(0, y, t) dμ(y) <∞, 0 < t < T,

the right hand side of (1.5) is a nonnegative solution of (1.1).

We denote by S(r) and B(r), r > 0, the geodesic sphere and ball with
center 0 and radius r, respectively. The volume of B(r) and the area of S(r)
are denoted by |B(r)| and |S(r)|, respectively:

|B(r)| = σn

∫ r

0

f(s)n−1ds, |S(r)| = σnf(r)n−1,

where σn is the area of the standard unit sphere Sn−1. The volume of the
exterior of B(r) is denoted by |M \B(r)|.

Now, we are ready to state our main results. We first give a necessary
and sufficient condition for [SSP].

Theorem 1.1 The condition [SSP] holds if and only if either the following
condition (I) or (II) holds:

(I)

∫ ∞

1

|M \B(r)|
|S(r)| dr <∞; (II)

∫ ∞

1

|B(r)|
|S(r)| dr <∞.

This theorem is proved in Section 2.
Note that (I) is equivalent to

(1.7)

∫ ∞

1

f(s)1−n

(∫ ∞

s

f(r)n−1dr

)
ds <∞

or

(1.8)

∫ ∞

1

f(r)n−1

(∫ r

1

f(s)1−nds

)
dr <∞.

Similarly, (II) is equivalent to

(1.9)

∫ ∞

1

f(r)n−1

(∫ ∞

r

f(s)1−nds

)
dr <∞.
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It is well-known that −Δ on M is subcritical (i.e., there exists a positive
Green function of −Δ on M) if and only if

(1.10)

∫ ∞

1

f(s)1−nds <∞

(see Proposition 3.1 of [5], and also [13]). Thus, in the case (II), −Δ on M
is subcritical. On the other hand, in the case (I), −Δ on M is critical (i.e.,
there exists a positive solution of −Δu = 0 in M but there exists no positive
Green function of −Δ on M). Indeed (1.7) yields

(1.11)

∫ ∞

1

f(r)n−1dr <∞,

which together with the Schwarz inequality implies
∫ ∞

1
f(r)1−ndr = ∞.

A curious feature of the characterization of [SSP] in Theorem 1.1 is that
the family of manifolds satisfying [SSP] consists of two extremal cases (I)
and (II). Roughly speaking, a manifold satisfying (I) or (II) shrinks or grows
very rapidly at infinity, respectively, as illustrated by Example 1.6 below.
The condition (II) is known to be a necessary and sufficient condition for the
explosion of the Brownian motion on M (see [5] and Subsection 4.1 below).
The condition (I), however, is new. Since a manifold satisfying (I) is close to
a compact manifold, it is quite natural that it satisfies the condition [SSP].
But, surprisingly, conditions similar to (I) seem not to have appeared in the
literature.

We denote by ∂MM and ∂mM the Martin boundary and minimal Martin
boundary of M for −Δ + 1, respectively. We next determine ∂MM in the
cases (I) and (II).

Theorem 1.2 (i) Suppose that (I) holds. Then ∂MM = ∂mM = {∞},
where ∞ is the point at infinity.

(ii) Suppose that (II) holds. Then ∂MM = ∂mM = ∞Sn−1, where ∞Sn−1

is the sphere at infinity.

This theorem is proved in Section 3.
In order to state an integral representation theorem for nonnegative so-

lutions of (1.1) under the condition [SSP], we recall several facts. Let Q
be the quadratic form on C∞

0 (M) defined by Q[u] =
∫

M
|∇u|2dν. Denote

by [−Δ]M the selfadjoint operator in L2(M ; dν) associated with the closure
of Q. It is known ( [19]) that [−Δ]M admits a complete orthonormal base
of eigenfunctions {φj}∞j=0 with eigenvalues λ0 < λ1 ≤ λ2 ≤ · · · repeated ac-
cording to multiplicity, where the smallest eigenvalue λ0 is of multiplicity 1
and the eigenfunction φ0 may and will be assumed to be positive on M .
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We see that in the case (I),

(1.12) λ0 = 0 and φ0 = |M |−1/2,

where |M | = σn

∫ ∞
0
f(s)n−1ds is the volume of M . In the case (II),

λ0 > 0 and φ0 is a radially symmetric function,

since λ0 is of multiplicity one and Δ is invariant under rotation. Further-
more, since the Green function g(0, x) (with pole 0) of −Δ on M is given by

g(0, x) =

∫ ∞

|x|

dr

|S(r)| ,

and φ0(x) is comparable with g(0, x) near infinity (see Theorem 1.5 of [16]),

(1.13) φ0(x) ≈
∫ ∞

|x|
f(s)1−nds.

