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On curvature and the bilinear multiplier problem

S. Zubin Gautam

Abstract. We provide sufficient normal curvature conditions on the
boundary of a domain D C R* to guarantee unboundedness of the bilinear
Fourier multiplier operator Tp with symbol xp outside the local L? set-
ting, i.e., from L (R?) x LP2(R?) — LP3(R?) with 3 L =1 and p; < 2
for some j. In particular, these curvature conditions aré satisfied by any
domain D that is locally strictly convex at a single boundary point.

1. Introduction

The celebrated ball multiplier theorem of C. Fefferman ([4]) states that the charac-
teristic function of the unit ball B; in R?, d > 2, is not a bounded Fourier multiplier
on LP(RY) for p # 2. As an immediate corollary of the proof, one obtains the
corresponding result with the ball replaced by any connected domain D in R¢ whose
boundary is a sufficiently smooth hypersurface with nonzero second fundamental
form (or equivalently a nonzero principal curvature) at some point.

Interest has arisen in studying analogues of the ball multiplier question in the
bilinear setting; namely, given a domain D C R?¢, one may ask whether the bilinear
Fourier multiplier Tp : S(R?) x S(RY) — S'(R?) given by

To (f.9)(x) = /R ) /R xp(&m)f(©gme* ™ dg dn

extends to a bounded bilinear operator from LP(R%)x L4(R%) to L™ (R?) for suitable
ranges of p, ¢ and 7; here yp denotes the characteristic function of D, and S denotes
the space of Schwartz test functions. For dimension d = 1, the case of D = By
the unit disc of R? was treated by Grafakos and Li, who showed in [6] that in fact
Tp, is a bounded operator from LP(R) x L4(R) to L"(R) in the local L? case (i.e.,
% + % + % =1 with p, ¢,7’ > 2). However, the status of the bilinear disc multiplier
outside the local L? case remains unknown as of this writing, and for the majority
of this paper we concern ourselves only with dimensions d > 2.
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In the linear setting, Fefferman’s theorem and the boundedness of the Hilbert
transform give the following dichotomy: “Polyhedral” domains (with finitely many
faces) yield bounded Fourier multipliers, while domains whose boundaries possess
curvature (or simply a suitably rich collection of tangent hyperplanes) give rise
to unbounded multipliers, as noted above. By contrast, the situation is less well-
understood in the bilinear setting, largely because the boundedness properties of
even the half-space multiplier operators Tp, are not well-understood for d > 2;
here Py = {{7 € R | 5 U > 0} (Theorem 5.1 below provides an unboundedness
result for Tp, in a rather limited range of exponents). These operators are es-
sentially higher-dimensional analogues of the bilinear Hilbert transform and are of
independent interest (see Section 2; see also [3] for a discussion of related operators
and connections to ergodic theory).

Nonetheless, in high dimensions the ideas of Fefferman’s original argument
have been successfully adapted to yield unboundedness results for bilinear Fourier
multipliers associated to domains with boundary curvature. For d > 2 and By
the unit ball of R2¢ Diestel and Grafakos ([2]) proved that Tp,, is not a bounded
bilinear Fourier multiplier outside the local L? setting; in [8], Grafakos and Reguera
generalized this result to replace the ball Bsy with a compact, strictly convex
domain D whose boundary is a smooth hypersurface in R2%.

For both the statements and the proofs of our results, we will adopt a symme-
tric presentation in terms of trilinear forms rather than bilinear operators; this
approach rids us of the inconvenience of dealing with duality, and more importantly
it has the decided benefit of placing our curvature conditions below in a natural
geometric setting. For now we restrict our attention to dimension d = 2; see
Remark 2) of subsection 6.2 for a discussion of higher dimensions. To any bili-
near operator T : S(R?) x S(R?) — &’(R?) we can associate a trilinear form A on
S(R?) x S(R?) x S(R?) defined by

A(f1, f2, f3) = /Rz T(f1, f2)(x) f3(z) da.

For triples p' = (p1,p2,p3) with 1 < p; < oo for all j, the boundedness of T from
LP' x LP2 to LP5 is equivalent to the boundedness of A on LP* x LP2 x LP3:

3
A fo £ < 1T T 15l

=1
in this case, we say that the form A is of “type p”. The natural range of expo-
nent triples p" under consideration is given by demanding that the trivial form
Ao(f1, f2, f3) == ff1f2f3 be bounded; wviz., we consider only “homogeneous”

with 3 L =1.
Pj

For the bilinear Fourier multiplier operators Tp as above, the associated tri-
linear forms are given by embedding D into R® as follows: Let I' be the subspace

I':= {(£1a§27£3) eRz XRQ XRz | §1+£2+§3 :0} CRG’
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with @ : R? x R? — T the obvious isomorphism given by

D(&1,8) = (61,8, — (&L + &)).

