Rev. Mat. Iberoam. 28 (2012), no. 2, 415-533 © European Mathematical Society
DOI 10.4171/RMI/683 g

Nearly optimal interpolation
of data in C?(R?). Part I

Charles Fefferman

Abstract. Given € > 0, we compute a function taking prescribed values
at N given points in R?, whose C?-norm is within a factor (14 €) of least
possible. The computation takes C(e)N log N computer operations.

0. Introduction

The problem

Our goal, here and in [4], is to interpolate data by a smooth function. We work
in C™(R™), the space of real-valued functions F whose derivatives up to order m
are continuous and bounded on R™. We fix a norm on C™(R"), e.g.,

(1) || Fllcm@gny= sup max [0%F(x]|.

B xeRn |x|<m
Let f: E — R be a real-valued function on a finite set E C R™. An “interpolant”
for f is a function F € C™(R™) such that F = f on E. We define

(2) | fllemey=inf{|| F[[cmmrn): F € C"(R"), F=f on E}.

Elementary examples show that the inf in (2) needn’t be a minimum. Given a
real number A > 1, we say that F € C™(R™) is an “A-optimal interpolant” for
f:E— R, provided F=fon E and || F[[cm@y< A | f|cmeE).

Our main problem is to compute an A-optimal interpolant for f, where A is
not too large.

To “compute” an interpolant, we provide an algorithm to be implemented on
an (idealized) digital computer. We want to minimize the number of computer
operations, and the size of the computer memory, needed to execute our algorithm.

In [7] and [8], Fefferman—Klartag gave an efficient algorithm to compute an
A-optimal interpolant, where A is a constant depending only on m and n. Unfor-
tunately, the constant A arising from the algorithm in [7] and [8] is large, even for
modest m and n.

Mathematics Subject Classification (2010): 65D05, 65D17.
Keywords: Interpolation, C2-norm, efficient algorithm.

416 C. FEFFERMAN

Motivated by the hope of eventual practical applications, we therefore pose the
following

(3) Sharp Interpolation Problem: Given a function f : E — R on a finite set
E C R™, and given € > 0, compute a (1 + €)-optimal interpolant for f.

Our main result, here and in [4], is an algorithm to solve the above Sharp
Interpolation Problem for the case of C%(R?). For sets E consisting of N points, our
algorithm requires at most C(e)Nlog N computer operations, where C(€) depends
only on €, and on our choice of the norm on C?(RR?).

This improves our previous result in [6] (specialized to C2(R?)), which computes
a (1+¢€)-optimal interpolant using C(€)N®(log N)? operations. The algorithm in [6]
reduces matters to a linear programming problem of size C(e)N. Here and in [4],
we instead reduce matters to O(N) “little” linear programming problems, each of
size C(e).

The previous results of Fefferman—Klartag [7], [8] and Fefferman [6] were all
based on “finiteness principles”, which we explain below. The natural finiteness
principle relevant to our Sharp Interpolation Problem fails for C?(R?). Neverthe-
less, we are able to give an efficient algorithm for this case.

Notation

Fix myn > 1. For F € C™(R™) and x € R™, we write Jx(F) (the “jet” of F at x)
to denote the m* order Taylor polynomial of F at x. Thus, J,(F) belongs to P, the
vector space of (real) m* degree polynomials on R™.

Now let E C R™ be a finite set. A “Whitney field” on E is a family of polyno-
mials

(4) P = (P*)xeE, indexed by the points of E, such that each P* belongs to P.
We write Wh(E) to denote the vector space of all Whitney fields on E.

For F € C™(R™) and E C R™ finite, the “jet” Jg(F) of F at E is defined as
(5) Je(F) = (Jx(F))xee € Wh(E).

If P is a Whitney field as in (4), and if S C E, then the “restriction” Pl is
defined as

(6) 13\5 = (P¥)xes, with the same P* as in (4).
We define a norm on Whitney fields P € Wh(E), by setting
(7) | P lwn(e)= inf{]| F [|cm &n): F € C™(R™), Je(F) = P}

If P = (P¥)xce € Wh(E) and f : E — R, then we say that P “agrees” with f
provided

(8) (P*)(x) = f(x) for each x € E.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 417

Similarly if P = (P¥)xee, € Wh(Eq) and f : E; — R, then we say that P
“agrees” with f at a given point X € E; N E,, provided

9) (PY)(x) = f(x).

The C™ norm

Our choice of the norm in (1) is somewhat arbitrary. We could just as well
have defined, say,
(10) [[Fllemmmy=sup 3 [0*F(x)I,

XER™ |a|<m

1/2
(A1) [Fflengn= sup (3 RFRE) T, or

x€R™ Ma<m

(12) | Fllem@mmy= 2 sup [0%F(x)].

lo<m xeR™

Each of these norms gives rise to a different Sharp Interpolation Problem (3). To
allow freedom to pick our favorite C™-norm, we suppose from now on that we are
given a family of norms | - |x on P, parametrized by x € R™.

For Q C R™, and for F € C[™ (Q), we then define

loc

(13) [Fllem)= sup [Jx(F)l
xeQ

For instance, we recover the C™-norms (1) and (10)—(11) by taking
(14) [Plx = max [0%P(x]],
lof<m

(15) [Plk= Y [0%P(x)|, and

[of <m

/2

(16) Pl = (£ fo=pix)2) "

[of <m

respectively, for P € P.

The C™-norm (12) is not given in the form (13); we do not consider it further.
The norms | - | are assumed to satisfy two reasonable conditions, called the “Boun-
ded Distortion Property” and “Approximate Translation-Invariance”. These prop-
erties are given in Section 5. The norms (14), (15), (16) satisfy these two conditions.

From now on, whenever we mention the C™-norm, we assume that the norm
is defined by (13), or by its special case (1). This applies in particular to the
definition of || P lwn(e) by (7).

The computer

Our Sharp Interpolation Problem asks us to “compute” a function using a
“computer”. We suppose that our computer has standard von Neumann archi-
tecture [14]. We assume that each memory cell and each register is capable of

418 C. FEFFERMAN

holding an arbitrary real number. We suppose that the computer can perform
elementary arithmetic operations on exact real numbers, without roundoff error.
(The arithmetic operations include exponentials and logarithms, and the “greatest
integer” function.) To perform a single arithmetic operation, or to read or write
a single number to memory, costs us one unit of “work”. See [12] and [17] for a
more detailed discussion of this model of computation (and its pitfalls).

Our computer will have to acquire information on the family of norms | - |«
used to specify the C™-norm in (13). We suppose that our computer has access to
an Oracle. Given a point x € R™ and a polynomial P € P, the Oracle returns the
value of |Ply, at a charge of one unit of “work”. (This assumption can be weakened;
see Section 5 below.) For the family of norms | - | given by (14), (15) or (16), an
obvious algorithm serves as an Oracle.

Computing a function

Our computer can only calculate finitely many real numbers. What does it
mean to “compute a function” F € C™(R™)? As in [6], [8], we have in mind the
following dialogue with the computer: First, we enter the data (m,n,E,f, e for
our Sharp Interpolation Problem). Next, the computer executes an algorithm,
performing W, operations of “one-time work”. After the one-time work is com-
plete, the computer signals that it is ready to accept queries. A “query” consists of
a point x € R™. When we enter a query x, the computer responds by executing a
“query algorithm”, involving Wq operations (the “query work”), and then return-
ing the values of 0%F(x) for |&| < m. We may enter as many queries as we please.
We insist that the function F be uniquely determined once the computer signals
that it is ready for queries. In particular, we disallow “adaptive algorithms”, in
which the function F depends on our queries. We also disallow calls to the Oracle
by the query algorithm.

The computer resources used to compute a function are the one-time work Wy,
the query work Wq, and the “storage” or “space” (i.e., the number of memory
cells in the computer’s random-access memory).

The main result

After the above preparations, we are ready to state our main result. We work
in C2(R?); thus m =n = 2 above.

Theorem 1. Fiz a norm on C*(R?) of the form (13). Suppose we are given
0<e<?landf:E—-R, witht CR?, #(E) =N.

Then, with work C(e)NlogN and storage C(e)N, we can compute a non-
negative real number |||f||| such that (14 €)=V ||Iflll <|| lczey< (1 + €)Ml

Moreover, we can compute a (1 + €)-optimal interpolant for f, using one-time
work C(e)NlogN, query work Clog(N/e), and storage C(€)N.

Here, C depends only on our choice of the C>-norm, and C(e) depends only on
€ and our choice of the C*-norm.

Most likely, the N-dependence in Theorem 1 is optimal. Our C(e) depends
superexponentially on €; we hope this can be improved.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 419

Previous work

To place our main result in context, and to discuss its proof, we recall the
previous work of Fefferman—Klartag [7], [8] and Fefferman [6].

Theorem 2. Define the C™(R™)-norm by (1). Suppose we are given f: E — R,
with E C R™, #(E) = N.

Then, using work at most CNlog N and storage at most CN, we can compute
a non-negative real number |||f||| such that

A7) <M Fllemeey < AN

Moreover, we can compute an A-optimal interpolant for F, using one-time work
at most CN log N, query work at most Clog N, and storage at most CN. Here, A
and C depend only on m and n.

Unfortunately, the constant A arising from [7], [8] is large.

As an easier variant of our Sharp Interpolation Problem (3), we pose the follo-
wing
Sharp Interpolation Problem for Whitney Fields: Given P € Wh(E), and given € > 0,
compute a function F € C™(R"), such that

(18) Je(F) =P and || F cmmny < (14+€) | P lwh(e)-

If (18) holds, then we call F a “(1 + €)-optimal interpolant” for P.

The following result answers the Sharp Interpolation Problem for Whitney
Fields:

Theorem 3. Fiz a norm on C™(R") of the form (13). Suppose we are given
0<e< andP e Wh(E), with E C R™, #(E) = N.

Then, with work exp(C/e)NlogN and storage exp(C/€)N, we can compute a
non-negative real number IIPIll such that |||P]]| < I P lwhey < (1+¢€) NPl

Moreover, we can compute a (1 + €)-optimal interpolant for 13, using one-time
work at most exp(C/e)NlogN, query work at most Clog(N/e€), and storage at
most exp(C/e)N.

Here C depends only on myn and our choice of C™-norm.

Using Theorem 3, we can reduce the Sharp Interpolation Problem (3) (for
functions) to a linear programming problem of size exp(C/e)N. This leads to the
following preliminary result on (3); see [6].

Theorem 4. Fiz a norm on C™(R") of the form (13). Suppose we are given
0<e<7and f:E— R, withE CR"™, #(E) =N,
Then, with work exp(C/e)N>(logN)? and storage exp(C/e)N?, we can com-
pute a non-negative real number [||fl|| such that [[|fll| <[f|lcm@Ee) < (14 €) Il
Moreover, we can compute a (1 + €)-optimal interpolant for f, using one-time
work at most exp(C/e)N°(logN)?, query work at most Clog(N/e), and storage at
most exp(C/e)N2. Here, C depends only on m,n and our choice of the C™-norm.

420 C. FEFFERMAN

Thus, for fixed €, the Sharp Interpolation Problem (3) can be solved in poly-
nomial time.

Finiteness principles

The ideas behind Theorems 2 and 3 start with the classic Whitney Extension
Theorem [13], [18], [19], [20], which we state in the special case of finite sets E.

Theorem 5 (Whitney). Fiz m,n > 1, and define the C™(R™)-norm by (1). Let
P = (P¥)xece € Wh(E), where E C R™ is finite. Assume the estimates: [0*P*(x)] < 1
for |a| <m, x € E; and [0%(P* —PY)(y)| < x —y|™ ¥ for |a| < m, x,y € E.

Then there exists F € C™(R™) such that | F ||cm@n)< C and Je(F) = P.
Here, C depends only on m,n.

Whitney’s theorem may be restated in the following equivalent form:

Theorem 6. Fiz m,n > 1, and define the C™(R™) norm by (1). Let P € Wh(E),
where E C R™ s finite. Suppose that || (Pls) lwh(s)< 1 for each subset S C E
containing at most two points.

Then || P lwn(e)< C, where C depends only on m and .

Theorem 6 is the simplest case of a “finiteness principle”.

The proof of Theorem 2 is based on the following deeper finiteness principle
(see Brudnyi-Shvartsman [2], Fefferman [10], Bierstone-Milman [1], and Shvarts-
man [15]):

Theorem 7. Fiz m,n > 1, and define the C™(R™)-norm by (1). Then there exist
constants k7, C, depending only on m,n, such that the following holds:

Let f: E = R, with E C R™ finite. Suppose that || (fls) [[cm(s)< 1 for each
subset S C E containing at most k* points. Then || ||cm)< C.

Similarly, the proof of Theorem 3 is based on the following finiteness principle,
called the “(1+ €)-Whitney theorem” in [5], [6]:

Theorem 8. Fiz myn > 1, and fix a C™(R™)-norm of the form (13). Let Pe
Wh(E), with E C R™ finite; and let 0 < € < 17 Suppose that || (Pls) [|lwn(s)< 1
for each subset S C E containing at most exp(C/€) points.

Then || P lwhey< 1+ €. Here, C depends only on m,n and our choice of the
C™-norm.

We believe that the exponential exp(C/€) can be replaced by a power of 1/€ in
Theorems 3 and 8. A remarkable result of LeGruyer [11] suggests the possibility
of dramatic further improvements.

LeGruyer’s theorem pertains to the space Ch'(R™) of function F whose gra-
dients are Lipschitz 1. On C"'(R™), we take the natural seminorm

IFll= sup |VF(x) — VF(y)|/Ix—yl.
X,y ER™
x#y

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 421

(Here, |VF(x) — VF(y)| and |x — y| are defined in terms of the Euclidean norm | - |
on R™.)

