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A non-computational approach to
the gradings on f4

Cristina Draper Fontanals

Abstract. The fine group gradings on the exceptional Lie algebra f4 have
previously been determined by means of computational methods. A new
argument is given to prove that there are just four fine gradings on f4.

1. Introduction

There has been a lot of research around the gradings on simple Lie algebras during
the last years. Probably one of the reasons of such activity is that fine gradings
are closely related to the structure of the algebras. To be more precise, gradings
on classical Lie algebras have been studied in [5], [3] and [17] and lately revised
in [15] and [2] to obtain an irredundant list of nonequivalent fine gradings and
nonisomorphic gradings respectively; gradings on g2 appear in [9] and [4]; gradings
on d4 are in [12] and [15], jointly with some descriptions in [13]; and gradings on f4
can be found in [11].

In fact, there are descriptions of fine gradings on f4 also in [14] and [10], but
these papers can not assure if the described gradings cover the whole list of fine
gradings. The only proof of this fact appears in [11], and it is a computational-
based proof, quite technical, which needs a precise knowledge of the coordinate
matrices of automorphisms of f4 extending the action of elements in theWeyl group.

It does not happen only in f4, but in general, that it is not a difficult task to
describe gradings (it only requires enough knowledge of the algebra) but it could
be quite difficult to prove that every fine grading is equivalent to one grading
of a determined list. The classical case was the first to be studied because the
authors worked with associative techniques, taking advantage that these algebras
live in matrix algebras. But in the exceptional case several different techniques
have been tested until now. The computational proof in the case of f4 is based in
the fact that the subgroup of automorphisms producing the grading is contained
in the normalizer of a maximal torus of the automorphism group, thus the authors
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worked with a precise matricial description of the elements in such normalizer
(these matricial descriptions can be obtained in [25]).

Our objective in this paper is to provide an alternative proof of the fact that
there are 4 fine gradings on f4 up to equivalence. This proof will not use computa-
tional tools, but the result that the 2-groups of the automorphism group of f4 live
in Spin(9) and hence, after projection (Spin(9) is the universal covering of SO(9))
inside some maximal abelian diagonalizable group of SO(9). But all the gradings
on the Lie algebra so(9) are elementary (induced by the natural module), and can
be easily extracted from [3]. Therefore, in an indirect way, we will also use matrix
methods.

The purpose is to make the paper as selfcontained as possible. It is organized
as follows. We will work over an algebraically closed field K of characteristic zero,
although this hypothesis could have been relaxed. Section 2 contains the inter-
pretation of the gradings in terms of algebraic groups, in particular of the fine
gradings by means of MAD-groups. There are also several useful results about
the structure of the MAD-groups of an automorphism group of a semisimple Lie
algebra, applicable not only to f4. Probably the most interesting result in this part
is that every MAD-group (different from the maximal torus) contains a nontoral
p-group for certain prime p, which must be 2 or 3 in the f4-case. Afterwards we
exhibit in Section 3 some natural descriptions of the four fine gradings on f4. The
objective will be to prove, in Section 6, that these are all the fine gradings on f4
up to equivalence. The machinery is developed in Section 4 and Section 5, devoted
to 2-groups and 3-groups respectively. The key point is that if the MAD-group
is not isomorphic to Z3

3, then it contains an order 2 automorphism fixing a subal-
gebra of type b4 and hence it lives in its centralizer, which is the spin group. In
order to compute the MAD-groups of Spin(9), we provide a concrete description
of this spin group, then of the projections of some of its elements in the orthogonal
group O(9) ∼= aut(b4), which allows us to work with the MAD-groups of O(9).
We also enclose the model of f4 based on b4 in order to get a precise descrip-
tion of the relationship between aut(b4) and aut(f4). A similar development, but
less detailed, is done in Section 5 to extract the information about the 3-groups
from SL(3)×Z3 SL(3).

2. Generalities on gradings

2.1. Basic definitions

Let L be a finite-dimensional Lie K-algebra. The term grading will always mean
group grading, that is, a decomposition in vector subspaces L = ⊕g∈GLg where G
is a finitely generated abelian group and the homogeneous spaces verify [Lg,Lh] ⊂
Lgh for any g, h ∈ G (denoting by juxtaposition the product in G). We also
assume that G is generated by Supp(G) := {g ∈ G | Lg �= 0}, called the support
of the grading.

Given two gradings L = ⊕g∈GUg and L′ = ⊕h∈HVh, we shall say that they
are isomorphic if there are a group isomorphism σ : G → H and an isomorphism
ϕ : L → L′ such that ϕ(Ug) = Vσ(g) for any g ∈ G. The above two gradings are



Gradings on f4 275

said to be equivalent if there are a bijection σ : Supp(G) → Supp(H) and an
isomorphism ϕ : L → L′ such that ϕ(Ug) = Vσ(g) for any g ∈ Supp(G). The
first grading is a refinement of the second one if there are a surjective map
σ : Supp(G) → Supp(H) and an isomorphism ϕ : L → L′ such that ϕ(Ug) ⊂ Vσ(g)
for any g ∈ Supp(G).

A grading is fine if its unique refinement is the given grading. Our objective
will be to classify fine gradings on f4 up to equivalence.

2.2. Group techniques

The gradings on L can be seen as the simultaneous diagonalizations relative to
quasitori of the group of automorphisms aut(L). If L = ⊕g∈GLg is a G-grading,
the map ψ : X(G) = hom(G,K×) → aut(L), mapping each α ∈ X(G) to the
automorphism ψα : L → L given by Lg � x 	→ ψα(x) := α(g)x, is a group ho-
momorphism. Since G is finitely generated, then ψ(X(G)) is a quasitorus. And
conversely, if Q is a quasitorus and ψ : Q → aut(L) is a homomorphism, ψ(Q) is
formed by semisimple automorphisms and we have a X(Q)-grading L = ⊕g∈X(Q)Lg

given by Lg = {x ∈ V | ψ(q)(x) = g(q)x ∀q ∈ Q}, with X(Q) a finitely generated
abelian group.

A grading is fine if and only if the quasitorus producing the grading is a maximal
abelian subgroup of semisimple elements, usually called a MAD (“maximal abelian
diagonalizable”)-group. It is convenient to observe that the number of conjugacy
classes of MAD-groups of aut(L) coincides with the number of equivalence classes
of fine gradings on L.

We would like to dive a little bit in the structure of these MAD-groups, for
purposes not only for this paper, but for other Lie algebras.

2.3. Structure of a MAD-group

We study now the MAD-groups of aut(L) =: G, for L a finite-dimensional semisim-
ple Lie K-algebra. Of course there is always at least one MAD-group, the maximal
torus formed by the automorphisms fixing a Cartan subalgebra (all the maximal
tori are conjugated). Any other MAD-group Q has to be nontoral (that is, not
contained in a torus). Moreover, as any quasitorus, this Q is the direct product of
a torus by a finite subgroup of G. The purpose of this section is to prove that Q
contains a nontoral p-group for some prime p, that is, if we write the finite sub-
group as a direct product of pi-groups for different primes pi, some of the factors
are nontoral. We have the conjecture that all the factors are nontoral.

Recall first a pair of facts which help to check torality. We enclose the proofs
for the seek of completeness.

Lemma 2.1 (Theorem 8.2.(3) in [1]). Let G be a linear algebraic group over an
algebraically closed field. Assume that G is a connected reductive group such that its
commutator subgroup is simply connected. If Q is a subquasitorus of G generated
by at most two elements, then Q is toral.
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Proof. Take Q = 〈f1, f2〉, and consider Z the centralizer of f1 in G, which is
connected by Theorem 3.5.6, page 93, of [7]. As any semisimple element in a
connected group belongs to a torus, there is a maximal torus T of Z such that
f2 ∈ Z. But f1 is in the center of Z and hence in all the maximal tori of Z, so
that 〈f1, f2〉 ⊂ T and Q ⊂ T . �

Lemma 2.2 (Lemma 2 in [12]). If T is a torus of G and H is a toral subgroup
of G commuting with T , then HT is toral.

Proof. Let Z be the centralizer of H in aut(L) = G. As H is toral, there is a
maximal torus T ′ of aut(L) such that H ⊂ T ′. Hence T ′ ⊂ Z and it is also a
maximal torus of Z. But T ⊂ Z so that there is p ∈ Z such that pTp−1 ⊂ T ′.
Consequently p(HT )p−1 = HpTp−1 ⊂ HT ′ ⊂ (T ′)2 ⊂ T ′ and HT is contained in
the torus p−1T ′p. �

It is very useful to recall the version in [26] (Theorem 3.15, page 92) of the
Borel–Serre Theorem, which in particular implies that every quasitorus of G is
contained in the normalizer of some maximal torus. But we will need a slightly
improved version of this result (which also generalizes Proposition 7 of [11]).

Lemma 2.3. If H1 is a toral subgroup of G and H2 is a diagonalizable subgroup
of G which commutes with H1, then there is a maximal torus T of G such that
H1 ⊂ T and H2 is contained in the normalizer N(T ).