Then, for D C R*, the trilinear form associated to Tp is

3

Ao (. ) = [[[ 6660+ &+ xaco(@r,60.60) H (&) dg1dé,dés

:AX®(D)(ﬁ®ﬁ®E) do

The measure do = §(&; + &2 + &€3) d€1d€adEs appearing here is simply the push-
forward @, (d¢1dés) of Lebesgue measure on R? x R?) viewing ® as a map into
R? x R? x R2. In the sequel, we will always identify R* with R? x R? and R® with
R? x R? x R?, and by a “j-th coordinate slice” in RS we mean a 4-plane of the
form

{(&1,6,8) eRC | & =&}

for some fixed & € R?. Note that the intersection of I' with any j-th coordinate
slice is a 2-plane.
Our main result is the following:

Main Theorem. Let D be a domain in T C RS such that 9D N U is a smooth,
connected (three-dimensional) hypersurface for some open neighborhood U C T.
Suppose that for some j € {1,2,3} the intersection of OD N U with some j-th
coordinate slice is a plane curve of nonzero curvature. Then the trilinear form A
fails to be of type P = (p1,p2,p3) whenever le + p% + p% =1,1 < p1,p2,p3 < 00,
and p; < 2 for some i # j.

Of course, this can be translated to a direct statement about bilinear multiplier
operators associated to domains D C R* by applying the theorem to ®(D). First
and second coordinate slices in I" correspond to their natural analogues in R*, while
third coordinate slices correspond to 2-planes of the form {(&;,&) € R* | &+ & =
constant}. Since any strictly convex set D is easily seen to satisfy all three of the
given curvature conditions, we obtain the following generalization of the Grafakos—
Reguera result:

Corollary 1.1. Let D be a domain in R* whose boundary 0D is smooth in some
neighborhood U C R*, and suppose that either D or R*\ D is strictly conver in this
neighborhood. Then for p% + p% + p% = 1 with exactly one of p1,p2,ps3 less than 2,

Tp does not extend to a bounded bilinear Fourier multiplier from LPt(R?)x LP2(R?)
to LPs(R2).

The Main Theorem above can actually be stated more generally; namely, un-
der essentially the same hypotheses on D one can also prove unboundedness of the
operator Tp outside the interior of the “Banach triangle” (i.e., from LP* x LP2 to
LPs with ph < 1, so that p3 = oo or ps < 0). However, a symmetric statement
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in terms of trilinear forms presents some difficulties, as the “type p” formalism
breaks down outside the Banach triangle; to avoid introducing potentially con-
fusing technicalities at this point, we defer the statement of the general result to
Section 5 below.

The idea of the proof of the Main Theorem is quite simple; heuristically speak-
ing, our approach is simply to apply Fefferman’s original argument on the appro-
priate coordinate slice. More specifically, assuming boundedness of Ay, we first
obtain a square function estimate for a family of trilinear forms associated to a fam-
ily of half-spaces in I'. To complete the proof, we produce a Besicovitch set-based
counterexample to this estimate.

At this point, given the ease with which one can apply Fefferman’s argument for
the ball to more general domains in the linear setting, the reader may be skeptical
as to the necessity of any further discussion once one has established the unbound-
edness of the ball bilinear multiplier. The key feature distinguishing the bilinear
multiplier problem from the linear one here is a marked decrease in symmetry
with respect to actions on the underlying Euclidean space. More specifically, the
class of linear LP-Fourier multipliers on R? is invariant under the natural action
of the isometry group Og4(R) x R? of R? (and in fact under the full affine group
GL4(R) x R?); however, the class of bilinear LP x L9 — L"-Fourier multipliers
on R? is not invariant under the usual rotation action of SOgd(R).1 In fact, it is
precisely this absence of SOgg4-invariance that prevents the proofs in [2] and [8]
from extending easily to more general domains with curvature. To wit, though
neither proof genuinely requires surjectivity of the Gauss map N : 9D — §2d-1
(which is guaranteed by compactness and strict convexity), both arguments rely
on the presence of a suitable collection of “projectively diagonal” normal vectors of
the form (v, \v) € R? x R? (see Theorem 4.1 below). With such an approach, the
ball appears to be a less generic example in the bilinear setting than in the linear
one; in order to obtain a result treating more general domains that are merely
strictly convex in a neighborhood of some arbitrary boundary point, one should
avoid appealing to the full wealth of normal directions available on the sphere.

One might expect an “ideal” bilinear analogue of Fefferman’s theorem (phrased
in terms of operators rather than forms) to state that Tp is unbounded for any
D C R* whose boundary has some nonzero principal curvature at a point. However,
the aforementioned loss of symmetry makes such an analogy impossible:

Proposition 1.2. There erist domains D C T with smooth boundary such that
0D has nontrivial second fundamental form at some point while Az is of type
(p17p27p3) whenever 1 < p1,Pp2,p3 < 00.

Examples of such D are easily given by certain cylinder sets: A result of Mus-
calu (viz. Theorem 2.1.1 of [9]) gives the existence of domains Dy C R? with
nontrivial boundary curvature for which the bilinear operators Tp, are bounded
from LP'(R) x LP*(R) to LPs (R) for all triples (p1,p2,p3) as in the proposition.