For x € R™ and F € C1'(R™), we write j(F) to denote the first-degree Taylor
polynomial of F at x. Le Gruyer’s theorem is as follows:

Theorem 9 ([11]). Let E C R™. For each x € E, let Py be a given first-degree
polynomial on R™. Then the following are equivalent:

(A) There exists a function F € CHV(R™) such that || F |< 1 and jx(F) = Py for
each x € E.

(B) [Px(z) —Py(2)l < I(z—x* + [z—yl?) for all x,y € E and z € R™.

Corollary. Suppose that, for any two points x,y € E, there exists Y € CHT(R™)
such that || POY ||< 1, jx(FoY) = Py and jy (FoY) = Py.

Then there exists F € CHI(R™) such that | F [[< 1 and jx(F) = Py for
each x € E.

Thus, finiteness principles lie at the heart of all the above previous work on
interpolation problems. In view of the above results, it is natural to make the
following conjectures:

Conjecture 1 (Finiteness Principle). Fiz myn > 1, and fiz a C™(R™)-norm of
the form (13).

Given € > 0, there erists a constant k¥ (e), depending only on e, m,n and our
choice of the C™-norm, such that the following holds:

Let f: E = R, with E C R™ finite. Assume that || (fls) ||cm(s)< 1 for each
subset S C E containing at most k¥ (€) points. Then || f ||cmE)< 1+ €.

Conjecture 2 (Sharp Interpolation Algorithm). Fiz m,n > 1, and fix a C™(R™)-
norm of the form (13).

Given € > 0, and given f : E — R™, #(E) < N, we can compute a (1 + €)-
optimal interpolant for f, using one-time work at most C(€)Nlog N, query work at
most Clog(N/e), and storage at most C(€)N. Here, C(€) depends only on e, m,n
and our choice of the C™-norm; and C depends only on m,n and choice of the
C™-norm.

Moreover, it is natural to guess that the proof of Conjecture 1 will lead to the
algorithm promised in Conjecture 2.

Unfortunately, the facts are otherwise. A counterexample in Fefferman—Klar-
tag [9] shows that Conjecture 1 fails, already for C%(R?). Nevertheless, we prove,
here and in [4], that Conjecture 2 is correct for C2(R?); that is the content of
Theorem 1. Perhaps Conjecture 2 holds for C™(R™) (any m,n). A proof will
require substantial new ideas. We do not yet know what lies at the heart of the
Sharp Interpolation Problem.

422 C. FEFFERMAN

Reduction of Theorem 1 to a main algorithm

To prove Theorem 1, we will present the following

(19) MAIN ALGORITHM: Fix a C?(R?)-norm of the form (13).
Given 0 < € < 17, and given a function f : E — R, with E ¢ R? and
#(E) = N, we produce one of the following two outcomes:

(20) Bad News: We guarantee that there exists no interpolant for f with C%(R?)-
norm less than 1.

(21) Good News: We guarantee that there exists an interpolant for f with C%(R?)-
norm less than 1+e. Moreover, for one such interpolant F, we compute the jet

(22) P = Je(F).

The work and storage used to produce one of these two outcomes are at most
C(e)Nlog N and C(€)N, respectively. Here, C(e) depends only on € and our choice
of the C2-norm.

To prove Theorem 1 for a given f : E — R, we first apply Theorem 2 to compute
| fllc2(e) up to a factor of C, where C depends only on our choice of the C™-norm.
Next, by repeatedly applying the above MAIN ALGORITHM to constant multiples
of f, we compute || f ||c2(g) up to a factor of (14 €). Without loss of generality,
we may now suppose that (14 ¢)~" <|| f |lc2(e)< 1. Another application of our
MAIN ALGORITHM produces a Whitney field P € Wh(E) such that P agrees with f
and || P [lwn(g)< T+e.

Applying Theorem 3, we compute a function F € C?(R?), such that J (F) = P
and ||Fllczry< (14 ¢€) || ﬁ|\Wh(E). In particular, we have || F|lc2r2)< (14 €)?,
F=fonkE, and | f|c2e)> (1+ €)', Thus, we have computed a (14 ¢€)3-optimal
interpolant F, using one-time work, query work and storage as indicated in Theo-
rem 1. We conclude that Theorem 1 reduces easily to the MAIN ALGORITHM (19),
together with Theorems 2 and 3.

The rest of this Introduction sketches some of the ideas used in the MAIN
ALGORITHM.

Data structures

We will be working with convex polyhedra. A “convex polyhedron” in a finite-
dimensional vector space V is a compact subset K C V of the form

(23) K={v e V:Ai(v) > Bi for i = 1,...,1}, where each A; is a (real) linear
functional on V, and each f3; is a real number.
We say that K is “defined” by the “constraints” Ai(v) > By (i=1,2,...,1).
Note that K may be empty, and that a single K C V may be defined by many
different lists of constraints.

We will work with squares Q C R?. We always suppose that the sides of Q are
parallel to the coordinate axes. We write 0g to denote the sidelength of Q. For
positive real numbers A, we write AQ to denote the square obtained by dilating Q
about its center by a factor of A.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 423

Let 0 < e < 17 be given. We will write ¢, C,C’, etc., to denote constants
depending only on our choice of the C?-norm; and we write c(e), C(e), etc., to
denote constants depending only on e and on our choice of the C?-norm. These
symbols may denote different constants in different occurrences.

As a first crude attempt to represent a function F € C?(Q) in a computer
memory, we fix an “e'%-net” S C Q, i.e., a finite subset S C Q such that

24) Any point z € Q satisfies |z — 2| < €'%°8¢ for some 2’ € S, and
Q
(25) #(S) < Ce 2.

We then represent the function F € C?(Q) to the computer, simply by keeping
the Whitney field Js(F). This captures a lot of information about the behavior
of F, but it misses fine details on lengthscales smaller than emoéQ. In particular,
if E € Q, and if the distance between nearest neighbors in E is smaller than
emoéQ, then we cannot tell from Js(F) whether F = f on E. Therefore, we will
later introduce a more sophisticated data structure to represent F € C2(Q).

Tools from the proofs of previous results

Our main algorithm will make use of two tools from previous work. From ideas
in the proof of Theorem 3, we obtain the following algorithm:

Algorithm AUB (“Approximate Unit Ball”): Fix a norm on C?(R?) of the
form (13).

Given a square Q, a finite subset S C Q, and a positive number €, such that
#(S) < Ce™2%° we compute a convex polyhedron Kayg(S, Q) € Wh(S), with the
following properties:

(26) Let F € C?(2Q) with norm < 1. Then Js(F) € Kays(S, Q).
(27) Let Pec Kaug(S, Q). Then there exists F € C?(Q) with norm < 1+ €, such

—

that Js(F) = P.
(28) The polyhedron Kayg(S, Q) is defined by at most C(€) constraints.

The work and storage used to compute Kayg(S, Q) are at most C(e).

When applying the above algorithm in this oversimplified introduction, we may
blur the distinction between 2Q in (26) and Q in (27). Clearly, Algorithm AUB
gives us good control over the requirement that || F[|c2< 1+ O(e). On the other
hand, so far we have no control over the requirement that F = f on E.

Our second tool is a Calderén-Zygmund decomposition of R?, taken from our
proof of Theorem 2 in [8] (specialized to C?(R?)). That decomposition parti-
tions R? into Calderén-Zygmund squares {Q-} with sidelengths dg, < 1, such
that, for each v, EN3Q+ is contained in the graph of a function. More precisely,
either

(29) EN3Qy C{(x1,x2) € R? :x3 = @y(x1)} or
(30) EN3Qy C {(x1,x2) € R?:x1 = @y (x2)},

424 C. FEFFERMAN

where @+ in (29), (30) satisfies
(31) lo4| < C, ol < €8l

Moreover, for each v, there exist a base point z, € 9Q+, and a convex polyhedron
I'(zy) C P, defined by at most C constraints, with the following properties:

(32) Let F € C?(R?) with norm < 1. If F =f on E, then J,, (F) € I'(z).
(33) Let P,P' € T(z). Then [0%(P —P')(zy)| < Co5.'% for of < 2.

When we look for an interpolant F, (32) shows that we may restrict attention
to functions such that J, (F) € I'(zy) for each v. Thanks to (33), this tells us a lot
about F on 9Q+, when 8¢, is small. When 8¢, isn’t small, (32) and (33) give no
useful information.

The plan

Our main algorithm is based on the Calderén—Zygmund decomposition des-
cribed in (29)—(33).

For each Calderén-Zygmund square Q., we pick an “e'%®-net” S, C Q,, as
in (24) and (25).

Step |: For each v, we compute a convex polyhedron K, C Wh(S,), with the
following properties:

(34) Let F € C?(CQ~), with norm at most 1. Assume that F = f on EN3Q., and
that J., (F) € T'(zy). Then Js_ (F) € Ky.

(35) Conversely, let P € Ky be given. Then there exists F € C2(9Q,) with norm
at most 1+ Ce, such that F =f on EN3Q~, J., (F) € I'(zy), and Js, (F) = P.
Moreover, we can compute the jet Jgnzq, (F) for one such F.

Thus, Ky is analogous to Kaug(Sv, Q+) in (26), (27), (28) with the crucial
difference that K, takes into account the condition F = f on EN3Q5.

Perhaps some of the Ky are empty. In that case, we know from (34) that there
exists no function F € C?(R?) with norm < 1 such that F = f on E. We can then
report Bad News and terminate the MAIN ALGORITHM. (See (19) and (20).)

Step II: Suppose all the Ky, are non-empty.

Using the polyhedra K., we attempt to patch together local interpolants F, €
C2(9Q,) into a global interpolant F using a partition of unity. We hope that
F will have norm less than 14 Ce in C?(R?), because the F, fit together well.
This may or may not be possible. If we cannot find local interpolants that fit
together properly, then we report Bad News and terminate the MAIN ALGORITHM.
(Again, see (19) and (20).) However, if we can find F, that fit together well, then
we succeed in patching together the F, into a global interpolant F with norm at
most 1+ Ce in C?(R?). In this favorable case, we can compute the jet Jg(F) for
our global interpolant F. Thus, we can report Good News, and terminate the MAIN
ALGORITHM. (See (19) and (21).)

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 425

The purpose of this paper is to carry out Step L. In the sequel [4], we will carry
out Step II, using ideas from the proof of Theorem 3 in [6], and complete our
explanation of the MAIN ALGORITHM.

The rest of this introduction sketches some of the main ideas used in Step I, in
the context of a simplified model problem. We put off all explanations of Step II
until our later paper [4].

A Model Problem

We prepare to introduce a model problem to illustrate our approach to Step I

above. Fix a norm on C?(R?), of the form (13). Let 0 < € < % and N > 1 be
given. We regard € as small but fixed, while N is arbitrarily large. We introduce

the set E C Qo, where

(36) E={(L,0), (2,0),...,(N=1,0), (1,0)} € R? and
(37) Qo ={(x1,x2) € R?: [x1], [x2| < 2}.

100

Also, we fix an €'“"-net

(38) So C Qo, as in (24), (25).

Suppose we are given a function

(39) f:E > R.

Our Model Problem is to compute a convex polyhedron Ko C Wh(Sy), defined
by at most C(e) constraints, and having the following properties:

(40) Let F € C*(CQp) with norm less than 1. If F = f on E, then Js, (F) € Ko.

(41) Conversely, let P € Ko be given. Then there exists a function F € C%(Qo)
with norm at most 1+ Ce, such that F =f on E and Js,(F) = P. Moreover,
we can compute the jet Jg(F) for one such F.

We want to compute the polyhedron Ky with work at most C(e)NlogN and
storage at most C(e)N. Moreover, the computation of Jg (F) in (41) should require
work and storage at most C(e)N.

Clearly, the above Model Problem is close to Step I (see (29), (34), (35)) for
the case of a Calderén-Zygmund square Q- of sidelength g, = 1. Note that
the polyhedron T'(zy) from (32) and (33) plays no role here, since our square Qg
n (37) is not small.

In the following pages, we will explain some of the main ideas in the solution
of the Model Problem. We hope this will lighten the task of understanding our
treatment of Step I in the MAIN ALGORITHM.

426 C. FEFFERMAN

More notation

We introduce additional notation to discuss our Model Problem. We start by
fixing an interval I, such that

(42) [0,1] is contained in the middle half of Iy, but |Ip| < 100. We will call Iy the

“starting interval”.

The interval Iy, and all the intervals that may be obtained from Iy by repeated
bisection, will be called “dyadic intervals”. The set of all dyadic intervals will be
called the “dyadic grid” G(Ip). The set T(Ip), consisting of all dyadic intervals I
of length |I| > 102%’ forms a binary tree under inclusion. The root of T(Iy) is
the interval Ip. The tree T(Ip) consists of “leaves” and “internal nodes”. Each
leaf T € T(Ip) is a dyadic interval of length between ﬁ and ﬁ Each
internal node I € T(Ip) has two “children” in T(Ip), namely the two dyadic intervals
obtained by bisecting I.

For each I € T(Iy), we introduce the square Q(I), with sidelength 50|I|, centered
at (X,0) € R?, where X is the midpoint of I.

We note the following elementary properties of the squares Q(I):

(43) Q(I) € Q(I') whenever I C T
(44) Qo € Q(Ip) C CQyp, with Qo as in (37).
(45) If I € T(Ip) is a leaf, then Q(I) contains at most one point of E.

A leaf T € T(Ip) such that Q(I) contains a point of E will be said to be of
“type C17. If T € T(Ip) is a leaf of type C1, then we write z;(I) to denote the one
and only point of E belonging to Q(I).

For each I € T(Ip), we introduce an €'°°-net

(46) S(I) € Q(D), as in (24), (25).
We can easily pick the S(I) so that
(47) z(I) € S(I), whenever I € T(Ip) is a leaf of type C1.