Here and in what follows, for any positive functions g(r) and h(r), g ≈ h
means that there exists a constant C > 1 such that

C−1h(r) ≤ g(r) ≤ Ch(r)

for r sufficiently large.
Combining Theorem 1.2 of [11], Theorems 1.1 and 1.2 above, we get the

following theorem except for the last assertion.

Theorem 1.3 Assume the condition (I) or (II). Then, for any ξ ∈ ∂MM
there exists the limit

(1.14) lim
M�y→ξ

p(x, y, t)

φ0(y)
≡ q(x, ξ, t), x ∈M, t ∈ R.

Here, as functions of (x, t), {p(x, y, t)/φ0(y)}y converges to q(x, ξ, t) as y→ξ
uniformly on any compact subset of M × R. Furthermore, q(x, ξ, t) is a
continuous function on M × ∂MM × R such that

(1.15) q > 0 on M × ∂MM × (0,∞),

(1.16) q = 0 on M × ∂MM × (−∞, 0],

(1.17) (∂t − Δ)q(·, ξ, ·) = 0 on M × R.

Moreover, in the case (I), q(x, ξ, t) is a radially symmetric function of x;
while in the case (II)

(1.18) q(x,Oξ, t) = q(O−1x, ξ, t), x ∈M, ξ ∈ ∂MM, t ∈ R,

for any rotation O, where Oξ = (∞, Oω) with ξ = (∞, ω), ω ∈ Sn−1.
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Proof. We have only to show the last assertion. For any rotation O, we
have p(Ox,Oy, t) = p(x, y, t). In the case (I), with ξ = ∞ we have

q(Ox,∞, t) = q(x,∞, t).

Thus, as a function of x, q(x,∞, t) is radially symmetric. In the case (II),
we have

q(Ox,Oξ, t) = q(x, ξ, t).

This implies (1.18). �
Theorems 1.2 and 1.3 say that in the case (I) the minimal fundamental

solution p(x, y, t) itself has a positive limit as y → ∞:

lim
M�y→∞

p(x, y, t) = q(x,∞, t) > 0, x ∈M, t > 0.

This is quite interesting. In the one dimensional case, it is known among
specialists (private communication by Matsuyo Tomisaki) that this property
is related to the classification of the boundary point ∞. In the higher dimen-
sional case, however, no one seems to have observed phenomena like this.

Combining Theorem 1.3 of [11], Theorems 1.1, 1.2 and 1.3 above, we get
the following theorem.

Theorem 1.4 Assume the condition (I) or (II). Then, for any nonnegative
solution u of (1.1) there exists a unique pair of Borel measures μ on M and λ
on ∂MM × [0, T ) such that

(1.19) u(x, t) =

∫
M

p(x, y, t) dμ(y) +

∫
∂M M×[0,t)

q(x, ξ, t− s) dλ(ξ, s)

for any (x, t) ∈ M × (0, T ).
Conversely, for any Borel measures μ on M and λ on ∂MM× [0, T ) such

that

(1.20)

∫
M

p(0, y, t) dμ(y) <∞, 0 < t < T,

(1.21)

∫
∂MM×[0,t)

q(0, ξ, t− s) dλ(ξ, s) <∞, 0 < t < T,

the right hand side of (1.19) is a nonnegative solution of (1.1).

Obviously, it follows from Theorem 1.4 that the condition (I) or (II)
implies [NUP]. A natural problem is whether [UP] holds if neither (I) nor (II)
is satisfied. This is a difficult problem in full generality. But we have a simple
and optimal partial answer to this problem.
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Theorem 1.5 Suppose that there exist positive constants C, R and positive
continuous increasing function ρ on [R,∞) such that

C−1 ≤ f(r + s)

f(r)
≤ C, r ≥ R+

1

ρ(R)
, |s| ≤ 1

ρ(r)
,(1.22)

∫ ∞

R

dr

ρ(r)
= ∞.(1.23)

Then [UP] holds for (1.4).

This theorem is proved in Section 4.
As for uniqueness of bounded solutions for the Cauchy problem (1.4),

see Fact NUB to be stated in Subsection 4.1.
Here let us examine the conditions in Theorems 1.1 and 1.5 by a simple

example.

Example 1.6 For α > 0, put Ψ±(r) = exp(±rα). Let f(r) = Ψ+(r) or
Ψ−(r) for r > 1. Since f ′(r)/f(r) = ±αrα−1, the condition (1.22) is satisfied
with ρ(r) = max(rα−1, 1) for r > 1. Thus (1.23) is satisfied if α ≤ 2. On
the other hand, for α > 2, f = Ψ+ or Ψ− satisfies the condition (II) or (I),
respectively. Summing up,

in the case (I), the manifold M shrinks very rapidly at infinity;
in the case (II), M grows very rapidly at infinity;
in the case [UP], M changes mildly near infinity.