IThis fact is well-known but seems to be folkloric; it can readily be observed by rotating the
symbols of suitable operators falling under the scope of Lemma 1 of [6]. We provide yet another
illustrative example in the discussion following Proposition 1.2 below.
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From any such Dy, we construct the domain

D= {(51,52753754) € R4 | (51753) € DO}

(here we have of course broken with our convention of always writing R* as R? x R?).
Then it is easy to check that

Tp (fl,fQ)(iﬂl,CEQ) =Tp, (fl(',iEQ)a f2('a$2))($1)>

so that boundedness of Tp, gives the desired boundedness of Tp and the usual
associated trilinear form Ag(p). These “degenerate” examples of course illustrate
the aforementioned anisotropy of the bilinear setting; their curvature is restricted
to planes of the form {€ € R* | (&2,&4) = (a,b)} for fixed (a,b) € R2, and they can
be suitably rotated to fall under the scope of the Main Theorem.

Acknowledgements. This paper appeared in slightly modified form as part of
the author’s Ph.D. dissertation [5]. I would like to thank my advisor Christoph
Thiele for many useful discussions and in particular for suggesting the symmetric
treatment in terms of trilinear forms, which greatly improved the exposition of this
paper. I would also like to thank Ciprian Demeter for advice on improving the
clarity of Section 3.

2. Notations and preliminaries

As in the linear case treated by Fefferman, the key feature obstructing boundedness
of Tp (or of Ag(py) is the fact that D (or 0®(D)) possesses many suitable tangent
hyperplanes; we pause now to establish some notation and isolate the geometric
properties we will exploit. As noted above, we identify RS with R? x R? x R?;
symbols such as 5 and ¥ will denote points and vectors in RS, while ¢ and v will
denote points and vectors in R?. Families of points or vectors will be indexed by
superscripts, so that, for example,

£n = (€7,€5,¢7).

For two quantities A and B, we take A < B to mean A < ¢B for some constant ¢;
when necessary, dependence of implied constants on certain parameters will be
denoted by subscripts on “<.”

Consider a domain D C T asin the Main Theorem, and suppose for the moment
that 0D has curvature in a first coordinate slice in RS. Then, for some small choice
of 6y > 0, we can take a continuum {59 | — 00 < 0 <6y} of points on 9D with the
following properties:

o €0 = (£9,68,¢8) for all 6.

o Let 7% = (2,08, v8) denote a normal vector to D at the point £9. (0D is
a three-dimensional submanifold of the four-dimensional subspace I' C RS:;
we define our normal vectors in this context, and all normal vectors are of
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course chosen consistently with the orientation of 65) Elementary linear
algebra shows that the projection of #? to the 2-plane {(0, v, fv)} clis

(O,we, —we) = L (O, vg — vg , vg — vg),

1
V2 V2
and we normalize 7% so that |w?| = 1 for all . By the curvature condition
on 0D, we can arrange that

w’ = 'Yéwoa

where 79 € SO2(R) denotes rotation by the angle 6.
This discussion may seem a bit cumbersome; the salient point here is that, by the
standard “Perron tree” construction (see e.g. [10]), the collection

{w” =05 —vg| =) <0<}

“yields Besicovitch sets” in R? in the following sense:
Definition 2.1. A family F of unit vectors in R? yields Besicovitch sets if for
every € > 0 there is a set K. C R? such that:

1. K. = Uﬁle R,, for some N depending on €, where each R,, is a rectangle of

dimensions 1 x % The length-1 sides of each R,, point in the direction of

some v, € F.
2. |K | <e.

3. The rectangles R/, 1 < n < N, are disjoint, where R/, is obtained by trans-
lating R,, by the vector —2uv,,. (Since each v, is a unit vector, R, and R},
are “reaches” of one another, in the terminology of [10].)

4. There is a fixed compact set K* independent of € such that K. C K*.

In general, if D is as in the Main Theorem with curvature in a Jo-th coordinate
slice, then D enjoys the following property:

Property 2.2. Given € > 0, there is a Besicovitch set K. = Uf[ R, C K* as
above and a sequence of points £ 1,..., ¢ € 9D such that:

o &= (&1,65,€8) with £ = &o for all n.

e For all n, there is a normal vector v = (U{L, vl v?) to D at E" such that
the length-1 side of the rectangle R,, is parallel to the vector

— 2
Wiy *= V(i) ~ Vor(jo) € R,
where o is the cycle (1 2 3) in the permutation group S3, and |w} | = 1.

e The vectors ¢™ all lie in a compact set A*, which is independent of ¢.
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xr — U1

U3 — V1

Xr — U3

Xr — U2

FIGURE 1: “Configuration triangle”.

Finally, for ¥ € T', consider a half-space Py = {E el Ev> 0} with associated
trilinear form

Anlfi o) = [[[ 86 + &+ &) xn (@ T]Fi6) 0
J

as above. It is a matter of routine to show that the trilinear form
e dt
Ai(f1, fa, f3) = /R/]RZ Hfj(x — tv;) dx —
J

is a linear combination of Ap, and the pointwise-product trilinear form; here the
integral in ¢ is taken in the principal value sense. The forms Ay are of course
parameterized by the vectors v € I'; it will also prove useful to view them as
parameterized by the triangles (or similarity classes of triangles) in R? determined
by the vectors v; —v,(;) (see Figure 1). The bilinear operator associated to the form
Ap, is the half-space Fourier multiplier Tp_ on S(R?) x S(R?) mentioned in the
introduction, where @ = ®*(¥) € R%. Similarly, the bilinear operator associated
to Ay is given by

Salfi. 2)(@) = p-v. [ fie = twn) ala = tu) -

as mentioned above, S;z may be viewed as a two-dimensional variant of a bilinear
Hilbert transform.