We introduce a C?-partition of unity
(48) 1=2 1c1(1,) 01 on Qo; with each 0y satisfying
(49) supp 01 C Q(I), and
(50) [0%01| < ClI|~*! for |«f < 2,
(51) 61 > 0.
We can easily arrange for the 01 to satisfy the following additional properties:
(52) supp 01N supp 01 # 0 implies c|I| < |I'] < CII].
(53) Any given point z € Qo belongs to supp 01 for at most C distinct I € T(Ip).

(54) Let T € T(Ip). If EN supp 61 # 0, then I is a leaf of type CI, and
EN supp 01 = {z/(I)}.

Note that the functions 0; are defined only on Qo.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 427

Refined data structure

To solve our model problem, we will have to understand functions F € C?(Qy)
on lengthscales much smaller than emoéQ o- Therefore, we will represent an inter-
polant F in the computer, as a family of Whitney fields

(55) P = (ﬁI)IGT(IO)a where P; € Wh(S(I)) for each 1.
To pass from a function F € C2(Q(Io)) to a family of Whitney fields P as
in (55), we simply define
(56) Pr=Js()(F) for each I € T(Io).
If F=1f on E, then PP satisfies
(57) 1_51(a)tgrees with f at z,(I), for each leaf I of type C1, since by definition,
zi(I) € E.

Conversely, we want to pass from a family P as in (55), to a function F €
C?(Qo). It’s not immediately clear how to do that. Our plan is to define a “local
function” Fy € C?(Q(I)) for each I € T(Ip), such that

(58) Js(ny(Fr) = Pr, and || Fr [lc2 gy < 1+ Ce.

We will then patch together the F; by setting

(59) F = Z 0:Fr € Cz(Qo).
1eT(Io)

Thanks to Algorithm AUB, we understand well the problem of producing F;
satisfying (58). We hope that the function F in (59) satisfies

(60) F=fonE, and
In fact, (60) holds provided our family of Whitney fields P satisfies (57). Indeed,

if (57) holds, then Fr = f at z,(I) for each leaf I of type C1, as follows from (57)
and (58). Equality (60) therefore follows from (54).

To prove (61), we would like our local functions Fy to satisfy the strong consis-
tency condition

(62) [0%(Fr—Fp)| < Celll>~!*l on supp 81N supp 0y for |« < 1, whenever supp 01
N supp 01 # 0.

If we can pick the Fy to satisfy (62), then it is easy to prove the desired esti-
mate (61).

Unfortunately, it’s far from clear how to produce families of local functions Fy
that satisfy (62). Therefore, in place of (62), we will settle for the following weaker
dyadic analogue:

428 C. FEFFERMAN

(63) Let I € T(Ip), and let I’ be one of the two dyadic children of I. Then we have
[9%(Fy — Fr/)| < Cell*~* on Q(I') € Q(1), for || < 1.

We will construct families of local functions Fr satisfying (58) and (63); then
we will see how the function F in (59) behaves for such families of local functions.
Finally, we will apply what we have learned to our Model Problem.

To construct Fy satisfying (58) and (63), the key idea is to define and compute
a certain convex polyhedron K(I) € Wh(S(I)) for each I € T(Ip).

We now explain the construction of the K(I).

The basic polyhedra

We construct a polyhedron K(I) € Wh(S(I)) for I € T(Iy), by bottom-up
recursion in the tree T(Ip). The recursion proceeds as follows:

In the base case, I is a leaf in T(Iy). We then define

(64) K(I) = (P e Kaus(S(I), Q(I)) : P agrees with f at z,(I)} if the leaf I is of
type C1, and

(65) K(I) = Kaus(S(I), Q(I)) if the leaf I isn’t of type C1.

(For the polyhedron Kayg(---), see Algorithm AUB above.)

For the induction step, suppose I € T(Ip) is an internal node with children Iy, I5;
and suppose we have already defined the convex polyhedra K(I;) € Wh(S(I7)) and
K(Iz) € Wh(S(I2)). We then define K(I) € Wh(S(I)), as follows: Let

(66) S*(I) = S(I) US(I;) US(I) C Q(I).
Next, define
(67) K(I) = {P*|s(1): P* € Kaus(ST (1), Q(D)), P*Is(1,) € K(I1), P*[s(1,) € K(I2)}

Finally, we take K(I) to be a polyhedron, defined by at most C(€) constraints,
and slightly larger than K(I). In particular, K(I) D K(I).

The purpose in passing from E(I) to K(I) here, is to prevent the number of
constraints defining K(I) from growing rapidly as I moves up the tree T(Iy) in our
bottom-up recursion. Such a rapid growth of the number of constraints would
greatly increase the number of computer operations needed to carry out our algo-
rithms.

However, to simplify the presentation, let us pretend in this introduction that
we simply take

(68) K(I) =K(I).
This completes our description of the recursive definition of the polyhedra K(I).

It is a routine task to follow the above recursive definition, and compute the
polyhedra K(I). From now on, we assume that they are known.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 429

Using the basic polyhedra

Let us relate the polyhedra K(I) to our previous discussion (55)—(63). Suppose
first that we are given a function

(69) F e C2(Q(Ip)) with norm at most 1, such that F = f on E.

Then an easy bottom-up recursion in the tree T(Ip), using the defining properties
of Kaug(- -+), shows that

(70) Js(1)(F) € K(I) for each I € T(Io).
In particular, (69) implies
(71) Js(1,)(F) € K(Io).
Conversely, suppose we are given a Whitney field

(72) Po € K(Io).

By top-down recursion in the tree T(Ip), we will compute a Whitney field P € K(I)
for each T € T(Ip). The top-down recursion proceeds as follows:

In the base case, we have I = Iy, the root of the tree T(Ip). In this case, we
simply set

(73) P1, = Po € K(Io).

For the induction step, let I € T(Ip) be an internal node, with children I;,1I,.
Suppose we have already computed P e K(I). We will then compute 1311 € K(I4)
and 1312 € K(Iz). This will complete the top-down recursion. To produce F_"I, and
1_512, we recall that (we are pretending that) K(I) = K(I), defined by (67). Since
P € K(I), it follows that there exists a Whitney field

(74) P € Kaug(S™ (1), Q(I)), such that

—

(75) P*ls(y = Pr, Prls(r,) € K(Iy), and P*ls(1,) € K(I2).

Since the Whitney field P! and the polyhedra Kaug (ST (1), Q(I)), K(I4),K(I2) are
known, we can compute a particular P* satisfying (74) and (75), by routine linear
programming. Once we have found such a P+, we set

(76) P1, = P*s(r,) and Pr, = P[s(r,).

In particular, 1311 € K(I1) and 1312 € K(I), thanks to (75). This completes our
top-down recursion.

Thus, given Py € K(Ip), we have computed P € K(I) for all T € T(Ip); in
particular ﬁlo = Po.

Next, for each I € T(Ip), we produce a “local function”

—

(77) Fr € C*(Q(I)), with norm < 1+ Ce, such that Js1)(Fi) = P1.

430 C. FEFFERMAN

To do so, suppose first that I is a leaf of T(Ip). Then, by definition (64), (65),
K(I) € Kaus(S(I), Q(I)). Since P e K(I), the defining property (27) of Kaus(---)
gives us a function Fy satisfying (77).

On the other hand, suppose I is an internal node of T(Ip), with children Iy, I5.
Then (74), (75), (76) hold for a Whitney field P*. From (74) and the defining
property (27) of Kaug(---), we obtain a function F; € C(Q) with norm at most
1+ €, such that Js+) (Fr) = P*. Thanks to (75) and (76), this F; satisfies

(78) Js(n)(F1) = Pr, Js(iy) (Fi) = Py, Jsiz) (Fr) = P,

In particular, our Fy satisfies (77). Thus, (77) holds in all cases.
Furthermore, our local functions F; do satisfy the “dyadic consistency condi-
tion” (63). To see this, we return to (78), and apply (77) to the intervals Iy and I.

Thus, we find that Js(1,)(Fr)=Js(1,)(F1,):ﬁh , and similarly for I. In particular,

(79) Js(1,)(F1 —Fr,) =0 and Js(1,)(Fr — F1,) = 0.

We recall from (77) that H Fr, HCZ(Q(I] Nn< 14€ and H Fr HCZ(Q(I] N < H Fr HCZ(Q(I))
< 1+ e. Moreover, we have picked S(I1) so that any z € Q(I1) satisfies |z — z/| <
€'9%5q(1,) = Ce'°°[Ly| for some 2’ € S(I).

In view of the above remarks and Taylor’s theorem, (79) implies the estimate
0%(F; — Fr,)| < Ce'|I;127 1% on Q(I4) for |a| < 1, and similarly for I,. This is
stronger than the desired estimate (63), since we have here €'°° in place of €. In
any event, we have proven (63).

Let us summarize the discussion so far.

(80) For each I€T(Ip), we have computed the convex polyhedron K(I) C Wh(S(I)).

(81) Suppose F€ C?(Q(Ip)) with norm <1, with F = f on E. Then Js1,)(F) €K(Io).

(82) Conversely, given Po € K(Ip), we can compute Pr € K(I) for each I € T(Io),
with Py, = Po. Moreover, for each I € T(Ip), we have defined a “local
function” Fy € C2(Q(I)) with norm < 1+ ¢, such that Jsy(F1) = P..

The Fy in (82) satisfy the dyadic consistency condition

(83) [0%(F; — Fr)| < CelI|*"!*l on Q(I') for |a| < 1, whenever I is a child of the
internal node I € T(Iy).

Given Py € K(Io), we take ﬁI,FI as in (82), (83), and define

(84) Flo = 3 01F € C*(Qo), as in (59).
1€T (1)

(We have changed notation, by writing FI° in place of F; this change will soon be
useful.) We would be happy if Flo satisfied

(85) Flo = fon E, and
(86) H FIO ||CZ(Q0) S] —+ C€.

This would provide a complete converse to (81); we would then have essentially
solved our Model Problem.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 431

Our Fo is easily seen to satisfy (85). In fact, by definition (64), we see that Py
agrees with f at z,(I) whenever I is a leaf of type C1. Since z,(I) € S(I) for such I,
and since Js(1)(F1) = P: always, it follows that F; = f at z,(I), for each leaf I
of type C1. Thanks to (54), it follows in turn that F; = f on E N supp O for
any 1 € T(Ip), from which (85) follows by definition (84). Thus, our Fl° is an
interpolant for f.

Unfortunately, we do not have the strong estimate (86) for Flo. To obtain that
estimate, we would need the consistency condition (62), whereas we have achieved
merely the weaker dyadic consistency (83). Accordingly, in place of (86), we obtain
only the following weaker condition:

For a certain set Goodpoints(Ip) C Qo containing all but Ce of the area of Qo,
we find that

(87) |J.(F')[, < 1+ Ce for all points z € Goodpoints (Io),
but only
(88) J.(F')|, < C for all points z € Qo~ Goodpoints(Ip).

We recall from the definition (13) of the C2 norm that our desired estimate
| Flo HCZ(Qo) < 1+ Ce amounts to saying that |J,(F)[, < 1+ Ce for all z € Qo.

The distinction between (87) and (88) is closely related to a familiar property
of dyadic intervals, which we now recall.

Our dyadic intervals were defined by repeatedly bisecting a “starting inter-
val” Ip. Let I C Iy be a tiny subinterval, not necessarily dyadic. Typically, I is
contained in a dyadic interval not much bigger than I. However, if I is very badly
placed, it may happen that the only dyadic intervals containing I are much larger
than I. (In the worst case, when [is centered at the midpoint of Ip, it is contained
in no proper dyadic subinterval of I.)

Property (87) of Flo follows straightforwardly from our dyadic consistency con-
dition. Property (88) is a lot harder to prove. It is based on our ability to pick
the local functions Fy to satisfy a further dyadic consistency condition, involving
=9 Fi(x1,%x2) evaluated at the endpoints of the interval I x {0} € R?. This con-

ox>
sistency condition is relevant only for C?(R?), and has no useful analogue for,
say, C?(R3). Many of the differences between the oversimplified discussion in this
introduction and the unfortunate truth arise from the need to establish the addi-
tional dyadic consistency and obtain (88). For purposes of this introduction, let
us take (88) for granted.

We have succeeded in computing an interpolant Flo € C?(Qo) that satisfies
(85), (87), (88), but not (86). To overcome this obstacle, we consider an ensemble
of C(e) distinct starting intervals Ip. For each Iy in our ensemble, we know how
to compute an interpolant Flo € C2(Qo) that satisfies (85), (87), (88). We then
define our interpolant F to be the average of the interpolants F'o over all Iy in our
ensemble. Since (85) holds for each Ip, we have

(89) F=fonE,

432 C. FEFFERMAN

so at least we have done no harm. Moreover, if we pick the ensemble of starting
intervals correctly, then the following holds:

(90) For any fixed z € Qq, we have Goodpoints(Ip) > z for all but at most €
percent of the starting intervals Iy in our ensemble.

Thanks to (90), we can average our estimates (87), (88) over all Iy in the
ensemble, and we find that [J.(F)|, < 14 C’e for all z € Qo, i.e.,

(91) [Fllcz(Qo) < T+ Cle.

Since F satisfies (89) and (91), we have succeeded in constructing interpolants F
for f, having norm at most 1+ C’e in C?(Qo). We were fortunate that (90) holds,
even though each particular set Goodpoints(Ip) omits part of Qo.

At this point, we have not yet solved the Model Problem (see (36)—(41)), but
we now have enough ideas to allow us to give the solution without real difficulty.
Perhaps the time has come to end this long introduction. Let us begin our proof
of Theorem 1.

We again warn the reader that our introduction is oversimplified. The correct
discussion starts in the next section. In particular, we discard the notation and
conventions of the introduction, and start afresh.

Acknowledgements. It is a pleasure to thank Bo’az Klartag for many interesting
conversations and useful ideas. I am grateful to Gerree Pecht for BTEX-ing yet
another long Charlie paper to lofty “Gerree standards”.