Proof. Let Z = CentG(H1). As H1 is toral, there is a torus T1 of G such that
H1 ⊂ T1 ⊂ Z. As T1 is connected and it contains 1G, then T1 ⊂ Z0, where Z0

denotes the connected component of Z containing the unit. Now we apply the
previously cited theorem (Theorem 3.15, page 92, of [26]) to H2, a diagonalizable
subgroup of Z, so that there is a maximal torus T of Z such that H2 ⊂ N(T ).
Note also that H1 ⊂ T because H1 is in the center of Z0, and precisely the set of
semisimple elements of Z0 coincides with the intersection of all the maximal tori
of Z0 (one of them is our T ), according to Corollary 11.1 of [6]. �

Lemma 2.4. If a prime p does not divide the order of the Weyl group of L, then
every abelian p-group H ≤ G is toral.

Proof. The elements in H have order a power of p, so that they are semisimple
and, as in the previous lemma, there is a maximal torus T such that H ⊂ N(T ).
Let us check that any f ∈ H verifies that f ∈ T . Let us take π : N(T ) → N(T )/T
the projection onto the semidirect product of the Weyl group and the group of
diagram automorphisms. The order of π(f) must be a divisor of the order of f ,
certain pk for some k ∈ N. But also the order of π(f) divides the order of the Weyl
group, which is coprime to pk. So π(f) = 1 and f ∈ T . �

We will use a pair of times the following trivial result.

Lemma 2.5. If T is a torus and H1 and H2 are finite groups of coprime orders
such that H2 commutes with T and H1 ⊂ T ×H2, then H1 is contained in T .

Proof. It is clear, since the projection of H1 in H2 must be trivial. �
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Lemma 2.6. If T is a maximal torus of G, and f ∈ N(T ) is an element of order
r ∈ N, then the set T 〈f〉 of the elements in T commuting with f is equal to SH
for some subtorus S of T and a subgroup H ⊂ {t ∈ T | tr = 1G} such that
S ∩H = {1G}.

Proof. Recall that we have an action N(T ) × T → T, (g, t) 	→ g · t := gtg−1.
Hence we can write T 〈f〉 = {t ∈ T | ft = tf} = {t ∈ T | f · t = t}. As it is a
diagonalizable group (a quasitorus), there are a subtorus S and a finite group H
such that T 〈f〉 = SH and S ∩H = {1G}.

Note that the map s : T → T given by s(t) = πr−1
i=0 f

i · t is an algebraic group
homomorphism, so that s(T ) is a subtorus of T . As t(f · s(t)) = πr

i=0f
i · t =

s(t)(f r · t) and f r = 1G, we get that s(t) ∈ T 〈f〉. Hence the torus s(T ) must
be contained in the only maximal torus of T 〈f〉, that is, S. Let us check now
that if t ∈ H then tr = 1G. Indeed, as f · t = t, we have s(t) = tr, so that
tr ∈ H ∩ s(T ) ⊂ H ∩ S = {1G}. �

Lemma 2.7. If H1 and H2 are toral subgroups of G which commute, of coprime
orders r and s respectively, then the group H1H2 is toral.

Proof. As in Lemma 2.3, there is a torus T such that H1 ⊂ T and H2 ⊂ N(T ).
We can take H2 = 〈{f1, . . . , fm}〉 for certain generators fi. Call si the order of fi,
which is a divisor of s. By Lemma 2.6 and the notations therein, H1 ⊂ T 〈f1〉 =
{t ∈ T | tf1 = f1t} and it coincides with T1V1 for some T1 subtorus of T and
a subgroup V1 ⊂ {t ∈ T | ts1 = 1}, with T1 ∩ V1 = {1}. As the cardinal of V1
divides s1

dimT , it also divides sdimT and hence this cardinal is coprime to r (recall
that gcd(r, s) = 1). Then, by applying Lemma 2.5, we get that H1 ⊂ T1. Now T1
is a torus and 〈{f1}〉 is toral (it is contained in H2) commuting with T1, so, by
Lemma 2.2 we get that T1〈{f1}〉 is toral and hence H1〈{f1}〉 is toral too. Now the
process begins again. By Lemma 2.3, there is a torus T ′ such that H1 ∪ {f1} ⊂ T ′

and H2 ⊂ N(T ′). Hence H1 ∪{f1} ⊂ T 〈f2〉 = {t ∈ T | tf2 = f2t}, which, according
to Lemma 2.6, coincides with T2V2 for some subtorus T2 of T ′ and a subgroup
V2 ⊂ {t ∈ T | ts2 = 1} such that T2 ∩ V2 = {1}. Taking into account that the
order of H1 is r, coprime to the cardinal of V2 (which is a divisor of a power of s),
we can apply Lemma 2.5 to conclude that H1 ⊂ T2. We get that 〈T2, f1, f2〉 is
toral by applying Lemma 2.2 to the torus T2 and to the toral subgroup 〈f1, f2〉,
which commutes with T2. As 〈H1, f1, f2〉 is contained in 〈T2, f1, f2〉, it is also toral.
The application of lemmas 2.3, 2.6, 2.5 and 2.2 allows to conclude the torality of
〈H1 ∪ {fj | j = 1, . . . , i}〉 from the one of 〈H1 ∪ {fj | j = 1, . . . , i − 1}〉, so an
induction argument ends the proof. �

Hence,

Corollary 2.8. If Hi is a finite toral pi-subgroup of G for each i ∈ {1, . . . , s},
with pi prime and pi �= pj if i �= j, and the group generated by H1 ∪ · · · ∪ Hs is
abelian, then such group is toral.

Some immediate consequences are the following, for general Lie algebras and
for our concrete case:
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Corollary 2.9. Any nontoral quasitorus of G contains a nontoral finite p-group
for some prime p.

Proof. Take into account that such quasitorus is a direct product T ×H1×· · ·×Hs

of a torus T and some finite abelian pi-groups Hi (pi prime) such that pi �= pj
if i �= j. Now apply Lemma 2.2 and the previous corollary. �

Remark 2.10. We could think that every nontoral quasitorus of G contains a
nontoral elementary p-group for some prime p. This result would be relevant
for the study of the gradings on the remaining exceptional Lie algebras (type e),
because there is a lot of information about elementary p-groups (the maximal ones
are detailed in [16] and for p = 3 in [1]). But that conjecture is not true: take,
for instance, the quasitorus Q = 〈{t−1,1,−1,1, t1,−1,−1,1, σ̃105t1,1,1,i}〉 ∼= Z2

2 × Z4

(notations as in [11]). It is nontoral, but every proper subquasitorus is toral, in
particular that one isomorphic to Z3

2.

Corollary 2.11. Any abelian p-subgroup of aut(f4) is toral if p > 3. Any nontoral
quasitorus of aut(f4) contains either a finite nontoral 2-group or a finite nontoral
3-group.

Proof. It is a consequence of Corollary 2.9 and Lemma 2.4, because the cardinal
of the Weyl group is 1152 = 2732, with 2 and 3 the only prime divisors. �

We will need to precise a little more for the f4-case. Although we have not
achieved to prove that any quasitorus of aut(L) is product of a torus times several
pi-nontoral groups, what is true is the next result.

Proposition 2.12. If Q = T × P × R is a MAD-group of G = aut(L), for L
a finite-dimensional semisimple Lie algebra, with T a torus, R a finite nontoral
p-group (p prime) and P a nontrivial toral group of order coprime to p, then R
contains a proper nontoral subquasitorus.

Proof. TakeR′ a maximal toral subquasitorus ofR. By Lemma 2.7 and Lemma 2.2,
the subquasitorus T ×P ×R′ of Q is also toral, and according to Lemma 2.3, there

is a maximal torus T ′ of G such that T×P×R′ ⊂ T ′ and R = 〈R′ ·
∪ {f1, . . . , fr}〉 ⊂

N(T ′) with 〈R′ ∪ {f1, . . . , fi}〉 � 〈R′ ∪ {f1, . . . , fi+1}〉 for all i = 1, . . . , r− 1. Note
that the quasitorus generated by R′ ∪ {fi} is nontoral for all i = 1, . . . , r. We
have only to prove that r ≥ 2. But if r = 1, the maximality of Q implies that
(T ′)〈f1〉 = T × P ×R′, a contradiction with Lemma 2.6. �

Corollary 2.13. Any MAD-group of aut(f4) which does not contain a nontoral
3-group is T × R2 × R, where T is a torus, R is a finite toral group of odd order
and R2 is a finite nontoral 2-group, and either R is trivial or R2 has at least four
direct factors.

Proof. It is enough to apply the previous proposition jointly with Corollary 2.11
and Lemma 2.1, since aut(f4) is simply connected. �

In the last section we will prove that the group R in Corollary 2.13 has neces-
sarily to be trivial.
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3. Description of gradings on f4

There are four fine gradings on f4 described in [11] and in [10]. We enclose here a
description of each of them for the seek of completeness, since our main aim is to
prove that they are essentially all the possible fine gradings on f4. These descrip-
tions would also work for arbitrary (algebraically closed) fields of characteristic
different from 2 or 3. All the gradings on the symmetric composition algebras, as
well as the different constructions used for f4, can be found in detail in Sections 4
and 5 of [14].