3. Square function estimates

The results of this section are direct analogues of the lemma of Y. Meyer used in
Fefferman’s proof (Lemma 1 of [4]), and their proofs are essentially identical to that

of the latter. We begin with a domain DcTanda sequence of points § "€ 0D at
which @D has normal vectors 7. Let A, denote the trilinear form Ap,, associated

to the half-space P, := Pz, and set An = A . as in Section 2 above. As usual, the
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main idea is that, by the translation- and dilation-invariance of multiplier norms,
boundedness of the trilinear form Az will yield strong uniform bounds (in fact 02

vector-valued bounds) for the forms A,, or Kn

Lemma 3.1. Let 0 < py,p2,ps < co with pil + p% + pig =1, and suppose

3
A5 (o fa F2)I S TT Iy

j=1

for all measurable functions fi, fa, f3 on R?. Let E" and A,, be as given above.
Then?:

(a) For all sequences of measurable functions fi, f, fa on R? we have the esti-
mate

B SRR D] Spipens ﬁ > IfJ’IQ)l/QHp.-
n j=1  n ’

(b) Suppose further that for some jo € {1,2,3} we have &}, = & for all n, and
let fi', f3', and f3' be sequences of measurable functions such that fj; = fo
for all n. Then we have the estimate

(32 S UK £ ) Sovnn ol 1T H(Zlfﬂ?)mHm'

J#Jo

The point of part (b) of this lemma is that we can afford to replace one of the
sequences (f7'), € LP/(R?,¢?) from part (a) with a single function fo € L/ (R?,C),
at the expense of requiring an extra condition on the boundary points 5 ™. this
burden will account for the coordinate-slice restriction in the curvature conditions
of the Main Theorem.

Proof. For r > 0, let D, denote the r-dilate {r¢ | € € D} of D, and set D,.,, =
D, — 7*5", so that
XB,, T XP.

pointwise almost everywhere on I' as » — oo. Then by dominated convergence we
have

An(fis fao o) = im Ap - (fi, f2, f3) = im Ap (Mrgp f1, Mgy fo, Mrgg f3)

for all Schwartz functions fi, fo and f3, where M¢ denotes the modulation operator
defined by M¢ f(z) = 2™ f(x).

Now, since we assume boundedness of the trilinear form A, the forms A b, are
uniformly bounded on LP* x LP2 x LP3 due to the dilation-invariance of Fourier

2Part (a) of this lemma was originally proved in [2] and [8]. We do not use it in the proof of
the Main Theorem; however, see the discussion after the proof in Section 4.
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multiplier operator norms. Summing in n and appealing to Theorem?® 6 of [7]
(together with a straightforward application of duality), we obtain

D IAa(f 5, £ = lim Y [Ap (Megp £ Mrgg £5', Mg £3)]

< li 2 n|2 1/2 2 n|2 1/2
- gr;OH H(?M%; 7)), = H | we)
J= J= n

for all sequences f7, f3, f& € S(R?); this is the estimate used in [2] and [8]. Part (a)
of the lemma follows immediately, since A, is a linear combination of A, and the

pointwise-product trilinear form. B
We now turn to part (b). Fix jo € {1,2,3} such that the points £™ € dD above

satisty £ = &o for all n, and consider three sequences f{', f3', f3' as before, with

the additional caveat that fji = fo for all n. Then for each fixed r, one of the
arguments of

Ap (Megp [T, Mygy f5', Myep f3')

is constant in n, so we may view this expression as a bilinear form in the other
two arguments; let us denote it as A,,(MTg; I7 Mygp ff!), where j # jo # k, and

notice that the form A, satisfies the estimate

[Ar(g, )] < 1 follps, llgllo, 1Bl

uniformly in 7, due to the original boundedness assumption on Az. Appealing
to square function estimates for linear operators* in lieu of the Grafakos-Martell
estimate used above, we may proceed as before to obtain

- 1/2
SRl 13 B Spapaws Mol TL (D2 1572) ]|
n i#jo n Pi
as desired; the term || fol|,,, appears via the aforementioned boundedness estimate
for the bilinear forms A,.. O

4. Proof of the Main Theorem

Let D be a domain in T' with curvature in a jo-th coordinate slice, and suppose
toward a contradiction that we have the estimate

3
|Ap(f1, f2, f3)] S H I £illp, -
j=1

3This theorem states that if T : LP1(X) x LP2(X) — LPs (X) is bounded, then the natural
vector-valued extension of T maps LP1 (X, ¢2(N)) x LP2 (X, ¢%(N)) to LPs (X, €%(N x N)) contin-
uously. This is a natural analogue of the classical square function estimate for linear operators
used in [4]; like its linear predecessor, its proof is based on Khintchine’s inequality.

