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Sub-gaussian measures and

associated semilinear problems

Pierre Fougères, Cyril Roberto and Boguslaw Zegarliński

Abstract. We study the existence, smoothing properties and the long
time behaviour for a class of nonlinear Cauchy problems in infinite dimen-
sions under the assumption of F -Sobolev inequalities.

1. Markovian semilinear Cauchy problems: Introduction

In the bulk of this work we consider the following formal Cauchy problem:

(MCP)

{
∂
∂tu(t) = Lu(t) + λu(t)G

(
u2(t)

μ(u(t)2)

)
u(0) = f,

where L is a (linear) Markov generator and G is a certain nonlinearity (vanishing at
one), to be specified later, and μ is a probability measure. In the next paragraph we
are going to explain what is needed to understand the meaning of this equation. Let
us nevertheless note here that under our hypothesis, constants are global solutions
of (MCP) and positivity of the initial data results with positive solutions. This
partially justifies to call it a Markovian Cauchy Problem.

Our analysis is carried out in suitable functional spaces involving a probabi-
lity measure on an underlying metric space, for which the growth of the volume
changes in a nonpolynomial way. This is necessary as we are in particular interested
in infinite dimensional problems. In such situation the Sobolev inequality which
provides a cornerstone for classical PDE analysis cannot be satisfied and we have
to rely on weaker coercive inequalities which survive the infinite dimensional limit
and are of the following form:

μ
(
g2F

( g2

μg2

))
≤ c μ |∇g|2,

with a constant c ∈ (0,∞) independent of the function g and where the right hand
side involves the quadratic form of the elliptic operator L. Inequalities of this type,
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called later on F -Sobolev inequalities, have been recently studied in [3], [4], [29]
and [25] (see also references therein) for probability measures with tails decaying
more slowly than the Gaussian ones but faster than exponentially.

In our setup the linear operator L is monotone in the usual sense, while the
nonlinear part may work to an opposite effect. Our study determines how large
the coupling constant λ > 0 can be, so that the system is still stable in the sense of
existence, uniqueness, smoothing properties and the ergodic long time behaviour
of a (weak) solution.

We note that the linear semigroup corresponding to L is hypercontractive in
an appropriate family of Orlicz spaces; in fact, as shown in [3] (generalising the
celebrated result of Gross [18]), such hypercontractivity is equivalent to F -Sobolev
inequality. Under suitable conditions, we show that the nonlinear semigroup ob-
tained as the solution of (MCP) is C0, positivity and unit preserving, and is also
hypercontractive in the appropriate family of Orlicz spaces. The key ingredients
in our programme are provided by the F -Sobolev inequality and the fact that the
quantity on its left hand side has similar properties to the relative entropy.

In recent years, an extensive effort has been made to understand better the
coercive inequalities in infinite dimensional functional spaces, (see, e.g., [19], [3],
[29], [25] and references therein). This provides a basis and partial motivation to
study nonlinear problems. One may hope that a study in this direction may in the
future shed also some light on or provide a complementary systematic understan-
ding for a class of problems in infinite dimensions for which some understanding
was achieved in the past (as, e.g., problems from mathematical physics). This
work is also partially motivated by [16] where certain preliminary results where
obtained for the case when logarithmic Sobolev inequalities are true. We note also
that non-local problems involving certain normalisation condition were extensively
studied in a finite dimensional setup in connection, for example, with statistical
mechanics (mean field equation), self-dual gauge theory, theory of electrolytes and
thermistors, mathematical biology (chemotaxis) and others (see, e.g., [9], [6], [8]
and references therein).

The organization of our paper is as follows. In Section 2 we introduce the gene-
ral setting and describe in detail conditions imposed on the linear and nonlinear
operators appearing in our problem.

In Section 3 we introduce some Young functions whose associated Orlicz spaces
play a key role in our analysis of (MCP). We also prove there some bounds
involving Dirichlet forms and these Young functions.

In Section 4 we prove the existence and uniqueness of the weak solution of
problem (MCP) (weak solutions are formulated in terms of the Dirichlet form (E ,D)
associated to L). In short, our strategy is as follows. We first consider a mollified
problem with initial data in L2(μ) defined by smoothing the nonlinear part with
the linear semigroup Pε, ε > 0, generated by L. Then, under the assumption
that the coupling constant λ > 0 is sufficiently small, we employ the F -Sobolev
inequality to prove the existence and uniqueness of the mollified problem via a
nonlinear iteration scheme. The estimates and technique developed there will help
us later to remove the mollification and to demonstrate that in the limit ε→ 0 we
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obtain a unique solution of our original problem. The essential part of the analysis
which allows us to arrive to that conclusion is based on the fact that for initial
data from a suitable Orlicz space (dense in L2(μ)) the solution lives within a much
finer space. Let us notice here that this approach may be performed when (E ,D)
is a general Dirichlet form.

In Section 5 we show that the solution of (MCP) defines a C0-semigroup which
preserves positivity (L2(μ) contractivity of this nonlinear semigroup was already
proven in Section 4). Moreover, we demonstrate that the solution decays expo-
nentially to a constant in L2(μ) space and consequently the time average of the
solution converges almost everywhere to that constant.

In Section 6 we prove that the semigroup is uniformly hypercontractive in
certain family of Orlicz norms, i.e., hypercontractive in the corresponding metrics
(as we are dealing with nonlinear semigroup, hypercontractivity in the norms is in
general a weaker property).

In Section 7 we demonstrate that the coercive inequalities which formed a basis
for our study hold true in a large class of infinite dimensional models.

In Section 8 we briefly consider the corresponding local problem (in which
normalisation by mean value with the measure μ is not present). The analysis
here is entirely based on smoothing properties of the linear semigroup generated
by L which follows directly from corresponding F -Sobolev inequality. Therefore
it allows us to consider essentially weaker nonlinearities than the ones considered
earlier for (MCP).

Finally, Appendix I collects all the definitions and properties about Orlicz
spaces we need, while Appendix II contains an explicit example the reader may
like to keep in mind while reading the paper.

2. General setting and main theorem

2.1. Linear part, coercive inequality, admissible nonlinearity

Condition (C0): The linear operator L involved in (MCP) is the infinitesimal
generator of a C0 Markov semigroup (Pt)t≥0 symmetric with respect to some tight
probability measure μ on a separable metric space.

It is well known that tightness of μ comes for free when the underlying space
is a Polish space.

Everywhere in the paper we will use the notation μf ≡ μ(f) ≡ ∫
fdμ to denote

the integral w.r.t. μ of an integrable – or nonnegative measurable – function f .

Let us give some useful precisions at least for non specialists. We refer to [12]
for a brief overview of fundamental notions, see also the nice introductory part of
Section 4 in [31]. Let M be a separable metric space, let BM be its Borel σ-field and
let μ be a tight probability measure on it. A densely defined unbounded operator L
on D(L) ⊂ L2(μ) satisfies condition (C0) provided it is a non-positive self-adjoint
operator such that the associated symmetric C0 semigroup (Pt)t≥0 ≡ (et L)t≥0 of
contractions on L

2(μ) is Markovian, in the sense that it satisfies, for any t ≥ 0,
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(i) Positivity preserving: Ptf ≥ 0 for any f ≥ 0.

(ii) Contraction on L∞(μ): ‖Ptf‖∞ ≤ ‖f‖∞.

(iii) Mass conservation: Pt1 = 1.

In case of linear semigroups, naturally (iii)+(i) implies (ii). By duality, Pt may
be extended to a contraction semigroup on L1(μ). From (i) and (ii), as well as
from symmetry of Pt, one can get the following representation of Pt under our
(quite weak) topological assumptions1 on M: there exist a measurable family of
probability measures pt(x, dy) on (M,BM) such that, for any t ≥ 0, any f ∈ L1(μ),
and for μ almost every x ∈ M,

(2.1) Ptf(x) =

∫
M

f(y) pt(x, dy).

In finite dimension one often talks about the kernel as the density of pt(x, dy) with
respect to some natural measure, while in infinite dimensions it may be difficult
to have such reference measure and even more such densities (as we do not have
ultracontractivity in our setup). As a consequence of (2.1), Jensen inequality holds:
for any f ∈ L

1(μ) and any nonnegative convex function Φ, Φ(Ptf) ≤ Pt(Φ(f)).

Note also that from the symmetry of Pt and (iii) it follows that μ is an invariant
measure, i.e., μ(Ptf) = μ(f) for any f ∈ L1(μ).

In the one to one correspondence between non-positive self-adjoint operators
and symmetric (non-negative definite) closed forms given by

E(u, v) = μ
(
((−L)1/2u) ((−L)1/2v)), u, v ∈ D ≡ D((−L)1/2),

the Beurling–Deny conditions show that Markov generators correspond to con-
servative2 Dirichlet forms. Namely, those forms on which normal contractions3

operate. See [17] for finite dimensional setting and under local compactness as-
sumption onM; see [7] and [27] for some infinite dimensional and/or non-symmetric
setting and without topological assumptions. This provides a concrete way to cons-
truct symmetric C0 Markov semigroups: the semigroup is specified once we choose
an appropriate domain to close a given closable Markovian form.

One may characterize the domain D of the Dirichlet form by means of spectral
theory in the following way. For any u ∈ L

2(μ), t ∈ (0,∞) �→ 1
tμ((u − Ptu)u) is

non increasing and

(2.2) D =
{
u ∈ L

2(μ) : lim
t→0
t>0

1

t
EPt(u, u) = sup

t>0

1

t
EPt(u, u) < +∞

}
1Note that one can get rid of usual assumption of completeness of M provided the proba-

bility measure μ is tight: follow the approach of Proposition 3.1 in [2] and use disintegration
μ̄t(dx, dy) = pt(x, dy)μ(dx) of the measure on M × M defined by μ̄t(A × B) ≡ ∫

Pt(1IA) 1IB dμ.
For existence of such a disintegration, see [13] or [14], where the proof of Theorem 10.2.2 may be
adapted to our setup.

2That is, μ is a probability measure, 1 ∈ D and E(1, 1) = 0.
3A function ψ : R → R is a normal contraction if |ψ(x)−ψ(y)| ≤ |x−y|, x, y ∈ R and ψ(0) = 0.

ψ operates on E provided, for any u ∈ D, ψ(u) ∈ D and E(ψ(u), ψ(u)) ≤ E(u, u).
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with EPt(u, u) ≡ μ((u − Ptu)u) (see page 22 of [17], for example). But, by inva-
riance property,

μ
(
(u− Ptu)u

)
=

1

2

∫
M

μ(dx)

∫
M

(
u(x)− u(y)

)2
pt(x, dy).

And one has the following representation formula: for any u, v ∈ D,

(2.3) E(u, v) = lim
t→0
t>0

1

2t

∫
M

μ(dx)

∫
M

(
u(x)− u(y)

) (
v(x) − v(y)

)
pt(x, dy).

When considering the Dirichlet form, we will write abusively

E(f, f) ≡ μ(|∇f |2) =
∫

|∇f |2 dμ

for natural reasons (see Example 2.1 for instance).
Note finally that from classical semigroup theory, for any t > 0 and any

f ∈ L2(μ), Ptf belongs to D(L), is differentiable in L2(μ) and v(t) ≡ Ptf is the
strong solution (in L2(μ) sense) of

(2.4)

{
∂
∂tv(t) = Lv(t), t > 0,

v(0) = f.

The reader might keep in mind, as a guideline, the following basic example,
that illustrates the general setting we have just presented.

Example 2.1. We adapt [31] to our setting. LetM be a complete connected Rie-
mannian manifold (without boundary) with Riemannian volume dx (the problems
we investigate are already of interest in M = Rn). Let U be a smooth function
on M such that Z =

∫
M e−U(x)dx < ∞ and let μ(dx) ≡ e−U(x)dx/Z. We denote

by C∞
c (M) the space of compactly supported smooth functions on M . The oper-

ator Lf = Δf −∇U · ∇f , with f in the domain C∞
c (M) ⊂ L2(μ), is a symmetric

non positive operator (note that here Δ, ∇ and the scalar product · are relative
to the Riemannian metric). This comes from the integration by parts formula: for
f, g ∈ C∞

c (M),

E(f, g) ≡
∫
M

(−L)f(x) g(x)μ(dx) =
∫
M

∇f(x) · ∇g(x)μ(dx).

Hence, the form E is closable and its closure is associated to a self-adjoint operator
still denoted by L with domain D(L) ⊂ L2(μ) (which generates a symmetric C0
semigroup of contractions (Pt)t≥0 on L2(μ)). See [11], in particular Theorems 4.12
and 4.14. Positivity preserving and contraction of L∞(μ) follow from Dirichlet form
theory by stability of D by appropriate smooth approximations φε of the unit con-
traction (· ∧ 1) ∨ 0, for which one easily checks that E(φε(f), φε(f)) ≤ E(f, f). As
(Pt)t≥0 solves (2.4), they also may be seen as consequences of the parabolic maxi-
mum principle. Note furthermore that regularity theory for the parabolic equations
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ensures that Ptf ∈ C∞(M) for any f ∈ L1(μ), from which existence of the kernels

pt(x, dy) follows. As M is complete, the closure
◦
W 1,2(μ) of C∞

c (M) for the norm

‖f‖W 1,2 ≡ (
μ(f2) + μ(|∇f |2))1/2 coincides with the closure W 1,2(μ) of the space

of C∞ functions with finite norm ‖ · ‖W 1,2 (see [20] for instance). Hence
◦
W 1,2(μ)

and also D(L) contain all constant functions, and one has L1 = 0 and Pt1 = 1.

In Subsection 7.1 we describe some more advanced examples where μ is a
Gibbs measure in some infinite dimensional models coming from interacting spins
systems. See also [21] for a wider class of examples including degenerate generators.

Coercive inequality as a constraint on the Dirichlet structure. The admi-
ssible nonlinearity in (MCP) is specified by some regularity of the Dirichlet struc-
ture (μ, E), E being a Dirichlet form on L2(μ). Precisely, we introduce the following
requirements.

We assume that (μ, E) satisfies an F -Sobolev inequality (a notion introduced by
Wang [32]) for some function F we specify below. That is, there exists a constant
c
F
∈ (0,+∞) such that

(FS)

∫
f2F

(
f2

μ(f2)

)
dμ ≤ c

F

∫
|∇f |2 dμ

for any f ∈ D (or any sufficiently smooth function f). In this case we will use
a shorthand notation μ ∈ FS(c

F
). See the forthcoming Section 2.3 for more

comments on F -Sobolev inequalities.

In the case, F (x) = log(x), F -Sobolev inequality is the well known log-Sobolev
(or Gross) inequality. Let us note here that the scope of this paper does not include
directly log-Sobolev inequality: our approach to show existence of weak solutions
of (MCP) is based in particular on a regularity property proved in the forth-
coming Lemma 4.2 and strong convergence of a mollified solution in an appropriate
Hilbert space (see Theorem 4.10) which are not available when F = log due to the
singularity at 0.

Let us introduce some conditions on the function F .