Given a symmetric composition algebra (C, ∗, b) of dimension 8, consider the
orthogonal Lie algebra

o(C, b) =
{
d ∈ End

K

(C) | b(d(x), y) + b(x, d(y)) = 0 ∀x, y ∈ C
}
,

and the subalgebra of o(C, b)
3
(with componentwise multiplication) defined by

tri(C, ∗, b) = {(d0, d1, d2) ∈ o(C, b)3 | d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y) ∀x, y ∈ C},

called the triality algebra. One can form the Z2
2-graded Lie algebra

L = tri(C, ∗, b)⊕ ι0(C) ⊕ ι1(C) ⊕ ι2(C),

where the bracket is given by

• tri(C, ∗, b) is a Lie subalgebra of L,

• [(d0, d1, d2), ιi(x)] = ιi(di(x)),

• [ιi(x), ιi+1(y)] = ιi+2(x ∗ y) (indices modulo 3),

• [ιi(x), ιi(y)] = θi(tx,y),

being tx,y the element in tri(C, ∗, b) defined by

tx,y =
(
σx,y,

1

2
b(x, y) idC − rxly,

1

2
b(x, y) idC − lxry

)
,

with σx,y(z) = b(x, z)y− b(y, z)x, rx(z) = z ∗x and lx(z) = x ∗ z for all x, y, z ∈ C;
and where θ denotes the order 3 automorphism of tri(C, ∗, b) given by θ(d0, d1, d2) :=
(d2, d0, d1). This algebra is of type f4 independently of the considered 8-dimensional
symmetric composition algebra C. There are two of such algebras up to isomor-
phism: the Okubo algebra Ok and the para-Hurwitz algebra pH. The algebra
Ok has a natural Z2

3-grading (coming from the nontoral Z2
3-grading on the matrix

algebra Mat3×3(K)) and the algebra pH has a natural Z3
2-grading (coming from

the Z3
2-grading on the octonion algebra). So, we can consider on L ∼= f4:

A Z4-grading given by the root decomposition on L relative to a Cartan subal-
gebra.

A Z3
3-grading obtained by combining the Z2

3-grading on Ok with the Z3-grading
on L induced by the triality automorphism θ.
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A Z5
2-grading obtained by combining the Z3

2-grading on pH with the following
Z2
2-grading on L: L(0̄,0̄) = tri(C, ∗, b), L(0̄,1̄) = ι0(C), L(1̄,0̄) = ι1(C) and

L(1̄,1̄) = ι2(C).

A Z3
2 × Z-grading. Consider the Albert algebra J = K3 ⊕ ι0(C)⊕ ι1(C)⊕ ι2(C)
with the product described in Theorem 5.15 of [14], where C is the para-
Hurwitz algebra pH. Such algebra J has a Z-grading produced as the simul-
taneous diagonalization relative to 2[rι0(1), r(1,0,0)] ∈ Der(J ) (rx denotes the
multiplication operator in J ). It is compatible with the Z3

2-grading on pH,
and it induces the corresponding grading on Der(J ) ∼= f4.

4. 2-groups of aut(f4)

Taking in mind Corollary 2.13, our programme will be: First we will try to obtain
all the information about the 2-groups of aut(f4) by means of the spin group, and
afterwards we will extract the information about the 3-groups from the special
linear groups.

4.1. Spin group

Let V be a 9-dimensional K-vector space endowed with a nondegenerate quadratic
form q : V → K. Let bq : V × V → K be the associated symmetric bilinear form
given by bq(x, y) = 1

2 (q(x + y) − q(x) − q(y)). Recall that the orthogonal group
is O(V, q) = {f ∈ gl(V ) | bq(x, y) = bq(f(x), f(y))∀x, y ∈ V } and the special
orthogonal group is SO(V, q) = {f ∈ O(V, q) | det(f) = 1}.

It is well known that the spin group is the universal covering of the special
orthogonal group. A treatment of spin groups valid for our context can be found
in Chapter IV of [23]. Let us concrete a description suitable for our purposes.

Let T (V ) =
∑∞

n=0 V
⊗n be the associative tensor algebra. Let I be the ideal of

T (V ) generated by {v ⊗ v − q(v)1 | v ∈ V }. The Clifford algebra is the (unital)
associative algebra given by the quotient

Cl(V, q) = T (V )/I

and Cl(V, q)− is, as always, the same vector space endowed with the bracket [x, y] =
xy − yx. Let

μ : Cl(V, q) → Cl(V, q)

be the automorphism which extends μ(v) = −v for v ∈ V . As μ is an order 2
automorphism, it induces a Z2-grading on the Clifford algebra, with even and odd
parts denoted respectively by Cl(V, q)0̄ and Cl(V, q)1̄. If we denote by Cl(V, q)× the
group of invertible elements in the Clifford algebra, the Clifford group is defined by

Γ(V, q) := {x ∈ Cl(V, q)× | μ(x)V x−1 ⊂ V }.

Obviously we can consider the group homomorphism

ρ : Γ(V, q) → GL(V )
x 	→ ρ(x); ρ(x)(v) = μ(x)vx−1 ∀v ∈ V.
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As q(μ(x)vx−1) = q(v) for any v ∈ V , we actually have a representation ρ : Γ(V, q)
→ O(V, q). Any v ∈ V such that q(v) �= 0 is invertible, and −vwv−1 = (wv −
2bq(v, w)1)v

−1 = w − 2bq(v, w)/bq(v, v)v, hence v ∈ Γ(V, q) and ρ(v) is the re-
flection relative to the hyperplane orthogonal to v. According to the Cartan–
Dieudonné Theorem, every isometry of V is composition of reflections relative
to hyperplanes orthogonal to nonisotropic vectors, so that ρ(Γ(V, q)) = O(V, q),
Γ(V, q) = {λu1 . . . ur | λ ∈ K×, ui ∈ V, q(ui) �= 0, r ≥ 0} and ker(ρ) = K×

(= K \ {0}). As det(ρ(v)) = −1, we also conclude that ρ(Γ(V, q) ∩ Cl(V, q)0̄) =
SO(V, q) and Γ(V, q) ∩ Cl(V, q)0̄ = {λu1 . . . u2r | λ ∈ K×, ui ∈ V, q(ui) �= 0, r ≥ 0}.
Hence we have the following short exact sequences:

1 → K× → Γ(V, q) → O(V, q) → 1,
1 → K× → Γ(V, q) ∩ Cl(V, q)0̄ → SO(V, q) → 1.

The spin group lives inside the even part of the Clifford group. Take the spinor
norm N : Γ(V, q) → K× given by N(x) = μ(x∗)x, where ∗ is the involution given
by v∗ = v for any v ∈ V . In particular, N(v) = −q(v). The spin group is defined as
Spin(V, q) = {x ∈ Γ(V, q)∩Cl(V, q)0̄ | N(x) = 1}. As N(λu1 . . . u2r) = λ2π2r

i=1q(ui)
and K is algebraically closed, we can scale to get

Spin(V, q) = {±π2r
i=1ui | ui ∈ V, q(ui) = 1},

and now it is clear that ρ|Spin(V,q) : Spin(V, q) → SO(V, q) is still an epimorphism,
with kernel {±1} ∼= Z2. From now on ρ will denote this restriction ρ|Spin(V,q).

4.2. Distinguished elements in the spin group

Let us focus our attention on some remarkable elements in the Clifford and spin
groups, which will be of special relevance for our description of the MAD-groups
of Spin(V, q). Let

B := {e0, u1, u2, u3, u4, v1, v2, v3, v4}

be a K-basis of V such that the matrix of bq relative to B is
(

1 0 0
0 0 I4
0 I4 0

)
. We

denote also by

e1 = 1√
2
(u1 + v1), e3 = 1√

2
(u2 + v2), e5 = 1√

2
(u3 + v3), e7 = 1√

2
(u4 + v4),

e2 = i√
2
(u1 − v1), e4 = i√

2
(u2 − v2), e6 = i√

2
(u3 − v3), e8 = i√

2
(u4 − v4),

where i ∈ K is a primitive fourth root of the unit (i2 = −1). Thus, the matrix of bq
relative to the basis

B′ := {e0, e1, e2, e3, e4, e5, e6, e7, e8}

is the identity matrix I9. Observe first that q( 1√
2
(βui+

1
β vi)) = 1 for any β ∈ K×,

i = 1, 2, 3, 4 ({e1, . . . , e8} are particular cases). If we denote by [f ]B′ the matrix
associated to f ∈ O(V, q) with respect to the base B′, when computing the matrix
related to ρ( 1√

2
(βui +

1
β vi)), the block corresponding to {e2i−1, e2i} ⊂ B′ is

Rβ :=
1

2

(−β2 − 1
β2 i(β2 − 1

β2 )

i(β2 − 1
β2 ) β2 + 1

β2

)
.
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Hence the matrix related to the image of( 1√
2
(βui +

1

β
vi)
)( 1√

2
(ui + vi)

)
=

1

2

(
βuivi +

1

β
viui

)
∈ Spin(V, q)

has a block of the form

Sβ := RβR1 =
1

2

(
β2 + 1

β2 i(β2 − 1
β2 )

−i(β2 − 1
β2 ) β2 + 1

β2

)
.