4Cf. the previous footnote; we of course apply the dualized version of the classical square
function estimate to each of the bilinear forms A,..
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The goal now is to establish sufficient lower bounds for 7\”( 1, 13, f3) to contradict
part (b) of Lemma 3.1; of course, this entails a suitable choice of the points 5" € 0D
that define /~\n, as well as a suitable choice of the functions fj'. As we resign
ourselves to following Fefferman’s approach, we will eventually take the fI' to be
characteristic functions of aptly chosen rectangles in R?, and the lower bounds
on A,, will just be pointwise lower bounds for the operators Tp, in disguise.

Recall that for the moment we work within the Banach triangle outside the
local L? setting; namely, we seek to prove the unboundedness of A 5 on LP? (R?) x
LP2(R?) x LP2(R?), with Y pij =1 and p; < 2 for exactly one i # jo.> The key
insight of Fefferman is that one can exploit Besicovitch sets to make the right-
hand side of the square function estimate (3.2) arbitrarily small while keeping the
left-hand side large; achieving this is only slightly more involved in our setting
than in the linear. Indeed, let K. be a Besicovitch set as in Definition 2.1, with
K. = Uff R,,. Then Hoélder’s inequality yields

2—p;

(4.1) H(;mnﬁ)wum < et

which can be made arbitrarily small by decreasing ¢, since p; < 2. To exploit
this estimate, we use the fact that D has curvature in a jo-th coordinate slice;
taking any ¢ > 0, we have points 51,...,5]\’, normal vectors ¢!,..., oY, and a
Besicovitch set K. = Uiv R,, provided by Property 2.2 from Section 2. In light of

estimate (4.1) we set f* = xr,,, so that part (b) of Lemma 3.1 gives

()|
n=1

for all sequences of functions f;' and f}; such that f}! = fo for all n; here k €
{1,2, 3} is the remaining index jo # k # i.

2

A (2 2 ] S e |l follpy,

(4.2)

] =

n=1

We now produce fo and f; that will essentially maximize the left-hand side
of (4.2). In fact, we will set f;' = xr:, where R;, is the reach® of R,, as given in
Definition 2.1, and fo = x¢ for some large rectangle ) to be determined. In this
setting we have

3
~ dt
T R N ) AR
RJR2
— [ o= 1), (o ) v — ) do
dt

(4.3) = /R/Rn xr, (z —t(vp — ")) xq(z — (v}, —vf)) dx -

5For the remainder of the proof we suppress all dependence of constants on the exponents -
S0f course, there are two choices of reach depending on our choice of orientation; we will
always choose the one that is obviously expedient.
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FIGURE 2: Estimating A, on rectangles.

Note here that the vector vy — v is equal to (v}, ) — U7, )), so that Ry is
parallel to this vector with R, = R, — 2(v}) — v]') by Property 2.2. Also note
that U™ is chosen by design so that |v} — v]'| = 1; here and in what follows, it
may be helpful to think in terms of the configuration triangles of Section 2 (see
Figure 2). Given these observations, it is clear from (4.3) that if we choose @ to
be a large enough rectangle we have

A nopn 1
(4.4 R85 8] 2 (Rl =~

Moreover, recall that we have the provisos K. C K* for all € and some fixed
compact set K*, and ™ € A* for some compact A* which is again independent
of e. Thus we may in fact choose such a @ independently of n and e; the important
fact here is that we can set [} = fo := xq for all n and ensure

[ follps, S1

independently of . If the preceding discussion seems lacking in motivation, the
reader may note that in the heuristic limiting case of @ = R?, the bilinear forms

A;z(f’ g) = K”(f’ga XRQ)

correspond to the directional Hilbert transforms (or linear half-space multipliers)
used in Fefferman’s original argument. (Note also that in the case p;, = oo this
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observation can be used trivially to deduce unboundedness from Fefferman’s proof.)
Finally, we observe that since the rectangles R, are disjoint, we also have

N ) 1/2 N
[ ue) ), =
n=1 n=1

=1.
Pk

Thus, combining estimates (4.2) and (4.4), we obtain

N

A 2-p;

1 5 Z |An(f1"’f2"’fgl)| 5 € 2
n=1

this renders our original boundedness assumption absurd and completes the proof
of the Main Theorem. O

For the sake of contrast, we now briefly summarize the approach of [2] and [8],
which actually yields the following:

Theorem 4.1. Let D be a domain in T’ such that 8D possesses a family of normal
vectors
{179 = (1}9,)\91}9, —(1+ )\9)1}9) | 0 e I} crl

for some index set T, where the collection {vg |0 € I} C R? yields Besicovitch sets
as in Definition 2.1, and N\g ~ 1 for all 0 € Z. Then the trilinear form Az is not
of type p = (p1,p2,p3) whenever Y pij =1 and p; < 2 for some i € {1,2,3}.