Condition (C1): In all what follows F : [0,∞) → R denotes a non decreasing C2

function such that F (1) = 0. We assume that there exist constants θ ≥ 1 and
B̄ > 0 such that

(C1)

{
(i) F is concave on [θ,+∞),

(ii) ∀x ≥ 0 , xF ′(x) ≤ B̄.

Note that, as F (1) = 0, (FS) is a tight inequality in the restrictive sense that
both sides are zero for constant functions.

Note also that when F satisfies condition (C1), the value F (0) ≤ 0 is well
defined. Let us define A ≡ −F (0) ≥ 0 so that

(2.5) A = max
x∈[0,1]

|F (x)| = max
x≥0

−F (x).
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Condition (C2): xF (x) is convex.

Condition (C3): There exists a constant 0 ≤ R <∞ such that

F (a b) ≤ F (a) + F (b) +R for any a, b ∈ (0,∞).

In Appendix II, we present a simple example of a μ-symmetric Markov gener-
ator for some μ with tails between Gaussian and exponential. Such μ satisfies an
F -Sobolev inequality for some associated F satisfying conditions (C1) to (C3).
The case when μ is a Gibbs measure with the prescribed tails is studied in Sub-
section 7.1.

Nonlinearity. The nonlinear part in equation (MCP) is described by a func-
tion G. We assume that G is a perturbation of F which satisfies the following
condition.

Condition (C4): With F satisfying condition (C1–C3), we assume that

G = F + J

with a bounded C1 perturbation J : [0,∞) → R such that supx|J ′(x)| <∞.

Under these hypothesis, B̃ ≡ supx≥0 x|G′(x)| <∞.

Note that G(0) is well defined and G is Lipschitz at 0 (for a non-Lipschitz at 0
example, see [16]). When additionally

• J ≤ 0 and J (1) = 0

(so that G ≤ F and G(1) = 0), we will say that G satisfies (MC4). Then constants
are global solutions of the corresponding parabolic problem (MCP) and we will see
later that positivity of the initial data results with positive solutions.

2.2. Main theorem

We now state our main theorem. See Section 4 for definition of a weak solution.

Theorem 2.2. Let L be a Markov generator like in condition (C0). Assume
that the associated Dirichlet structure (μ, E) satisfies an F -Sobolev inequality with
constant cF with F satisfying conditions (C1), (C2) and (C3). Then, for any
λ ∈ [0, c−1

F ), any function G satisfying condition (C4) and any f ∈ L2(μ), the
Cauchy problem {

∂
∂tu = Lu+ λuG

(
u2

μ(u2)

)
u(0) = f

admits a unique weak solution on [0,∞).

One may hope that under suitable assumptions we could perform regularity
theory in infinite dimensions, so that classical strong solutions exist. We do not
investigate this problem here.
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By changing F into F/cF (and similarly with L and G), one can reduce the
problem to the case when cF = 1. Nevertheless, we state Theorem 2.2 as above
because, in general, there are very few examples where the best constant cF in
F -Sobolev inequality can be explicitly computed. However, for simplicity, in all
the sequel we will assume that F is chosen so that to have

cF ≡ inf{c > 0 : μ ∈ FS(c)} = 1

and we will write μ ∈ FS without further mention on the best constant cF .

2.3. Some properties of F -Sobolev functional

Let us discuss briefly the basic properties and the links between F -Sobolev in-
equalities and the usual Poincaré and log-Sobolev inequalities. With this aim,
we consider (in this paragraph exclusively) more general F ’s than those satisfying
(C1–C3), in particular we allow singularity at 0 and/or discontinuities.

As already mentioned, the choice F = log corresponds to the well known
logarithmic Sobolev inequality [18]. On the other side, F (x) = 1I[2,∞) (see Re-
mark 22 of [3]) corresponds to Poincaré inequality. In this paper we shall deal
with intermediate inequalities corresponding to F behaving like logβ , β ∈ [0, 1].
Hence, in principle, the coercive inequality we will deal with is stronger than
the Poincaré inequality, and weaker than the log-Sobolev inequality. However, to
make this rigorous one possibility is to add some regularity assumption. Indeed,
if F is C2 in a neighbourhood of 1, then the Poincaré inequality holds as soon as
2F ′(1) + F ′′(1) �= 0, see Lemma 8 in [3]. On the other hand, the same conclusion
holds if F ≥ c1I[2,∞) for some c > 0 by Remark 22 of [3].

Also, assuming that Poincaré inequality holds, only the behavior of F at infinity
is relevant (see Lemma 21 of [3] for a result in this direction). This can be also
explained using the Rothaus-type inequality (2.6) below.

However, note that in our setting the assumption μ ∈ FS alone does not
guarantee, a priori, that μ satisfies a Poincaré inequality.

In Section 8 an other type of coercive inequality, called Φ-Sobolev inequality,
will be introduced and used. Since such inequalities are not relevant for the main
part of this paper we refer the reader to Section 8 for comments on them.

Now we state two useful results.

Lemma 2.3 (Generalized Relative Entropy Inequality). Suppose a function F
satisfies condition (C1). Then there exists B ∈ (0,∞), such that, for any x, y ≥ 0,

xF (y) ≤ xF (x) +By.

Therefore for any probability measure μ, and any f, g ∈ L
2(μ),

(GREI)

∫
f2F

( g2

μ(g2)

)
dμ ≤

∫
f2 F

( f2

μ(f2)

)
dμ+Bμ(f2).
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Proof. Define δ(x, y) ≡ x (F (y)− F (x)). In the case x ≥ y, δ(x, y) ≤ 0 as F is non
decreasing and so nothing has to be proved. So assume x ≤ y. Now, if x ≥ θ, then

δ(x, y) = x
F (y)− F (x)

y − x
(y − x) ≤ xF ′(x)y ≤ B̄y.

And if on the contrary x ≤ θ, δ(x, y) ≤ θ(F (y) − F (x)). But, in the case y ≥ 1,
F (y) − F (x) ≤ F (y) + A ≤ (K + A)y where A was defined in (2.5) and K is
any constant such that ∀ξ ≥ 0, F (ξ) ≤ Kξ. Whereas, in the case x ≤ y ≤ 1,
F (y)−F (x) ≤ ‖F ′1I[0,1]‖∞ y. This ends the proof of the bound xF (y) ≤ xF (x)+By
from which inequality (GREI) easily follows. �

The next result (due to Rothaus [30] for the log-Sobolev inequality) is usually
used to tighten inequalities, using Poincaré inequality. Namely, by (2.6), if μ

satisfies
∫
f2F

(
f2

μ(f2)

)
dμ ≤ c

∫ |∇f |2dμ+ c′μ(f2) for some c, c′ > 0 independent of

f ∈ D, and if μ satisfies also a Poincaré inequality, then μ ∈ FS(c′′) for some c′′ > 0.
It is probably possible to state a result involving a general set of norms, or semi-
norms, for which the result below apply. We do not investigate this problem here.

Lemma 2.4 (see [19] or [3]). Assume F satisfies condition (C1). Then

(2.6) μ
(
f2F

( f2

μf2

))
≤ μ

(
f̃ 2F

( f̃ 2

μf̃ 2

))
+ Cμ(f̃ 2)

where f̃ = f − μf and C ≡ 4B̄ + B.

3. Dirichlet/Young bounds

A key point in our analysis of (MCP) will be to obtain a regularity result in some
Orlicz spaces. The associated Young functions and the Dirichlet form satisfy some
bounds which we introduce now.

3.1. Young functions and Orlicz spaces

We refer to Appendix I for basics on Orlicz spaces and Young functions.

For any non decreasing C2 function F : [0,∞) → R such that xF (x) is convex
and any q ≥ 0, the function Υq(x) ≡ |x| eq F (|x|) is a Young function so that
Φq(x) ≡ Υq(x

2) is a Nice Young function (in short, N -function as called in [28]).
The associated Orlicz space satisfies LΦq (μ) ⊂ L2(μ) with continuous embedding.

We now present some properties of the family (Φq)q≥0 which will allow to get
the Dirichlet/Young type bounds we mentioned before. It is assumed here without
further mention that F satisfies conditions (C1) and (C2).

Even if we won’t need this here, let us mention that an immediate conse-
quence of the additional condition (C3) is the sub-multiplicativity property for
the N -function Φq usually called Δ′-Condition:

(3.1) Φq(x y) ≤ eRqΦq(x)Φq(y).
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3.1.1. Some computations and a remark. The following simple computations
will be useful in the sequel. For any x ≥ 0, one has Υ′

q(x) = eq F (x) (1 + qxF ′(x)) ,

Υ′′
q (x) = q eq F (x)

( {2F ′(x) + xF ′′(x)} + qx(F ′(x))2
)

= q eq F (x)
(
(xF (x))′′ + qx(F ′(x))2

)
(3.2)

and

(3.3) Φ′′
q (x) = 2Υ′

q(x
2) + 4x2Υ′′

q (x
2).

Remark 3.1. From the previous formulae, one easily gets that, in the case when F
is bounded, Υ′

q(x) and xΥ′′
q (x) are bounded, so that Φ′′

q (x) is bounded as well.
This will be another ingredient to get our regularity result by approximating F by
truncated functions.

3.1.2. Differential inequality and Dirichlet/Young bounds. Let us define

Ψq(x) =
√
Φq(x) = |x|e q

2F (x2). The following differential inequality holds:

(3.4) ∀x ∈ R, Φ′′
q (x) ≥ kq

(
Φ′

q(x)
)2

4Φq(x)
= kq

(
Ψ′

q(x)
)2
,

with the constant

(3.5) kq = 2/
(
1 + q B̄

)
.

For parity reasons, one may assume x > 0. Note that
(
Ψ′

q(0)
)2

makes sense. As Υq

is convex and Φq(x) = Υq(x
2), (3.3) gives

Φ′′
q (x) ≥ 2Υ′

q(x
2) = Φ′

q(x)/x.

Thus the relation

(3.6) xΦ′
q(x) = 2Φq(x)

(
1 + qx2F ′(x2)

) ≤ 2
(
1 + q B̄

)
Φq(x)

leads to the announced differential inequality on Φq.

Remark 3.2. One can take kq = 2 instead of (3.5) in inequality (3.4) provided
Ψq ≡

√
Φq is a convex function, which occurs for any q ≥ 0, if and only if F satisfies

the following additional Condition (C2bis): for any x ≥ 0 , (xF (x))′′ ≥ 1
2F

′(x).

The differential inequality (3.4) leads to the following Dirichlet/Young bounds:
for any u ∈ D and any q ≥ 0, Ψq(u) ∈ D provided Φ′

q(u) ∈ D, and one has

(3.7) E(Φ′
q(u), u) ≥ kqE (Ψq(u),Ψq(u)) .

This is a direct consequence of the following lemma.
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Lemma 3.3. Let L be as in condition (C0) and let (E ,D) be the associated Dirich-
let form. Let ξ and ζ be two absolutely continuous functions on R satisfying the
differential inequality

(3.8) ξ′ ≥ c(ζ′)2 a.e.,

for some c > 0. Then, for any u ∈ D,

ξ(u) ∈ D ⇒ ζ(u) ∈ D
and one has

E(ξ(u), u) ≥ c E (ζ(u), ζ(u)) .

Proof. The differential inequality (3.8) is equivalent to the following slope bound:

(3.9)
ξ(x) − ξ(y)

x− y
≥ c

(
ζ(x) − ζ(y)

x− y

)2

for any x �= y.

Namely, (3.9) implies (3.8) at any point where the derivatives do exist. And the
converse follows from Jensen inequality: for any x < y,(

ζ(y)− ζ(x)

y − x

)2

=

(
1

y − x

∫ y

x

ζ′(s) ds
)2

≤ 1

y − x

∫ y

x

(ζ′(s))2 ds.

Let us first show that

(3.10) u, ξ(u) ∈ L
2(μ) ⇒ ζ(u) ∈ L

2(μ).

As μ is a probability measure, one may assume that ξ(0) = ζ(0) = 0. Then (3.9)
implies that, for any x ∈ R,

(3.11) c (ζ(x))2 ≤ ξ(x)x = |ξ(x)| |x|
as ξ(x) and x have the same sign. Hence, (3.10) follows from (3.11) and Cauchy–
Schwarz inequality in L2(μ). Now, the claim of the lemma follows from the char-
acterization (2.2) and the representation formula (2.3) as (3.9) can be rewritten as

∀x, y ∈ R, (ξ(x) − ξ(y))(x − y) ≥ c(ζ(x) − ζ(y))2.

4. Existence problem

To prove the existence of a weak solution for Cauchy problem (MCP) we imple-
ment a constructive nonlinear approximation procedure. Usual Gelfand triple for
Sobolev spaces on a domain Ω ⊂ Rd, that is,

◦
W 1,2(Ω) ⊂ L

2(Ω) ⊂W−1,2(Ω)

(see [34]), has to be replaced by D ⊂ L2(μ) ⊂ D′, where D is equipped with the
domain Hilbert structure and D′ is its topological dual space.
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4.1. Weak solutions and preliminary regularity result

Given T ∈ (0,∞), define HT,+(E) ≡ L2([0, T ],D) as a Banach space of (classes of)
functions v : [0, T ]×M → R, such that

||v||2
HT,+

≡
∫ T

0

ds μv2 +

∫ T

0

ds μ|∇v|2 <∞,

By HT,−(E) ≡ L2([0, T ],D′), we will denote the dual space of HT,+(E).
Let A : HT,+(E) → HT,−(E) be an abstract nonlinear operator. We say that a

function u ∈ HT,+(E) is a weak solution (on [0, T ]) of the following Cauchy problem

(4.1)

{
∂tu = Lu+A(u)

u|t=0 = f

with f ∈ L2(μ), if and only if, for any v ∈ C∞([0, T ];D) and any t ∈ [0, T ], we have∫ t

0

μ (u(s)∂sv(s)) ds = μu(t)v(t)− μfv(0) +

∫ t

0

μ∇u(s) · ∇v(s)ds(4.2)

−
∫ t

0

〈A(u)(s), v(s)〉D′,Dds,

where 〈·, ·〉D′,D stands for the duality bracket.
Note that condition (4.2) may be extended, by density, to any function v ∈

L
2
(
[0, T ],D) ∩W 1,2

(
(0, T ),L2(μ)

)
.

Remark 4.1 (Time continuity in L
2(μ) of weak solutions). A function u ∈

L2
(
[0, T ],D)

satisfying (4.2) for any v ∈ C∞
0 ((0, T );D) admits a weak time deriva-

tive ∂tu in D′ which belongs to L2([0, T ],D′), and so u ∈ C
(
[0, T ],L2(μ)

)
as shown

below. So that (4.2) makes sense when v ∈ C∞([0, T ];D). From (4.2) at t = 0, it
follows that u(0) = f .

To understand this, first note that Lmay be seen in a weak sense as an operator
from D to D′ by setting, for any u, v ∈ D,

〈(−L)u, v〉D′,D ≡ E(u, v) = μ(∇u · ∇v).