The sectional curvature at a point x = (r, ω) of a plane in TxM containing
∂/∂r depends only on r, and is called a radial curvature. Denote it by k(r).
It is given by

k(r) = −f ′′(r)/f(r), r > 0

(see [3] and references therein).
Finally, under some conditions on k(r) near infinity, we give a necessary

and sufficient condition for [SSP] or [UP].

Theorem 1.7 Suppose that −k(r) is positive and increasing on [R,∞) for
some R > 0. Assume

∫ ∞

R

|k′(r)|
|k(r)|

(
sup
s≥r

|k′(s)|
|k(s)|3/2

)
dr <∞.

Then [SSP] holds if and only if

(1.24)

∫ ∞

R

[−k(r)]−1/2dr <∞;
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while [UP] holds if and only if

(1.25)

∫ ∞

R

[−k(r)]−1/2dr = ∞.

This theorem is a direct consequence of Theorems 5.5 and 5.6 to be stated
and proved in Section 5. As for results via curvature comparison techniques,
see Theorems 5.1 and 5.4 to be given in Section 5.

The remainder of this paper is organized as follows. Theorems 1.1 and 1.2
are proved in Sections 2 and 3, respectively. In Section 4 we study relations
between [SSP] and uniqueness of bounded solutions to (1.4), and prove The-
orem 1.5. In Section 5 we give sufficient conditions for [SSP] and [UP] in
terms of the radial curvature.

2. Semismall perturbations

In this section we prove Theorem 1.1. Its proof is decomposed into three
lemmas. Let G be the Green function of −Δ + 1 on M . Put

L1 = −f 1−n d

dr

(
fn−1 d

dr

)
.

Let H be the Green function of L1 + 1 on I = (0,∞). We see that there
exists a unique positive solution of the equation

L1h+ h = 0 in I, h(r) = 1 + o(1) as r → 0.

By Theorem 6.1 of [17] we have

(2.1) H(r, s) = γh(r)g(s), 0 < r < s <∞,

where γ > 0 is a constant and g(s) is another positive solution of the equation
L1g + g = 0 in I, which is linearly independent of h and behaves like s2−n

or log 1/s as s → 0 for n ≥ 3 or n = 2. Thus there exists a positive limit
H(0, s) = limr→0H(r, s). The following lemma is a key to the proof of
Theorem 1.1.

Lemma 2.1 [SSP] holds if and only if 1 is a semismall perturbation of
L1 + 1 on I = (0,∞), i.e., for any ε > 0 there exists a compact subset J of
(0,∞) such that

∫
I\J

H(1, r)H(r, s)fn−1(r) dr ≤ εH(1, s), s ∈ I \ J.
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Proof. Note that the smallest eigenvalue of −Λ on Sn−1 is 0 and ψ0 = σ
−1/2
n

is the corresponding normalized eigenfunction. By Lemma 8.1 of [17], which
is shown by Fubini’s theorem, we have

(2.2)

∫
Sn−1

G(rω, y) dσ(ω) = H(r, s), r > 0, s = |y| > 0,

where dσ is the area element of Sn−1. From this we have

(2.3) G(0, sω) = σ−1
n H(0, s), s > 0, ω ∈ Sn−1.

Since dν(z) = fn−1(r)drdσ(ω) with z = rω, we get

(2.4)

∫
|z|>R

G(0, z)G(z, y) dν(z) =

∫ ∞

R

σ−1
n H(0, r)H(r, s)fn−1(r) dr

for any s = |y| > 0 and R > 0. Since H(1, r) and H(0, r) are comparable
on (2,∞), this together with (2.3) shows that [SSP] holds if and only if for
any ε > 0 there exists R > 2 such that

(2.5)

∫ ∞

R

H(1, r)H(r, s)fn−1(r) dr ≤ εH(1, s)

for any s > R. Note that if (2.5) holds for s > R, then (2.5) holds for any
s > 0. On the other hand, from (2.1) we obtain that for any ε > 0 there
exists δ > 0

(2.6)

∫ δ

0

H(1, r)H(r, s)fn−1(r) dr ≤ εH(1, s), s > 0

(see also Theorem 6.3 of [17] and Theorems 2.5 and 2.6 of [22]). This com-
pletes the proof of the lemma. �

Lemma 2.2 Suppose that L1 on (0,∞) is subcritical. Then 1 is a semismall
perturbation of L1 + 1 on (0,∞) if and only if (II) holds.