This approach also follows Fefferman’s argument, using part (a) of Lemma 3.1
where we have used part (b). Note that appealing to part (a) allows one to elimi-
nate any restriction on the points of dD at which the normal vectors &% occur; in
exchange, use of the square function estimate (3.1) forces a rather stringent condi-
tion on the normal vectors themselves (viz., all three of the component vectors of 7%
must be parallel in R?). To prove the theorem, as above one chooses appropriate

0

- ~ . L N
normal vectors v = ¢ associated to some Besicovitch set K, = U1 R, and

considers the forms A,, := /~\g Again setting f" = xg,, part (a) of Lemma 3.1
then gives

N S N 1/2
(15) >Rt s I (Se)
n=1 JFi n=1 ’

At this point, if one wishes to follow Fefferman by setting f}' = XQr for some
rectangles Q;’, any productive use of estimate (4.5) clearly prohibits one from
taking |Q7[ 2 1. However, since the component vectors v} of 7™ are all parallel,

the configuration triangle for /~\n is degenerate (i.e., all vertices are collinear); thus
one may choose @} to be appropriate “reaches” of R, for both j # i and still

obtain
1

Ralf2 18D 2 5
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Q3 Qr =R, Ry,

FIGURE 3: Degenerate configuration triangle.

as above. See Figure 3, which should be contrasted with Figure 2. Since we were
able to choose f}' = xq@r with |Q}| ~ 1/N and {Q}}n disjoint for each j # i, the

2 p
right-hand side of (4.5) is controlled by ET?, and we obtain a contradiction as
above.

In fact, an examination of the geometric considerations in the proof shows that
an approach toward contradicting part (a) of Lemma 3.1 essentially necessitates
the use of degenerate configuration triangles, provided one insists on exploiting
Besicovitch sets and taking the f}' to be characteristic functions of rectangles.
Thus, with such an approach one cannot dispense with the restriction on the
normal vectors appearing in Theorem 4.1; in particular, one cannot treat generic
strictly convex domains in T'.

5. Unboundedness on the border of and outside the Banach
triangle

Our arguments thus far have been restricted to exponent triples g = (p1, p2, p3) in
the interior of the “Banach triangle” with 1 < p1,p2,p3 < oo; as mentioned in the
introduction, one can also obtain unboundedness results for p’ outside this range.
However, to phrase such a general result in terms of trilinear forms, the notion of
“type p” is unsuitable; in fact, it is not hard to see that for p outside the Banach
triangle the only trilinear form of type p'is the 0 form (see e.g. Chapter 3 of [11]).
On the other hand, it is perfectly reasonable (i.e. nontrivial) to investigate the
boundedness of bilinear operators from LP x L9 to L" with % < r <1 (so that
r" < —1 or v = o), and one would hope to be able to treat such questions
symmetrically. One way of dealing with this state of affairs is to replace the notion
of type p with that of “generalized restricted type p”, which we review below
(once again, the reader may consult [11] for a more detailed treatment of this
formalism).” Nonetheless, the reader will notice that we are forced to abandon the
symmetric framework of trilinear forms when treating the boundary of the Banach
triangle, where p; = oo for some j.

Let us call an exponent triple p' = (p1, p2, p3) admissible if |pg| > 1 for all &,
p; < —1 for at most one j, and Zizlpgl = 1; the p; are of course allowed to be

7Our notation is “reciprocal” to that of [11]; in the notation therein, our “generalized restricted

type p” corresponds to generalized restricted type a = (%, %, %)
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infinite. For such p, we say the form A is of generalized restricted type p if for all
triples (E1, B2, E3) of measurable subsets of R? there exists a subset E; C E; with

|E,| > +|E;| for which we have the estimate

3
|A(f1s f2, f3)] S H | B |1/ P
k=1

whenever |fi| < xg, and moreover |f;| < Xg,- (If in fact py > 1 for all k, then the
exceptional index j may be chosen at will.) Of course, inside the Banach triangle
generalized restricted type p’ is implied by type p: a generalized restricted type
estimate for a form A gives a restricted weak-type estimate for an appropriate
bilinear dual of the operator associated to A.

Finally, we introduce some geometric terminology. We say that a vector v € I’
is degenerate if U = (A1v, Aav, Asv) for some v € St and some scalars A e R
Furthermore, we say that v is strongly degenerate if A; = 0 for some j. A domain
D C T is called (strongly) degenerate if every normal vector to aD is (strongly)
degenerate. In the following discussion we will omit any consideration of strongly
degenerate domains; if D is smooth such domains are given by particular cylinder
sets, and the boundedness properties of their associated forms (or operators) fall
within the purview of the linear theory.

The following theorem shows that, in sufficiently nondegenerate cases, the
boundary curvature of a domain is actually irrelevant to the boundedness proper-
ties of the associated trilinear form or bilinear operator.®

Theorem 5.1. Let Py = {56 I‘|§? v > O} be a mondegenerate half-space in T,
and let 7= (p1,p2,ps) be an admissible triple.

(a) If p; < —1 for some i, the trilinear form Ap, is not of generalized restricted
type p.

(b) If p; = oo for some i, the bilinear multiplier operator Te-1(p,) associated to
the standard preimage of Py in R* is unbounded from LP1(R?) x LP2(R?) to
LP3(R2).