Thus the element

sαβδε :=
1

16

(
αu1v1 +

1

α
v1u1

)(
βu2v2 +

1

β
v2u2

)(
δu3v3 +

1

δ
v3u3

)(
εu4v4 +

1

ε
v4u4

)
belongs to Spin(V, q) and [ρ(sαβδε)]B′ =

(
1 0 0 0 0
0 Sα 0 0 0
0 0 Sβ 0 0

0 0 0 Sδ 0
0 0 0 0 Sε

)
. Moreover,

(4.1) T = {sαβδε | α, β, δ, ε ∈ K×}

is a torus of Spin(V, q), since sαβδεsα′β′δ′ε′ = sαα′ββ′δδ′εε′ .

On the other hand, ρ(ei)(ej) = (−1)δijej for δij the Kronecker symbol, so that

(4.2) di := [ρ(ei)]B′ = diag{(−1)δij}j=0,...,8

is the diagonal matrix of size 9 whose entries in the diagonal are all 1’s up to
one −1 in the ith position. Hence eiej ∈ Spin(V, q) and [ρ(eiej)]B′ = didj .

4.3. Model of f4 based on b4

We describe in this subsection the Z2-grading on f4 such that Spin(V, q) is precisely
the subgroup of automorphisms preserving the grading. This kind of gradings on f4
whose even part type is b4 is well known, appearing for instance in [19].

With the notations of subsections 4.1 and 4.2, the orthogonal algebra

so(V, q) = {f ∈ gl(V ) | bq(f(x), y) + bq(x, f(y)) = 0 ∀x, y ∈ V }

is a Lie algebra of type b4. The space W = span〈u1, . . . , u4〉 is a totally isotropic
subspace of V . Consider the exterior algebra

S := ∧W = K⊕W ⊕ ∧2(W )⊕ ∧3(W )⊕ ∧4(W )

with the Z-grading given by |x| = n if x ∈ ∧n(W ). Thus End(S) =: E = ⊕n∈ZEn

is also Z-graded, for En = {f ∈ End(S) | f(∧m(W )) ⊂ ∧m+n(W ) ∀m ∈ N}. Let
us recall how so(V, q) acts on the 16-dimensional vector space S, following §8.A
of [24]. First consider the map

γ : V → End(∧W )

given by
γ(λe0 + u+ v) = λĨ + lu + dv

where u ∈ W , v ∈ span〈v1, . . . , v4〉 (which can be identified to W ∗ by means of
v 	→ bq(v,−)), and
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• Ĩ ∈ E0 is the map producing the Z2-grading on S, that is, Ĩ|K⊕∧2(W )⊕∧4(W )

= id and Ĩ|W⊕∧3(W ) = −id.

• The map lu : ∧W → ∧W is given by lu(w) = u∧w if w ∈ S. Thus lu ∈ E1.

• The map dv is defined on ∧n(W ) by induction on the degree n: dv(1) = 0,
dv(w) = 2bq(v, w)1 for w ∈ W and dv(x ∧ y) = dv(x) ∧ y + (−1)|x|x ∧ dv(y)
if x, y ∈ ∪4

m=0 ∧m (W ). In particular dv ∈ E−1.

It is clear that γ(x)2 = q(x)id∧W for any x ∈ V , so that γ induces a homomor-
phism of associative algebras γ̃ from Cl(V, q) to End(∧W ), and, in particular, a
homomorphism of Lie algebras from Cl(V, q)− to gl(∧W ) (which turns out to be
an isomorphism).

As we have a monomorphism ι : so(V, q) → Cl(V, q)− given by bq(a,−)c −
bq(c,−)a 	→ − 1

4 [a, c], the composition

γ̃ι : so(V, q) → gl(∧W )

provides a representation of the Lie algebra so(V, q). We know that this so(V, q)-
module ∧W is the spin module, that is, it is irreducible with maximal weight λ4
(λi the fundamental weights). Indeed, h = 〈hi | i = 1, . . . , 4〉 is a Cartan subal-
gebra of so(V, q) for hi := bq(vi,−)ui − bq(ui,−)vi. This element acts on ∧W as
γ̃(− 1

4 [vi, ui]) =
1
4 (luidvi − dvi lui), in other words

(4.3) hi · (uj1 ∧ · · · ∧ ujr) =
{

1
2uj1 ∧ · · · ∧ ujr if i ∈ {j1, . . . , jr}
− 1

2uj1 ∧ · · · ∧ ujr if i /∈ {j1, . . . , jr}.

Note that a set of simple roots of b4 relative to the Cartan subalgebra h is given by
α1(h) = ω1−ω2, α2(h) = ω2−ω3, α3(h) = ω3−ω4, α4(h) = ω4, if h =

∑4
i=1 ωihi is

a generic element in h. Now a maximal vector in ∧W is s = u1∧u2∧u3∧u4, since
it is annihilated by Lα for all α ∈ Φ+. That means that the maximal weight λ is
given by h·s = λ(h)s, so that λ =

∑4
i=1miλi, wheremi = hαi ·s for hαi = hi−hi+1

(i ≤ 3), hα4 = 2h4. Equation (4.3) gives that such maximal weight is λ = λ4.

Now we construct

L = L0̄ ⊕ L1̄ = so(V, q)⊕ (∧W )

with the product given by

• so(V, q) is a Lie subalgebra.

• If f ∈ so(V, q) and s ∈ ∧W , we define [f, s] = γ̃ι(f)(s), that is, L0̄ acts in L1̄

by means of the spin action.

• There is, up to scalar, an unique so(V, q)-invariant map ∧W×∧W → so(V, q)
(there is only one module of type V (λ2) in the decomposition into irreducible
submodules of V (λ4) ⊗ V (λ4)). To fix a scalar, we have fixed an so(V, q)-
invariant symmetric bilinear form (·|·) : ∧W × ∧W → K (also determined
up to scalar) and we have taken the dualized action of the previous one: if
s, s′ ∈ ∧W , we take [s, s′] ∈ so(V, q) the only element satisfying tr([s, s′] f) =
([f, s]|s′) for all f ∈ so(V, q).
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This Z2-graded Lie algebra L is simple of type f4. We call ϕ the grading automor-
phism:

(4.4) ϕ|so(V,q) = id, ϕ|∧W = −id.

The aim of this subsection is to prove next that the centralizer of ϕ in the
automorphism group of f4 is just the group Spin(V, q). As usual, Ad: SO(V, q) →
gl(so(V, q)) will denote the adjoint map given by AdA(f) = AfA−1 for any A ∈
SO(V, q), f ∈ so(V, q) ≡ b4.

Proposition 4.1. If x ∈ Spin(V, q), the map ψx : f4 → f4 given by ψx|so(V,q) =
Ad ρ(x) and ψx|∧W = γ̃(x), is an automorphism of the Lie algebra f4; and the map

ψ : Spin(V, q) → Centaut(f4)(ϕ)

given by x 	→ ψx is a group isomorphism.

Proof. Check first that ψx is an automorphism, so that ψ is well defined. Take
s, s′ ∈ S and f = bq(a,−)b − bq(b,−)a ∈ b4, for a, b ∈ V . As [f, s] = γ̃ι(f)(s) =
γ̃(− 1

4 [a, b])(s), then ψx[f, s] = γ̃(− 1
4x[a, b])(s). But ψx(f) = ρ(x)fρ(x)−1, so that

[ψx(f), ψx(s)] = γ̃ι(ρ(x)fρ(x)−1)γ̃(x)(s) = γ̃
(
− 1

4
[ρ(x)a, ρ(x)b]x

)
(s).

Taking into account that ρ(x)ax = μ(x)ax−1x = xa (since μ|Spin(V,q) = id), we get

ψx([f, s]) = [ψx(f), ψx(s)].

On the other hand, γ̃(x)−1[f, γ̃(x)(s)] = γ̃(x)−1γ̃ι(f)γ̃(x)(s) = γ̃(−1
4 x

−1[a, b]x)(s) =
[ρ(x)−1fρ(x), s], so that, as (·|·) is Spin(V, q)-invariant,

tr([ψx(s), ψx(s
′)]f) = ([f, ψx(s)]|ψx(s

′)) = (γ̃(x)−1[f, γ̃(x)(s)]|s′)
= ([ρ(x)−1fρ(x), s]|s′) = tr([s, s′]ρ(x)−1fρ(x))
= tr(ρ(x)[s, s′]ρ(x)−1f) = tr(ψx([s, s

′])f)

and, as f is arbitrary, consequently [ψx(s), ψx(s
′)] = ψx([s, s

′]). We have proved,
then, that ψx ∈ aut(f4).

Now note that if F ∈ Centaut(f4)(ϕ) such that F |b4 = idb4 , then F ∈ {idf4 , ϕ}.
Indeed, F |S ∈ homb4(S, S) = K idS by Schur’s Lemma, so there is β ∈ K such that
F |S = βidS , but, as [S, S] = b4, that scalar β ∈ {1,−1} and so F is respectively
{id, ϕ}. Let us see the epimorphic character of ψ: if F ∈ Centaut(f4)(ϕ), we can
find x ∈ Spin(V, q) such that ψx = F . Indeed, as F commutes with ϕ, it preserves
the Z2-grading, so we can consider the restriction F |b4 ∈ aut(b4) = Ad(SO(V, q)).
Hence there is A ∈ SO(V, q) such that AdA = F |b4 . Take x ∈ ρ−1(A), so that
ρ−1(A) = {±x}. Thus F−1 ◦ ψx|b4 = idb4 and, as above, F−1 ◦ ψx ∈ {id = ψ1,
ϕ = ψ−1}. Hence F ∈ {ψx, ψ−x}.