1. Notation

(0) The label (i.j) denotes equation j in Section i. Within Section i, we abbreviate
(i.j) to (j)-

(1) If Lis an interval and A is a positive real number, then Al denotes the interval
with the same center as I, and with A times the length of I. If I is open, then
so is AL If I is closed, then so is Al; and similarly for half-closed intervals.

(2) We write |I| to denote the length of an interval I, and we write center (I) to
denote the midpoint of I.

(3) P denotes the vector space of real-valued second-degree polynomials on R?.

(4) If z € R? and F is locally C? in a neighborhood of z, then J,(F) € P denotes
the second-degree Taylor polynomial of F at z.

(5) We define a multiplication ®, on P for each z € R?, by stipulating that
J2(FG) = J.(F) ©.J.(G) for K, G € CZ(RZ)-
If S € R? is finite, then #(S) denotes the number of points of S, and:

(6) Wh(S) denotes the vector space of all families P= (P#),cs of polynomials
P# € P, indexed by the points of S. We call such a family P a “Whitney
field” on S.

(7) We write Js(F) for the Whitney field (J.(F)).es.-

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 433

(8) If P = (P?),cs € Wh(S), and if zo € S, then val(P,zo) denotes the real
number (P#0)(zq).

We use (x7,%2) as rectangular coordinates on R2.
(9) It P= (P#),es € Wh(S), and if zp € S, then we write val(aiﬁ, z0) (i =1,2)

to denote the real number (%) (z0).

Similarly, we write val(VP,zo) to denote the vector (VP?0)(zo) € R2.
Note that, for P = Js(F), we have val(P,zo) = F(zo), val(d;P, zo) = d;F(z0),
and vaI(Vﬁ,zo) = VF(zp).

(10) A “square” in R? is a product of intervals Q = I x] ¢ R?, with [I| = [].
We write g to denote the side length of Q, and (for real A > 0) we write
AQ to denote the square Al x A]J.

2. Conventions regarding constants

Within any given section, we may specify a (possibly empty) list of finitely many
constants, which we will take to be the “boiler-plate constants” for that section.
We then define a “controlled constant” to be a positive real number computed from
the boiler-plate constants by applying an algorithm. (In particular, a controlled
constant is uniquely determined by the boiler-plate constants.) We write ¢, C, C’,
etc., to denote controlled constants. These symbols may denote different controlled
constants in different occurrences.

More generally, suppose that, in addition to the boiler-plate constants, we are
given real numbers (say A,1), and/or integer constants (say, k). Then we write
C(A,n, k), C'(A,n, k), etc., to denote a positive real number computed by applying
an algorithm whose inputs are A, 1, k and the boiler-plate constants. An expression
such as C(A,n, k) needn’t denote the same quantity in different occurrences. We
call C(A,n, k) an “(A,n,k)-controlled constant”.

The above notions may change from one section to the next, since each section
will have its own list of boiler-plate constants.

Within any particular section, we may be given a positive number €. We always
assume that € is less than a small enough controlled constant. We refer to this
assumption as the “small € assumption”.

3. Convex polyhedra

Let V be a finite-dimensional vector space over R, and let V* be its dual. By a
“convex polyhedron” in V, we mean a compact convex K C V of the form

(1) K={ve ViAWl >pi fori=1,...,I}, where A; € V* and B; € R for
each 1.

We allow the case K = (). We call the inequality Ai(v) > Bi a “constraint”, and
we say that K C V is a “convex polyhedron defined by I constraints”. To specify
a convex polyhedron, we provide a list of constraints.

434 C. FEFFERMAN

In this section, we state the algorithms used in later sections to manipulate
convex polyhedra. These algorithms are well-known, so we omit explanations
here. (See [14]). We recall our conventions regarding constants. We use no boiler
plate constants in this section. Thus, e.g., C(A, B) denotes a constant computable
from A and B.

Algorithm CP1. (Linear Programming): Given a convex polyhedron K C V
defined by I constraints, we compute a point v € K, or guarantee that K is empty.
To do so, we use work and storage at most C(I,dim V).

Algorithm CP2. (Extreme Points): Given a convex polyhedron K C V defined
by I constraints, we compute the set S of extreme points of K. We have K = convex
hull (S) and #(S) < C(I,dim V). The work and storage used to compute S are at
most C(I,dim V).

Algorithm CP3. (Convex Hull): Given a finite set S C V, we compute a convex
polyhedron K, defined by at most C(#(S),dim V) constraints, such that K = con-
vex hull (S). To do so, we use work and storage at most C(#(S),dim V).

Algorithm CP4. (Image under Linear Maps): Given a convex polyhedron KCV
defined by I constraints, and given a linear map T : V — W of finite-dimensional
vector spaces, we compute a convex polyhedron K’ € W, defined by at most
C(I, dimV, dim W) constraints, such that K’ = T(K). The work and storage used
to do so are at most C(I,dim V, dim W).

Algorithm CP5. (Intersection): Given convex polyhedra Kq,K; C V, defined
by 11, I, constraints respectively, we compute the convex polyhedron K; NK, C 'V,

defined by Iy 4+ I, constraints. The work and storage used to do so are at most
C(I] 3 Iz, dim V)

Algorithm CP6. (Convex Hull of Union I): Given convex polyhedra K;,K; C V,
defined by Iy, I, constraints respectively, we compute a convex polyhedron K C V,
defined by at most C(I1, 12, dim V) constraints, such that K = convex hull (K; UK3).
To do so, we use work and storage at most C(Iy,I2,dim V).

Algorithm CP7. (Convex Hull of Union II): Given convex polyhedra Ky,K; C
V defined by 17,1, constraints respectively, and given a point v € convex hull
(K71 UK3), we compute points vi € Ky, v2 € Kz and a number t € [0, 1] such that
v = tvy+(1—t)vz. The work and storage used to do so are at most C(I7, I2,dim V).

Algorithm CP8. (Minkowskisum): Given convex polyhedra Ky, K, C V defined
by I, I, constraints respectively, we compute a convex polyhedron K C V, defined
by at most C(Iy,I2,dim V) constraints, such that K ={vy + v, :vi € Ky,vz € Kz}
The work and storage used to do so are at most C(I,I2,dim V).

Algorithm CP9. (Inverse Image): Given finite-dimensional vector spaces V and
Wi,..., WL of dimensions D and Dy, ..., Dy, respectively; given convex polyhedra
Ky € Wy, Ky € Wa,..., KL C Wy, defined by Iy,15,...,I constraints, respec-
tively; and given linear maps Ty : V — Wy, T, : V. — Wo ... T 1V — W,
such that Tf1 (Ky) N T{] (Ka)Nn---nN Tf] (Kp) C V is compact; we compute a con-

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 435

vex polyhedron K C V, defined by at most C(Iy,...,IL,Dy,...Dt, D) constraints,
such that K = Tf1 (K1) n T{1 (K)n---nN T{1 (Ky). The work and storage used to
compute K are at most C(I;,...,It,Dy,...,Dr, D).

The above algorithms may be implemented straightforwardly. Several of them
require many computer operations, except in small cases. In later sections, we will
use them without mentioning them explicitly.

4. Dyadic grids

For any given real number t, the “dyadic grid” G¢ consists of all intervals of the
form [t+m 2% t+ (m+1)-2Y), where m,{ € Z.

Once we fix a dyadic grid Gy, an interval [€ G will be called “dyadic”. Each
dyadic interval I is partitioned into two dyadic subintervals 17,1, of length |[1] =
15| = 17\I|. We call 17 and I, the “dyadic children” of 1. If I; lies to the left of I,
then we call 17, I, respectively, the “left dyadic child” and the “right dyadic child”
of 1. Also, each dyadic interval I is contained in one and only one dyadic interval
of length 2|I|. We call that interval the “dyadic parent” of I, and denote it by I'".
Thus, each dyadic interval has one dyadic parent and two dyadic children. The
above notions depend on the choice of the grid Gy, i.e., on the number t.

Later on, we will encounter a collection J of dyadic intervals, having the fol-
lowing property for fixed x € R, 6 > 0:

Each I € J satisfies |I| < & and 31 > x.

We hope that all the I € J are contained in a single dyadic interval T, with [1]
not much bigger than 6. Therefore, we make the following

Definition. Let t,x € R, and let ko, { be integers, with ko > 0. Let 1 be the inter-
val of length 2%0+¢ in Gy, such that T > x. Then we say that (x, () is “ko-regular”
for G¢, provided the following holds:

(1) Every I € G; such that |I] < 2% and 31 > x satisfies I C T.

The following simple result shows that (x, () is often ko-regular for G;.

Lemma DG1. Let x,t € R and ko, € Z, with ko > 0. Suppose (x,{) is not
ko-regular for G¢. Then dist(x —t,2t*07) < 2¢+1,

Proof Let I € G¢ Satlsfy <24 31sx,1¢ 1, where T € G, satisfies [T| = 200,
Tox. LetyeI~T Sincex e 31 and |I] < 2% we havey € I C [x — 2|1, x +2[1f)

[x — 291 x + 291, Thus, x,y € [X—ZZJr1 x+ 29" with x e Tand y ¢ T.
Consequently, [x—2¢*T, x—|—2”1] contains an endpoint of T. However, the endpoints
of T belong to t + 2¢t%eZ. Therefore, dist(x,t + 2¢+koz) < 20+, O

To exploit Lemma DG1, we will average a function Fy over an ensemble of
dyadic grids G¢. This will be done much later, but we now introduce the relevant
ensemble of dyadic grids.

436 C. FEFFERMAN

Definition. Let kyax, ko be integers, with ko > 0. We write Per(kq) to denote
the set of all maps o :Z — {0, 1} such that o(j + ko) = o(j) for all j € Z. For each
o € Per(ko), we then define

t(G;kmax) = Z G(]) 'Zj eR.
j<k1uax

Thus, the 0(j) (j < kmax) are the digits in the binary expansion of t(0;Kmax). We
define
T(kO)kmax) = {t(o_;krnax) HEONS Per(kO)} C R.

By thinking about the digits in binary expansions, one sees easily that

(2) T(koyKmax) = {zz:ojx] m:m=0,1,...,2k — 1} . In particular
(3) T(koykmax) C [0,25max] and
(4) #(T(kO)kmax)) = 2ko,

Later on, when we average functions Fy over an ensemble of dyadic grids, the
grids in question will be the G¢ 4+ for all t € T(ko, kmax); here, to, Ko, Kmax are
fixed. The following simple result will be useful.

Lemma DG2: Let Ko, kmax, { € Z, with ko > 0 and { < kpax — ko. Let z € R.
Then dist(z —t,287 k0 Z) < 21 for at most 100 distinct t € T(Ko, Kmax) -

Proof. For each o € Per(ko), we write

t(o—;krnax) = Z U(]) . Zj

j<Kmax
=Y o2+ > o()-2+ Y o)V
j<t (<j<l+ko €+ko<j<Kmax

= teo(0) + tmea(0) + thi(0).
Note that 0 < tgo(0) < 2% and thi(0) € 28750 Z. Therefore, for any given o, if
dist(z — t(0; kmax), 257%07Z) <281 then dist(z — tmea(0),2¢ k0 7Z) < 3.2¢,
ie.,
(5) dist(27tz — 27 tyeq(0), 2K0 Z) < 3.
Hence, Lemma DG2 will follow, if we can show that (5) holds for at most 100
distinet o € Per(ko). However, by thinking about binary digits, one sees that the

map
0= 27(' tmed(o-)

is a one-to-one correspondence between Per(ky) and {0,1,...,2% — 1}. Thus,
Lemma DG2 holds because dist(2~‘z—m, 2k°Z) < 3 for at most 100 of the integers
m=0,1,...,2k0 — 1. O

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 437

Combining Lemmas DG1 and DG2, we obtain the following

Lemma DG3. Let ko, kpax, L € Z, with ko > 0 and € < kpax —ko. Let x,tp € R.
Then there are at most 100 distinct t € T(ko, kmax) such that (x, L) is not ko-regular
for Gig+t-

5. C? norms
For each z € R?, we suppose we are given a norm |- |, on P. We assume that these
norms satisfy the following
Bounded Distortion Property
(1) co - max [0%P(z)| < [P, < Cop - max [0%P(z)| for all P € P, z € R?.
| <2 la|<2

Approximate Translation-Invariance Property
(2) IPloon < exp(Cqlh|) - |P|, for all P € P and z,h € R?.
Given 0 <1 < 1 and P € P, z € R?, we assume that an Oracle produces a
number N(P, z,1) such that

3) (14+n)""-N(Pz,n) <[Pl. < (1+n)-N(P,z,m).

4

To compute a single N(P, z,n), the Oracle charges us “work”

(4) exp(Cz2/m).

If Q C R? is open, and if F € C2_(Q) is a real-valued function on Q, then we
define

(5) H F ”CZ(Q) ‘= Sup UZ(F”Z
zeQ)

The following lemma, a slight variant of results in [6], concerns “gentle parti-
tions of unity”.

Lemma GPU. Let Aq,...,A4,€,8, be positive real numbers, with

(6) 6, <1.
Let z € R?, let U be an open neighborhood of z, and let 0y,F, € CZ_(U) for
v=T1,2,..., Vinax. Assume the following:

(7) 1J2(Fy)lz <14 Aqe for each v.

(8) At most Ay of the jets]J.(0+) are nonzero.

(9) >0y =1 on U, and each 0+ is non-negative on U.

v

Assume also that either
() [0%0y (2)] < eA382'™ for 0 <o <2, 1 <V < Vinax; and [0%(Fy — Fy)(2)|
< A46ﬁ7|“‘ for |«| < 2, whenever z € supp 6+ N suppB/; or

438 C. FEFFERMAN

(b) 19%0, ()| < A38;'! for 0 <& <2, 1<V < Vinay; and [9%(Fy — Fy1)(2)] <

eAs52 1 for |o < 1, whenever z € supp 0y N supp O+

Then F =Y 0y Fy satisfies [J.(F)l, <1+ Ae, where A may be computed from
Aq...A4 and the constant Cy in the Bounded Distortion Property. More precisely,
A =A; + CCpoA2A3A,, where C is a universal constant.