Proof. As usual, we will prove the equivalent statements for the trilinear form 1~\g
or the bilinear operator Sz as in Section 2. To prove part (a), we proceed as in
Figure 4. For j # i # k, set f; to be the characteristic function of a rectangle R of
width € and length 1 oriented parallel to v; — vk, and let fi be the characteristic
function of its reach R’ (as above, we normalize ¥ so that |v; —vg| = 1). Let f; be
the characteristic function of a cube ) contained in the intersection of the strips
R+R-(v; —v;) and R'+R- (vx — v;); choose @ to have measure comparable to 1.
Computation yields

|As(f1, fa, f3)| 2o e,

81t has been pointed out to the author by C. Thiele and C. Demeter that this result has been
established independently as folklore, with essentially the same proof; the author is also indebted
to C. Thiele for suggesting the argument used to prove part (b) of the theorem.




ON CURVATURE AND THE BILINEAR MULTIPLIER PROBLEM 365

FIGURE 4: Failure of generalized restricted type for Ap, outside the Banach triangle.

while L
[RIYP R |QIVP o~ 7o = /7,

Both estimates continue to hold after the excision of any half-measure set from
the cube @, and sending e to zero violates the generalized restricted type estimate
since z% > 1.

This counterexample can be slightly modified to prove part (b). Since the
nondegeneracy condition on Py is preserved under duality (i.e., permutation of
the three coordinates in R? x R? x R?), we may assume that p3 = oo; thus it
suffices to prove that Sz is unbounded from L? x L? to L', where @ = ®*(7) =
(v1 — w3, v2 —v3). As in the counterexample above, we take f; = ypg, where R
is a rectangle of length 1 and width e oriented parallel to wy — wy = v1 — vy
however, instead of obtaining fs from the reach of R, we simply set fo = f1 = xgr-
Computation then yields

| Sa(f1, f2)ll1 2@ —¢loge,

while || f1]lp || f2]lpr = €, and again sending e to zero yields unboundedness. O

One should note that the logarithmic divergence in the proof of part (b) oc-
curs because Sg(xr, xr) is large on a region approaching the boundary of the
rectangle R; thus if we study the expression

As(XRs XR, XE) :/ S#(XRr, XR) XE
R2

for any measurable set F, we are not at liberty to delete an arbitrary half-measure
subset of F and still obtain this divergence. Therefore, this counterexample cannot
violate generalized restricted type p’ estimates for p on the boundary of the Banach
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triangle; this state of affairs could be viewed as analogous to the fact that the
Hilbert transform is unbounded on L' but is in fact of weak type (1,1) (though
we are of course making no claims of any such weak-type bounds in the present
bilinear setting).

The reader should also note that the nondegeneracy assumption is not merely
an artifact of the proof; indeed, if Py is degenerate, the operator Sg- () inherits its
boundedness properties from those of a one-dimensional bilinear Hilbert transform.

With this discussion completed, we can finally state the Main Theorem in full
generality:

Main Theorem (General version). Let D be a domain in T C RS as in the Main
Theorem above, with nontrivial curvature in a j-th coordinate slice for some j €
{1,2,3}. Assume further that D is not strongly degenerate. Then for admissible
triples p = (p1, p2,p3), the trilinear form Ag fails to be of generalized restricted
type P whenever:

° p; <2 for some i # j,

e p; < —1 for some i (i.e., p lies outside the Banach triangle).

If D = qu(ﬁ) is the standard preimage of D in R%, then the operator Tp is
unbounded from LP'(R?) x LP>(R2) — LP3(R2) whenever p; = co for some i (i.e.,
whenever P’ lies on the border of the Banach triangle) and additionally p; # 2 for
all j. Ifﬁ is further assumed to be nondegenerate, then the restriction p; # 2 can
be removed.

Proof. To treat the first case, one can observe that in the interior of the Banach
triangle generalized restricted type p’ estimates imply imply “restricted type p”
estimates, and, since our counterexamples were constructed from characteristic
functions, our proofs thus far can be applied (cf. Lemma 3.6 of [11]). Thus, we
need only concern ourselves with p'on the border of or outside the Banach triangle.
If D is nondegenerate, one simply combines Theorem 5.1 with the usual dilation-
and translation-invariance of bilinear multiplier norms to obtain the desired un-
boundedness or failure of generalized restricted type. _

If D is degenerate, however, we need to exploit the curvature of dD. Note
that, since D is assumed not to be strongly degenerate, degeneracy of D and
the coordinate-slice curvature hypothesis imply that D must in fact satisfy the
hypotheses of Theorem 4.1. For p outside the Banach triangle, the proof of The-
orem 4.1 carries over after the excision of half-measure sets wherever necessary,
and one obtains the failure of generalized restricted type p'for Ax. If p'lies on the
boundary of the Banach triangle, by duality it suffices to disprove LP x v — !
bounds on Tp for any D satisfying the hypotheses of Theorem 4.1; note that these
hypotheses are again symmetric under permutation of coordinates. If 1 # p # oo,
this can be accomplished by following the methods of [2] or [8] (i.e., the proof of
Theorem 4.1 phrased in terms of bilinear operators). Finally, if p =1 or p = co, we
use dilations and translations of D to pass to a half-space multiplier T p; from this
point, we simply consider either Tp(1, -) or Tp(-,1) and invoke the unbounded-
ness of the Hilbert transform on L'. O
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(1,0,0) = (0,0,1)
=N \E=N
VARSI
(o,yl,o)