Proof. By Theorem 2.5 of [22], 1 is a semismall perturbation of L1 + 1 on
(0,∞) if and only if 1 is a semismall perturbation of L1 on (0,∞), which is
equivalent to the condition (II) (see also Theorem 6.3 of [17]). �

Lemma 2.3 Suppose that L1 on (0,∞) is critical. Then 1 is a semismall
perturbation of L1 + 1 on (0,∞) if and only if (I) holds.

Proof. Choose a nonnegative function Ψ ∈ C∞
0 ((0, 1/2)) which is not iden-

tically zero. Then, by Theorem 1.6 of [16], the Green functions of L1 + 1
and L1 +Ψ+1 on (0,∞) are comparable. Thus, by Theorem 2.5 of [22], 1 is
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a semismall perturbation of L1 + 1 on (0,∞) if and only if 1 is a semismall
perturbation of L1 + Ψ on (0,∞). By Theorem 1.1 of [13], L1 on (0,∞) is
critical if and only if ∫ ∞

1/2

f(s)1−nds = ∞.

Let K0 and K∞ be the Martin kernels for L1 + Ψ at 0 and ∞, respectively.
By Theorem 1.5 of [16] and Theorem 6.1 of [17], K0(r) is comparable to the
constant function 1 on (1,∞). Furthermore, K∞(r) is comparable to the
function ∫ r

1/2

f(s)1−nds on (1,∞).

Thus 1 is a semismall perturbation of L1 + Ψ on (0,∞) if and only if

(2.7)

∫ ∞

1

1 ·
(∫ r

1/2

f(s)1−nds

)
f(r)n−1dr <∞.

This is equivalent to (I). �

Remark 2.4 It is an open problem whether [SSP] for −Δ + 1 on M im-
plies [SP] (1 is a small perturbation of −Δ + 1 on M), i.e., for any ε > 0
there exists a compact subset K of M such that

∫
M\K

G(x, z)G(z, y) dν(z) ≤ εG(x, y), x, y ∈M \K.

3. Elliptic Martin boundaries

In this section we prove Theorem 1.2. The proof is based upon the following
proposition which can be shown in the same way as in the proof of The-
orems 3.2 and 3.3 of [12] (see also Theorem 1.3 of [13], Theorem 6.3 and
Example 10.1 of [17]).

Proposition 3.1 (i) Suppose that (I) holds. Then ∂MM = ∂mM = {∞} if
and only if

(3.1)

∫ ∞

1

f(r)n−3

(∫ r

1/2

f(s)1−nds

)
dr = ∞.

(ii) Suppose that (II) holds. Then ∂MM = ∂mM = ∞Sn−1 if and only if

(3.2)

∫ ∞

1

f(r)n−3

(∫ ∞

r

f(s)1−nds

)
dr <∞.
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We first treat the case (I).

Lemma 3.2 If (I) holds, then (3.1) holds true.

Proof. Put

(3.3) g(r) =

∫ r

1/2

f(s)1−n ds, J =

∫ ∞

1

f(r)n−3g(r) dr.

We see that (I) implies limr→∞ g(r) = ∞. When n = 2, we have

J =

∫ ∞

1

f(r)−1g(r) dr ≥ g(1)

∫ ∞

1

f(r)1−n dr = ∞.

When n = 3, we have

J =

∫ ∞

1

g(r) dr ≥ g(1)

∫ ∞

1

dr = ∞.

Let n ≥ 4. Since g′(r) = f(r)1−n, we have

J =

∫ ∞

1

g(r)[g′(r)]−(n−3)/(n−1) dr.

Put Ω = {r > 1 : g(r) < g′(r)}. We claim that the Lebesgue measure |Ω|
of Ω is infinite. Suppose that |Ω| < ∞. Since (I) is equivalent to (2.7), we
have

∞ >

∫ ∞

1

g(r)/g′(r) dr ≥
∫

(1,∞)\Ω
dr = ∞.

This is a contradiction. We have

(3.4) J ≥
∫

Ω

[
g(r)

g′(r)

](n−3)/(n−1)

g(r)2/(n−1) dr ≥
∫

Ω

g(r)

g′(r)
· g(r)2/(n−1) dr.

On the other hand,

∞ = |Ω|
=

∫
Ω

[g(r)1+2/(n−1)/g′(r)]1/2[g′(r)/g(r)1+2/(n−1)]1/2dr

≤
{∫

Ω

[g(r)1+2/(n−1)/g′(r)] dr
}1/2 {∫

Ω

[g′(r)/g(r)1+2/(n−1)] dr

}1/2

.