Applied to v(s) = Φ(s)v for Φ(s) ∈ C∞
0 ((0, T )), v ∈ D and t = T , (4.2) implies

that 〈∫ T

0

u(s)Φ′(s)ds, v
〉
D′,D

=
〈∫ T

0

{(−L)u(s)−A(u)(s)}Φ(s)ds, v
〉
D′,D

where ν ≡ ∫ T

0
u(s)Φ′(s)ds ∈ L2(μ) is considered as an element of D′ via L2(μ)

pairing: 〈ν, v〉D′,D ≡ μ(ν v). This means that, in D′, u(·) admits the weak time
derivative ∂tu = Lu + A(u) which belongs to L2([0, T ],D′) as ‖(−L)u(t)‖D′ ≤
‖u(t)‖D. Deriving from this that u ∈ C

(
[0, T ],L2(μ)

)
may be found in Theorem 3,

page 287, of [15].
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Later on in this paper we discuss a situation when the operator A is given by
A(u) ≡ λV(u) with a parameter λ ∈ R and

V(u)(s) ≡ V(u(s)) ≡ u(s)G(σ2(u(s)))

where σ(u) ≡ u
(μ(u2))1/2

for u ∈ L2(μ), u �= 0, and σ(0) ≡ 0.

In which sense this operator A maps HT,+(E) to HT,−(E) as before (so that
one may consider weak solutions for Cauchy problem (MCP) like in (4.2)) is made
precise in the following basic regularity result.

Lemma 4.2 (Regularity for the nonlinear operator). Let, for any u ∈ D, V(u) ≡
uG(σ2(u)). Suppose μ ∈ FS. Then, for any u, g ∈ D, gV(u) ∈ L

1(μ) and there
exists C ∈ (0,∞) such that

|μ (gV(u))| ≤ C ‖u‖D ‖g‖D
In particular, V(u) ∈ D′ when acting on D with L2 pairing

〈V(u), g〉D′,D ≡ μ (gV(u)) .

Moreover, the operator V : u ∈ D �→ V(u) ∈ D′ is Lipschitz continuous. As a
consequence, for any u ∈ HT,+(E), V(u) ∈ HT,−(E) and V : HT,+(E) −→ HT,−(E)
is Lipschitz continuous.

Proof. Suppose u and g in D. Then one has, recallingG = F+J by condition (C4)
and denoting χ− ≡ χu2<μ(u2) and χ+ ≡ χu2≥μ(u2),∣∣μ(g uG (

σ2(u)
) )∣∣ ≤ ‖J ‖∞ μ (|g| |u|) + μ

(|g| |u| ∣∣F (
σ2(u)

)∣∣)
≤ ‖J ‖∞ ‖u‖2 ‖g‖2 + μ

(|g| |u|(−F ) (σ2(u)
)
χ−

)
+ μ

(|g| |u|F (
σ2(u)

)
χ+

)
≤ (‖J ‖∞ +A) ‖u‖2 ‖g‖2 +

(
μ
(
g2F

(
σ2(u)

)
χ+

))1/2 (
μ
(
u2F

(
σ2(u)

)
χ+

))1/2
,

where we used that F (x) ≥ 0 for x ≥ 1, the definition (2.5) of A and the Cauchy–
Schwarz inequality. Now,

μ
(
u2F

(
σ2(u)

)
χ+

)
= μ

(
u2F

(
σ2(u)

))
+ μ

(
u2(−F ) (σ2(u)

)
χ−

)
≤ μ

(|∇u|2)+Aμ
(
u2

) ≤ max(1, A) ‖u‖2D
thanks to F -Sobolev inequality (FS). Similarly,

μ
(
g2F

(
σ2(u)

)
χ+

) ≤ μ
(
g2F

(
σ2(u)

))
+Aμ

(
g2

)
≤ μ

(
g2F

(
σ2(g)

))
+ (A+B)μ

(
g2

)
≤ μ

(|∇g|2)+ (A+B)μ
(
g2

) ≤ max(1, A+B) ‖g‖2D
thanks to (GREI) and another use of F -Sobolev inequality. So that finally∣∣μ (

g uG
(
σ2(u)

))∣∣ ≤ (‖J ‖∞ +A+max(1, A+B)) ‖g‖D ‖u‖D .
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Let us now turn to Lipschitz estimate. Suppose v �= u and g are still in D.
From the first part of the proof and V(0) = 0, one may assume that u �= 0 and
v �= 0. Let us set uα ≡ αu + (1 − α)v, α ∈ [0, 1], and let w ≡ u− v. Assume first
that uα �= 0 for any α. Then we have

∣∣μ (
g
[
uG

(
σ2(u)

) − vG
(
σ2(v)

)])∣∣ ≤ ∫ 1

0

dα

∣∣∣∣μ(
g
d

dα

[
uαG

(
σ2(uα)

)])∣∣∣∣ ,
with d

dαuαG
(
σ2(uα)

)
explicitly given by

(4.3) wG
(
σ2(uα)

)
+ 2 σ2(uα)G

′ (σ2(uα)
)
w− 2 σ3(uα)G

′ (σ2(uα)
)
μ
(
σ(uα)w

)
.

Since by our assumption σ2
∣∣G′(σ2)

∣∣ ≤ B̃, we get

(4.4)
∣∣μ (

g
[
uG

(
σ2(u)

)− vG
(
σ2(v)

)])∣∣ ≤ ∫ 1

0

dα
∣∣μ (

gwG
(
σ2(uα)

))∣∣
+ 2B̃μ (|g| |w|) + 2 B̃

∫ 1

0

dαμ (|g| |σ(uα)|) μ (|σ(uα)| |w|) .

Now, by similar arguments as above, one has

(4.5)
∣∣μ (

gwG
(
σ2(uα)

))∣∣ ≤ (‖J ‖∞ +A+max(1, A+B)) ‖g‖D ‖w‖D .
On the other hand, Cauchy–Schwarz inequality applied twice gives

μ (|g| |σ(uα)|) μ (|σ(uα)| |w|) ≤ ‖w‖L2 ‖g‖L2,

so that finally ∣∣μ (
g
[
uG

(
σ2(u)

)− vG
(
σ2(v)

)])∣∣ ≤ C ‖g‖D ‖w‖D
with a constant C = ‖J ‖∞ + A + max(1, A + B) + 4B̃. We conclude by noting
that, in the case when uα = 0 for some α ∈ (0, 1) – so that σ(uα) is singular –,
one has σ2(u) = σ2(v) and (4.5) with u instead of uα provides the corresponding
estimate. �

4.2. Mollified problem

Given f ∈ L2(μ) and fixed parameters λ ∈ R and ε ∈ (0,∞) , we define a sequence
un : R+ ×M → R, n ∈ Z

+, such that u0 is a unique solution of{
∂tu0 = Lu0

u0|t=0 = f

and

(Aε)

{
∂tun+1 = Lun+1 + λPεV(un)

un+1|t=0 = f,



Sub-gaussian measures and associated semilinear problems 319

in the sense that

(4.6) un+1(t) ≡ Ptf + λ

∫ t

0

ds Pε+t−sV(un(s)).

We would like to argue that, in the case when ε = 0, for any T ∈ (0,∞), un ∈ HT,+,
then un+1 is a weak solution of (A0) on [0, T ] and un+1 ∈ HT,+(E) provided (FS)
with a constant 1 is satisfied, if we take λ ∈ [0, 1) and T > 0 sufficiently small.
And that such sequence of solutions converges strongly to a weak solution of our
problem in a corresponding small time interval. Unfortunately, when ε = 0, equa-
tion (4.6) has only a formal meaning as in general ‖Pt−s‖D′→D ≤ C/(t−s) and not
better. This is the reason why we have to consider weak solutions instead of strong
solutions in L2(μ) as our solution will be a limit in time dependent Banach spaces
of the approximated solution we get when introducing an additional smoothing
by taking ε > 0. In this case PεV is a Lipschitz continuous operator from D to
itself. This ensures that, for any f ∈ L2(μ) and for any T > 0, (4.6) determines
a (unique) un+1 ∈ C([0, T ],L2(μ)) ∩ HT,+(E). Moreover, for any t > 0, un+1(t)
belongs to the domain D(L) of L and is differentiable in L

2(μ) with respect to t.
So that differential equation (Aε) holds in a strong sense (in L2(μ)).

We now state a key technical lemma which will be useful many times later. We
introduce notation specific to this lemma in order to adapt the result to different
situations without confusion.

Lemma 4.3 (A priori estimates for strong and weak solutions). Suppose μ ∈ FS.
Let 0 ≤ λ < 1 and T > 0. Let ūi(t, x), v̄i(t, x), i = 0, 1, be four functions in
L
2([0, T ],D) ∩C([0, T ],L2(μ)).

1) Assume that, for i = 0, 1 and any t ∈ (0, T ], ūi(·) is differentiable in L2(μ)
at time t, ūi(t) belongs to the domain of L and is solution in a strong sense
(that is in L2(μ)) of

(Cε)

{
∂
∂t ūi(t) = Lūi(t) + λPεiV(v̄i(t)), t ∈ (0, T ]

ūi(0) = f̄i

with εi > 0 and initial value f̄i ∈ L2(μ). Then, with w̄ ≡ ū1 − ū0 and
z̄ ≡ v̄1 − v̄0 and for any t ∈ (0, T ], one has

μw̄2(t) + (2− λ)

∫ t

0

dsμ|∇w̄(s)|2 ≤

≤ eλat
{
μ(f̄1 − f̄0)

2 + λa

∫ t

0

μ
(
z̄2(s)

)
ds+ λ

∫ t

0

μ
(|∇z̄(s)|2) ds}

(4.7)

+ eλat
{
2λ

(∫ t

0

dsμ [(Pε1 − Pε0) w̄(s)]
2

) 1
2
(∫ t

0

dsμ
(
V(v̄0(s))

2
)) 1

2
}
,

with a constant

(4.8) a =
( ‖J ‖∞ + 2A+B + 4B̃

)
.
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2) Assume now that ūi are two weak solutions on [0,+∞[ of (MCP) with initial
values f̄i, i = 0, 1. Then with w̄ = ū1 − ū0, one has

(4.9) μ
(
w̄2(t)

)
+ 2(1− λ)

∫ t

0

dsμ|∇w̄(s)|2 ≤ e2λat μ
(
(f̄1 − f̄0)

2
)

with the constant a as specified before.

To get a priori estimates for weak solutions, we will use the following time
regularization procedure. For any Banach space X , and any v ∈ L2([0, T ], X), the
Steklov average

(4.10) ah(v)(t) =

⎧⎨⎩ 1

h

∫ t+h

t

v(τ) dτ, 0 ≤ t ≤ T − h,

0, T − h < t ≤ T

converges to v in L
2([0, T ], X ) when h → 0. Moreover, provided v ∈ C([0, T ], X),

ah(v) ∈ C1([0, T − h], X), d
dtah(v)(t) = 1

h (v(t + h) − v(t)) in X , and ah(v)(t)
converges to v(t) in X still as h → 0. The space X will be L2(μ), D or D′

depending on the context.

Proof of Lemma 4.3.

1) The case of strong solutions: One may assume that ε1 ≥ ε0. We note first that

(4.11)
1

2

d

dt
μ(w̄2) = μ(w̄∂tw̄) = −μ|∇w̄|2 + λμ

(
w̄ {Pε1(V(v̄1))− Pε0 (V(v̄0))}

)
Using definition of Pεi on D′ by duality, one has

μ
(
w̄
{
Pε1(V(v̄1))− Pε0(V(v̄0))

})
= μ (w̄ Pε1 {V(v̄1)− V(v̄0)}) + μ (w̄ (Pε1 − Pε0)V(v̄0))

= μ (Pε1 w̄ {V(v̄1)− V(v̄0)}) + μ ((Pε1 − Pε0 ) w̄V(v̄0)) .

We deal with the first term as in the proof of Lemma 4.2, with linear interpolation
v̄α ≡ αv̄1 + (1 − α)v̄0, 0 ≤ α ≤ 1. So we may transpose here inequality (4.4).
Write w̃ ≡ Pε1 w̄, recall that G = F + J and use additionally |xy| ≤ 1

2 (x
2 + y2)

and (GREI) to get∣∣μ(Pε1w̄ {V(v̄1)− V(v̄0)}
)∣∣

≤ (‖J ‖∞ + 2B̃)μ(|w̃z̄|)

+

∫ 1

0

dα
(∫ 1

2
(w̃2 + z̄2) |F | (σ2(v̄α)

)
dμ+ 2B̃ μ (|w̃ σ(v̄α)|) μ (|z̄ σ(v̄α)|)

)
≤ 1

2

(
‖J ‖∞ + 2A+B + 4B̃

) (
μ
(
w̃2

)
+ μ

(
z̄2

))
+

1

2

∫
w̃2F

(
σ2(w̃)

)
dμ

+
1

2

∫
z̄2F

(
σ2(z̄)

)
dμ.
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Hence, using (FS), the fact that μ
(
w̃2

) ≤ μ
(
w̄2

)
and μ

(|∇w̃|2) ≤ μ
(|∇w̄|2)

and returning to (4.11), we arrive at a differential inequality which (after inte-
gration with respect to time and taking into the account the time zero condition
w̄(0) = f̄1 − f̄0) leads to

μ
(
w̄2(t)

)
+(2− λ)

∫ t

0

μ
(|∇w̄(s)|2) ds

≤ μ(f̄1 − f̄0)
2 + λa

∫ t

0

μ
(
z̄2(s)

)
ds+ λ

∫ t

0

μ
(|∇z̄(s)|2) ds

+ 2λ

∫ t

0

μ ((Pε1 − Pε0 ) (w̄(s))V(v̄0(s))) ds+ λa

∫ t

0

μ
(
w̄2(s)

)
ds

with a constant a defined in (4.8) for every t ∈ [0, T ]. Inserting trivial bound
μ
(
w̄2(s)

) ≤ μ
(
w̄2(s)

)
+ (2 − λ)

∫ s

0
μ
(|∇w̄(r)|2) dr and then using Gronwall type

arguments, we get for any t ∈ [0, T ],

μw̄2(t)+(2− λ)

∫ t

0

dsμ|∇w̄(s)|2

≤ eλat
{
μ(f̄1 − f̄0)

2 + λa

∫ t

0

μ
(
z̄2(s)

)
ds+ λ

∫ t

0

μ
(|∇z̄(s)|2) ds}

+ eλat
{
2λ

∫ t

0

dsμ [(Pε1 − Pε0) (w̄(s)) · V(v̄0(s))]
}

Finally we use Cauchy–Schwarz inequality to get (4.7).

2) The case of weak solutions: in this case, we perform the computations with the
Steklov average ah(w̄)(t) of w̄ for any h > 0. Recall that w̄ ∈ C([0, T ],L2(μ)) ∩
L2([0, T ],D) for any T > 0. Hence, ah(w̄)(t) is differentiable with respect to t in
L2(μ). Moreover, as h goes to 0, ah(w̄)(t) → w̄(t) in L2(μ) for any t, and ah(w̄)
converges to w̄ in L

2([0, T ],D). Using the definition of a weak solution (with the
constant test function ah(w̄)(s) ∈ D on the interval [s, s+ h]), we get

1

2
μ (ah(w̄)(t))

2 =
1

2
μ (ah(w̄)(0))

2 +

∫ t

0

ds μ

[
ah(w̄)(s)

1

h
(w̄(s+ h)− w̄(s))

]
=

1

2
μ (ah(w̄)(0))

2

+

∫ t

0

ds

h

∫ s+h

s

dτ [−E (ah(w̄)(s), w̄(τ)) +λ〈(V(ū1)− V(ū0))(τ), ah(w̄)(s)〉D′,D]

=
1

2
μ (ah(w̄)(0))

2

+

∫ t

0

ds

[
−E

[
ah(w̄)(s), ah(w̄)(s)

]
+ λ

〈
ah

[V(ū1)− V(ū0)
]
(s), ah(w̄)(s)

〉
D′,D

]
.