Proof. Pick vo such that z € supp6,,, and note that
F)=> 0v(2)]2(Fy) + D [2(0v - [Fy = Fy,]) = 0y(2) - J=(Fy — Fy)l
Since |- |, is a norm, 0 (z) > 0, and) 6+(z) =1, we know that

(11) |38y (2))(F)

Moreover, for |« < 2, and for any v such that z € supp 0+, we have

<Ze 2=(Fy)lz < max|Jz(Fy)l, <1+ Are.

0% {J2(0y - [Fy — Fy,]) = 0y(2) - J=(Fy — Fy,)} (z) =
= Y cld,a”) 0% 0y(z) - 0% (Fy — Fy,)(2),

o/ #0

where the c(of, «”) are harmless coefficients. On the right-hand side here, we
have 0 < || < 2 and || < 1. Hence, assuming either hypothesis (a) or (b) of
Lemma GPU, we see that

|a‘x{]z(ev [Fy — Fvo]) - GV(Z) :]z(Fv - Fvo)}(Z)‘ <
< Z CA3A4€5§7“X/‘7|“”| < C/A3A4€5§7“x| < C'AzAse

o/ #£0

where C, C’ are universal constants.
This holds for all |x| < 2. Hence, by the Bounded Distortion Property,

UZ(eV : [Fv - Fvo]) - QV(Z) :]z(Fv - Fvo)|z S C/C0A3A4€

whenever z € supp6,. Summing over v, and recalling that there are at most A,
nonzero summands, we conclude that

(12) [X128y - [Fy = Fugl) = 04(2) - Ja(Fy = Fy)I| < C'CoAzAAGe,

with Cp asin (1), and with C’ a universal constant. Putting (11) and (12) into (10),
we learn that
J-(F)l, < 1T+ Aje+ C/COA2A3A4€,

completing the proof of Lemma GPU. O

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 439

6. Approximate unit balls

In this section, we suppose we are given a family of norms |- |, on P (z € R?),
together with an Oracle, as in Section 5. The boiler-plate constants in this section
are the constants called cg, Cp, C1, C2 in that section.

Also, in this section, we work with a positive number €, assumed to satisfy the
“small € assumption” as explained in Section 2.

We will be concerned here with the following notion:
Definition. Let € > 0, let Q C R? be an open square, let S C Q be non-empty and

finite, and let L be a positive integer. We say that a convex polyhedron K € Wh(S)
belongs to AUB(e, S, Q,L) (K is an “approximate unit ball”) if the following hold:

(1) K is defined by at most L constraints.
(2) Let F € C%(2Q) with norm < 1. Then Js(F) € K.

(3) Let P € K. Then there exists F € C2(Q) with norm < 1+ €, such that
Js(F) =P.

The goal of this section is to compute a K € AUB(e, S, Q,L) (for suitable L),
given any €,S, Q. The ideas needed to do so are contained in [6], but unfortunately,
we cannot simply quote. For completeness, we provide details here. We use the
following basic result:

Smoothing Lemma. Let € > 0 (satisfying the “small € assumption”), and let
Q C R? be an open square with sidelength dg < 1. Let0 < < e? exp(— 15)
be given.

Let S C Q, and assume that |z —z'| > 2nexp <]E) dq for any z,7' € S distinct.
Let F € C2((1 +m)Q), with norm < 1.

Then there exists F* € C3(Q) with norm < 1+ Ce in C2(Q), such that
(4) Js(F#) =Js(F), and
(5) [0*F#| < Cn 285 on Q, for ol = 3.
Sketch of Proof: Our present Smoothing Lemma is just the special case m =n =2

of Lemma 12.2 in [6], in which balls are replaced by squares. The proofs of Lem-
mas 12.1 and 12.2 in [6] carry over to the present case, without difficulty. O

Also, directly from [6] , we have the following algorithm:

Algorithm AUBO. Given € > 0 and z € R?, we compute a convex polyhedron
K, C P, with the following properties:

(6) Any P € P such that |P|, <1 belongs to K.
(7) Any P € K, satisfies |P|, <1+ €.
(8) K, is defined by at most C(e) constraints.

The work and storage used to compute K, are at most C(e€).

440 C. FEFFERMAN

Ezplanation. See [6].

We now begin the work of computing approximate unit balls. We start with
special cases, and build up to the general case.

Algorithm AUB1. Suppose we are given € > 0, 0 <1 < €% exp (%), Q Cc R?
an open square, with sidelength 8o <1, and S C Q non-empty and finite.
Assume that |z—z/| > 2nexp (]) dq for any z,z" € S distinct. Then we compute

€

K € AUB(Ce, S, Q,L) where L = C(e,n).
The work and storage used to compute K are at most C(e,n).

Ezplanation. We can trivially compute a “fine net” ST C Q, such that
(9) St o' S;
(10) Any z € Q satisfies [z — 2| <1?98¢ for some z’ € ST; and
(11) #(S*) < Cle,).
For each z € ST, we apply Algorithm AUBO to produce a convex polyhedron
K, C P, satisfying (6), (7), (8).
We now define Kt € Wh(S™) to be the set of all PT = (P"2),cs+ € Wh(ST)
satisfying:
(12) PH= e (1 4+ Ce)K, for each z € ST; and
(13) [9%(PTz—PH2)(z)] < Cn’zéé1 z—2 P for |«| < 2, 2,2/ € ST distinct.

The controlled constant C in (12), (13) will be picked in a moment. Note that

(14) KT € Wh(S™) is a convex polyhedron, defined by at most C(e,n) constraints.

We check the following properties of K*:
(15) Let F € C?(2Q) with norm < 1. Then there exists F# € C2(Q), such that
Js(F#) =Js(F) and Js-+(F#) € K*.

(16) Let Pt € K*. Then there exists F € C2(Q) with norm < 1+ Ce, such that
Js+(F) =P+

To check (15) we apply the Smoothing Lemma. Thus, there exists F#* € C3(Q)
with norm < 1+ Ce in C?(Q), such that (5) holds, and Js(F#) = Js(F). We check
that Js+(F#) € K*; this will complete the proof of (15).

Since || F# ||c2(q)< 1+ Ce, we have [J-(F#)|, <1+ Ce for z € S*.
Hence, (6) yields

(17) J.(F#) € (1 + Ce)K, for each z € S+.

Also, (5) and Taylor’s theorem yield the estimate

(18) 0] (F#) — J. (F¥)}(z)| < C’n’zéé1 iz — 2371 for |af < 2, 2,2/ € ST
distinct.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 441

If the constant C in (12), (13) is larger than the constants C,C’ in (17), (18),
then we obtain

(19) Js+(F#) = (Jo(F#))zes+ € KT
We now pick C in (12), (13) as just explained. This proves (19), thus prov-
ing (15) as well.

Next, we check (16). Let PT = (P™2),cs+ € K*. From (7), (12) and the Boun-
ded Distortion Property, we find that [0*P™*(z)| <C< Cnfzéél for|af <2,z€ ST

Together with (13) and the classical Whitney extension theorem for finite sets,
this shows that there exists F € C3(R3) such that

(20) |0%F| < Cnfzéél on R? for || = 3, and
(21) J.(F) =P"H= for each z € ST.
(Recall that J,(F) denotes the second degree Taylor polynomial, even though F €
C3(R2).)

We restrict F to Q, and we check that
(22) | Fllczg)< 1+ Ce.
In fact, let z € Q be given, and let z’ € ST be as in (10). Then (10), (20) and
Taylor’s theorem tell us that [0%{],(F) — J./(F)}(z)| < Cn*266] . (nzoéQ)3*‘°‘| <
Cn'8 for |af < 2.

Hence, by the Bounded Distortion Property,
(23) 1J2(F) = J2(F)l- < C'n'8 < ¢, since 0 <m < e?exp (=1).
Also, since Pt € K* and 2/ € S$*, (7), (12) and (21) yield |J/(F)l.» < 1+ Ce.
Hence, by Approximate Translation-Invariance, we have
(24) 1] (F)lz < exp(Clz—2|) -] (F)|r < exp(Cn?8q) - (14 Ce) < 14 C'e, since

8o <Tland 0<n<e?exp ().

Combining (23) and (24), we find that [J.(F)|. < 1+ C”e. This holds for
arbitrary z € Q, hence (22) holds. Thus, F satisfies (21) and (22), completing the
proof of (16).

We now define
(25) K ={P"|s: P* € KT} C Wh(S).
By (11) and (14),

(26) K C Wh(S) is convex polyhedron, defined by at most C(e,n) constraints.
Moreover, we can compute K from K+ using work and storage at most C(e,).

Comparing (25) with (15) and (16), we learn the following:
(27) Let F € C?(2Q) with norm < 1. Then Js(F) € K.

(28) Let P € K. Then there exists F € C?(Q) with norm < 1+ Ce, such that
Js(F) =P.

442 C. FEFFERMAN

By (26), (27), (28), we have K € AUB(Ce,S,Q,L), with L = C(e,n). The
reader may check easily that the work and storage used to compute K as above are
at most C(e,n). This completes our explanation of Algorithm AUBI.

Note that Algorithm AUBI applies when S = {zo} is a singleton; we can just

take
1, 1
- deton (1),
Thus, we obtain K € AUB(Ce, S, Q,L) with L = C(e), using work and storage at
most C(e).

The following algorithm will allow us to “glue together” two finite sets S;
and S».

Algorithm AUB2. Suppose we are given real numbers € > 0, r > 0; open
squares Q1,Q2 C R?: finite sets Sy C Q1 and S2 C Q2; a point zp € S N Sy;
positive integers Ly, L;; and approximate unit balls K; € AUB(e, S1,Q1,L1) and
K, € AUB(€,S2,Q2,L2). We make the following assumptions:

(29) 8q, < 1.
(30) 2Q1 C 2Q;.
(31) St € Q2N B(zo,T1).
(32) S, NB(Zo,exp() r) ={z0}.
(33) Q2nB zo,exp()) C Qj.
(Here, B(zo,T) denotes an open disc in R?.) Then we compute
K € AUB(Ce,S1 US2,Q2,L; + Ly).
The work and storage used to do so are at most C(e,#(S1), #(S2), L1, L2).
Ezxplanation: We set K = {F_” € Wh(S;US3): ﬁ\s, € Ky and F_”|5Z € Kz}, Thus, K is

a convex polyhedron, defined by at most Ly 4+ L, constraints.
The work and storage used to compute K are clearly as promised.

To show that Ke AUB(Ce, S1US2,Q2, L1 +L3), we must establish the following:
(34) Let F € C?(2Q2) with norm < 1. Then Js,us, (F) € K.
(35) Let P € K. Then there exists F € C?(Q2) with norm < 1+ Ce, such that
Jsius, (F) =P.
To prove (34), we just note that Js,(F) € Ky since Kz € AUB(e, S2,Q2,L2);
and Js, (F) € Ky since 2Q1 C 2Q; and Ky € AUB(€, S1,Q1,Ly). Thus, (34) holds
trivially. Our task is to prove (35). Let P = (P#).es,us, € K. By definition,

13\5, € Ky and F_”|52 € K. Since K; € AUB(e, Si, Qi, Li) for i = 1,2, there exist
functions

(36) Fy € CZ(Q1) and F, € CZ(QZ), both having norm < 1+ €, such that
(37) Js, (F1) =Pls, and Js, (F2) = Pls,.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 443

In particular, J,, (F1) = J., (F2) since zo € S1NS,. Hence, by Taylor’s theorem,
(38) 10%(Fi —F2)(z)| < Clz—zo/* 1 for |a] < 1,z€ Q1 NQa.
We take a partition of unity
(39) 1 =07 + 02 on R?, with 8; € C*(R?), 8; > 0 on R?;
(40) [0%0;(z)] < Celz — zo|!*l for 0 < ol < 2, z€ R? (1 =1,2); and
(41) supp6; C B(zo,exp (L)1), supp 02 C R? \ B(zo, 7).

We can achieve (39), (40), (41) by taking 61, 02 to be functions of € In (@),
details are omitted.

We now define
(42) F(z) =01(2)F1(z) + 02(2)F2(2) for z € Q».
This makes sense, because, for z € supp 07 N Q2, we have z € B(zq, exp (%) r)NQ2
C Q1 (see (33)), hence Fy(z) is defined.

We estimate |J.(F)|, for z € Q2.

In a small neighborhood of zp, we have 07 =1, 8, = 0. Hence, J,, (F) =], (F1).
Since || Fy [[c2(q,)< 1+ €, it follows that

(43) Jzo(Fllzo < T+e.

For z € Q2 ~{zo0}, we use Lemma GPU with 6, = c|z — zo|; note that &, < 1, as
required for Lemma GPU, since z, zo € Q2 and 8g, < 1. We have

J-(F1)l- <1+¢€ ifze QzNsuppBy (see (33), (41)), and

J2(F2)l- < 1+€ (see (36)),

as well as (39), (40). Hence, Lemma GPU applies, and it tells us that
[J.(F)l. <14+ Ce forze Qz~{zo}

Together with (43), this yields
(44) [Flle2(@ay=1+Ce.

Next, we check that Js,us, (F) = P.

First, suppose z € S1. By (31) and (41), z ¢ supp 02, hence J.(F) = J.(F1) = PZ,
thanks to (37).

On the other hand, suppose z € S; \. 'S C Sz ~{z0}. Then (32) and (41) show
that z ¢ supp 01, hence J,(F) = J.(F2) = P#, again thanks to (37).

Thus, J.(F) = P= for all z € S US,, ie., Js,us,(F) = P. Together with (44),
this completes the proof of (35), as well as our explanation of Algorithm AUB2.