FIGURE 5: Type diagram of points (i, L L).

p2’ p3

In summary, the presently known range of unboundedness of Tp or Az for

nondegenerate D c T with boundary curvature in a first coordinate slice is given
by the shaded region of the type diagram in Figure 5; of course, the corresponding
ranges for the other two slice curvature conditions are given by rotations of this
diagram. If D is merely assumed not to be strongly degenerate, we are forced to
omit the vertices of the local L? region; we reiterate that the status of the bilinear
multiplier problem in the unshaded regions is completely unknown at present.

6. Open directions and remarks

6.1. Open directions

More exotic domains. Even in view of Proposition 1.2, the curvature conditions
of the Main Theorem may seem somewhat ad hoc. There exist less degenerate
domains D C I' whose boundaries have nontrivial principal curvature at a point
but are locally flat in the three coordinate directions of R? x R? x R?; for an
example, consider the domain D; = ®(D;), with

Dy = {(£1,6,8,84) €ERY | &> &+ &)

This domain falls outside the scope of both the techniques of this paper and those
of [2] and [8].

Comparison of the methods. It should be noted here that while Corollary 1.1
generalizes Theorem 1 of [8], the methods of this paper do not appear to be strictly
stronger than those of Grafakos et al. In short, their methods require the availabil-
ity of rather specific normal vectors, but there is no restriction on the boundary
points at which these normal vectors occur as in our slice conditions; see Theo-
rem 4.1. It is easy to construct examples of domains satisfying the hypotheses of
our Main Theorem but failing those of Theorem 4.1 (cf. Corollary 1.1); examples
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treatable by Theorem 4.1 but not the Main Theorem seem less trivial to produce.
For instance, elementary algebraic arguments show that one cannot find such an
example D = ®(D) with D a quadratic subvariety of R*; however, the argument
seems particular to the quadratic setting, and it could perhaps be interesting to
find such examples in general.

Untreated ranges of exponents. Finally, of course there remains the question
of the exact range of L? spaces for which one should expect unboundedness re-
sults. An obvious problem is to consider a domain D satisfying exactly one of
the coordinate-slice curvature conditions and address the omitted triangle lying
outside local L? but within the Banach triangle (see Figure 5). This region seems
beyond the reach of the rather standard methods used in this paper; in short, one
needs to exploit the small area of Besicovitch sets by measuring the appropriate
square function in LP/ with p; < 2, but if one only has curvature in a j-th co-
ordinate slice there is no guarantee that the constituent rectangles will interact
productively with their reaches under the application of A 5.

No nontrivial result is currently known regarding the high-dimension (d > 2)
bilinear multiplier problem for domains in the local L? case, and once again it
seems that significantly different techniques should be used to treat this range
of LP spaces.

6.2. Remarks

1) Of course, as in Theorem 4.1, the local smoothness and curvature assumptions
of the Main Theorem are not necessary per se. One need only guarantee that a
collection of normal vectors to 0D occurring in a coordinate slice yields Besicovitch
sets as in Property 2.2; for a characterization of closely related collections, see the
paper [1] of Bateman. It should be noted, however, that the “Q admits Kakeya
sets” condition appearing therein is weaker than the conditions of Definition 2.1;
specifically, disjointness of the reaches R), is not required for a set of directions
to admit Kakeya sets in the sense of [1].? This potential lack of disjointness is
problematic when one attempts to control the right-hand side of estimate 4.2, and
thus at least at first glance the sets of directions characterized in [1] are not quite
suitable for our purposes.

2) Using (the proof of) the multilinear version of De Leeuw’s Theorem proved
in [2], one can readily derive analogues of the Main Theorem for multipliers given
by domains D in higher-dimensional spaces, with I' = I's replaced by

Ta:={(€1,62,&) ERIXRI xR | & + & + & =0}

However, the curvature conditions arising in this setting are markedly clumsier.
As in the Main Theorem, the intersection of some neighborhood in D with some
2-plane of a prescribed form must be a plane curve of nonzero curvature; the
permissible such 2-planes are dictated by our conditions and De Leeuw’s Theorem.

9The author thanks M. Bateman for calling his attention to this distinction.
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Of course, due to the abundance of nontrivial normal curvature guaranteed by
strict convexity, Corollary 1.1 holds as stated with R? replaced by R? and R*
replaced by R2?,

3) In the same vein, one can generalize the Main Theorem to a statement about
k-linear operators (or (k+ 1)-linear forms); again, the arising curvature conditions
are obtained by slicing a domain in R¥ (or its appropriate embedding into R<k+1)d)
by prescribed 2-planes. As in the previous remark, Corollary 1.1 continues to hold
in the general k-linear setting.
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