But∫
Ω

g′(r)g(r)−1−2/(n−1)dr ≤
∫ ∞

1

g′(r)g(r)−1−2/(n−1)dr

=

[
−n− 1

2
g(r)−2/(n−1)

]∞

1

=
n−1

2
g(1)−2/(n−1) <∞.
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Thus ∫
Ω

[g(r)1+2/(n−1)/g′(r)] dr = ∞.

This together with (3.4) implies (3.1). This completes the proof of the
lemma. �

Next we treat the case (II).

Lemma 3.3 If (II) holds, then (3.2) holds.

Proof. Put

(3.5) F (r) =

∫ ∞

r

f(s)1−nds, I =

∫ ∞

1

f(r)n−3F (r) dr.

When n = 2, we have

I =

∫ ∞

1

f(r)1−nF (r) dr ≤ F (1)

∫ ∞

1

f(r)1−ndr <∞.

Let n ≥ 3. With p = n− 1 and q = (n− 1)/(n− 2), we have

I =

∫ ∞

1

f(r)(1−n)/p+(n−1)/qF (r) dr

≤
(∫ ∞

1

f(r)1−nF (r) dr

)1/p (∫ ∞

1

f(r)n−1F (r) dr

)1/q

<∞.

This completes the proof of the lemma. �
Theorem 1.2 follows from Proposition 3.1, Lemmas 3.2 and 3.3.

4. Uniqueness theorems

4.1. Uniqueness of bounded solutions

In this subsection we describe relations between [SSP] and uniqueness of
bounded solutions to the heat equation. We consider the following condi-
tion [NUB] (non-uniqueness of bounded solutions).

[NUB] The Cauchy problem

(4.1) (∂t − Δ)u = 0 in M × (0, T ), u(x, 0) = 0 on M

admits a non-zero bounded solution.
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We say that [UB] (uniqueness of bounded solutions) holds when any bound-
ed solution of (4.1) is identically zero. For [NUB], the following fact is well-
known (see Proposition 3.2 and Theorem 6.2 of [5], and also Example 3.15
of [6]).

Fact NUB. The condition [NUB] holds if and only if the condition (II)
holds. In another word, [UB] holds if and only if (II) does not hold, i.e.,

(4.2)

∫ ∞

1

|B(r)|
|S(r)| dr = ∞.

Now, let us consider the case (I). In this case, by Theorem 1.2(i), there
exists a positive solution h of (−Δ + 1)h = 0 in M , which is radial and
unique up to a constant multiple. Furthermore, we see from the proof of
Lemma 2.3 that h(x) is comparable with

g(|x|) =

∫ |x|

1/2

f(s)1−nds on {|x| > 1}.

By Theorem 1.1 and Proposition 3.3 of [16], we have

(4.3)

∫
M

G(0, y)h(y) dν(y) <∞.

(This can be shown directly from (2.7).) It is well known that (4.3) yields
the existence of a positive solution u of the Cauchy problem

∂tu = (Δ − 1)u in M × (0,∞), u(x, 0) = 0 on M

such that 0 < u(x, t) < h(x) inM×(0,∞) (for more results, see Theorem 2.1
of [18] and references therein). Hence (I) implies the existence of a positive
solution v of the Cauchy problem (4.1) such that 0 < v(x, t) < eth(x) in
M × (0,∞). Summing up, we have shown the following proposition.

Proposition 4.1 Suppose that (I) holds. Then [UB] holds true, but there
exists a solution v of (4.1) such that 0 < v(x, t) < eth(x) in M × (0,∞),
where h is a positive radial solution of (−Δ + 1)h = 0 in M .

Here let us show that h(x) grows as |x| → ∞, at least, as fast as
exp(C|x|2) for some constant C > 0. Put

g(r) =

∫ r

1/2

f(s)1−nds.
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For r > 2, we have

r

2
≤ r − 1 =

∫ r

1

[
g(s)

g′(s)

]1/2 [
g′(s)
g(s)

]1/2

ds

≤
{∫ ∞

1

g(s)

g′(s)
ds

}1/2 {∫ r

1

g′(s)
g(s)

ds

}1/2

.

Thus g(r) ≥ g(1) exp(Br2) for some constant B > 0, which implies

(4.4) h(x) ≥ A exp(B|x|2), x ∈M,

for some constant A > 0.

4.2. Uniqueness of nonnegative solutions

In this subsection we prove Theorem 1.5.

Proof of Theorem 1.5. In [9] we introduced the notion of the parabolic
Harnack principle with scale function ρ ([PHP-ρ]). In the setting of this
paper, [PHP-ρ] reads as follows: there exists a positive constant Cp such that
for any t ∈ [0, T ), x ∈ B(0, S) = B(S), S > R + 1/ρ(R), 0 < s ≤ 1/ρ(S),
any nonnegative solution u of the heat equation

∂tu = Δu in Q = B(x, s) × (t− s2, t+ s2)

satisfies

sup
Q−

u ≤ Cp inf
Q+

u,

where

Q− = B
(
x,
s

2

)
×

(
t− 3

4
s2, t− 1

4
s2

)
, Q+ = B

(
x,
s

2

)
×

(
t+

1

4
s2, t+

3

4
s2

)
.