444 C. FEFFERMAN

As a first application of Algorithm AUB2, we sharpen Algorithm AUBI1 as
follows:

Algorithm AUBS3. Suppose we are given €,5,Q,m, with S C Q, 0 < <
e?exp (—1), and 8g < 1. Suppose |z — 2| > ndiam(S) for any z,z' € S distinct.
Then we compute K € AUB(Ce, S, Q, L), with L < C(e,n). The work and storage

used to do so are at most C(e,n).

Explanation: If diam(S) > xp(6Q, then we may apply Algorithm AUBI,
1
=2

nexp (= "1

with n replaced by ' =
exp (+12) 8

Fix zo € S, and let v = 2diam(S). We can trivially compute an open square
Q1 C Q such that S C Q1, 6g, < 10exp (%) r, and Q N B(zp,exp <]E) r) C Q.
We set Q2 =Q, S1 =5,S2 ={z0}. Note that

). Hence, we may suppose that diam(S) <

(45) [z—2/| > enexp (=)6Q, for z,z' € S7 distinct.

Note also that

(46) S1 C Q1,S2 C Q2,and dg, < 1.

We prepare to apply Algorithm AUBI. Let 0 < €’ < €, with €’ to be picked
below, and let n/ c(e’,n) be picked so that 0 < 1/ < (&')%exp (—&) and
cnexp() > 211 exp(/) with ¢ as in (45). Then we have S; C Q1,8¢g, <1,0<
n < (e')? exp(=), and \z—z| > 2n’ exp()6Q, for z,z' € Sy distinct. Hence
Algorithm AUBI applies to €/,1',S1, Q1. Thus, with work at most C(e’,n’), we
compute

(47) Ky € AUB(CE, S1,Qu, Ly), with Ly < C(&',n').

We now pick €’ = ce so that Ce’ < €, with C as in (47). Since we took
1’ = c(e’,n) above, we now have

(48) Ky € AUB(€,S1,Q1,Ly), with Ly < C(e,n).

Moreover, S» is a singleton. Hence, applying Algorithm AUBI1, with e replaced by
€/C for large enough C, we obtain

(49) K, € AUB(e, S2,Q2,L2), with Ly < C(e).
The work and storage used to compute K; are at most C(e,n); and the work
and storage used to compute K, are at most C(e).
We now check that Ki,K2,S1,S2,Q1,Q2, € satisfy the assumptions of Algo-
rithm AUB2. Aside from (46), (48), (49), these assumptions are as follows:
e 2o € S1 N Sy; this holds by definition of Sy, S,, since zp € S.

* 0qg, < 1; this holds by the assumptions of Algorithm AUB3, since Q2 = Q.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 445
e 2Q1 C 2Q2; this holds since zo € Q1 N Q2, and
1 1y . —9
IoF <10exp()T-ZOexp(>d|am()<20exp(>6Q2.

* S; C Q2N B(zo,7); this holds since ST =S C Q = Q2,20 € S, and 1 =
2diam(S).

¢ S, N B(zp,exp (%) 1) = {2z0}; this holds, since Sy = {zo}.

e Q2N B(zo,exp (%) 1) C Qq; this holds by definition of Qq, Q2.
Thus, the assumptions of Algorithm AUB2 are satisfied. Applying that algo-
rithm, we obtain

(50) K € AUB(Ce,S,Q,L; + Ly).

The work and storage used to apply Algorithm AUB2 are at most C(e, #(S1),
#(SZ)) L) LZ)

We have #(S1) = #(S) < C(n), since |z — Z/| > nndiam (S) for z,z’ € S distinct.
Also, #(S2) = 1; and we have seen that L; < C(e,n) and L, < C(e). Consequently,
the work and storage used in applying Algorithm AUB2 are at most C(e,n), and
Ly + L2 < C(eym).

Thus, (50) shows that K is an approximate unit ball, as promised. This com-
pletes our explanation of Algorithm AUB3.

At last, we pass to the general case.

Algorithm AUB4. Given: € > 0 satisfying the “small € assumption”; an open
square Q C R?, with 8o < 1; and a non-empty finite set S C Q; we compute a
K € AUB(e, S,Q, L), with L < C(e,#(S)). The work and storage used to do so
are at most C(e, #(S)).

Ezplanation: We proceed recursively, using induction on #(S).

We first check whether #(S) = 1. If so, then we may apply Algorithm AUBI1
(with € replaced by €/C for large enough C), and we are done. If #(S) > 1, then
we proceed as follows:

Let 0 < €’ < €, with €’ to be picked below. (Later on, we will pick ¢’ = ce for
small enough c, but we do not yet make that choice.)

We check whether

(51) |z—2/| > exp (M) - diam(S) for z, z’ € S distinct.

e/
Case 1: Suppose (51) holds. Then, taking ' = exp (M),
Algorithm AUB3, with inputs €’,1’, S, Q. That algorithm produces
(52) K e AUB(C€’,S,Q,L), with L < C(e’,n’) = C'(€e/, #(S)).

we can apply

The work and storage used to produce K are at most C(e’,n’) = C'(€/, #(S)).
Moreover, we have K € AUB(e, S, Q, L), provided

(563) Ce’ < €, where C is as in (52).

446 C. FEFFERMAN

Case 2: Suppose (51) does not hold. We can trivially compute
(54) zo,z1 € S distinct, such that

(55) |zo — z1| < exp (M) - diam(S).

e/
Since there are at most #(S) distinct distances |z—zo|(z € S), there exists an even
integer j (2 <j < 98- #(S)), such that the distances |z — zo|(z € S) do not lie in
the interval [exp()dlam (S), exp()dlam(S)). It is trivial to compute such
a j; we fix that j. Now define:
T =2exp (z—,]) - diam(S);
Q1 = open square centered at zp, with sidelength
5q, =100 exp(()dlam(S) = 50 exp (&)r;
Q2= Qs
S1 = SNB(zp,7) C Qy; and
S2 = {z0} U (S \ B(z0,7)) C Q2.
We prepare to verify the assumptions of Algorithm AUB2, for the inputs

€’,1,51,Q1,S2,Q2. In fact, (29) holds, since g, = dg < 1 by the assumptions of
Algorithm AUBA4. To check (30), we note that zo € Q1 N Q2, and

#) diam(S) < 100exp(]>d|am(5)

, = 100exp<

<Cexp(1>6Q Cexp(1>6Q2,

hence 2Q1 C 2Q..
Next, (31) holds, since S1 C S C Q2 and S1 C B(zo,1) by definition.
To check (32), let z € (S, N B(zo,exp (&) 1)) be given. Then z € S, and

|z —zo| < exp (])r_Zexp (] _j) diam(S).

The defining property of j tells us that |z — zo| cannot lie in the interval

Y g 270N g
[exp (e’) diam(S), exp (=) dlam(S)) .
Consequently, |z — zo| < exp(— g—,) - diam(S) = %r. Thus, z € S, N B(zo, 7).

By definition of Sz, we have S, N B(zo, 1) = {z0}. Hence, z = zog. We have shown
that So NB(zp, exp (&) T) contains no points other than zo. On the other hand, by

definition of S;, we have zg € S,MB(zo, exp (%)). This completes the proof of (32).
To check (33), we note that Q2 NB(zp,exp (&) r) C B(z0,€xp (&)) C Q1, by
definition of Q. Thus,

(56) Conditions (29)—(33) hold for the data €’,r,S1,Q1,S2, Q2.
Next, we check that
(57) #(51), #(S2) < #(S).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 447

Indeed, S1,S; are subsets of S. We cannot have S1 = S, since that would imply
diam(S) = diam(S7) < 2r = 4exp (%,1) - diam(S) < diam(S). (Recall that j > 2
and #(S) > 2.) To check that S, # S, we show that z; ¢ S,. (See (54), (55).)
Indeed, (55) gives

HRHIY - am(s) < exp () - dam(s

|z1 — zo| < exp (
€

1
=37 (since j < 98 - #(S) by definition).

Thus, z; cannot belong to S ~\ B(zp,r). Since also z; # zp, we have z; ¢ S,
completing the proof of (57).

We have S1 C Q1,S2 C Q2, and 8qg,,0q, < 1. Thanks to (57), we may re-
cursively apply Algorithm AUB4 to the inputs (€’,S7,Q1) and (€’,S2,Q2). Thus,
using work and storage at most C(€’, #(S1)) + C(€’, #(S2)), we compute

(58) Ky € AUB(€’,S1,Q1,L1) and Ky € AUB(€’,S2,Q2,L,), with
(59) L1 < C(e',#(S1)) and Ly < C(€’, #(S2)).
Recall that zg € S1NS,. Hence, by (56) and (58), all the assumptions of Algorithm

AUB2 hold, for the data €’,1,S1,Q1,S2,Q2,K1,Kz. Applying that algorithm, we
compute

(60) K e AUB(Ce’,S,Q, Ly +Ly); the work and storage used to do so are at most
Cle’,#(S1), #(S2), L1, L2) .

Recalling (59), we see that the work and storage used to apply Algorithm AUB2
as above are at most C(€’,#(S1), #(S2)), and furthermore, L1 +1; < C(€’, #(S1),
#(S2)). Moreover, we have K € AUB(e, S, Q,L; + L), provided

(61) Ce’ < €, where C is as in (60).

This concludes our analysis of Case 2.

We now pick €' = ce, with ¢ taken small enough, so that €’ will satisfy (53)
and (61). Thus, in both Case 1 and Case 2, we can compute K € AUB(e, S, Q, L)
with L < C(e, #(S)); the work and storage used to do so (apart from the recursive
calls to Algorithm AUB4) are at most C(e, #(S)).

Since we make two recursive calls to Algorithm AUB4 in Case 2, and since
#(S1), #(S2) < #(S), it follows that the total work and storage used by Algorithm
AUBA4 are at most C(e, #(S)).

This completes our explanation of Algorithm AUBA4.

Remark. By definition of AUB(e, S, Q,L), the K computed in Algorithm AUB4
has the following properties:
e K C Wh(S) is a polyhedron defined by at most C(e,#(S)) constraints.
e Let F € C?(2Q) with norm < 1. Then Js(F) € K.
e Let P e_‘K. Then there exists F € C?(Q) with norm < 1+ e, such that
Js(F) =P.

448 C. FEFFERMAN
7. The basic tree

(1) Let E C R be a finite set, with N > 2 elements.
For x € R we define a lengthscale
(2) drs(x) =inf{r > 0: [x — 1,x + 7] contains at least two points of E}.

We fix a dyadic grid G«; in this section, an interval [is called “dyadic” if I € G.

We use no “boiler-plate constants” in this section; thus, ¢, C,C’ here denote
absolute constants.

Our goal here is to define a binary tree T&°P2 (), whose nodes are dyadic
subintervals of a given dyadic interval I. The root of T&°P2/(I) is the interval I.
Each internal node I € T#°b2(T) has two children in the tree T&°P2!(1), namely its
two dyadic children.

In trivial cases, T&'°P?(I) consists merely of the single node I. Except for those
trivial cases, each node I € Tg'°bal (1) satisfies #(251 N E) > 2; and we will define
two representatlves”xlreef‘z() and x[sP(I) in 25INE. Moreover, the leaves of T&°b2!(])
form a partition of I into dyadic intervals I, such that

(3) cdrs(x) <] < bdrs(x) for any x € 31.

In view of (3), the number of nodes in T&'°P2!(T) depends on the spacing of the
points of E. We cannot bound the number of nodes solely in terms of N = #(E).

To make possible efficient computations using T&°b2 (1), we therefore introduce
a subset T9*t(I), consisting of at most CN “distinguished nodes”. We will think
about all the nodes of T#°P2/(I), but we will make computations only for the nodes

of T9st(1). To illustrate, we discuss the representatives Xien (D), xpe" ().

A fundamental property of T&°b2/(I) and Td'St(I) is that Tg'°ba'() ~ {I} may be
written as a disjoint union, over suitable I € T9ist(I), of T'°¢(I) . {I}, where T'¢(I)
is a “local tree” with root I. It turns out that we can define our representatives in
such a way that I+ x5 (1) and T+ x{(I) are constant on T°¢(T) \ {1}, for each
dlstlngmshed node I. Accordingly, we will compute representatives xleft(I),xrt(I)
for suitable I € T95t(I), and then define Xen(I) = Xbq (1), xP(1) = x4(1), for
each I € T'¢(I) ~ {I}, I € T9st(I). Thus, we will only have to compute at most CN
representatives x¢ ¢ (1), x5 (I); these yield all the xieh (1), xpeP (1) for T € Te'obal (1) {I}.
Even though T&°2 () may contain far more than CN nodes, we can nevertheless

compute all the representatives we need without excessive work.

We prepare to give the definitions of T&°2/(T) and T9st(I). We begin with a
few preliminary definitions. Let I be a dyadic interval. We define

(4) J(I) = convex hull of 517 N E.

Thus, J(I) is the empty set, a single point, or a non-degenerate closed interval. We
say that [is of:

“type A” if [J(I)] > 5I1I;
“type B” if 55 \I| \]()| > 0; and
“type C” if U()=

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 449

If T is of type C, then J(I) is the empty set or a single point. We say that I
is of type CO if J(I) is empty, while I is of type C1 if J(I) is a single point. For I
of type C1, we write x,(I) to denote the one and only element of J(I). Note that
EN5IT ={x,(I)} when I is of type CI.
Since E is finite, we have the following:
(5) If T'is of type A or B, then J(I) is a non-degenerate closed interval, and the
endpoints of J(I) belong to E.

(6) Every sufficiently small dyadic interval is of type C.
Next, for any dyadic interval I, we define the “local tree” T'°¢(I), which consists
of dyadic subintervals of I. Some of the leaves of this tree will be called “red

offspring” of I the set of all red offspring of I will be denoted by RO(I). The
definition of T'°¢(I) and RO(I) proceeds by cases.

(7) Suppose I is of type A. Then T'¢(I) consists of I and its two dyadic
children I; and I»; and RO(I) consists of I and L.