Finally let us check that ψ is injective. If ψx = idf4 , then Ad ρ(x) = idb4 , and
ρ(x)f = fρ(x) for all f ∈ so(V, q). Thus ρ(x) = idV and x ∈ ker(ρ) = {±1}. The
possibility x = −1 does not occur since ψ−1 = ϕ �= idf4 . �
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4.4. Every 2-group lives in Spin(V, q)

We would like to prove that every MAD-group with a nontoral 2-group con-
tains some automorphism conjugated to the automorphism ϕ described in Equa-
tion (4.4), that is, some automorphism whose fixed subalgebra is of type b4. I ac-
knowledge A. Viruel for the communication of this result. For its proof, first recall
a well known fact.

Lemma 4.2 (Lemma 3.1 in [21]). Fix a maximal torus T ⊂ aut(L) for L a
semisimple Lie algebra, and an element f ∈ T . Let W = Naut(L)(T )/T and
Wf = NCent(f)(T )/T be the Weyl groups of aut(L) and of the centralizer Cent(f),
respectively. Then the number of elements in T conjugate (in aut(L)) to f is just
the Weyl group index [W : Wf ].

Proof. Recall that two elements in T are conjugate in aut(L) if and only if they
are conjugate in Naut(L)(T ). Thus the set of elements in T conjugate to f ∈ T
is just {σfσ−1 | σ ∈ Naut(L)(T )}, which is in bijective correspondence with the
set of left classes {wWf | w ∈ W}. Such bijection is given by σfσ−1 	→ (σT )Wf .
Note that if two elements σ, σ′ ∈ Naut(L)(T ) verify (σT )Wf = (σ′T )Wf , there is
c ∈ NCent(f)(T ) such that σ′−1σT = cT , hence σ′−1σ ⊂ Cent(f)T ⊂ Cent(f) so
that σfσ−1 = σ′fσ′−1. �

Thus, if Waut(f4) = Naut(f4)(T )/T and WSpin(V,q) = NSpin(V,q)(T )/T , then the
index [Waut(f4) : WSpin(V,q)] is computed easily by counting in any maximal torus
of aut(f4) how many elements are fixing a subalgebra of type b4. Recall from [22]
that there are two conjugacy classes of order 2 automorphisms in aut(f4), charac-
terized by fixing subalgebras of type b4 and c3 ⊕ a1, whose dimensions are 36
and 24 respectively. If h is a Cartan subalgebra, f4 = h ⊕ (⊕α∈ΦLα) denotes the
decomposition in root spaces relative to h and Δ = {αi}4i=1 is a set of simple
roots of Φ, a maximal torus can be described as {tx,y,z,u | x, y, z, u ∈ K×}, where
t = tx,y,z,u is the automorphism determined by t|h = id, t|Lα1

= x id, t|Lα2
= y id,

t|Lα3
= z id and t|Lα4

= u id. As the eigenvalues are

(1, 1, 1, 1) ∪ (u, z, y, x, zu, yz, xy, xyz, yzu, yz2, xyzu, yz2u, xyz2, xyz2u, yz2u2,
xy2z2, xy2z2u, xyz2u2, xy2z3u, xy2z2u2, xy2z3u2, xy2z4u2, xy3z4u2, x2y3z4u2)±1

the only choices of (x, y, z, u) ∈ {±1}4 providing a list with 36 1′s and 16 −1’s are
(1, 1, 1,−1), (1, 1,−1, 1) and (1, 1,−1,−1). Hence, according to Lemma 4.2, the
index of the Weyl group of Spin(V, q) in the Weyl group of aut(f4) is 3 (of course
this is known in the literature, see, for instance, page 248 of [20]). A consequence
is the following.

Proposition 4.3. If a quasitorus Q of aut(f4) is the direct product of a torus T
and a 2-group, then Q is conjugated to a subquasitorus of Spin(V, q).

Proof. By Lemma 2.3, we can change Q by one of its conjugated quasitori such
that T ⊂ T and Q ⊂ Naut(f4)(T ), where T is the maximal torus of Spin(V, q)
defined in Equation (4.1), which is also a maximal torus of aut(f4) through the
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map ψ defined in Proposition 4.1. Denote by p : Waut(f4) → Waut(f4)/WSpin(V,q)

the projection onto the set of left classes. Let f be an element in Q. We can
take f = f0t with t ∈ T and f0 ∈ Naut(f4)(T ) of order a power of 2. Thus f0T ∈
Waut(f4) and its projection p(f0T ) ∈ Waut(f4)/WSpin(V,q) has order a power of 2.
But [Waut(f4) : WSpin(V,q)] = 3, so that p(f0T ) = 1 and there is f1 ∈ NSpin(V,q)(T )
such that f0T = f1T . Hence f ∈ f0T = f1T ⊂ Spin(V, q). �

In other words, such Q ≤ aut(f4) commutes with an automorphism conjugated
to ϕ which fixes a subalgebra of type b4, and hence it is contained in a MAD-group
of Spin(V, q). We will compute these MAD-groups by taking advantage of the
knowledge of the MAD-groups of SO(V, q), since the map ρ : Spin(V, q) → SO(V, q)
will allow us to use that information.

4.5. MAD-groups of SO(9)

According to [3], every grading on the Lie algebra so(V, q) ∼= b4 is elementary, which
means induced by the natural module V . Let us explain a little bit more about this
concept. If we choose an arbitrary (finitely generated and abelian) group G, and
take a decomposition V = ⊕g∈GVg as a sum of vector subspaces (possibly some
of them zero), we have a G-grading induced on gl(V ) = L = ⊕g∈GLg given by
Lg = {f ∈ gl(V ) | f(Vh) ⊂ Vg+h ∀h ∈ G} (although G is not necessarily generated
by the support). Such grading induces a G-grading on so(V, q) = g provided
g = ⊕g∈G(g ∩ Lg). We will describe this kind of gradings simply by assigning a
degree in G to each element in some convenient basis of V .

Following the arguments in [3] or [17], it is easy to conclude that there are five
fine gradings on so(V, q), over the universal grading groups (see [9] for the definition
and details) Z4, Z3 ×Z2

2, Z
2 ×Z4

2, Z×Z6
2 and Z8

2, induced by the following choices
of basis and assignments of degree on the vector space V :

• The Z4-grading induced by

e0 	→ (0000)
u1 	→ (1000) u2 	→ (0100) u3 	→ (0010) u4 	→ (0001)
v1 	→ (−1000) v2 	→ (0−100) v3 	→ (00−10) v4 	→ (000−1).

• The Z3 × Z2
2-grading induced by

e0 	→ (0001̄1̄) e1 	→ (0001̄0̄) e2 	→ (0000̄1̄)
u2 	→ (1000̄0̄) u3 	→ (0100̄0̄) u4 	→ (0010̄0̄)
v2 	→ (−1000̄0̄) v3 	→ (0−100̄0̄) v4 	→ (00−10̄0̄).

• The Z2 × Z4
2-grading induced by

e0 	→ (001̄1̄1̄1̄)
e1 	→ (001̄0̄0̄0̄) e2 	→ (000̄1̄0̄0̄) e3 	→ (000̄0̄1̄0̄) e4 	→ (000̄0̄0̄1̄)
u3 	→ (100̄0̄0̄0̄) v3 	→ (−100̄0̄0̄0̄) u4 	→ (010̄0̄0̄0̄) v4 	→ (0−10̄0̄0̄0̄).
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• The Z× Z6
2-grading induced by

e0 	→ (01̄1̄1̄1̄1̄1̄) e1 	→ (01̄0̄0̄0̄0̄0̄) e2 	→ (00̄1̄0̄0̄0̄0̄)
e3 	→ (00̄0̄1̄0̄0̄0̄) e4 	→ (00̄0̄0̄1̄0̄0̄) e5 	→ (00̄0̄0̄0̄1̄0̄)
e6 	→ (00̄0̄0̄0̄0̄1̄) u4 	→ (10̄0̄0̄0̄0̄0̄) v4 	→ (−10̄0̄0̄0̄0̄0̄).

• The Z8
2-grading induced by

e0 	→ (1̄1̄1̄1̄1̄1̄1̄1̄) e1 	→ (1̄0̄0̄0̄0̄0̄0̄0̄) e2 	→ (0̄1̄0̄0̄0̄0̄0̄0̄)
e3 	→ (0̄0̄1̄0̄0̄0̄0̄0̄) e4 	→ (0̄0̄0̄1̄0̄0̄0̄0̄) e5 	→ (0̄0̄0̄0̄1̄0̄0̄0̄)
e6 	→ (0̄0̄0̄0̄0̄1̄0̄0̄) e7 	→ (0̄0̄0̄0̄0̄0̄1̄0̄) e8 	→ (0̄0̄0̄0̄0̄0̄0̄1̄).