We can pass to the limit with h→ 0, which yields

1

2
μ [w̄(t)]2 =

1

2
μ[f̄1 − f̄0]

2 −
∫ t

0

ds E [w̄(s), w̄(s)] + λ

∫ t

0

dsμ [w̄(s) [V(ū1)− V(ū0)]] .



322 P. Fougères, C. Roberto and B. Zegarliński

And the remaining is similar to proof of point 1) with the nuance that ūi = v̄i.
After linear interpolation and an appropriate use of Gronwall lemma, one gets (4.9).

�

Using that, we show the following uniform boundedness property:

Proposition 4.4 (Uniform bound in C([0, T ],L2) ∩HT,+(E)). Suppose μ ∈ FS(1).
Fix λ ∈ [0, 1), ε > 0 and f ∈ L2(μ). Let un be the recursive solution of the mollified
problem (Aε). Then for any T ∈ (0,∞) such that

ηT ≡
{

λ

2− λ
+ λ(||J ||∞ + 2A)T

}
eλDT < 1

where D ≡ 2A+B + ||J ||∞, we have, for any n ∈ N,

(4.12) sup
0≤t≤T

(
μu2n(t) + (2 − λ)

∫ t

0

μ|∇un|2(s)ds
)

≤ eλDT

1− ηT
μ(f2).

Hence we have in particular

||un||2C([0,T ],L2) + ||un||2HT,+
≤ (T + 2)eλDT

1− ηT
μ(f2),

with the right hand sides independent of ε > 0.

Proof. One may adapt the proof of Lemma 4.3 to the present situation to get, for
any t > 0 and with D ≡ 2A+B + ||J ||∞,

μ
(
u2n(t)

)
+ (2 − λ)

∫ t

0

μ
(|∇un(s)|2) ds

≤ eλDt ·
{
μ(f2) + λ(||J ||∞ + 2A)

∫ t

0

μ
(
u2n−1(s)

)
ds+ λ

∫ t

0

μ
(|∇un−1(s)|2

)
ds

}
,

for any t ∈ R+. Setting

(4.13) Zn(t) ≡ μ
(
u2n(t)

)
+ (2 − λ)

∫ t

0

μ
(|∇un(s)|2) ds

we can see that the following inductive inequality is true

Zn(t) ≤ μ(f2)eλDt +
λ

2− λ
eλDtZn−1(t) + λ (||J ||∞ + 2A) eλDt

∫ t

0

Zn−1(s)ds.

Using this for all t ∈ [0, T ], with Zn ≡ Zn(T ) ≡ supt∈[0,T ] Zn(t), we obtain

(4.14) Zn ≤ μ(f2)eλDT + ηT Zn−1

with

ηT ≡
{

λ

2− λ
+ λ(||J ||∞ + 2A)T

}
eλDT .
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Assuming that 0 < λ < 1, ηT ∈ (0, 1) for all T ∈ (0,∞) small enough. In this
case (4.14) can be iterated to obtain the following bound uniform in n ∈ N as well
as ε > 0

(4.15) Zn ≤ eλDT

1− ηT
μ(f2)

as Z0 ≡ Z0(u0) ≤ μ(f2). The proof is complete. �

Proposition 4.5 (Convergence scheme in C([0, T ],L2) ∩HT,+(E)). Suppose that
μ ∈ FS and let λ ∈ [0, 1). For T ∈ (0,∞), let

(4.16) η∗(T ) ≡
[
λaT +

λ

2− λ

]
eλaT ,

where a = (‖J ‖∞+2A + B + 4B̃). Let T0 ∈ (0,∞) be small enough so that
η∗(T0) < 1. Then, for any 0 < T ≤ T0, the function wn ≡ un+1 − un, satisfies the
following bound:

sup
t∈[0,T ]

(
μ
(
w2

n(t)
)
+ (2 − λ)

∫ t

0

μ
(|∇wn(s)|2

)
ds

)
≤ C(η∗(T ))nμf2,

with a constant C ∈ (0,∞) independent of ε > 0 and T ≤ T0. As a consequence,

‖un+1 − un‖2C([0,T ],L2) + ||un+1 − un||2HT,+
≤ C (T + 2)μ(f2) (η∗(T ))n−1

uniformly in ε > 0.

Proof. Take ε0 = ε1 = ε, ū1 = un+1, ū0 = un, v̄1 = un and v̄0 = un−1 and mainly
f0 = f1 = f . Set wn ≡ un+1 − un. Applying Lemma 4.3 gives

μ
(
w2

n(t)
)
+ (2− λ)

∫ t

0

μ
(|∇wn(s)|2

)
ds

≤ eλat
(
λa

∫ t

0

μ
(
w2

n−1(s)
)
ds+ λ

∫ t

0

μ
(|∇wn−1(s)|2

)
ds

)
.

Replacing un by wn in the definition of Zn(t) (given in (4.13)), one then carry on
the same outline as in the proof of the Uniform bound Proposition 4.4. This leads
to the following inductive bound:

(4.17) sup
t∈[0,T ]

Zn(t) ≤ η∗(T ) sup
t∈[0,T ]

Zn−1(t) ,

with η∗(T ) defined in (4.16). If 0 < λ < 1, then there exists T0 > 0 (independent
of ε > 0 and of the initial condition f) such that η∗(T0) ∈ (0, 1). In this situation,
using the uniform bound of Proposition 4.4, we arrive at

sup
t∈[0,T ]

Zn(t) ≤ Cμ(f2) (η∗(T ))
n
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with a constant C = C(T0) ∈ (0,∞) independent of ε > 0. As a consequence we
conclude that there exists T ∈ (0,∞), independent of ε > 0 and of the initial value
f ∈ L2(μ), such that the sequence (un(t))n∈N, t ∈ [0, T ], converges in HT,+(E) ∩
C
(
[0, T ],L2(μ)

)
uniformly in ε > 0. �

Proposition 4.6 (Uniqueness for Mollified Problem). Assume μ ∈ FS(1) and let
λ ∈ [0, 1), ε > 0 and f ∈ L2(μ). Then, for any T > 0, there exists at most one
weak solution on [0, T ] of the mollified Cauchy problem

(Cε)

{
∂tu

(ε) = Lu(ε) + λPεV(u(ε)),
u(ε)|t=0 = f.

Proof. Assume there are two distinct weak solutions u(ε) and v(ε) on [0, T ] with
the same initial value f . Let w = u(ε) − v(ε). Noting that w(0) = 0 and using the
a priori estimate (4.9) of Lemma 4.3, that we get also for ε > 0, one gets

μ
((
w(t)

)2)
+ 2(1− λ)

∫ t

0

μ
(
|∇w(s)|2

)
ds ≤ 0.

This contradicts our assumption that two distinct weak solutions exist. �

Theorem 4.7 (Solution of the Mollified Problem). Suppose μ ∈ FS, and let
λ ∈ [0, 1) and ε > 0. For T ∈ (0,∞), define η∗(T ) as in (4.16) and choose
T0 ∈ (0,∞) such that η∗(T0) < 1. Then

1) The function u(ε) ≡ limn→∞ u
(ε)
n , with the limit taken in the space HT0,+(μ)∩

C
(
[0, T0],L

2(μ)
)
, is a unique weak solution on [0, T0] of the Mollified Cauchy

problem

(Cε)

{
∂tu

(ε) = Lu(ε) + λPεV(u(ε)),
u(ε)|t=0 = f.

2) The later solution is indeed a unique global (i.e. on [0,∞)) strong solution
of problem (Cε).

3) Moreover, for any t ≥ 0, one has the following estimate:

(4.18) μ
(
u(ε)(t)

)2
+ 2(1− λ)

∫ t

0

ds μ|∇u(ε)(s)|2 ≤ e2λat μ
(
f2

)
,

with the right hand side independent on ε.

Remark 4.8. As follows from Proposition 4.4 (uniform bound), ||u(ε)||HT,+ is
uniformly bounded in ε > 0.

Proof of Theorem 4.7. By definition of u(ε) and by completness of the space C
(
[0,T ],

L2(μ)
)
, we have u(ε) ∈ C

(
[0, T ],L2(μ)

)
. Fix a test function v ∈ C∞(

[0, T ],D) ⊂
HT,+(E). First, for any t ∈ (0, T ],

(4.19)

∫ t

0

dsμ
(
v(s)PεV(u(ε)n )(s)

)
−→

∫ t

0

dsμ
(
v(s)PεV(u(ε))(s)

)
as n goes to ∞.
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Indeed, from Lemma 4.2, it follows that PεV : HT,+ → HT,+ is Lipschitz
continuous. In particular,

PεV
(
u(ε)

)
= HT,+ − lim

n→∞PεV
(
u(ε)n

)
(with short hand notation for limit in space HT,+(E)). And so

PεV
(
u(ε)

)
= HT,− − lim

n→∞PεV
(
u(ε)n

)
when acting on HT,+(E) with L2(μ)-type pairing. Thus (4.19) follows.

Recall that by classical arguments L : HT,+(E) → HT,−(E) acting by

〈Lu, v〉HT,−,HT,+ ≡ −
∫ T

0

μ (∇u(s) · ∇v(s)) ds

is continuous so that∫ t

0

μ
(
∇u(ε)n (s) · ∇v(s)

)
ds −→

∫ t

0

μ
(
∇u(ε)(s) · ∇v(s)

)
ds.

Convergence of u
(ε)
n to u(ε) in L

2
(
[0, T ],L2(μ)

)
leads to∫ t

0

μ
(
u(ε)n (s) ∂sv(s)

)
ds −→

∫ t

0

μ
(
u(ε)(s) ∂sv(s)

)
ds

whereas the convergence in C
(
[0, T ],L2(μ)

)
ensures that μ

(
u
(ε)
n (t) v(t)

)
goes to

μ
(
u(ε)(t) v(t)

)
and u(ε)(0) = f . This completes the proof that u(ε) is a weak

solution of (Cε). Uniqueness of the solution was proved in Proposition 4.6.

The weak solution u(ε) is in fact global. This follows from the fact that the
time T0 > 0 in the foregoing does not depend on initial condition f . A posteriori,
by Lemma 4.2, it follows that

u(ε)(t) = Ptf + λ

∫ t

0

dsPt−s+εV(u(ε))(s)

and so u(ε) is a strong solution, as the left hand side belongs to the domain of L
and is differentiable in L2(μ) with respect to time at any t > 0.

The last estimate is again a suitably adapted version of Lemma 4.3. �

Φ-bounds. In this section, we investigate regularity for mollified solutions in
the Orlicz space LΦq (μ) provided the initial value also belongs to this space. See
Section 3.1 for definition of Φq.

Theorem 4.9. Suppose μ ∈ FS and conditions (C0) to (C4) are satisfied. Let
q ∈ (0,∞) be fixed. Suppose that f ∈ LΦq (μ) and λ ∈ (0, (1 + qB̄)−2). Fix ε > 0.
Then the weak solution u(ε)(t) of the mollified Cauchy problem{

∂u(ε)(t)
∂t = Lu(ε)(t) + λPε

[
u(ε)(t)G(σ2(u(ε)(t)))

]
,

u(ε)(0) = f,
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satisfies the following bound:

μ
(
Φq(u

(ε)(t))
)
+ 2C(q, λ)

∫ t

0

dsμ|∇
√

Φq(u(ε)(s))|2 ≤ eãλtμ (Φq(f))

with some constants

C(q, λ) =
(
(1 + qB̄)−1 − λ(1 + qB̄)

)
> 0 and ã = 2(1 + qB̄) (2A+B + ‖J ‖∞).

Proof of Theorem 4.9. Recall that u(ε)(t) is differentiable in L2(μ) for any t > 0
and is a strong solution of the considered Cauchy problem. We first justify our
computations in the case when we replace F by a bounded function in the definition
of Φq and then get the claimed result by approximation.

The case of bounded F : Let us consider F̃ : [0,∞) → R a bounded function satis-

fying conditions (C1) (with constant B̄) and define Φ̃q(x) = Υ̃q(x
2) = x2eq

˜F (x2),

whereas, in the definition of u(ε), G is still a perturbation of F . Then, μ
(
Φ̃q(u

(ε)(t))
)

is finite for any t, is differentiable and we have

d

dt
μ
(
Φ̃q(u

(ε)(t))
)
= μ

(
Φ̃′

q(u
(ε)(t))

∂

∂t
u(ε)(t)

)
.

Indeed, first, Φ̃q(x) ≤ eq‖ ˜F‖∞x2 so that Φ̃q(u
(ε)(t)) is integrable w.r.t. μ. More-

over, recall from Remark 3.1 that, as F̃ is bounded, Υ̃′
q(x) and Φ̃′′

q (x) are bounded.
One has

(4.20) Δs,t ≡ Φ̃q(u
(ε)(s)) − Φ̃q(u

(ε)(t))

s− t
=
u(ε)(s)− u(ε)(t)

s− t

∫ 1

0

Φ̃′
q(u

s,t
α ) dα

with us,tα ≡ αu(ε)(s)+(1−α)u(ε)(t). As s goes to t, on the one hand, u(ε)(s)−u(ε)(t)
s−t

converges in L2(μ) to ∂
∂tu

(ε)(t) and, on the other hand,∣∣∣∣∫ 1

0

Φ̃′
q(u

s,t
α ) dα− Φ̃′

q(u
(ε)(t))

∣∣∣∣ ≤ ∫ 1

0

∣∣∣Φ̃′
q(u

s,t
α )− Φ̃′

q(u
(ε)(t))

∣∣∣ dα
≤ κ

2

∣∣∣u(ε)(s)− u(ε)(t)
∣∣∣

goes to 0 in L2(μ). Here κ ≡ supx Φ̃
′′
q (x). So that equation (4.20) proves that

lim
s→t

Δs,t =
∂

∂t
u(ε)(t) Φ̃′

q(u
(ε)(t))

in L1(μ). Hence, one has

(4.21)
d

dt
μ
(
Φ̃q(u

(ε)(t))
)

= μ
(
Φ̃′

q(u
(ε)(t))

{
Lu(ε)(t) + λPε

(
u(ε)(t)G(σ2(u(ε)(t)))

)})
.
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This formula shows that this time derivative belongs to L1([0, T ]). This follows

from u(ε) ∈ L2([0, T ],D) and the following bounds. One has Φ̃′
q(u) ∈ D and

E(Φ̃′
q(u

(ε)(t)), u(ε)(t)) ≤ κ E(u(ε)(t), u(ε)(t))

with κ ≡ supx Φ̃
′′
q (x), whereas∣∣∣μ(

Φ̃′
q(u

(ε)(t))Pε

(
u(ε)(t)G(σ2(u(ε)(t)))

))∣∣∣ ≤ ‖Φ̃′
q(u

(ε)(t))‖2‖PεV(u
(ε)(t))‖2

≤ κc√
ε
‖V(u(ε)(t))‖D′‖u(ε)(t))‖2

≤ κc′√
ε
‖u(ε)(t)‖2D

thanks to Lemma 4.2. Integrating (4.21) with respect to time between δ > 0 and t

and letting δ go to 0 – use |Φ̃q(u
(ε)(δ))− Φ̃q(f)| ≤

(
supx |Υ̃′

q(x)|
) |(u(ε)(δ))2 − f2|,

and convergence in L2 of u(ε)(δ) to f – after simple rearrangements one arrives at
the following inequality:

μ
(
Φ̃q(u

(ε)(t))
)
≤ μ

(
Φ̃q(f)

)
+

∫ t

0

ds μ
(
Φ̃′

q(u
(ε)(s))Lu(ε)(s)

)
+ λ

∫ t

0

ds μ
(∣∣Pε(Φ̃

′
q(u

(ε)(s)))u(ε)(s)
∣∣ |F |(σ2(u(ε)(s))))

)
+ λ ‖J ‖∞

∫ t

0

ds μ
(∣∣Pε(Φ̃

′
q(u

(ε)(s)))u(ε)(s)
∣∣) .