(8) Suppose I is of type B. _Then Tlo¢(1) consists of all dyadic I C I such that
51" N J(I) # 0 and [I| > [J(I)].
In this case, the leaves of T'OC(T) are precisely those dyadic intervals I C I such that
either
(8a) 5INJ(I) =0, 51t NJ(I) £ 0, |1 > [J(1)| or
(8b) 51N J(D) # 0, J(D] < 11 < 2J(D)].

The set RO(I) consists of all I C I that satisfy (8b).

(9) Suppose I is of type C. Then T"¢(I) consists of the single node I, and
RO(I) is the empty set.

Thus, we have defined T'°¢(I) and RO(I). Note that
(10) Every I' € RO(I) is a proper dyadic subinterval of I.

We are now ready to define T&'°2(I) and T9t(I) for any given dyadic interval I
Our definitions of these objects will be recursive: Given I, we assume that we have
already defined Te&'°b2!(1') and T9st(1’) for all I’ € RO(I), and then we proceed
to define T&°Pa(I) and T¥st(I). Such a recursive definition makes sense, thanks
to (6), (9) and (10).

Our recursive definitions of T&°b2 () and T9st(I) are as follows:

(11) Tglobal(i) _ Tloc(D U U TgIObal(i’).
I’erRO(I)

(12) Té(f) = (fu Y T,

I’'erRO(I)
Note that
(13) If T is of type C, then Tdst(T) = Telobal(T) = {T}.

450 C. FEFFERMAN

The basic properties of T&°ba! (1) and T9ist() are given by the next three lemmas.

Lemma BT1. Let I be a dyadic interval. Then
T Telob2I(T) 4s o finite collection of dyadic subintervals of I, including 1 itself.

(IT) For each 1 € Telobal (1) " either

(A) (Iisa “leaf”): No proper dyadic subinterval of 1 belongs to Telobal(T) o
(B) (I is an “internal node”): Both of the dyadic children of 1 belong to
Tglobal(i)'

(IIT) The leaves of T&8°P2(1) form a partition of 1 into finitely many dyadic subin-
tervals 1. Each leaf | satisfies cd1s(x) < [I| < drs(x) for allx € 31, provided 1
is of type A or B, and (5INE) #£ 0. (See (2).)

(IV) Any given point x € R lies in 31 for at most C distinct leaves 1 in T&9P2!(T),

Lemma BT2. Let I be a dyadic interval. Then

(I) Tdist() C Tglobal()7 and I c Tdnst()

(IT) Let I € T9st(I). Then the children of 1 in the tree T9t(1) are precisely the
dyadic intervals in RO(I). There are at most C such intervals.

(IIT) Let I be a leaf of TE9PA(I). If5INE # 0, then I € TI(1), T is of type C1,
and #(BITNE)=1.
(IV) The tree T(1) has at most CN nodes.

Lemma BT3. Let I be a dyadic interval. Then

(I) Telebal(T) \ (T} is the disjoint union of Tloe(T) {1} over all 1 € "l:diSt(v). (Here,
we may restrict to I € T(T) of type A or B, since T°(I) ~{I} =0 for I of
type C.)

(IT) Letle Tloc(T) N T'o¢(T'), where 1,1 € T9Y(1). Then either

(III) Let I be an internal node of Telobal (1) Then there erists I e T9st(1), such
that 1 and its two dyadic children all belong to T'°¢(I).

The above lemmas justify our assertions* regarding T#'°2/(1) and T9t(I) at the
start of this section. To justify our assertions regarding “representatives”, we make
the following definitions:

Let I be any dyadic interval. We write Xt (I), Xt (1) to denote the left and right
endpoints of I, respectively.

*The assertion #(251 N E) > 2 for I € T&°P!() (in non-trivial cases) will be justified by
Lemma BT4 below.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 451

If Tis of type A or B, then we recall that J(I) is a non-degenerate closed
interval; we write xiiq(I) and x5 (I) to denote the left and right endpoints of J(I),
respectively. Note that xiq(I) and x;(I) are undefined for I of type C.

Recall that we defined x,(I) to be the one and only element of J(I), in case I is of
type C1. For intervals I of type A, B or CO, x(I) is undefined.

Now let I be a dyadic interval, and let I e Telebal(T) < {I}. According to
Lemma BT3 (conclusion I), we have I € Tlo¢(T)\{I} for precisely one I € Tdist(I);
and this I is of type A or B.

Using this I, we define

(14) xh(D) = x,seft(i) and x/SP(I) = x5, ().

Thus, x{*P(I) and x[P(I) are defined for all I € T&'°ba/(T) < {I}. If I is of type A

left
or B, then we define

(15) X[(1) = x,eft(I) and xptP (1) = x5(1), so that X[(1), x;t" (1) are defined for all
e Tglobal(I)

If Lis of type C, then xS (1), x;t"(I) are undefined. (In this case, T&'°b!(1) is trivial;
see (13).)

Lemma BT4. Let I be a dyadic interval, and let 1T € T&9P(1) < {I}. Then
Xieh (1) < xtP (1) (strict inequality), and xlr:fﬁ(l), xisP(I) € 251N E.]
If 1is of type A or B, then the above conclusions hold also for I =1.

This lemma justifies our earlier assertions regarding representatives.

Most of the conclusions of Lemmas BT1-BT4 are trivial, but, to help the careful
reader, we provide some details of their proofs. At the end of thlS section, we give
algorlthms to compute the tree T9st(I) and the points Xjert (1), Xt (1), X,eft(l), xrt(I)

x(I) for I € Tdist(]) (whenever those points are defined).

We prepare the way to the proofs of Lemmas BT1-BT4 by establishing a series
of propositions.))
The basic properties of T°¢(I) and RO(I) are given by the following result:

Proposition BT1. Let Ibea dyadic interval. Then

(16) Tloc(1) is a finite tree whose nodes are dyadic subintervals of 1.
(17) Te Te(I).

(18) Each 1€ Tlo<(1) satisfies either

(a) (Iis a “leaf” of Tl<(1)): No proper subinterval of 1 belongs to T¢(1),
or

(b) (I is an “internal node” of Tl<(1)): Both of the dyadic children of 1
belong to T'°<(I).

(19) Let 1#1 be a leaf of T°<(I). If T ¢ RO(I), then 5INE = 0.
(20) Each 1€ RO(I) is a proper dyadic subinterval of 1.

452 C. FEFFERMAN

21
22) There are at most C intervals in RO(I).

(21) The intervals of RO(I) are pairwise disjoint.
(22) b C ind (
(23) For each 1 € T°(1) ~ {1}, we have J(I) C 251
(24)
(25)

24) For each 1 € RO(I), we have diam(E N 251) > -

761l
16
25) If 1 is of type A or B, and 51N E # 0, then the two dyadic children of 1

belong to T¢(I).

Proof. Assertions (16), (17), (18), (20) are trivial from the definitions. Asser-
tion (19) holds vacuously for I of type A or C. For I of type B, (19) follows
from (8a), since EN 51t J(I) by definition. Assertion (21) holds because the in-
tervals I € RO(I) are leaves in a tree consisting of dyadic intervals. Assertion (22)
is obvious for I of type A or C. For I of type B, (22) holds because there are at
most C dyadic intervals I satisfying (8b).

Assertion (23) holds trivially for I of type A or C. Suppose | Iis of type B. Then
any I € T'<(I) satisfies 51" N J(I) # @ and [1| > [J(I)], hence J(I) € 251. Thus, (23)
holds in all cases.

To prove (24), let I € RO(I). Then RO(I) # 0, so I cannot be of type C. Thus,
I is of type A or B. Hence, (5) and (23) show that the endpoints of J(I) lie in
EN25L Consequently, dlam(E N 251) > |](). On the other hand, for I of type A
or B and I € RO(I), we can check that [J(I)] > 5 \II Indeed, if I is of type A, then

I € RO(I) is a dyadic child of I, and |I| = %\ \ g 16\]()| (since I is of type A).

If instead I is of type B, then any I € RO(I) satisfies (8b). In particular,
I < 2|J(I)]. Thus, in all cases, |J(I)] > %II\ as claimed. We now know that
diam(25INE) > [J(I)| > L1l proving (24).
_ Assertion (25) i§ trivial for I of type A. For I of type B, (25) asserts that
510 (1) £ 0 and 111 > (D).) o

We know that]|I| > \]()|, since I is of type B. We have also 5I N J(I) D
51N [5I* NE] =51 N E. Hence, if 5INE # (), then 51N J(I) # 0, proving (25).

The proof of Proposition BT1 is complete. O

The next several propositions pertain to T&°P2/(I) and T9st(I). To prove those
propositions, we will make repeated use of “induction on I”, which means the
following:

Let Prop(I) be some assertion involving a given dyadic interval I. We want to
prove that Prop(I) holds for all I. To do so, it is enough to fix I, assume Prop(") for
all I’ € RO(I), and then prove Prop(I). (ThlS establishes Prop(I) for all I, thanks
to (6), (9), (10). We have already used this idea in our recursive deﬁnitions (11)
and (12).) We refer to the assumption that Prop(I’) holds for all I' € RO(I) as the
“induction hypothesis”.

Proposition BT2. Let I € T9st(I). Then
(A) Tloc(i) C Tglobal(i)_

(B) The children of 1 in the tree T¥t(I) are precisely the intervals in RO(I).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 453

Proof. By induction on . O

Proposition BT3. Let I’ C I, with I’ € T&°ba/(1) and I € T'°¢(I). Then either
(A) T e T¢(1) or
(B) For some I' € RO(I), we have I € T8I} and I C 1.

Proof. Suppose (A) fails. By (11), we have I’ € T&°%/(T) for some I’ € RO(I). In
particular, I’ C I’; and we are assuming that I’ C 1. Thus, the dyadic intervals I
and I’ are not disjoint. Consequently, either I’ ¢ Tor I C I’

The latter inclusion is impossible, since I € T¢(I) and I’ is a leaf of T'¢(I).

Thus, I’ ¢ I, I’ € RO(I), and I’ € T&"b2(I") | i.e., (B) holds. |

Proposition BT4. Let I' C I, with I' € Telobal(T) gnd I e Teobal(1") where T €
RO(I). Then I’ € T&lob2!(1).

Proof. We may suppose I’ C 1. Suppose I' ¢ T#°%(1'), Then by (11), either
I' € Tloc(T) or I € T&9P!(1”), with I” € RO(I) distinct from I’. The latter case
would imply I’ € I” and I C I’; hence I and I’ are disjoint, by (21). That’s
impossible, since I’ C I. Therefore, I' € T'°¢(I). However, that’s also impossible,
since I' C I T, and I’ is a leaf of T°¢(I). This contradiction completes the proof
of the proposition. O

Proposition BT5. Suppose I € T&°P2/(I). Then either
(A) (Iis a “leaf”): No proper subinterval of 1 belongs to Telobal () o
(B) (I is an “internal node”): There exists 1 € T9Y(1) such that T and both its

dyadic children belong to T°(1). In particular, the dyadic children of I belong
to Telebal(]),

Proof. We use induction on I. Suppose (A) fails; we will prove (B). Fix I €
Telobal(T) such that I’ C 1. (Such an I’ exists, since (A) fails.) Thanks to Proposi-
tion BT3, Proposition BT4 and (11), we fall into one of the following cases:

Case 1: I, I/ e Tglobal(1') for some I’ € RO(I).
Case 2: I € T'¢(I) and I’ € T'¢(1).
Case 3: I e Tlo¢(I), I' € T&obal(1") and I’ € I, for some I’ € RO(I).

In Case 1, conclusion (B) follows from the induction hypothesis (i.e., Propo-
sition BT5 for I'). In Case 2, (18) shows that (B) holds, with I = I. In Case 3,
we have I' € ' C I, with I’ # . If I # I, then again (18) shows that (B) holds,
with I = I. If instead I’ = I, then (B) follows from the induction hypothesis, i.e.,
Proposition BT5 for I’.

Thus, assuming (A) fails, we have proven (B) in all cases. O

Corollary. The leaves of T&9P(1) form a partition of 1 into dyadic subintervals.

Proposition BT6. Each 1€ Tsbal(I)\{1} belongs to T'°¢(1)~{1} for some I € Tdist().

454 C. FEFFERMAN

Proof. An easy induction on . O

Proposition BT7. Let I, i: S TdiSt(i)j and suppose 1 € Tloc(I) N T'(1'). Then
either I=1"; or I=1€ RO(I'); or I =1 € RO(I).

Proof. We use induction on I. We may assume I #+ I'. We proceed by cases.
Assume I = 1. Then I € T9ist(]) < {H. Hence, by (12), there exists I' € RO(I)

such that I’ € T9t(I"). Consequently, I' ¢ I'. Also, since I € T"°¢(I’), we have
IcT. Thus I ¢ ' ¢ I. However, I cannot be properly contained in I’ since
[€ T(I) and I’ is a leaf of T°¢(I). Therefore, | = ' = I’ € RO(I) = RO(I). In
particular, I =" € RO(I).

Assume I’ = I. Proceeding as above, with the roles of I and I’ interchanged, we
see that I =1 € RO(T).

Assume I, ' # I. Then by (12), we have I € T9{(I') and I’ € T9(1”), with
I, I” € RO(I). Also, since I € T'¢(I), we have I ¢ I C I’; similarly, ¢ I’ c 1.
Therefore, I’ = 1" by (21). Thus, I, T’ € Tdst(1’).

The conclusion of Proposition BT7 therefore follows by induction hypothesis,
i.e., Proposition BT7 for I'.

Thus, Proposition BT7 holds in all cases. O

Corollary. The sets T(I) ~ {1}, for I € T9t(1), are pairwise disjoint.
Proposition BTS8. Let I be a leaf of T89%/(I). Then #(EN51) < 1.

Proof. We suppose I is a leaf with #(EN51) > 2, and derive a contradiction. We
proceed by cases.