The induced gradings on so(V, q) coincide with the gradings produced as the
simultaneous diagonalizations relative to the following MAD-groups of SO(V, q)
(respectively), where we are identifying the elements in SO(V, q) with their matrices
relative to the base B′ (notations as in Subsection 4.2):

• Q1 =

{(
1 0 0 0 0
0 Sα 0 0 0
0 0 Sβ 0 0

0 0 0 Sδ 0
0 0 0 0 Sε

)
| α, β, δ, ε ∈ K×

}
,

• Q2 = 〈
{(−1 0 0

0 −1 0
0 0 I7

)
,

(−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 I6

)
,

(
I3 0 0 0
0 Sβ 0 0

0 0 Sδ 0
0 0 0 Sε

)
| β, δ, ε ∈ K×

}
〉,

• Q3 = 〈
{
d0d1, d0d2, d0d3, d0d4,

(
I5 0 0
0 Sδ 0
0 0 Sε

)
| δ, ε ∈ K×

}
〉,

• Q4 = 〈
{
d0d1, d0d2, d0d3, d0d4, d0d5, d0d6,

(
I7 0
0 Sε

)
| ε ∈ K×}〉,

• Q5 = 〈{d0d1, d0d2, d0d3, d0d4, d0d5, d0d6, d0d7, d0d8}〉.

4.6. MAD-groups of Spin(9)

If Q is a MAD-group of Spin(V, q), that is, a maximal abelian subgroup of semisim-
ple elements, its image ρ(Q) is also abelian and formed by semisimple elements,
so that it lives in a MAD-group of SO(V, q) and there are f ∈ SO(V, q) and i ∈
{1, . . . , 5} such that ρ(Q) ⊂ fQif

−1. By replacing Q with g−1Qg for g ∈ ρ−1(f),
we can assume without loss of generality that such Q ⊂ ρ−1(Qi). But it is easy to
have concrete descriptions of generators of the group ρ−1(Qi), taking into account
that ρ(e0ei) = d0di, according to Equation (4.2):

• ρ−1(Q1) = {sαβδε | α, β, δ, ε ∈ K×} = T ,

• ρ−1(Q2) = 〈{±e0e1,±e0e2, s1βδε | β, δ, ε ∈ K×}〉,

• ρ−1(Q3) = 〈{±e0e1,±e0e2,±e0e3,±e0e4, s11δε | δ, ε ∈ K×}〉,

• ρ−1(Q4) = 〈{±e0e1,±e0e2,±e0e3,±e0e4,±e0e5,±e0e6, s111ε | ε ∈ K×}〉,

• ρ−1(Q5) = 〈{±e0e1,±e0e2,±e0e3,±e0e4,±e0e5,±e0e6,±e0e7,±e0e8}〉.
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Note that these groups ρ−1(Qi) ≤ Spin(V, q) are not abelian if i �= 1, whereas
ρ−1(Q1) is a 4-dimensional maximal torus of Spin(V, q). The following considera-
tions about some of their elements will be useful for us:

(i) The element eiej has order 4 if i �= j ((eiej)
2 = −1), and eiejekel has order 2

if i, j, k, l are distinct.

(ii) If i, j, k are distinct indices, eiej anticommutes with eiek. More generally,
(ei1 . . . eis)(ej1 . . . ejr ) = (−1)m(ej1 . . . ejr )(ei1 . . . eis) if m is the cardinal of
the set {i1, . . . , is} ∩ {j1, . . . , jr}.

(iii) If some sαβδε is in certain ρ−1(Qi), then it belongs to the center of such
ρ−1(Qi). In particular −1 = s−1111 = s1−111 = s11−11 = s111−1 belongs to
the center of ρ−1(Qi) for all i.

Lemma 4.4. If σ is a permutation of J = {0, 1, . . . , 8}, there is x ∈ Spin(V, q)
such that xejx

−1 ∈ {±eσ(j)} for all j ∈ J .

Proof. It is enough to check the result for one transposition. For σ = (1, 2), note
that

sξ111e1s
−1
ξ111 = e2,

sξ111e2s
−1
ξ111 = −e1,

sξ111ejs
−1
ξ111 = ej

for any j ∈ J \ {1, 2}, where ξ is a square root of i (ξ8 = 1). Observe also

that sξ111 = (ξ+ξ7)+(ξ3+ξ5)e1e2
2 , so that the element

(ξ+ξ7)+(ξ3+ξ5)eiej
2 ∈ Spin(V, q)

works for interchanging an arbitrary pair of indices {i, j} ⊂ J . �

Thus,

Theorem 4.5. If Q is a MAD-group of Spin(V, q), then it is conjugated to one of
the following quasitori:

(a) P1 = T ,

(b) P2 = 〈{e1e2e3e4, e1e2e5e6, e0e1e3e5, s111ε | ε ∈ K×}〉 ∼= Z3
2 ×K×,

(c) P3 = 〈{−1, e1e2e3e4, e1e2e5e6, e1e2e7e8, e1e3e5e7}〉 ∼= Z5
2.

Remark 4.6. Note that these Pi’s are actually MAD-groups of Spin(V, q). To
be sure we have only to check that P2 is not subconjugated to P1 = T , that is,
that P ′

2 = 〈{e1e2e3e4, e1e2e5e6, e0e1e3e5}〉 is a nontoral group isomorphic to Z3
2.

This is equivalent to proving that ρ(P ′
2) is a nontoral group of SO(V, q). Identi-

fying the elements in so(V, q) and SO(V, q) with their matrices relative to B′, a
straightforward computation shows that the set of skewsymmetric matrices of size 9
which commute with 〈{d1d2d3d4, d1d2d5d6, d0d1d3d5}〉 is the 1-dimensional space
{(aij)i,j=0...8 | a78 = −a87, aij = 0 otherwise}. Thus the fixed component by the
diagonalization produced by ρ(P ′

2) has dimension strictly less than 4 (precisely 1),
so that it does not contain a Cartan subalgebra and the grading is nontoral (see
page 94 of [9]).
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Proof of Theorem 4.5. We can suppose that Q is an abelian subgroup of some
ρ−1(Qi). Note also that −1 ∈ Q by maximality of Q, since 〈−1, Q〉 is always
abelian and diagonalizable.

If i = 1, then Q = ρ−1(Q1) = T by maximality (T is already abelian).

If i = 2, then {s1βδε | β, δ, ε ∈ K×} � Q ⊂ {s1βδε} · {e0e1, e0e2, e1e2, 1}.
Necessarily there is an element x ∈ {e0e1, e0e2, e1e2} belonging to Q. But no other
element in that set commutes with x, hence Q = {s1βδε} · {1, x}. We can assume
that x = e1e2 = s−i111, because of the previous lemma. But then Q � T , which
contradicts the maximality of Q.

If i = 3, then {s11δε | δ, ε ∈ K×} � Q ⊂ {s11δε} · 〈{eiej | i, j = 0, 1, . . . , 4}〉.
There is x̄ = (x1, . . . , xr) with xi = ai,1 . . . ai,ni , ai,j ∈ {e0, . . . , e4}, ni even,
such that Q = {s11δε} · 〈{x1, . . . , xr}〉 and each xj /∈ {s11δε} · 〈{x1, . . . , xj−1}〉.
Among the possible x̄ verifying such conditions, choose one such that the at-
tached n̄ = (n1, . . . , nr) ∈ Nr is minimum in ∪s∈NN

s with the lexicographical
order. In particular n1 ≤ · · · ≤ nr, taking into account that for any permutation
σ ∈ Sr, x̄

σ = (xσ(1), . . . , xσ(r)) verifies the same conditions as x̄. Indeed, assume
that xσ(j) ∈ {s11δε} · 〈{xσ(1), . . . , xσ(j−1)}〉. Thus xσ(j) = s11dex

s1
σ(1) . . . x

sj−1

σ(j−1)

for some d, e ∈ K× and si ∈ {0, 1}, since x2i = (−1)
ni
2 ∈ {±1}. Now we choose

k ∈ {1, . . . , j − 1} such that σ(k) is the greatest index with sk �= 0 (necessarily
σ(k) > σ(j) and sk = 1) and then xσ(k) = ±s11dexs1σ(1) . . . x̂

sk
σ(k) . . . x

sj−1

σ(j−1)xσ(j) ∈
{s11δε} · 〈{x1, . . . , xσ(k)−1}〉, a contradiction. As Spin(V, q) is a simply connected
group, Lemma 2.1 and Lemma 2.2 can be applied to get that r ≥ 3. If n1 = 2,
then we can assume that x1 = e1e2 by Lemma 4.4, because the element used for
conjugating does not change s11δε. In the same way we can assume that x2 = e3e4
if n2 = 2 (and x2 = e1e2e3e4 if n2 = 4, but then n̄ would not be minimal). But
now there is no possibility for x3 (it should have an even -not 2- number of indices
in common with {1, 2} and with {3, 4}). If n1 = 4, then we can assume that
x1 = e1e2e3e4 but there is no x2 with the required conditions.