First, from the Dirichlet/Young bound (3.7),

μ
(
Φ̃′

q(u
(ε)(s))Lu(ε)(s)

)
≤ −kq μ

∣∣∇√
Φ̃q(u(ε)(s))

∣∣2.
Next, we note that by Young inequality and Jensen inequality for the semigroup,
we have

|Pε(Φ̃
′
q(u

(ε)(s))) · u(ε)(s)| ≤ Φ̃∗
q(Pε(Φ̃

′
q(u

(ε)(s)))) + Φ̃q(u
(ε)(s))

≤ PεΦ̃
∗
q(Φ̃

′
q(u

(ε)(s))) + Φ̃q(u
(ε)(s))

with Φ̃∗
q(y) = supx∈R xy−Φ̃q(x), the conjugate of Φ̃q. Since Φ̃

∗
q(Φ̃

′
q(x)) = xΦ̃′

q(x)−
Φ̃q(x), thanks to (3.6), we have Φ̃∗

q(Φ̃
′
q(x)) ≤ (1 + 2qB̄)Φ̃q(x). Hence,

|Pε(Φ̃
′
q(u

(ε)(s))) · u(ε)(s)| ≤ (1 + 2qB̄)PεΦ̃q(u
(ε)(s)) + Φ̃q(u

(ε)(s)).

Using this, |F | = F + 2F− ≤ F + 2A with A defined in (2.5), then (GREI) twice
and at last invariance property for Pε w.r.t. μ, we have on the one hand,

μ
(∣∣Pε

(
Φ̃′

q(u
(ε)(s))

)
u(ε)(s)

∣∣) ≤ 2
(
1 + qB̄

)
μ
(
Φ̃q(u

(ε)(s)
)
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and

μ
( ∣∣ Pε

(
Φ̃′

q(u
(ε)(s))

)
u(ε)(s)

∣∣|F |(σ2(u(ε)(s)))
)

≤ μ
(
Φ̃q(u

(ε)(s))|F |(σ2(u(ε)(s)))
)

+ (1 + 2qB̄) μ
(
Pε

(
Φ̃q(u

(ε)(s))
)|F |(σ2(u(ε)(s)))

)
≤ μ

(
Φ̃q(u

(ε)(s))F (σ2(u(ε)(s)))
)
+ 4A

(
1 + qB̄

)
μ
(
Φ̃q(u

(ε)(s)
)

+ (1 + 2qB̄)μ
(
Pε

(
Φ̃q(u

(ε)(s))
)
F (σ2(u(ε)(s)))

)
≤ μ

(
Φ̃q(u

(ε)(s))F
(
σ2

(√
Φ̃q(u(ε)(s))

)))
+ 2(2A+B)

(
1 + qB̄

)
μ
(
Φ̃q(u

(ε)(s))
)

+ (1 + 2qB̄) μ

(
Pε

(
Φ̃q(u

(ε)(s))
)
F
(
σ2

(√
Pε

(
Φ̃q(u(ε)(s))

) )))
on the other hand. Since xF (x) is convex by condition (C2), use Jensen inequality
for the measure Pε and then invariance property to get

μ
(
Pε

(
Φ̃q(u

(ε)(s))
)
F
(
σ2

(√
Pε

(
Φ̃q(u(ε)(s))

) )))
≤ μ

(
Φ̃q(u

(ε)(s))F
(
σ2

(√
Φ̃q(u(ε)(s))

)))
.

Hence

μ
(
Φ̃′

q(u
(ε)(s))Lu(ε)(s)

)
+ λ ‖J ‖∞ μ

(∣∣Φ̃′
q(u

(ε)(s))Pεu
(ε)(s)

∣∣)
+ λμ

(∣∣Φ̃′
q(u

(ε)(s))Pεu
(ε)(s)

∣∣|F |(σ2(u(ε)(s))))
)

≤ −kq μ
∣∣∇√

Φ̃q(u(ε)(s))
∣∣2 + 2λ(1 + qB̄)μ

(
Φ̃q(u

(ε)(s))F
(
σ2

(√
Φ̃q(u(ε)(s))

)))
+ 2λ(1 + qB̄) (2A+B + ‖J ‖∞) μ

(
Φ̃q(u

(ε)(s))
)
.

With the use of (FS) inequality, the last can be bounded by

−2
(kq
2

− λ̃
)
μ
∣∣∇√

Φ̃q(u(ε)(s))
∣∣2 + 2λ̃ (2A+B + ‖J ‖∞) μ

(
Φ̃q(u

(ε)(s))
)
,

where λ̃ ≡ λ(1+qB̄). Combining all the above we arrive at the following inequality:

Zε(t) ≡ μΦ̃q(u
(ε)(t)) + 2

(kq
2

− λ̃
) ∫ t

0

ds μ
∣∣∇√

Φ̃q(u(ε)(s))
∣∣2

≤ μ Φ̃q(f) + 2λ̃ (2A+B + ‖J ‖∞)

∫ t

0

ds μ Φ̃q(u
(ε)(s))

≤ μ Φ̃q(f) + 2λ̃ (2A+B + ‖J ‖∞)

∫ t

0

Zε(s)ds,

provided λ̃ <
kq

2 . As here kq = 2/
(
1 + q B̄

)
we get the announced constraint on λ.



Sub-gaussian measures and associated semilinear problems 329

Now Gronwall type inequality leads to the following bound:

μΦ̃q(u
(ε)(t)) + 2

(kq
2

− λ̃
) ∫ t

0

ds μ
∣∣∇√

Φ̃q(u(ε)(s))
∣∣2 ≤ e2λ̃(2A+B+‖J ‖∞)tμ Φ̃q(f).

From bounded to unbounded F . Assume F satisfies (C2). For any b � 1, let Fb

be a non decreasing C2 bounded truncated function of F such that

1) Fb = F on [0, b] and Fb is concave on [θ,∞),

2) F ′
b ≤ F ′,

3) Fb(x) satisfies (C2).

One may construct such a function in the following way. Noting that F (x)
satisfies (C2) if and only if F ′(x) = g(x)/x2 for a non decreasing function g, we
define Fb(x) =

∫ x

1
gb(s)

ds
s2 where gb(x) = g(b) +

∫ x

b
g′(s)ψ( sb − 1)ds with ψ(x) =

1− ∫ x

0 φ(s)ds and φ ∈ C∞
c ((0, 1)) such that

∫
R
φ(s) ds = 1.

The first part of the proof applied to F̃ = Fb and Φ̃b,q(x) ≡ x2eqFb(x
2) ensures

that

μ Φ̃b,q(u
(ε)(t)) + 2

(kq
2

− λ̃
) ∫ t

0

ds μ
∣∣∇√

Φ̃b,q(u(ε)(s))
∣∣2

≤ e2λ̃(2A+B+‖J ‖∞)tμ Φ̃b,q(f) ≤ e2λ̃(2A+B+‖J‖∞)tμΦq(f).(4.22)

Recall that, for any v ∈ L2(μ), E(τ)(v, v) ≡ 1
τ μ

(
(v − Pτv)v

)
is non decreasing

as τ ↓ 0, τ > 0, and⎧⎨⎩ D =
{
v ∈ L2(μ) : limτ→0

τ>0
E(τ)(v, v) <∞

}
,

E(v, v) = limτ↓0 E(τ)(v, v), v ∈ D.
So that making use of monotone convergence theorem, Lebesgue dominated con-
vergence theorem and Fatou lemma leads to the result when b goes to ∞ in (4.22).

�

Removing the smoothing.

Theorem 4.10 (Convergence in HT,+∩C([0, T ],L2(μ)) when ε→ 0). Let F and G
satisfy conditions (C1) to (C4). Assume (μ, E) ∈ (FS) and (C0) is satisfied. For
a fixed λ ∈ [0, 1), let u(ε)(t) denote the solution on [0,∞) of the approximated
Cauchy problem

(Cε)

{
∂
∂tu

(ε) = Lu(ε) + λPεV(u(ε))
u(ε)(0) = f

with ε > 0. Assume that initial value f ∈ L∞(μ).
Then, for any T ∈ (0,+∞), when ε → 0, the solutions u(ε) converge in the

Banach space HT,+(μ) ∩ C([0, T ], L2(μ)).
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Proof. For ε > ε′ > 0 define w ≡ wε,ε′ ≡ u(ε) − u(ε
′). A suitable use of Lemma 4.3

leads to

(4.23) μw2(t) + 2(1− λ)

∫ t

0

ds μ|∇w(s)|2

≤ 2λ e2λat
( ∫ t

0

ds μ [(Pε − Pε′)w(s)]
2
)1/2(∫ t

0

ds μV2(u(ε
′)(s))

)1/2

,

where a is defined in (4.8). First we note that, since w(s) belongs to the domain
of L,∫ t

0

dsμ [(Pε − Pε′)w(s)]
2 =

∫ t

0

dsμ
[
(−L) 1

4w(s) (Pε − Pε′ )
2 (−L)− 1

4w(s)
]

≤
( ∫ t

0

dsμ
(
(−L) 1

4w(s)
)2)1/2

·
( ∫ t

0

dsμ
(
(Pε − Pε′)

2(−L)− 1
4w(s)

)2)1/2

.

Next we observe that (using the symmetry of L, spectral theory and
√
ξ ≤ 1 + ξ)

(∫ t

0

dsμ
(
(−L) 1

4w(s)
)2)1/2

≤
( ∫ t

0

ds
[
μ(w2(s)) + μ|∇w(s)|2] )1/2

≤ ‖w‖
HT,+

But ‖w‖
HT,+

≤ 2C(T ) (μf2)
1
2 with some constant C(T ) ∈ (0,∞) independent

on ε, ε′. From (4.18), one can choose

C(T ) =
(
T +

1

2(1− λ)

)1/2

eλaT .

Once again by spectral theory, denoting by νw(s) the spectral measure associated
to w(s) (and −L), we have

μ
(
(Pε − Pε′ )

2 (−L)− 1
4w(s)

)2

=

∫ ∞

0

e−4ε′η(e−(ε−ε′)η − 1)4η−
1
2 νw(s)(dη)

which we bound by

sup
η>0

(
e−4ε′η(e−(ε−ε′)η − 1)4 · η−1

)∫ ∞

0

η
1
2 νw(s)(dη) ≤ (ε− ε′)

∫ ∞

0

η
1
2 νw(s)(dη)

≤ (ε− ε′)
(
μw2(s) +μ|∇w(s)|2).

To bound the supremum we notice that in the case when (ε − ε′)η ≤ 1, we have
|e−(ε−ε′)η − 1|4 · η−1 ≤ |(ε − ε′)η|4/η ≤ (ε − ε′), while for (ε − ε′)η ≥ 1, we have
(e−4ε′η(e−(ε−ε′)η − 1)4 · η−1) ≤ η−1 ≤ (ε − ε′). Hence we obtain the following
bound:(∫ t

0

dsμ
(
(Pε − Pε′)

2 (−L)− 1
4w(s)

)2)1/2

≤ 2C(T ) (μf2)
1
2 (ε− ε′)

1
2 .
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Combining the above estimates we arrive at the following bound:

(4.24)
( ∫ t

0

dsμ [(Pε − Pε′)w(s)]
2
)1/2

≤ 2C(T ) (μf2)1/2 (ε− ε′)1/4.

Hence, coming back to (4.23), we have proved that (u(ε))ε>0 is Cauchy in the space
HT,+(μ) ∩ C([0, T ],L2(μ)) as ε goes to 0 provided we can bound( ∫ T

0

ds μ
(
V

2(u(ε
′)(s))

))1/2

uniformly in ε′. This is the aim of Lemma 4.11 below, or more precisely of its
Corollary 4.12. The proof is complete. �

Lemma 4.11. For F satisfying conditions (C1) to (C3) and F (+∞) = +∞, let
Υq(x) = |x|eqF (|x|), q > 0, and Υ∗

q(y) = supx∈R
[|xy| −Υq(x)]. Then, there exists

Cq ∈ (0,∞) such that

(4.25) Υ∗
q

(
F 2(z)

) ≤ Cq(1 + z), ∀z ≥ 0.

Corollary 4.12. Let u(ε) be as in Theorem 4.10, for an initial condition f ∈
L
∞(μ) and a coupling constant λ ∈ [0, 1). Let q > 0 be small enough such that

λ < (1 + qB̄)−2 and let T > 0 be fixed. Then, for any ε > 0 and any t ∈ [0, T ],(∫ t

0

dsμV2(u(ε)(s))
)1/2

≤ Aq,T

(
μ(Φq(f)) + μ(f2) + 1

)1/2
with some constant Aq,T ∈ (1,∞) which is independent of ε.

Proof of Lemma 4.11. We start with a bound on Υ∗
q(y) (which is finite for any y as

F (+∞) = +∞). Let y ≥ 0 such that Υ∗
q(y) > 0 (so that, in particular, y > eqF (0)).

Note that xy−Υq(x) = x
(
y − eqF (x)

) ≤ 0 for any x ≥ 0 such that F (x) ≥ 1
q log y,

or equivalently x ≥ F−(1q log y), where F
−(u) ≡ inf{a ≥ 0: u ≤ F (a)} for u ∈

[F (0),+∞) is the generalized inverse of F . Hence,

(4.26) Υ∗
q(y) = sup

0≤x≤F−( 1
q log y)

[xy −Υq(x)] ≤ y F−
(1
q
log y

)
.