Theorem 2.2 of [9] in our case says that if [PHP-ρ] holds with ρ satisfy-
ing (1.23), then [UP] holds. Thus we have only to show [PHP-Cρ] for
some large positive constant C. We see by (1.22) that uniformly in x ∈
B(0, S) \ B(0, R + 1/ρ(R)) and 0 < s ≤ 1/ρ(S), the subset {y ∈ M :
|x| − s < |y| < |x| + s} is quasi-isometric to a piece of flat cylinder (see
descriptions before Proposition 4.10 of [7]). Hence [PHP-Cρ] holds for
some C > 0, since the parabolic Harnack inequality is stable under quasi-
isometry (see [4], [8], [20], [21]). �
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5. Curvature conditions

In this section we give sufficient conditions for [SSP] and [UP] in terms of
the radial curvature k(r), r > 0, which is the sectional curvature at a point
x = (r, ω) of any plane in TxM containing ∂/∂r. It is well-known that k(r)
satisfies the equation f ′′ + kf = 0 in (0,∞) (see [3] and references therein).

5.1. Comparison of curvatures

In this subsection we give sufficient conditions for [UP] and [SSP] via cur-
vature comparison techniques. First we give a sufficient condition for [UP].

Theorem 5.1 Suppose that

(5.1) −K(r) ≤ k(r) ≤ 0, r > 0,

for some positive continuous increasing function K(r) on [0,∞). If

(5.2)

∫ ∞

1

dr√
K(r)

= ∞,

then [UP] holds. Thus Fact UP holds true.

For proving this theorem, we need elementary lemmas.

Lemma 5.2 Suppose that g, h ∈ C2([0,∞)), g(0) = h(0) = 0, g′(0) =
h′(0) = 1, g > 0 and h > 0 in (0,∞). If g′′/g ≤ h′′/h in (0,∞), then g ≤ h
and g′/g ≤ h′/h in (0,∞).

This is Lemma 3 of [10], and can be shown by calculating (h2(g/h)′)′.
Let h be a solution of the initial value problem

(5.3) h′′(r) = K(r)h(r) in (0,∞), h(0) = 0, h′(0) = 1.

Then we see that h > 0 and h′ > 0 in (0,∞). Furthermore, we have the
following lemma.

Lemma 5.3 There exists a positive constant C such that

(5.4)
h′(r)
h(r)

≤ C
√
K(r), r ≥ 1.

Proof. This is nothing but the assertion (3.3) of Lemma 3.1 of [14]. But
we give a proof, since the proof is simple and Lemma 3.1 is stated under a
condition different from ours.
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Put H = h′/h and G = H/
√
K. Let r > s ≥ 1. Since H ′ +H2 = K,

H(r) −H(s) =

∫ r

s

K(t)[1 −G(t)2] dt.

Since K is increasing, we have

(5.5) G(r) −G(s) ≤
∫ r

s

√
K(t)[1 −G(t)2] dt.

We claim that

G(r) ≤M ≡ max(1, G(1)) for r ≥ 1.

On the contrary, suppose that there exists r > 1 such that G(r) > M . Put

S = inf{s ∈ [1, r];G(t) ≥ G(r) for any t in [s, r]}.

Then, by (5.5), G(S) > G(r). Thus S = 1. This yields G(1) > G(r) > G(1),
which is a contradiction. �
Proof of Theorem 5.1. We have

(5.6) f ′′(r) = −k(r)f(r) in (0,∞), f(0) = 0, f ′(0) = 1,

f > 0 and f ′ > 0 in (0,∞). By Lemma 5.2, f ≤ h and 0 < f ′/f ≤ h′/h in
(0,∞). By Lemma 5.3,

(5.7) (f ′(r)/f(r))2 ≤ C2K(r), r ≥ 1.

For a point x = (r, ω) ∈M, r > 1, and a plane π in TxM , denote by sec(π)
the sectional curvature of π. By the formula on p.27 of [2] (or see (4.3)
of [14]),

(5.8) sec(π) ≥ −
(f ′(r)
f(r)

)2

− f ′′(r)
f(r)

.

Thus, for any plane π in T(r,ω)M ,

(5.9) sec(π) ≥ −CK(r), r > 1,

for some positive constant C independent of r.
By virtue of Example 1.5 of [9] (which is an improved version of The-

orem A of [14]), the lower bound (5.9) together with the assumption (5.2)
shows the theorem. �
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We can also show Theorem 5.1 via Theorem 1.5.