If i = 4, we have a similar situation: {s111ε | ε ∈ K×} � Q ⊂ {s111ε} ·
〈{eiej | i, j = 0, 1, . . . , 6}〉, so that we can take Q = {s111ε} · 〈{x1, . . . , xr}〉 for
certain xj ∈ Spin(V, q)\{s111ε}·〈{x1, . . . , xj−1}〉 product of nj ∈ {2, 4, 6} elements
in {e0, . . . , e6}. Again the r ≥ 3 generators have been chosen such that n̄ =
(n1, . . . , nr) is minimum, and, in particular, n1 ≤ · · · ≤ nr. If n1 = n2 = 2, then
we can assume that x1 = e1e2 = s−i111 and that x2 = e3e4, again by Lemma 4.4.
As the ei’s involved in x3 are only e0, e5, e6 (otherwise there would be another x̄′

with n′
3 < n3 so that n̄′ = (n1, n2, n

′
3, . . . ) is lesser than n̄), this implies that

n3 = 2, so that we can assume that x3 = e5e6. But nothing more in ρ−1(Q4)
commutes with all these elements, hence Q = {s111ε} · 〈{s−i111, s1−i11, s11−i1}〉,
which is strictly contained in T , a contradiction. If n1 = 2 and n2 = 4 we can
assume that x1 = e1e2 and that x2 = e3e4e5e6. Now there is no x3 satisfying the
conditions (with at least four ei’s involved, then e1 and e2 would appear and we
could lessen n3 in n̄). Neither there is any possibility with n1 = 2 and n2 = 6.
Hence n1 = 4. That forces n2 = 4 = n3 because if some ni = 6, xi would have four
indices in common with x1 (there are not enough elements for having only two in
common) and x1xi would have only two involved elements (getting n̄′ less than n̄
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again). So we can assume that x1 = e1e2e3e4, that x2 = e1e2e5e6, and that x3
has just two ei’s in common with x1 and 2 with x2. These elements cannot be e1
and e2 (there is only e0 to add) so that there are in x3 one element in {e1, e2}, one
element in {e3, e4} and one element in {e5, e6}, and consequently we can assume
that x3 = e0e1e3e5. Now P2 ⊂ Q, but the only elements in ρ−1(Q4) commuting
with P2 belong to P2, so that P2 = Q.

If i = 5, we can take similarly to the previous cases Q = 〈{−1, x1, . . . , xr}〉,
where each xj is a product of an even number nj ∈ {2, 4, 6, 8} of elements in
{e0, . . . , e8}, satisfying that xj /∈ 〈{−1, x1, . . . , xj−1}〉, n̄ = (n1, . . . , nr) mini-
mum, n1 ≤ · · · ≤ nr and r ≥ 3. If n̄ = (2, 2, 2, . . . ), then we can change the
generators by x1 = e1e2, x2 = e3e4, x3 = e5e6 and then necessarily n4 = 2
and we can take x4 = e7e8. Thus nothing more can be added and Q ⊂ T . If
n̄ = (2, 2, 4, . . . ), then we can change the generators into x1 = e1e2, x2 = e3e4,
x3 = e5e6e7e8 and again nothing more can be added and Q ⊂ T . The choice
n̄ = (2, 2, 6, . . . ) would not provide n̄ minimal. If n̄ = (2, 4, . . . ), then we can
change the generators into x1 = e1e2 and x2 = e3e4e5e6. If n3 = 4, we can
take x3 = e5e6e7e8, so that also n4 = 4 and x4 has two elements in {3, 4, 5, 6}
and two in {5, 6, 7, 8} (none in {1, 2}). Thus we can take x4 = e0e3e5e7 and
necessarily Q = 〈{−1, e1e2, e3e4e5e6, e5e6e7e8, e0e3e5e7}〉, which is not a MAD-
group, because according to Lemma 4.4 the element x ∈ Spin(V, q) related to the
permutation σ =

(
0 1 2 3 4 5 6 7 8
0 7 8 3 4 1 2 5 6

)
verifies that xQx−1 is strictly con-

tained in P2. Of course the case n3 = 6 is not possible and we conclude that
n1 = 4. Now we get that n1 = n2 = n3 = 4 and modify the generators to be ei-
ther (x1, x2, x3) = (e1e2e3e4, e1e2e5e6, e1e2e7e8) or (e1e2e3e4, e1e2e5e6, e1e3e5e7).
The generated groups are different, even though both are isomorphic to Z3

2 as ab-
stract groups, the first one is obviously toral (just contained in T ), but the second
one is nontoral according to Remark 4.6 (we talked there about e0e1e3e5 as in
case i = 4, but we can map e0e1e3e5 into ±e1e3e5e7 without moving e1, . . . , e6 by
Lemma 4.4). In both cases there is a fourth element in ρ−1(Q5) commuting with
them: x4 = e1e3e5e7 and x4 = e1e2e7e8 respectively, which obviously leads us to
the same Q. Now there is no possibility of adding anything else, so that r = 4.

�

Note that ϕ = ψ−1 ∈ ψ(Pi) for all i = 1, 2, 3. They are the only MAD-groups
containing ϕ:

Corollary 4.7. If Q is a MAD-group of aut(f4) which contains ϕ, then Q is
conjugated to

(a) ψ(P1) ∼= (K×)4,

(b) ψ(P2) ∼= Z3
2 ×K×,

(c) ψ(P3) ∼= Z5
2.

Proof. As ϕ ∈ Q, Q is contained in Centaut(f4)(ϕ), which, according to Proposi-
tion 4.1, coincides with ψ(Spin(V, q)). Taking into account that ψ is an isomor-
phism, Theorem 4.5 gives the result. �
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5. 3-groups of aut(f4)

The objective here is to prove

Theorem 5.1. There is an only nontoral 3-subgroup of aut(f4). It is isomorphic
to Z3

3 as abstract group. It is a MAD-group.

There are several results in the literature related to this one, as

Proposition 5.2 (Proposition 3.5 in [27], more detailed in Theorem (7.4) of [16]).
There is an only nontoral elementary 3-group of aut(f4). It is isomorphic to Z3

3

as an abstract group. It is a MAD-group.

The problem is that we cannot conclude Theorem 5.1 from this proposition,
at least not directly, as we observed in Remark 2.10. On the other hand, the
computational methods do not turn out to be difficult for this prime, but precisely
our main aim in this paper is to avoid completely the usage of computer. Thus, we
proceed as in the case of the prime 2, following similar steps: a nontoral 3-group
must contain some order 3 automorphism fixing a subalgebra of type a2 ⊕ a2 and
hence it lives in the corresponding centralizer, certain quotient of SL(3)2. Then
we try to use our knowledge of the gradings on matrix algebras.

5.1. Model of f4 based on 2a2

Now let V and W be 3-dimensional vector spaces and take

L = L0̄ ⊕ L1̄ ⊕ L2̄

the Z3-graded Lie algebra given by

L0̄ = sl(V )⊕ sl(W ), L1̄ = V ⊗ S2(W ), L2̄ = V ∗ ⊗ S2(W ∗),

where S2(U) denotes the symmetric tensors in U ⊗ U and the product is given in
the following way:

• sl(V )⊕ sl(W ) is a Lie subalgebra.

• The actions of L0̄ on V ⊗ S2(W ) and on V ∗ ⊗ S2(W ∗) are the natural ones.

• We have fixed a nonzero trilinear alternating map det : V × V × V → K so
that we identify V ∧V with V ∗ by means of u∧v 	→ det(u, v,−). For det∗ the
dual map of det, we also identify V ∗∧V ∗ with V . Proceed similarly withW .
Now for any u, v ∈ V, w, x ∈ W, f, g ∈ V ∗, h, j ∈ W ∗, and denoting by fu
the endomorphism f(−)u ∈ gl(V ) and by πf ≡ f − 1

3 tr(f)id the projection
on the traceless endomorphisms,

[f ⊗ h · h, u⊗ w · w] = h(w)2πfu + f(u)h(w)πhw ,
[u⊗ w · w, v ⊗ x · x] = (u ∧ v)⊗ (w ∧ x) · (w ∧ x),
[f ⊗ h · h, g ⊗ j · j] = (f ∧ g)⊗ (h ∧ j) · (h ∧ j).
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The so described algebra is simple of type f4 (see [8] for details about this and other
constructions of f4). Call φ the order 3 grading automorphism. We compute its
centralizer. Note that now the adjoint map denotes Ad: SL(V ) → gl(sl(V )) given
by Ad x(f) = xfx−1 for any x ∈ SL(V ), f ∈ sl(V ) ≡ a2, and similarly for W . For
x ∈ SL(V ), y ∈ SL(W ), consider the map Ψx,y : f4 → f4 given by Ψx,y|sl(V ) = Adx,
Ψx,y|sl(W ) = Ad y, Ψx,y(v⊗w1 ·w2) = (x · v)⊗ (y ·w1) · (y ·w2) for any v ∈ V and
w1, w2 ∈ W , and Ψx,y(f ⊗ g1 · g2) = (x · f)⊗ (y · g1) · (y · g2) for any f ∈ V ∗ and
g1, g2 ∈W ∗, where · denotes the symmetric product as well as the action of SL on
its natural and dual representations.

Proposition 5.3. The map Ψx,y is an automorphism of the Lie algebra L = f4
for all x ∈ SL(V ) and y ∈ SL(W ); and the map

Ψ: SL(V )× SL(W ) → Centaut(f4)(φ)

given by (x, y) 	→ Ψx,y is a group epimorphism with kernel {(ωnidV , ω
nidW ) :

n = 0, 1, 2} ∼= Z3, for ω a primitive cubic root of the unit.