We now turn to the bound (4.25). We only have to deal with the large values
of z. From (4.26), Υ∗

q(F
2(z)) ≤ F 2(z)F−(2q logF (z)). On the one hand, F 2(z) ≤

B̄2 log2 z ≤ C(1+z)1/2 from condition (C1). On the other hand, for any fixed q, let
A such that, for any a ≥ A, 2

q log(2a+R) ≤ a with R as defined by condition (C3)

and choose z large enough such that F ((1+z)1/2) ≥ A. Then, making use of (C3),

2

q
logF (z) ≤ 2

q
log

(
2F ((1 + z)1/2) +R

)
≤ F ((1 + z)1/2).

Which is equivalent to F−(2q logF (z)) ≤ (1 + z)1/2. Hence, (4.25) holds with
Cq = C for large values of z. The proof is complete. �
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Proof of Corollary 4.12. We will use the Φq-bounds of Theorem 4.9 available here
since f ∈ L

∞(μ) ⊂ L
Φq (μ). So choose q > 0 small enough so that λ < (1+ qB̄)−2.

Recall that Φq(x) = Υq(x
2) where Υq(x) = |x|eqF (|x|) is a Young function.

As G = F + J and by Young’s inequality we have

(4.27) μ
(
V

2(u(ε)(s))
)
= μ

[
(u(ε)(s))2G2(σ2(u(ε)(s)))

]
≤ 2 ‖J ‖2∞ μ((u(ε)(s))2) + 2μΥq((u

(ε)(s))2) + 2μΥ∗
q(F

2(σ2(u(ε)(s)))).

Using the uniform bound (4.18) and with Cq as in Lemma 4.11, one gets, for
s ∈ [0, T ],

μ
(
V

2(u(ε)(s))
)
≤ KT μ(f

2) + 2μΦq(u
(ε)(s)) + 2Cqμ

(
σ2(u(ε)(s)) + 1

)
≤ 2μΦq(u

(ε)(s)) + (4Cq +KTμ(f
2))

with KT ≡ 2 ‖J ‖2∞e2λaT . Hence, using the Φ-bound, we arrive at(∫ t

0

dsμV2(u(ε)(s))
)1/2

≤
(∫ t

0

ds
[
2eãλsμΦq(f) + (4Cq +KTμ(f

2))
] )1/2

≤ Aq,T

(
μ(Φq(f)) + μ(f2) + 1

)1/2
,

with some constant Aq,T ∈ (1,∞) which is independent of ε. �

Global existence and uniqueness for (MCP). In this section, we complete
the proof of our main theorem.

Proof of Theorem 2.2. Recall that we reduced the problem to the case cF = 1.
First, we mimic arguments given in the proof of Proposition 4.6 to get uniqueness
for weak solutions on any interval [0, T ].

Let us turn to the proof of the existence on [0, T ]. Choose q > 0 small enough
so that λ < (1 + qB̄)−2. Then, provided the initial value f ∈ L∞(μ), we can use
Theorem 4.10 to exhibit a function u ∈ HT,+(μ) ∩ C([0, T ],L2(μ)) such that

‖u(ε) − u‖HT,+(μ) + sup
t∈[0,T ]

‖u(ε)(t)− u(t)‖L2(μ) −→ 0

when ε goes to 0. Thus, by Lemma 4.2, one has

‖V(u(ε))− V(u)‖HT,−(μ) −→ 0.

Hence, for any v ∈ HT,+(μ) and t ∈ [0, T ],∫ t

0

ds
〈
PεV(u(ε))(s), v(s)

〉
D′,D

=

∫ t

0

ds
〈
V(u(ε))(s), Pεv(s)

〉
D′,D

−→
∫ t

0

ds 〈V(u)(s), v(s)〉D′,D

as additionally Pεv goes to v in HT,+(μ). This together with other arguments
developed in the proof of Theorem 4.7 shows that u is a weak solution on [0, T ] of
problem (MCP). Hence, we are done provided the initial value f ∈ L∞(μ).
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Now, by a priori estimate (4.9) of Lemma 4.3, weak solutions of (MCP) on [0, T ]
are Lipschitz continuous w.r.t. initial value f ∈ L

2(μ) (with values in HT,+(μ) ∩
C([0, T ],L2(μ))). Hence, if f ∈ L2(μ), (fn)n → f in L2(μ) with (fn)n∈N ⊂ L∞(μ)
and un are the corresponding solutions of (MCP) with initial value fn, then (un)n is
Cauchy in HT,+(μ)∩C([0, T ],L2(μ)). The limit u of (un)n is then a weak solution
on [0, T ] of (MCP) with u(0) = f by arguments developed in the beginning of
this proof. �

5. Properties of solutions of (MCP)

5.1. Positivity preserving

We will make use that, for any Dirichlet form E and any u ∈ D, E(u+, u+) ≤
E(u, u+) where u+ = max(0, u). Indeed, this is equivalent to E(u−, u+) ≤ 0, with
u− = max(0,−u), which easily follows from E(|u|, |u|) ≤ E(u, u).

Proposition 5.1 (Positivity). Assume that μ∈FS(1) and that G satisfies (MC4).
Then, for any λ ∈ [0, 1), any solution u(t) of (MCP) with initial value f ≥ 0
satisfies u(t) ≥ 0 for any t ≥ 0.

Proof. Let u(t) be a weak solution of (MCP) with initial value f ≥ 0. We will prove
that, μ-a.s., u−(t) = 0. For that, we first consider the Steklov average ah(u)(t)
and its negative part a−h (u)(t) ≡ max(0,−ah(u)(t)). Note that a−h (u)(t) → u−(t)
in L2(μ) and a−h (u) → u− in L2([0, T ],D), whereas, in W 1,2((0, T ),L2(μ)),

∂sa
−
h (u)(s) = −∂sah(u)(s)χ{ah(u)(s)≤0} = − 1

h
(u(s+ h)− u(s))χ{ah(u)(s)≤0}

where χ denotes the indicator function. Hence, using the definition of a weak
solution (with the constant test function a−h (u)(s) ∈ D), we get

1

2
μ
(
a−h (u)(t)

)2
=

1

2
μ
(
a−h (u)(0)

)2
+

1

2

∫ t

0

ds ∂sμ
(
a−h (u)(s)

)2
=

1

2
μ
(
a−h (u)(0)

)2 − ∫ t

0

ds μ

(
a−h (u)(s)

1

h
(u(s+ h)− u(s))

)
=

1

2
μ
(
a−h (u)(0)

)2
+

∫ t

0

ds
1

h

∫ s+h

s

dτ
[E (

a−h (u)(s), u(τ)
)− λ〈V(u)(τ), a−h (u)(s)〉D′,D

]
=

1

2
μ
(
a−h (u)(0)

)2
+

∫ t

0

ds
[
E(a−h (u)(s), ah(u)(s))− λ

〈
ah

(V(u))(s), a−h (u)(s)〉D′,D
]
.
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We can pass to the limit with h→ 0 which yields (as μ
(
(f−)2

)
= 0)

1

2
μ
(
u−(t)

)2
=

∫ t

0

dsE(u−(s), u(s))− λ

∫ t

0

dsμ
(
(u−(s))u(s)G

( (u(s))2

||u(s)||22
))

= −
∫ t

0

dsE((−u)+(s), (−u)(s))

+ λ

∫ t

0

dsμ
(
((−u)+(s)) (−u)(s)G

( (−u(s))2
|| − u(s)||22

))
= −

∫ t

0

dsE((−u)+(s), (−u)(s)) + λ

∫ t

0

dsμ
(
((−u)+(s))2G

(((−u)+(s))2
|| − u(s)||22

))
≤ −

∫ t

0

dsE(u−(s), u−(s)) + λ

∫ t

0

dsμ
(
(u−(s))2F

( (u−(s))2

||u−(s)||22
))

≤ 0

provided λ < 1 thanks to the F -Sobolev inequality. Note that we used G ≤ F and
monotonicity of F . Hence,

μ
(
(u−(t))2

) ≤ 0.

The proof is complete. �

5.2. Further properties

For simplicity we set û2(t) ≡ σ2(u(t)) ≡ u2(t)/μ(u2(t)).

Theorem 5.2 (Exponential decay in L2). Assume that μ ∈ FS(1) and G satisfies
(MC4). Suppose also that μ satisfies the following spectral gap inequality:

mμ (g − μg)2 ≤ μ|∇g|2,

with m ∈ (0,∞) independent of g ∈ D. Choose λ ∈ (0, (1 + (b/m))
−1

) where

b ≡ (‖J ‖∞+B+4B̃
)
with B > 0 as in the generalized relative entropy inequality,

and B̃ and J as in condition (C4). Then, the solution u(t) of the problem (MCP)
with initial data f ∈ L2(μ) satisfies for any t ≥ 0,

(5.1) μ
(
(u(t)− μ(u(t)))2

) ≤ e−2Mtμ
(
(f − μ(f))2

)
with M ≡ m− λ(m+ b) > 0.

Recall that, under condition (C1), F -Sobolev inequality does not necessarily
imply spectral gap inequality.

Proof. Set w(t) = u(t)− μ(u(t)) and recall

wh(t) ≡ 1

h

∫ t+h

t

w(τ)dτ

(and similarly for u(t)) so that wh(t) = uh(t)− μ(uh(t)).



Sub-gaussian measures and associated semilinear problems 335

Since wh(t) is differentiable and μ(wh(t)) = 0 for any t, we have

1

2

d

dt

(
e2Mtμ

(
(wh(t))

2
))−Me2Mtμ

(
(wh(t))

2
)

= e2Mtμ(wh(t)
1

h
(u(t+ h)− u(t)))

= e2Mt 1

h

∫ t+h

t

dτ
{
− μ (∇wh(t)∇u(τ)) + λ

∫
wh(t)u(τ)G(û

2(τ))dμ
}
.

Integrating from 0 to t, and passing to the limit with h→ 0, we arrive at

(5.2)
e2Mt

2
μ(w(t))2 =

1

2
μ(f − μf)2

+

∫ t

0

dse2Ms
{−μ|∇u(s)|2 + λμ

[
w(s)u(s)G(û2(s))

]
+Mμ(w2(s))

}
.

Now, as G vanishes at one, we have

u(s)G(û2(s)) =

∫ 1

0

dα
d

dα

[
u[α](s)G(û

2
[α]
(s))

]
with u[α](s) ≡ αu(s) + (1 − α)μ(u(s)) and û2

[α]
(s) ≡ (u[α](s))

2/μ(u[α](s))
2. Eva-

luating this derivative as in (4.3), one gets

μ
[
w(s)u(s)G(û2(s))

]
=

∫ 1

0

dα μ
(
w2(s)

[
G(û2[α](s)) + 2û2[α](s)G

′(û2[α](s))
])

− 2

∫ 1

0

dα μ
[
û3[α](s)G

′(û2[α](s))w(s)
]
μ (û[α](s)w(s))

≤
∫ 1

0

dα
{
μ
(
w2(s)F (û2

[α]
(s))

)
+ 2B̃ [μ (û[α](s)w(s))]

2

+
(
‖J ‖∞ + 2B̃

)
μ(w2(s))

}
≤ μ

(
w2(s)F (ŵ2(s))

)
+ b μ(w2(s)),

with b = ‖J ‖∞+4B̃+B, by arguments we already detailed. Coming back to (5.2)
and applying F -Sobolev inequality, we obtain (as the Dirichlet form is conservative)

μ(w(t))2 = e−2Mtμ(f − μf)2

+ 2

∫ t

0

dse−2M(t−s)
{−(1− λ)μ|∇u(s)|2 + (λb +M)μ(w2(s))

}
If m ∈ (0,∞) is the best constant in the following Poincaré inequality

m · μ(g − μg)2 ≤ μ|∇g|2,
for any g in the domain of the form, then we get

μ(w(t))2 ≤ e−2Mtμ(f −μf)2−2

∫ t

0

dse−2M(t−s)
{
[m(1− λ) −M − λb))]μw2(s)

}
.
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Thus, if λ ∈ [0, {1 + (b/m)}−1), then M = m(1− λ)− λb > 0 and we obtain

μ(w(t))2 ≤ e−2Mtμ(f − μf)2.
�

Proposition 5.3. Under the assumptions of the previous theorem, for any initial
value f ∈ L2(μ), μ(u(t)) converges exponentially fast to a quantity we denote by
S∞(f) ∈ R: there exists a constant K ′ ∈ (0,∞) such that, for any t ≥ 0,

|μ(u(t)) − S∞(f)| ≤ K ′e−Mt‖f − μ(f)‖2.
Consequently, there exists a constant K ′′ ∈ (0,∞) such that

‖u(t)− S∞(f)‖2 ≤ K ′′e−Mt‖f − μ(f)‖2.
Note that trivially S∞(f) coincides with the nonlinear parabolic transfer opera-

tor given by the L2(μ) limit limT→∞ 1
T

∫ T

0
u(s)ds, whose existence in some abstract

(continuous w.r.t. initial value) nonlinear Markov contraction semigroups setting
would be worth studying.

Proof. We first prove the convergence of μ(u(t)). As in the previous proof, let

u[α](t) = αu(t) + (1− α)μ(u(t)), w(t) = u(t)− μ(u(t)) and uh(t) =
1
h

∫ t+h

t u(τ)dτ .
We have

∂tμ(uh(t)) =
1

h
μ (u(t+ h)− u(t)) = λ

1

h

∫ t+h

t

dsμ
(
u(s)G

(
û(s)2

))
=

1

h

∫ t+h

t

dsμ

(
λ

∫ 1

0

d

dα

(
u[α](s)G

(
û2

[α]
(s)

))
dα

)
.

with

μ
( d

dα

(
u[α](s)G

(
û2

[α]
(s)

)))
=

∫
w(s)G

(
û2

[α]
(s)

)
dμ+ 2

∫
w(s)û2

[α]
(s)G′ (û2

[α]
(s)

)
dμ

− 2

∫
û2

[α]
(s)G′ (û2

[α]
(s)

) u[α](s)μ(u[α](s)w(s))

μ(u2
[α]
(s))

dμ.

It follows from condition (C4) that B̃ ≡ sup |xG′(x)| < ∞ and that |G(x)| ≤
C + x

1
2 with some constant C ∈ (0,∞). Hence, using Hölder’s inequality, we get∣∣∣∣∫ d

dα

(
u[α](s)G

(
û2

[α]
(s)

))
dμ

∣∣∣∣ ≤ (C + 1 + 4B̃)
(
μw2(s)

) 1
2 .

Combining our considerations, we obtain

|∂tμ(uh(t))| ≤ λ(C + 1 + 4B̃)
1

h

∫ t+h

t

ds
(
μw(s)2

) 1
2 .

Now using the bound of Theorem 5.2 gives (uniformly in h > 0)

|∂tμ(uh(t))| ≤ λ(C + 1 + 4B̃)e−Mt(μ(f − μf)2)
1
2 .
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Thus, if T ≥ t, one gets

|μ(uh(T ))− μ(uh(t))| ≤ λ(C + 1 + 4B̃)‖f − μ(f)‖2
∫ ∞

t

e−Msds

so that, after passing to the limit h→ 0,

|μ(u(T ))− μ(u(t))| ≤ e−Mt

M
λ(C + 1 + 4B̃)‖f − μ(f)‖2.

Hence, (μ(u(t)))t≥0 is Cauchy as t goes to ∞. Letting T go to infinity proves the

first part of the proposition with K ′ = λ
M (C + 1 + 4B̃).