The second proof of Theorem 5.1. Choose a positive constant C such
that C

√
K(1) ≥ 1 and f ′(r)/f(r) ≤ C

√
K(r) for r ≥ 1 (see (5.7)). Put

ρ(r) = CK(r+1)1/2. Then we claim that (1.22) is satisfied with R = 1. Let
r ≥ 1 + 1/ρ(1). For 0 ≤ s ≤ 1/ρ(r), we have

0 ≤ log
f(r + s)

f(r)
=

∫ r+s

r

f ′(t)
f(t)

dt ≤ ρ(r)s ≤ 1.

Thus 1 ≤ f(r + s)/f(r) ≤ e. Similarly,

1 ≤ f(r)/f(r + s) ≤ e, −1/ρ(r) ≤ s ≤ 0.

Thus (1.22) is satisfied with R = 1. Hence, by Theorem 1.5, [UP] holds. �

Next, we give a sufficient condition for (II), the second case of [SSP]. Let
κ(r) be a continuous increasing function on [0,∞) such that κ(R) > 0 for
some R > 0. Let g be a solution of the initial value problem

(5.10) g′′(r) = κ(r)g(r) in (0,∞), g(0) = 0, g′(0) = 1.

Assume that g satisfies

(5.11) g > 0 in (0,∞), lim
r→∞

g(r) = ∞.

Obviously, (5.11) is satisfied if κ ≥ 0 on [0,∞).

Theorem 5.4 Let κ(r) be a function as above for which the solution g
of (5.10) satisfies (5.11). Suppose that

(5.12) k(r) ≤ −κ(r), r > 0.

If

(5.13)

∫ ∞

R

dr√
κ(r)

<∞,

then the condition (II) holds true. Thus Theorems 1.3 and 1.4 hold.

Proof. It follows from the proof of Theorem B of [14] that the condi-
tion [NUB] (see Section 4) holds. Thus, by Fact NUB, the condition (II)
holds. �
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5.2. Radial curvature conditions near infinity

In this subsection we treat a class of rotationally symmetric Riemannian
manifolds whose radial curvatures satisfy only conditions near infinity, and
give sufficient conditions for [SSP] and [UP].

Let k(r) be the radial curvature, and put q(r) = −k(r). Assume that k(r)
satisfies the following conditions:

(k-1) There exists R > 0 such that k < 0 on [R,∞).

(k-2)

∫ ∞

R

q1/2(r)dr = ∞.

(k-3)

∫ ∞

R

|q′(s)|
q(s)

(
sup
r≥s

|q′(r)|
q3/2(r)

)
ds <∞.

Under these conditions we have the following theorems.

Theorem 5.5 [SSP] holds if

(5.14)

∫ ∞

R

q−1/2(r) dr <∞.

Theorem 5.6 [UP] holds if

(5.15)

∫ ∞

R

(
sup

R≤s≤r
q(s)

)−1/2

dr = ∞.

Before we give proofs of Theorems 5.5 and 5.6, we see a simple example.

Example 5.7 Suppose that k(r) = −rα on [1,∞), where α > −2. Then
the conditions (k-1), (k-2) and (k-3) are satisfied. Furthermore, (5.14) is
satisfied if and only if α > 2.

Now, consider the equation

(5.16) y′′ = q(r)y in (R,∞).

A special case of Lemma 4.3 of [15] yields the following lemma.

Lemma 5.8 The equation (5.16) has solutions y+ and y− such that

(5.17) y± = q−1/4e±θ0(1 + h±),

(5.18) y′± = ±q1/4e±θ0(1 + h̃±),

where limr→∞ h±(r) = 0 = limr→∞ h̃±(r) and

(5.19) θ0(r) =

∫ r

R

q1/2(s) ds.
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Here we note that for any 0 < c < 1

(5.20) y+(r) ≥ c exp
[
c

∫ r

R

q1/2(s) ds
]
,

(5.21) y−(r) ≤ (1 + c) exp
[
− c

∫ r

R

q1/2(s) ds
]

if r is sufficiently large. Let us show only (5.20). Put

Q(r) =

∫ r

R

q1/2(s) ds− 1

4
log q(r).

Then

Q′(r) = q1/2(r) − 1

4

q′(r)
q(r)

= q1/2(r)

{
1 − 1

4

q′(r)
q3/2(r)

}
.

Put R(s) = supr≥s |q′(r)|/q3/2(r). In the case lims→∞R(s) = 0,

Q′(r) = q1/2(r)(1 + o(1)) as r → ∞;

while in the case lims→∞R(s) > 0, (k-3) yields∫ ∞

R

|q′(s)|
q(s)

ds <∞.