Proof. Proceed as in the proof of Proposition 4.1 to check that this is a well defined
surjective map, and of course a group homomorphism. Let us compute the kernel.
If Ψx,y = idf4 , the element x commutes with sl(V ), and hence there is α ∈ K

such that x = α idV . But, as det(x) = 1, necessarily α3 = 1. In the same way,
y = β idW with β3 = 1. Now Ψx,y|L1̄

= αβ2 id, so that αβ2 must be equal to 1
and hence α = β. �

5.2. Every 3-group lives in SL(3)2/Z3

We would like to prove that every nontoral 3-group contains some automorphism
conjugated to φ.

According to [20], page 248, the index of the Weyl group of Centaut(f4)(φ) in
the Weyl group of aut(f4) is 32 (this number can also be easily computed with the
trick described in Lemma 4.2), coprime to 3. Again this fact implies that

Proposition 5.4. If Q is a 3-group of aut(f4), then Q is conjugated to a subqua-
sitorus of Centaut(f4)(φ).

Which can be proved analogously to Proposition 4.3.

5.3. MAD-groups of SL(3)

Proposition 5.5. There are four fine gradings on the algebra sl(3). Their grading
groups are

Z2, Z× Z2, Z3
2, Z2

3.

Equivalently, up to conjugation there are four MAD-groups of

aut(sl(3)) ∼= PSL(3)� Z2.
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This result can be concluded from [5], but the gradings are explicitly computed
in [18]. We do not really need a concrete description of all the gradings, it is enough
for our purposes to recall which is the Z2

3-nontoral grading. If we denote by

b :=

⎛⎝1 0 0
0 ω 0
0 0 ω2

⎞⎠ , c :=

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠ ,

we can observe that b and c are elements of order 3 in SL(3) that do not commute:
bc = ωcb. On the contrary, their classes in PSL(3) = SL(3)/〈ωI3〉 do commute,
and 〈{b̄, c̄}〉 ∼= Z2

3 is a MAD-group of PSL(3), where x̄ denotes the class of the
element x ∈ SL(3) modulo 〈ωI3〉.

Identify SL(V ) and SL(W ) with SL(3) by means of their matrices relative to
some fixed bases and also identify

Centaut(f4)(φ) = Ψ

(
SL(V )× SL(W )

〈(ωidV , ωidW )〉

)
≡ SL(3)× SL(3)

〈(ωI3, ωI3)〉
.

Now consider the projections

πi :
SL(3)× SL(3)

〈(ωI3, ωI3)〉
→ PSL(3) =

SL(3)

〈ωI3〉

given by π1(Ψ[x;y]) = x̄ and π2(Ψ[x;y]) = ȳ, where [x; y] denotes the class of the
element (x, y) ∈ SL(3)×SL(3) modulo 〈(ωI3, ωI3)〉. Note that they are well defined
because πi(Ψ[ωI3;ωI3]) = ωI3 = Ī3.

Proof of Theorem 5.1. Take Q a nontoral 3-group, which can be assumed contained
in Centaut(f4)(φ), so that each πi(Q) is a subquasitorus of aut(sl(3)) which lives
in (K×)2, (K×) × Z2, Z3

2 or Z2
3 by Proposition 5.5. It is clear, as in Lemma 2.5,

that πi(Q) is contained in (K×)2, K×, id or Z2
3. But πi maps nontoral groups into

nontoral groups, so that we can also assume that πi(Q) = 〈{b̄, c̄}〉 ∼= Z2
3. Now, an

arbitrary element in Q is Ψ[x;y] with x, y ∈ {ωn1bn2cn3 | ni = 0, 1, 2} =: P . Hence
x3 = y3 = I3, the element Ψ[x;y] has order 3 and Q is elementary, so that we could
apply Proposition 5.2 to finish our proof. But, again for selfcontainedness, we are
going to prove that

Q ∼= 〈{Ψ[I3;ωI3],Ψ[b;b],Ψ[c;c]}〉 =: Q′.

Take some elements Ψ[b;y1] ∈ π−1
1 (b̄) and Ψ[c;y2] ∈ π−1

1 (c̄). They commute, so that
[bc = ωcb; y1y2] = [cb; y2y1] and y1y2 = ωy2y1. In particular, y1 /∈ {I3, ωI3, ω2I3}.
As Ψ[I3;y]Ψ[b;y1]Ψ

−1
[I3;y]

= Ψ[b;yy1y−1], we can replace y1 by b (the 26 order 3 elements

in P are conjugated in SL(3)). This implies that y2 = ωn1bn2c. As 〈{Ψ[b;b],Ψ[c;y2]}〉
is toral (arguments as in Lemma 2.1), we can find Ψ[x3;y3] ∈ Q \ 〈{Ψ[b;b],Ψ[c;y2]}〉.
We can assume that x3 = I3 (if x3 = b, replace it by Ψ[x3;y3]Ψ

2
[b;b], and do the

same for any of the other possibilities for x3). Now, the commutativity condition
forces y3 to commute with b and bn2c, hence y3 ∈ {1, ω, ω2}I3. But y3 �= I3, so



294 C. Draper Fontanals

Ψ[I3;ωI3] ∈ Q. Thus 〈{Ψ[I3;ωI3],Ψ[b;b],Ψ[c;bn2c]}〉 ⊂ Q. Note now that the diagonal
matrix p = diag{1, ω2, 1} ∈ SL(3) verifies that pbp−1 = b and pcp−1 = bc, so that
Q′ is contained in a quasitorus conjugated to Q (by means of Ψ[I3;p] or Ψ[I3;p2]),
but Q′ is its own centralizer and we are done. �

6. MAD-groups of aut(f4)

Lemma 6.1. The automorphisms ψ±e1e2e3e4e5e6e7e8 are conjugated to ϕ.

Proof. Recall that any order 2 automorphism in aut(f4) fixes a subalgebra of type
either b4 or c3 ⊕ a1, so that the conjugacy class is determined by the dimension of
the fixed part of any representative in the class (36 and 24 respectively). Thus we
have only to check that dimFix(ϕi) = 36 for

ϕ1 = ψe1e2e3e4e5e6e7e8 and ϕ2 = ψ−e1e2e3e4e5e6e7e8 = ϕ1ϕ.

First note that the restriction to the even part ϕi|so(V,q)=Ad ρ(e1e2e3e4e5e6e7e8)
fixes the subalgebra so(V ′, q) for V ′ = span〈{e1, e2, e3, e4, e5, e6, e7, e8}〉, which is
a Lie algebra of type d4 and dimension 28.

In order to compute the fixed part of ϕi|∧W , note that γ̃(e1e2) = γ̃( i
2 [v1, u1]) =

−2iγ̃ι(h1) and, taking into account Equation (4.3), if s = uj1 ∧ · · · ∧ ujr ,

ϕ1(s) = −ϕ2(s) = (2i)4h1 · (h2 · (h3 · (h4 · s))) = (−1)n1+n2+n3+n4s

where ni = 0 if i ∈ {j1, . . . , jr} and ni = 1 otherwise. Hence
∑4

i=1 ni = 4− r and
ϕ1(s) = s just when r is even. This means that Fixϕ1 = ∧0̄W and Fixϕ2 = ∧1̄W ,
so that dimFixϕi|∧W = 8 and dimFixϕi = 36, as desired. �

Theorem 6.2. The fine gradings on f4 are, up to equivalence, the four fine gradings
described in Section 3.

Proof. Take Q a MAD-group of aut(f4) different from the maximal torus. If Q
contains a nontoral 3-group R3, then R3 is itself a MAD-group by Theorem 5.1,
and hence Q = R3. Otherwise Q contains R2 a nontoral 2-group by Corollary 2.11.
Let us show that in this case Q is conjugated to either ψ(P2) or ψ(P3), where P2

and P3 are described in Theorem 4.5. According to Corollary 2.13, we are in
the following situation: Q = T × R2 × R with T a torus, R2 a nontoral 2-group
and R a finite group of odd order. Now, by Proposition 4.3, we can assume that
T × R2 ⊂ ψ(Spin(V, q)) and, by Theorem 4.5, that T × R2 is contained in either
ψ(P2) ∼= Z3

2 ×K× or ψ(P3) ∼= Z5
2. If R is trivial, then Q = T ×R2 ⊂ ψ(Spin(V, q))

and we have finished by Corollary 4.7. We are also done if ϕ = ψ(−1) ∈ Q, since
then Q ⊂ Centaut(f4)(ϕ) = ψ(Spin(V, q)) (of course in this case R turns out to be
trivial). If R is not trivial, by Corollary 2.13 the 2-group R2 has at least 4 factors.
If R2 ⊂ ψ(P2), there is ε ∈ K× of order a power of 2 (root of the unit) such that
ψ−1(R2) = 〈{e1e2e3e4, e1e2e5e6, e0e1e3e5, s111ε}〉. Thus we have the contradiction
−1 = s111−1 ∈ ψ−1(R2). The other possibility is that R2 is contained in ψ(P3). As



Gradings on f4 295

ψ(−1) /∈ R2, the existence of the four factors forces R2 to be the image under ψ of
〈{α1e1e2e3e4, α2e1e2e5e6, α3e1e2e7e8, α4e1e3e5e7}〉 for certain scalars αj ∈ {±1}.
Hence there is α ∈ {±1} such that ψ(αe1e2e3e4e5e6e7e8) ≡ ϕ′ belongs to R2.
According to the previous lemma, ϕ′ is conjugated to ϕ and this finishes the proof.

�
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