The second part follows from the following inequality:

μ
(
(u(t)− S∞(f))2

) ≤ 2μ
(
(u(t)− μ(u(t)))2

)
+ 2|μ(u(t))− S∞(f)|2,

the previous bound and Theorem 5.2. �

6. Uniform hypercontractivity

In [3] it is shown that in case of linear diffusion operators, the corresponding semi-
group is hypercontractive in some family of Orlicz spaces. Moreover, this fact is
equivalent to F -Sobolev inequality, generalizing Gross’ Theorem. In this section
we show that similar smoothing properties hold true in our setting. Note that
notation sometimes differs slightly with other sections.

Define for any r ≥ 0, τr(x) := x2erF (x2) and assume that there exists a constant

k > 0 such that for all r ≥ 0: τ ′′r τr ≥ k
4 τ

′
r
2
.

In particular if we consider the function F defined in Appendix II, thanks to
Lemma 37 of [3], we have for any r ≥ 0,

(6.1) (τ (α)r )′′τ (α)r ≥ 3− 2(2− α)/(α log(θ))

4
(τ (α)r )′

2
.

Suppose λ ∈ [0,min(1, k/2)). Let q : R+ → R+ be a C1 non-decreasing function
satisfying −k +

[
λ2(1 + q(t)B̄) + q′(t)

] ≤ 0 and q(0) = 0. In particular, one may

choose q(t) ≡ η
2λB̄

(1 − e−2λB̄t) with 0 ≤ η ≤ k − 2λ. We set Φt := τq(t), t ≥ 0.

We have x2 ≡ Φ0(x) ≤ eAq(∞)Φt(x) and consequently ||f ||2 ≤ eAq(∞)||f ||Φt . Note
that, under our hypothesis, q(t) is bounded.

Theorem 6.1. Assume conditions (C0)–(C4). Assume that μ ∈ FS and that
λ ∈ [0, min(1, k/2)]. Then, any solutions u(t) and v(t) of (MCP) with initial data
f ∈ L

2(μ) and g ∈ L
2(μ), respectively, satisfy, for all t ≥ 0,

(6.2) ‖u(t)‖Φt
≤ exp

{
λ(B + 2A+‖J ‖∞)

∫ t

0

ds (1 + q(s)B̄)

}
‖f‖2
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and
‖u(t)− v(t)‖Φt

≤ Cu,v(t)‖f − g‖2,
where Cu,v(t) is given by

Cu,v(t) = exp
{
λ

∫ t

0

ds
[
2B̃

(
1+2

∫ 1

0

dα
‖u[α](s)‖Φs

‖u[α](s)‖2
)
+B+2A+‖J ‖∞)

]
(1+q(s)B̄)

}
with u[α](s) ≡ αu(s) + (1− α)v(s).

Remark 6.2. The constant Cu,v can be slightly simplified with more effort if we
assume f, g ≥ 0, using the first part of the theorem and the positivity preservation
of the solution.

Proof. The proof is standard and relies basically on Gross’ arguments [18]. We
give the main step of the proof, some computations and details are left to the
reader. Let u(t) and v(t) be a solution of the Cauchy problem with smooth initial
data f and g, respectively. The desired hypercontractivity once proven for the
case of bounded smooth initial data, can later be extended to the general case.
Let w(t) ≡ u(t)−v(t). Let q : R+ → R

+ be a general non-decreasing function with

q(0) = 0 and consider first Nh(t) = ‖wh(t)‖τq(t) , where wh(t) ≡ 1
h

∫ t+h

t
dsw(s).

For simplicity, we set T (x, q) = τq(x). Then by definition of the Luxemburg norm,
we have ∫

T (σt(wh(t)), q(t)) dμ = 1, ∀t ≥ 0,

where σt(wh(t)) ≡ wh(t)
Nh(t)

. If N ′
h(t) ≤ 0, there is nothing to prove. In case when

N ′
h(t) ≥ 0, using convexity of T , by differentiation of the latter, passing to the

limit h→ 0, we arrive at the following inequality with N ≡ N(t) ≡ NΦt(w(t)):

2N ′

N
≤−

∫ |∇w(t)|2
N2

∂11T (σt(w(t)), q(t)) dμ(6.3)

+ λ

∫
1

N

[
u(t)G

(
σ2
0(u(t))

)− v(t)G
(
σ2
0(v(t))

)]
∂1T (σt(w(t)), q(t)) dμ

+ q′(t)
∫
∂2T (σt(w(t)), q(t)) dμ

For α ∈ [0, 1], set u[α] ≡ u[α](t) ≡ αu(t) + (1− α)v(t). Using this interpolation we
can estimate the second term as follows:∫

1

N

[
u(t)G

(
σ2
0(u(t))

)− v(t)G
(
σ2
0(v(t))

)]
∂1Tdμ(6.4)

≤
∫ 1

0

dα

∫
dμ

{[
F
(
σ2
0(u[α](t))

)
+ 2A+‖J ‖∞

] |σt(w(t))| ∂1T
+

2

N

[
σ2
0(u[α](t))G

′(σ2
0(u[α](t))

)(
w(t) − u[α](t)

||u[α](t)||2
d

dα
||u[α](t)||2

)
∂1T

]}
≤ (I) + (II),

where we wrote ∂1T for ∂1T (σt(w(t)), q(t)).
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Note that, by our assumption we have sup |xG′(x)| ≡ B̃ <∞. Since

|∂1T (x, q)| = 2|x|(1 + qx2F ′(x2))eqF (x2) ≤ 2(1 + qB̄)|x|eqF (x2),

after several computations, one obtains

(6.5) (II) ≤ 4B̃(1 + q(t)B̄)
(
1 + 2

∫ 1

0

‖u[α](t)‖Φt

‖u[α](t)‖2 dα
)
.

The first term (I) on the right hand side of (6.4) can be bounded by using
x∂1T (x, q) = 2T (x, q) + 2qx2F ′(x2)T (x, q) ≤ 2(1 + qB̄)T (x, q), the generalized
relative entropy inequality and μ ∈ FS, by

(6.6) (I) ≤ 2(1+ q(t)B̄)

∫
dμ

∣∣∣∇√
T (σt(w(t)), q(t))

∣∣∣2+2(B+ ‖J ‖∞)(1+ q(t)B̄).

Winding up (6.3)–(6.6), we get

2N ′

N
≤ −

∫ |∇w(t)|2
N2

∂11T (σt(w(t)), q(t)) dμ(6.7)

+ λ2(1 + q(t)B̄)

∫
dμ

∣∣∣∇√
T (σt(w(t)), q(t))

∣∣∣2
+ 2λ(2B̃ζu,v(t) +B + 2A+‖J ‖∞)(1 + q(t)B̄)

+ q′(t)
∫
∂2T (σt(w(t)), q(t)) dμ

where we wrote

ζu,v(t) = 1 + 2

∫ 1

0

‖u[α](t)‖Φt

‖u[α](t)‖2 dα.
Next, under our assumption on τq and using (FS), we have

(6.8)

∫
∂2T (g, q(t))dμ ≤

∫
T (g, q(t))F (T (g, q(t)))dμ ≤

∫
|∇

√
T (g, q(t))|2dμ.

Thus

2N ′

N
≤ (−k + [

λ2(1 + q(t)B̄) + q′(t)
]) ∫ |∇

√
T (σt(w(t)), q(t))|2dμ(6.9)

+ 2λ(2B̃ζu,v(t) +B + 2A+‖J ‖∞)(1 + q(t)B̄)

Choosing q(t) such that −k + c
F

[
λ2(1 + q(t)B̄) + q′(t)

] ≤ 0, we get

2N ′

N
≤ 2λã(t)(1 + q(t)B̄)

with ã(t) ≡ (2B̃ζu,v(t) +B + 2A+‖J ‖∞). And this for any t such that N ′(t) ≥ 0.
Thus by integration we arrive at the following bound:

‖u(t)− v(t)‖Φt
≤ exp

{
λ

∫ t

0

dsã(s) (1 + q(s)B̄)
}
‖f − g‖2,

which ends the proof of the metric type hypercontractivity. As for the hypercon-
tractivity for the norm (6.2), the proof is simpler and may be developed by similar
arguments from (6.3) by taking w = u and v = 0. �
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7. Functional inequalities for Gibbs measures

7.1. Gibbs measures on infinite product of manifolds and generalized
Sobolev space

In this section we introduce the general infinite space we will consider. Let M =∏
i∈RMi be an infinite product of Riemannian manifolds (Mi, gi), where R is a

countable set (an infinite graph). Given z ∈ Mi and x = (xi)i∈R ∈ M we define
z •i x ≡ {(z •i x)k ≡ δikz + (1 − δik)xk : k ∈ R}. We say that a function f on
M is cylindrically smooth if f is localized on some finite subset Λ ⊂ R (that is f
depends only on the coordinates in Λ) and is smooth when considered as a function
onMΛ =

∏
i∈ΛMi. We denote by C the space of compactly supported cylindrically

smooth functions. For f ∈ C, we consider the following quadratic operator, called
the square field operator,

|∇f |2 =
∑
i∈R

|∇if |2i

where for each site i ∈ R, |∇if |i (x) ≡ |∇ifi(·|x)| (xi) is the length of the usual
gradient∇i for the metric gi at xi of the functionMi � z �→ fi(·|x)(z) ≡ f({z•ix}).

Let μ be a probability measure on M. For f ∈ C, μ(|∇f |2) makes sense.
Actually, provided μ is a Gibbs measure, this can be defined on a wider class of
functions on M generalizing the Sobolev space W 1,2.

Briefly speaking, a Gibbs measure is defined as follows. A specification is a fam-
ily μξ

Λ(dxΛ), Λ finite subset of R and ξ ∈ M, of absolutely continuous probability

kernels on MΛ ≡ ∏
i∈ΛMi, that we extend to kernels Eξ

Λ on M by taking prod-
uct with ⊗i/∈Λδξi . These kernels are supposed to satisfy compatibility conditions
(see [19] and references therein) making them possible candidates for being versions
of laws (w.r.t. a probability measure μ onM) conditionally to πR\Λ(ξ) ≡ (ξi)i∈R\Λ.
Measures μ on M for which this holds are called Gibbs measures and can be multi-
ple in general. They are characterized by the Dobrushin–Landford–Ruelle (DLR)
conditions μ = μE·

Λ (when acting on bounded measurable functions).

Let μ be a fixed Gibbs measure. The generalized Sobolev space W 1,2(μ) can
be defined as the space of functions f ∈ L2(μ) such that, for any i ∈ R and any

ξ ∈ M μ a.e., |∇ifi(·|ξ)| in the sense of distributions in Mi belongs to L2(Mi, μ
ξ
{i})

and one has

μ(|∇f |2) ≡
∫
M

∑
i∈R

μξ
{i}

(
|∇ifi(·|ξ)|2

)
μ(dξ) <∞.

The notation μ(|∇f |2) is not completely formal as this coincides with the similar
quantity for cylindrically smooth compactly supported functions.

If we denote by
◦
W 1,2(μ) the closure of C for the following norm (μ(f2) +

μ(|∇f |2))1/2, then (μ(|∇f |2),
◦
W 1,2(μ)) is a local Dirichlet form. For Gibbs mea-

sures with subgaussian tails, we will consider later a Dirichlet form (E ,D) which

coincides with the form (μ(|∇f |2),
◦
W 1,2(μ)) on C and which satisfies an F -Sobolev

inequality.
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7.2. F -Sobolev and Orlicz–Sobolev inequalities

In this section we describe briefly the functional inequalities like F -Sobolev in-
equality (introduced in Section 2) and Orlicz–Sobolev inequality (we introduce
below) for a class of non-product Gibbs measures in infinite dimensions; for more
details we refer to [3] and [29].

We first introduce the Orlicz–Sobolev inequality. We say that (μ, E) satisfies
an Orlicz–Sobolev inequality if, for any f ∈ D,

‖(f − μ(f))2‖Φ ≤ cΦ

∫
|∇f |2dμ

for some constant cΦ > 0 and some N -function Φ.
Since Φ is a N -function, Orlicz–Sobolev always implies Poincaré inequality.

Moreover, under some specific and technical assumptions on F and Φ and com-
bining various results based on the capacity-measure approach introduced in4 [4]
(namely Theorems 18, 20 and 22, and Lemma 19 of [3]; Theorem 1 of [29]), it is
possible to prove that F -Sobolev inequalities and Orlicz–Sobolev inequalities are
equivalent (up to constant) when F (x) = x/Φ−1(x).

In order to prove that such inequalities hold for Gibbs measures, we will have to
make use of a third family of inequalities we may call generalized Beckner inequal-
ity5. It is given in (7.1). Again, under specific assumptions such inequalities are
equivalent to F -Sobolev inequality and Orlicz–Sobolev inequality. Furthermore,
by construction, they imply Poincaré inequality.

Next theorem explains how the generalized Beckner inequality implies F -Sobo-
lev and Orlicz–Sobolev inequalities.

Theorem 7.1. Let T : [0, 1] → R+ be non-decreasing and such that x �→ T (x)/x is
non-increasing. Denote by CT the optimal constant such that the Dirichlet struc-
ture (μ, E) satisfies for every f ∈ D

(7.1) sup
p∈(1,2)

∫
f2dμ− (

∫ |f |pdμ) 2
p

T (2− p)
≤ CT

∫
|∇f |2dμ.

(i) Let Φ be a N -function and fix a constant k ∈ (0,+∞) such that for any func-
tion f with f2 ∈ LΦ(μ), ||μ(f)2||Φ ≤ k||f2||Φ (see (9.3) in Appendix I). Assume
that there exists c1 > 0 such that

c1 xT
( 1

log(1 + x)

)
≤ Φ−1(x), ∀x > 2.

4The notion of (electrostatic) capacity goes back to Maz’ja [26]. In [4] the authors introduce a
slightly different notion of capacity of a set with respect to a probability measure (in probability
spaces the usual electrostatic capacity is always 0). This turns out to be appropriate in the study
of functional inequalities in probability spaces. See Section 5.2 of [3] for a short introduction of
this notion.

5Beckner [5] introduced such inequalities for T (x) = x which corresponds to Gaussian mea-
sures. Later Lata�la and Oleszkiewicz [23] studied the case T (x) = xβ , β ∈ [0, 1] (see also [4]).
The general case was studied in [3] and [33]
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Then, every f ∈ D satisfies∥∥(f − μ(f))2
∥∥
Φ
≤ 48(1 + k)CT

c1

∫
|∇f |2dμ.

(ii) Let F : [0,+∞) → [0,+∞) be a non-decreasing function. Assume that F (x) = 0
if x ≤ θ for some θ > 2 and that there exists a constant c such that F (θy/2) ≤
c/T (1/ log(1 + y)) for any y ≥ θ.

Then, for every f ∈ D one has∫
f2F

( f2

μ(f2)

)
dμ ≤ 3cCT

( θ√
θ −√

2

)2
∫

|∇f |2dν.