Thus, in both cases, we get (5.20) by (k-2) and (k-3).
By Lemma 5.8, there exist constants C1 and C2 such that

(5.22) f(r) = C1y+(r) + C2y−(r) in (R,∞).

Since f > 0 in (0,∞), there are only two possibilities: the growth case [G]
where C1 > 0, and the decay case [D] where C1 = 0 and C2 > 0.

In case [G], as r → ∞
f(r) = C1q

−1/4(r)eθ0(r)(1 + o(1)),(5.23)

f ′(r) = C1q
1/4(r)eθ0(r)(1 + o(1)).(5.24)

In case [D], as r → ∞
f(r) = C2q

−1/4(r)e−θ0(r)(1 + o(1)),(5.25)

f ′(r) = −C2q
1/4(r)e−θ0(r)(1 + o(1)).(5.26)

We first show Theorem 5.5. The following lemma completes the proof of
Theorem 5.5.

Lemma 5.9 Assume (5.14). (i) In case [G], condition (II) is satisfied.

(ii) In case [D], condition (I) is satisfied.
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Recall that for any positive functions g(r) and h(r) defined for r suffi-
ciently large, g ≈ h means that there exists a constant C > 1 such that

C−1h(r) ≤ g(r) ≤ Ch(r)

for r sufficiently large.

Proof of Lemma 5.9. The case [G]. First let n = 2. By (5.23) and (5.18),∫ ∞

r

f(s)1−n ds ≈
∫ ∞

r

[−y′−(s)] ds = y−(r).

Thus

f(r)n−1

∫ ∞

r

f(s)1−nds ≈ q−1/2(r).

Hence (II) holds true. Next, let n ≥ 3.∫ ∞

r

f(s)1−nds ≈
∫ ∞

r

(−y′−(s))y+(s)2−nds

= y−(r)y+(r)2−n +

∫ ∞

r

y−(s)(2 − n)y+(s)1−ny′+(s) ds.

Since y−(s)y′+(s) ≈ 1, we have∫ ∞

r

f(s)1−nds ≈ y−(r)y+(r)2−n.

Thus

f(r)n−1

∫ ∞

r

f(s)1−nds ≈ y+(r)n−1y−(r)y+(r)2−n ≈ q−1/2(r).

Hence (II) holds true.

The case [D]. First let n = 2. By (5.25) and (5.18),∫ r

1/2

f(s)1−nds ≈
∫ r

1

y′+(s) ds ≈ y+(r).

Thus

f(r)n−1

∫ r

1/2

f(s)1−nds ≈ q−1/2(r).

Hence (I) holds true. Next, let n ≥ 3.∫ r

1/2

f(s)1−nds ≈
∫ r

1/2

y′+(s)y−(s)2−nds

= y+(r)y−(r)2−n −
∫ r

1/2

y+(s)(2 − n)y−(s)1−ny′−(s) ds.
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Since −y+(s)y′−(s) ≈ 1, we have

∫ r

1/2

f(s)1−nds ≈ y+(r)y−(r)2−n.

Thus

f(r)n−1

∫ r

1/2

f(s)1−nds ≈ y−(r)n−1y+(r)y−(r)2−n ≈ q−1/2(r).

Hence (I) holds true. �
We next show Theorem 5.6. Put τ = supr≥R |q′(r)|/q3/2(r), which is

finite by (k-3), and define ρ by

ρ(r) = τ

(
sup

R≤s≤r
q(s)

)1/2

, r ≥ R

and ρ(r) = τq1/2(R) for 0 ≤ r ≤ R. Then we have

Lemma 5.10 For r ≥ R+ 1/ρ(R) and s with |s| ≤ 1/ρ(r),

(5.27)
2

3
≤ q1/2(r + s)

q1/2(r)
≤ 2.

Proof. We have ∣∣∣∣
(

1

q1/2(t)

)′∣∣∣∣ =
1

2
· |q′(t)|
q3/2(t)

≤ τ

2
.

Thus ∣∣∣∣ q1/2(r)

q1/2(r + s)
− 1

∣∣∣∣ ≤ τ

2
|s|q1/2(r) ≤ 1

2
.

This implies (5.27). �

Lemma 5.11 Assume (5.15). Then [UP] holds true.

Proof. By (5.17), (5.18) and (5.23)-(5.26),

f ′(r)
f(r)

≈ q1/2(r).

By Lemma 5.10, the condition (1.22) is satisfied. Hence Theorem 1.5 to-
gether with the assumption (5.15) shows the lemma. �

This lemma completes the proof of Theorem 5.6.
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