Proof. The proof of (i) can be found in Corollary 8 of [29]. The proof of (ii) follows
from a combination of Theorem 9, Lemma 8 and Theorem 20 of [3]. Note in both
references the results are given in Rn. The generalization to our setting is straight
forward. �

In the rest of this section we consider the following infinite dimensional models

on a space Ω ≡ RZ
d ≡ {ω = (ωi ∈ R)i∈Zd}.

Let Ui ≡ Ui(ωi), i ∈ Z, be smooth convex functions such that

0 < inf
i∈Zd

∫
e−Ui(x)dx ≤ sup

i∈Zd

∫
e−Ui(x)dx <∞.

Let I ≡ {IX}, X � Zd, |X | ≥ 1, be a collection of smooth bounded cylinder
functions, (dependent only on ωX ≡ (ωi : i ∈ X), respectively), and such that

(7.2) ‖I‖u,2 ≡ sup
i∈Zd

( ∑
X�Z

d

X�i

{
‖IX‖u +

∑
j∈Zd

[
‖∇jIX‖u + ‖∇j∇iΦX‖u

]})
<∞

where ‖·‖u denotes the uniform norm and X � Zd means that X is a finite subset
of Zd. For Λ � Zd, setting

UΛ ≡
∑
i∈Λ

Ui(ωi) +
∑

X∩Λ�=∅
IX(ωX)

we define

Eω
Λ(f) ≡

∫
e−UΛ(ω̃◦Λω)f(ω̃ ◦Λ ω)dω̃Λ∫

e−UΛ(ω̃◦Λω)dω̃Λ

where

(ω̃ ◦Λ ω)i ≡
{
ω̃i if i ∈ Λ
ωi if i ∈ Λc

A measure μ is called a Gibbs measure on Ω for local specification {EΛ}Λ�Zd if
and only if for any integrable function f one has

μ(E·
Λf) = μ(f) for all Λ � Z

d.



Sub-gaussian measures and associated semilinear problems 343

For any Λ ⊂ Zd and i ∈ Λ we have

EΛ(fLig) ≡ −EΛ∇if · ∇ig

for any functions f and g for which both sides make sense. Consider operators Li

such that
Lif = eUidivi

(
e−Ui∇if

)
= Δif −∇iUi · ∇if

where divi and ∇i are with respect to ωi and Ui ≡ U{i}.
We introduce the following Markov generator:

(7.3) L ≡
∑
i∈Zd

Li ,

which is well defined on a domain including all smooth cylinder functions. Conse-
quently we have

−μ(fLg) =
∑
i∈Zd

μ(∇if · ∇ig)

and if Ptf ≡ etLf ≡ ft is the corresponding Markov semigroup, we also have

μ(fPtg) = μ(gPtf).

For a construction of the semigroup (Pt)t≥0 in the space of bounded continuous
functions we refer to [19], (see also [36], [35], [22], [10], and references therein).

We note that in the present setup one has

|∇z|22 ≡ 1

2
(Lz2 − 2zLz) =

∑
i

|∇iz|2

and the generator L has the following diffusion property (or chain rule): for any
(localized) smooth vector functions f = (f1, . . . , fν) on Ω (ν ∈ N) and any smooth
function Ψ on Rν ,

LΨ(f1, . . . , fν) =

ν∑
k=1

∂kΨ(f)Lfk +

ν∑
k,l=1

∂2k,lΨ(f)L∇fk · ∇fl.

In the above described setup we have the following results.

Theorem 7.2 ([29], [19]). Fix α ∈ (1, 2). Assume that IX = 0 for all X and that
for all i ∈ N, Ui(x) = Uα(x) where Uα is the following C2 function:

Uα(x) =

{ |x|α for |x| > 1
α(α−2)

8 x4 + α(4−α)
4 x2 + (1 − 3

4α+ 1
8α

2) for |x| ≤ 1.

Define the corresponding Gibbs measure μα (product in this case). Then, there
exists a constant Cα such that, for any function f in the domain of the Dirichlet
form,

sup
p∈(1,2)

∫
f2dμα − (

∫ |f |pdμα) 2
p

(2− p)2(1−
1
α )

≤ Cα

∫
|∇f |2dμα.
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Moreover if {IX} is such that ||I||u,2 is sufficiently small (and if for all i ∈ N,
Ui(x) = Uα(x) as above), then the same results (with appropriate constants) remain
true for the corresponding Gibbs measures (non product in this case).

Note that the special choice of Uα near the origin is not important. Any other
smooth version of |x|α would do the job.

We are now in position to give examples of Gibbs measures satisfying a F -So-
bolev inequality and an Orlicz–Sobolev inequality.

Theorem 7.3 ([29]). Fix α ∈ (1, 2) and set β = 2(1− 1
α ). Consider the function Fα

defined in Appendix II and Φβ(x) = |x| log(1 + |x|)β . Under the assumption and
notations of Theorem 7.2, there exists a constant Dα such that any function f in
the domain of the Dirichlet form satisfies∥∥(f − μα(f))

2
∥∥
Φβ

≤ Dα

∫
|∇f |2dμα

and ∫
f2Fα

( f2

μα(f2)

)
dμα ≤ Dα

∫
|∇f |2dμα.

Moreover if {IX} is such that ||I||u,2 is sufficiently small (and if for all i ∈ N,
Ui(x) = Uα(x) as in Theorem 7.2), then the same results (with appropriate cons-
tants) remain true for the corresponding Gibbs measures.

Proof. Set T (x) = |x|β . It is not difficult (see [29]) to show that for any x > 2,

xT
( 1

log(1 + x)

)
≤ Φ−1

β (x).

On the other hand, thanks to Remark 9.3, ||μα(f)
2||Φβ

≤ e||f2||Φβ
. Consider a

smoothed cylinder function f . We can apply Theorems 7.1 and 7.2 to get the result
for the Orlicz–Sobolev inequality. A density argument ends the proof.

Recall the definition of θ defined in Appendix II. It is easy to prove that

F (θy/2) ≤ c

T
(

1
log(1+y)

)
for y ≥ θ. Hence we can apply Theorem 7.1 for smooth cylinder functions. The
result follows by density. �

8. Local problems and Orlicz–Sobolev inequality

In this section, we mention some results on local semilinear problems (i.e. problems
with non linearities V(u(t, x)) whose value at point x ∈ M only depends on u(t, x),
contrary to (MCP) for subGaussian measures in infinite dimensions. The analysis is
based on smoothing properties which follow from Orlicz–Sobolev inequality. Proofs
are easily obtained from the abstract setting presented in [16] (and references
therein) and are omitted.
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Proposition 8.1 (Smoothing via Orlicz–Sobolev). Let Υ be a Young function.
Assume that the associated Dirichlet structure (μ, E) satisfies the Orlicz–Sobolev
inequality: for any f smooth enough,

∥∥(f − μ(f))2
∥∥
Υ
≤ CΥ

∫
|∇f |2dμ,

for some constant CΥ independent on f . Set Φ(x) := Υ(x2). Then, for any t > 0,
the μ-symmetric Markov semigroup Pt associated to (μ, E) maps L2(μ) to LΦ(μ)
and, for any T ∈ (0,∞), any t ∈ (0, T ),

‖Ptf‖Φ ≤ CT√
t
‖f‖2

with

C2
T =

CΥ

e
+ 2T ‖1I‖Υ.

Proof. Adapt the proof of Theorem 4.3 in [16]. �

In the previous section we obtained Orlicz–Sobolev inequality for a class of
Gibbs measures for Υβ(x) ≡ |x| log(1 + |x|)β . This allows to get some continuous
control of the norm for some associated local nonlinearity as explained in the
following proposition.

Proposition 8.2. Let Υβ = |x| log(1 + |x|)β, β ∈ (0, 1) and Φβ = Υβ(x
2). Set

Vβ =
√
Φβ. Then, for any f ∈ LΦβ

(μ), any β ∈ (0, 1),

‖Vβ(f)‖2 ≤Wβ

(‖f‖Φβ

)
for Wβ(x) = x+ Vβ(x) = x+ x log(1 + x2)

β
2 .

The last two propositions as well as Theorem 7.3 are the ingredients to prove
the following theorem. We refer to [16] for the definition of integral solutions.

Theorem 8.3. Let Υβ = |x| log(1 + |x|)β , β ∈ (0, 1) and Φβ = Υβ(x
2). Set

Vβ =
√
Φβ. Let μα be the Gibbs measure defined in Theorem 7.2 on RZ

d

and L be
the Markov generator (7.3). Then, for any β ∈ (0, 1), for any f ∈ LΦβ

(μα), the
Cauchy problem

(8.1)

{
∂tu = Lu+V(u)

u(0) = f

with V(u) = Vβ◦u acting by composition with Vβ, admits a unique integral solution
u(t) on [0,∞). Consequently, there exists a nonlinear C0 semigroup (St)t≥0 on
LΦβ,2

(μα) such that for any f ∈ LΦβ,2
(μα), u(t) = Stf .
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9. Appendix I: Young functions and Orlicz spaces

In this section we collect some results on Orlicz spaces. We refer the reader to [28]
for demonstrations and complements.

Definition 9.1 (Young function). A function Φ : R → [0,∞] is a Young function
if it is convex, even, such that Φ(0) = 0, and limx→+∞ Φ(x) = +∞.

The Legendre transform Φ∗ of Φ defined by

Φ∗(y) = sup
x≥0

{x|y| − Φ(x)}

is a lower semicontinuous Young function. It is called the complementary function
or conjugate of Φ.

Among the Young functions, we will consider those continuous with finite values
such that Φ(x)/x → ∞ as x → ∞ (for stability reasons w.r.t. duality). When
additionally Φ(x) = 0 ⇔ x = 0 and Φ′(0+) = 0, Φ is called a N -function (using
the notation of [28]).

For any lower semicontinuous Young function Φ (in particular if Φ has finite
values), the conjugate of Φ∗ is Φ. The pair (Φ,Ψ) is said to be a complementary
pair if Ψ = Φ∗ (or equivalently Φ = Ψ∗). When Φ(1)+Φ∗(1) = 1, the pair (Φ,Φ∗)
is said to be normalized. The conjugate of an N -function is an N -function.

We say that a Young function Φ satisfies the Δ2 condition, if for some B and
all x ≥ 0, Φ(2x) ≤ BΦ(x).

The simplest example of N-function is Φ(x) = |x|p
p , p > 1, in which case,

Φ∗(x) = |x|q
q , with 1/p+ 1/q = 1. The function Φ(x) = |x|α ln(1 + |x|)β is also a

Young function for α ≥ 1 and β ≥ 0 and an N-function when α > 1 or β > 0.

Now let (X , μ) be a measurable space, and Φ a Young function. The space

LΦ(μ) =
{
f : X → R measurable; ∃α > 0,

∫
X
Φ(αf) < +∞

}
is called the Orlicz space associated to Φ. When Φ(x) = |x|p, then LΦ(μ) is the
standard Lebesgue space Lp(μ).

We introduce the following Luxembourg norm, which gives to LΦ(μ) a structure
of Banach space,

‖f‖Φ = inf
{
λ > 0;

∫
X
Φ
(f
λ

)
dμ ≤ 1

}
.

Note that we changed the notation with respect to [28].

Comparison of norms

In what follows, we will often have to compare Orlicz norms associated to different
Young functions. Let us notice that any Young function Φ satisfies |x| = O (Φ(x))
as x goes to ∞. It leads to the following lemma:
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Lemma 9.2. Any Orlicz space may be continuously embedded in L1. More pre-
cisely, let M and τ in (0,∞) such that |x| ≤ τ Φ(x) for any |x| ≥ M . Then, for
any f ∈ LΦ,

(9.1) ‖f‖1 ≤ (M + τ) ‖f‖Φ.
Consequently, if Φ and Ψ are two Young functions satisfying, for some constants
A,B ≥ 0, Φ(x) ≤ A|x| +BΨ(x), then

(9.2) ‖f‖Φ ≤ max
(
1, A‖Id‖

LΨ→L1
+B

) ‖f‖Ψ.
Remark 9.3. When Φ(x)/x → ∞ as x → ∞, we may choose τ = 1 or any other
positive constant. We get in particular the estimate

(9.3)
∥∥μ(f)2∥∥

Φ
≤ (M + 1) ‖1I‖Φ

∥∥f2
∥∥
Φ
,

where M is such that |x| ≤ Φ(x) for any |x| ≥ M . For any constant C, ‖C‖Φ =
C‖1I‖Φ trivially.

Proof of Lemma 9.2. Let f ∈ LΦ(μ). By homogeneity, we may assume that
‖f‖Φ = 1. Then

∫
Φ(f) dμ ≤ 1 and so∫

|f | dμ =

∫
{|f |≤M}

|f | dμ+

∫
{|f |≥M}

|f | dμ

≤Mμ (|f | ≤M) + τ

∫
{|f |≥M}

Φ(f) dμ ≤M + τ.

To get bound (9.2), assume now that ‖f‖Ψ = 1 and hence
∫
Ψ(f) dμ ≤ 1 as well.

For any λ ≥ 1,∫
Φ (f/λ) dμ ≤ A

λ
‖f‖1+B

∫
Ψ(f/λ) dμ ≤ A

λ
‖Id‖

LΨ→L1
‖f‖Ψ+

B

λ

∫
Ψ(f)dμ ≤ 1

provided λ ≥ A ‖Id‖
LΨ→L1

+ B. Note that for the second inequality we used con-
vexity of Ψ. �

10. Appendix II: Example

We introduce here a prototype of function F which satisfies conditions (C1)
to (C3) of Section 2. Fix θ > 2, α ∈ (1, 2] and consider a function Fα : R+ → R

x �→ Fα(x) =

{
0 if x ∈ [0, θ],
(log(x))β − (log θ)β if x ≥ θ.

where β ≡ 2(1− 1
α ) ∈ (0, 1). Note that Fα is continuous, but not C2. To deal with

differentiability at x = θ we introduce a C∞ non-negative function g with compact
support in [−1, 0] and such that

∫
g(y)dy = 1. For ε > 0, define gε(x) =

1
εg(

x
ε ).
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Then F (x) ≡ Fα ∗ gε(x) :=
∫
Fα(x − y)gε(y)dy is a C∞ function vanishing on

[0, θ − ε]. Let us stress that the particular regularization of the function F above
is not important. Many other regularizations would do the job.

After some rather standard computations left to the reader, one can check that
F satisfies Condition (C1), (C2) and (C3) with B̄ = 1 and R = (log θ)β provided
that θ ≥ e2(1−β).

Finally, we remark that for Fα and the measure dμα ≡ exp{−|x|α}dx/Zα, the
inequality (FS) is true [4]. Hence, after some computations left to the reader, we
conclude that corresponding coercive inequality is satisfied also with the function F
(possibly with a different constant).
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tric aspects of functional analysis, 147–168. Lecture Notes in Math. 1745, Springer,
Berlin, 2000.

[24] Ladyzhenskaya, O. A., Solonnikov, V. A. and Ural’tseva, N. N.: Linear and
quasilinear equations of parabolic type. Izdat. ‘Nauka’, Moscow, 1968.

[25] Lugiewicz, P. and Zegarlinski, B.: Coercive inequalities for Hörmander type
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