Case 1: Suppose I € T9st(T). Then T°¢(I) C Te'bal(1); hence I is a leaf of T'¢(I).
That is, T°(I) = {I}. According to (25), I cannot be of type A or B. However,
since #(EN51) > 2, I cannot be of type C. Thus, we have derived a contradiction
in Case 1.

Case 2: Suppose I ¢ T9st(I). Then I € T&bal(I) < {I}, hence I € T"¢(I) ~ {I}
for some I € T9st(I). Since I is a leaf of Tgbal(T), it is a leaf of T'°¢(I). Moreover,
we cannot have I € RO(I), since then I € T9st(I). Hence, (19) tells us that
51N E = (), whereas we have assumed that # (51N E) > 2. Thus, we have derived
a contradiction in Case 2. O

Proposition BT9. Let I € T9Y(I). If 1 is of type C, then it is a leaf of T&b2(T),

Proof. We use induction on I, and proceed by cases.

If I = I, then, by (13), I is a leaf of Telebal(]),

Iffve Tdist(1) \{T}, then, by (12), we have I € T9(I’) for some I’ € RO(I). Since
Telobal(17) < Telobal(T) it follows by the inductive assumption (Proposition BT9

for '), that I is a leaf of T&°ba(I), Consequently, I is a leaf of T&°b2/(T), thanks to
Proposition BT4.

Thus, Proposition BT9 holds in all cases. O

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 455
Proposition BT10. Let I be a leaf of TE*I(1). If51NE # 0, then I is of type C1.

Proof. We use induction on I, and proceed by cases.

Case 1: Suppose I = I. Then I is a leaf of T"¢(I), i.e., T°¢(I) = {I}. This
cannot happen if I is of type A or B, thanks to (25). Hence, I is of type C. Since
51NE #0, Iis of type CI.

Case 2: Suppose I € T'¢(I) < {I}. Then I is a leaf of T°¢(I) such that I # I and
5I1NE # (. By (19), we have I € RO(I). Hence, by (11), Tgobal(T) Telobal(]),

Consequently, I is a leaf of T&°P2!(I). It follows that I is a leaf of T'°¢(I), i.e.,
Tle(I) = {I}. Since 5INE # 0, (25) now shows that I is of type C. In particular, I
is of type C1, since 51N E # 0.

Case 3: Suppose I ¢ T'°¢(I). By (11), we have I € T&"°P!(T’) for some I’ € RO(I).
Since Telobal(1") < Telobal([) [is a leaf of T&°P!(I') with 5INE # §. Induction
hypothesis (Proposition BT10 for I') now tells us that I is of type C1.

Thus, Proposition BT10 holds in all cases. O

Proposition BT11. Let I be a leaf of TE°*'(1). If5INE # 0, then I € Tdst(I).

Proof. The desired conclusion is obvious for I = I. Suppose I e Telbal(T) < {I}.
Proposition BT6 gives I € Tloc(T) ~ {I} for some I € Td'St(I) By Proposition BT2,
Tloc(T) ¢ Te'ebal(T); hence, I is a leaf of T'¢(I). Since I # I and 51NE # 0, (1)
gives I € RO(I). Consequently, I € T9¢(T), by Proposition BT2.

Proposition BT12. Let x € 31, I € T&9°%(1) < {I}. Then 25 Lors(x) < |I]. Also,
if 1is any leaf of T89%(1) and x € 31, then |I| < d1s(x). (See (2).)

Proof. Let x € 31, 1 € Telobal(T) < {I}. By Proposition BT6, I € Tloc(T) ~ {I} for
some L. The interval I cannot be of type C, since T'¢(I) ~ {I} # (). Hence, by (5)
and (23),](i) is a non-degenerate closed mterval, whose endpoints both lie in
EN251. In particular, #(E N251) > 2. However, since x € 31, we have [x — 20]1],
x+20/I]] © 251. Consequently, #(EN[x—20|1|, x+20[I]]) > 2, so that, by definition,
201} > drs(x).

On the other hand, suppose I is a leaf of T&°b2!(I). By Proposition BTS,
#(ENS5I) < 1. Since x € 31, we have [x —|I|, x + |I]] ¢ 51. Consequently,
#(ENx—]I, x+I]1) < 1, so that, by definition, |I| < drs(x). O

Corollary. Let I be a dyadic interval, and let x € R be given. Then x € 31 for at
most C distinct leaves 1 of T&°b2!(]).

Proof. We may suppose 1 is not a leaf of Telobal(T), By Proposition BT12, each I
as above is a dyadic interval, such that 6L5() <|I| < 6rs(x) and x € 31. There
are at most C such I. O

Proposition BT13. For any I € T9t(I) < {I}, we have diam(251NE) >]I.

7ol
16

456 C. FEFFERMAN

Proof. We use induction on L. By (12), We have I € T9st(’) for some I’ € RO(I). I
=T, then (24) yields diam(25 INE) > 3 |I| Otherwise, we have I € Tdst(I") < {I }
|

Induction hypothesis (Proposition BT13 for I') tells us that diam(25 INE) > 1—6|
Thus, the proposition holds in all cases.

Proposition BT14. The number of nodes of T9t(1) is at most CN.

Proof. We bring in the Well-Separated Pairs Decomposition for E. Recall ([3])
that E x Ex. Diagonal can be partitioned into at most CN (non-empty) Cartesian
products B/, x EY, such that, for each v,

(26) diam(EZ) + diam(E”) < 10~3dist(E/,, E”).

Here, as usual, diam(E) = max{[x — x'| : x,x’ € E} and dist(E,E’) = min{|x — x| :
X € E,x’ € E'} for finite sets E,E/ € R. For each v, we pick a “representative”
(x,, /) c E/ E//

Now let I € Td'St() < {I}. By Proposition BT13, there exist x’, x” € EN 251
such that [x" —x"| > 5 |I\

We know that (x’, x”) € B, x EY for some v. Then x’,x}, € B/, and x",x € EZ,
so that (26) yields Ix/ =X, [+ —x"| < 1073 [x'—x""| < 25-1073|1| (since x’,x” €251).
Consequently, x/,,x” € 501, and |x}, — x| > [x' —x"| —25-1073|1| > 100II\

Thus, we have proven the following: Let I € T4st(I) < {I}. Then, for some v,
we have

(27) x4,,x? €501 and |I] < 100[x}, — x%|.

For fixed v, there are at most C distinct dyadic intervals I satistying (27). Since
there are at most CN distinct v here, we conclude that T9st(I) {I} consists of at
most CN nodes. O

Proposition BT15. (A) Let 1 be a leaf of T8%(1), and suppose x € EN5I.
Then 1 € T9Y(D), I is of type C1, and x =x,(I) € 51.

(B) Conversely, suppose 1 € TdiSt(j),I s of type C1, and x,(I) € 51. Then 1 is a
leaf of T&°P2(1), and x,(I) e EN51L.

Proof. Let T and x be as assumed in (A). By Propositions BT10 and BT11, I €
T9st(I) and I is of type C1. Since I is of type C1, we have EN5T" = {x,(I)}. On
the other hand, x € EN5I C EN5I". Hence, x =x,(I) €51

Conversely, let I be as assumed in (B). Then by Proposition BT9, I is a leaf of
Telobal(T) Since I is of type C1, we have x,(I) € E. By assumption, x;(I) € 5I. O
It is now easy to establish Lemmas BT1-BT4.
Proof of Lemma BT1:
(I) follows from an easy induction on I.
(IT) follows from Proposition BT5.
(IIT) follows from the Corollary to Proposition BT5, Proposition BT12, and (25).
(IV) is just the Corollary to Proposition BT12. O

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 457

Proof of Lemma BT2:

(I) follows from an easy induction on I.
(II) follows from (22) and Proposition BT2.
(III) follows from Propositions BT10 and BT11, and the definition of “type C1”.
)

(IV) is just Proposition BT14. O

Proof of Lemma BT3:
(I) is immediate from Proposition BT6 and the Corollary to Proposition BT7.

(I) is precisely Proposition BT7.
(IIT) is immediate from Proposition BT5. O
Proof of Lemma BT4: Let I € Tg°bal(T) < {I}. By definition,
XiP (1) = xe (1) = left endpoint of J(I),

and x;;"(I) = x5(I) = right endpoint of J(I), where I € TdiSt(I)ﬁatiSﬁes that
[€ Tle(I) ~ {I}. In particular, I is of type A or B (since T'°¢(I) \ {I} # @), hence
J(I) is a non-degenerate closed interval.

Hence, it is obvious that x[h(I) < x;¥(I); moreover, (5) and (23) show

> left
that xf:g(l), Xyt (I) € EN 251 Thus, we have proven the desired results for
I e Telbal(T) {I).
Now suppose 1 is of type A or B. Then]() is a non-degenerate closed interval,

whose endpoints belong to E, by (5). Moreover, by definition, xlr:f‘i(i) xpq (1) =

left endpoint of](), and Xrep(l) = x5(I) = right endpoint of J(I). Thus, x,reefﬁl(l) <

x:tep(i), and xf:g(l), xIP(I) € E. Moreover, by definition, x{:ﬁ(l), xIeP(I) e J() c

51" ¢ 251. The proof of Lemma BT4 is complete. O

So far, we have discussed the mathematical properties of Tloe(1), Tg"_’ba'(i),
Xioge (1); X7 (1), etc. We now present algorithms. We suppose that the set E C R,
with #(E) = N, is given to us as a sorted list, E = {X1,X2,..., Xn}, with X7 <

X2 < -+ < XN-

Algorithm BT1. Suppose we are given a dyadic grid G, an N-element set E
(sorted, with N > 2), and a dyadic interval I € G. We compute J(I), and determine
whether I is of type A,B, CO or C1. If I is of type A or B, then we compute xleft(I)
and x§ (). If Tis of type C1, then we compute x(I). Regardless of the type of I,
we compute X|eft(1) xrt(I) and RO(I)

The work used to do the above is at most Clog N, and the storage used (apart
from that used to hold E) is at most C.

Ezxplanation: By binary searches, we first determine whether EN5 It is empty; and
if it is non-empty, we then compute maX(Eﬂ 5I*) and min(E N51"). This allows
us to compute J(I) and determine whether I is of type A,B,C0 or C1. It also allows
us to write down xjiq (1), x5 (I) if T is of type A or B; and x(I) if T is of type CI.

458 C. FEFFERMAN

The points Xiert (1), Xt (I) are simply the endpoints of 1.

To compute RO(I) is trivial if I is of type A or C. For I of type B, the set RO(I)
consists of all dyadic intervals I C I satisfying (8b). We can easily list all such
intervals.

The binary searches above require work Clog N and storage C (aside from the
storage used to hold E). The rest of the computation requires work and storage at
most C.

Algorithm BT 2. Given a dyadic grid Sr, an N-element set E (sorted, with
N > 2), and a dyadic interval I € G, we compute the tree T9st(I). We mark each
node I € T9t(I) to indicate whether it is of type A, B, C0, or C1. We mark each
node I € T9st(I) of type A or B with the pomts xleft(f) and X3 (). We mark each
node I € Tdst(]) of type C1 with the point x(I). We mark each node I € Tdist(])
with the points Xeft(I), X (I).

The work used to do so is at most CN log N, and the storage used is at most CN.

Ezplanation: We start with the root I, and apply Algorithm BT1.

This provides all the markings required for I, and provides also RO(I), the
set of all the children of T in T9st(I). If RO(I) # 0, then, recursively, we apply
Algorithm BT?2 to each I’ € RO(I), to compute and mark the tree T9st(I). Thus,
we compute and mark T9st(I).

Since the tree T95t(I) has at most CN nodes, the work and storage used by our
algorithm are as claimed.

Algorithm BT 3. Given a dyadic grid G., an N-element set E (sorted, with
N > 2), and a dyadic interval I € G+, we compute the set £ of all pairs (I, x), for
which I is a leaf of T#°ba/(I) and x € 51N E.

The work used to do so is at most CN log N, and the storage used is at most CN.

Ezplanation: We execute Algorithm BT2 to compute T9t(I) and mark its nodes.
According to Proposition BT15, £ consists of all pairs (I,x,(I)) for I € T9st(I) of
type C1, such that x,(I) € 51.

Thus, we can trivially list all the elements of L.

Since the tree T9t(T) has at most CN nodes, the work and storage used, once
we have executed Algorithm BT2, are at most CN.

8. The basic set-up

In this section, we provide the basic assumptions that we will be making in several
sections below. The assumptions below involve positive constants C1, C 1y Cz, Cs,
which we regard as given.

(1) We are given a real number T, used to fix a dyadic grid G-.

(2) We are given a positive real number € < ;.
(3) We are given a dyadic interval Iy € G, with |Io| < Cye.
(4)

4) We are given a finite set E C Io.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 459

(5) We are given a function @ € C2(¢ie'Ip), which is assumed to satisfy the
estimates:

(6) ¢’ < Cz and |@”| < Caello| ™! on €1 'o.
We suppose we have access to a “@-Oracle”:

(7) Given a point x7 € c1e I, the @-Oracle computes @(x1), @' (x1), ©”(x1),
and changes us “work”

Weo > 1 to do so.

We define E = {(x1, @(x1)) : x1 € E} C R2.
Let N = #(E) = #(E). We assume N > 2.
We are given a function f: E — R.

We are given a real number &.

We are given a family of norms | - |, on P (z € R?), and an Oracle, satisfying
conditions (1)-(4) in Section 5. We define the C norm as in that section.

) We assume that there exists Feude € C?(R?), such that:
15) Ferude =T on E,
) |l Ferude ||C2(]R2)§ (_:37 and
) 102Fcrude — &l < C3e'[Iof on E.
We fix integers kq(€) and vo(€), such that
(18) {5e'% < 27F1le) < €190 and
(19) ge 2 <2vole) <72,

(20) We take the boiler—plate constants in this section to be ¢y, Cq1, C2 and C3
in (1)—(19) above, together with the constants called co,Co,C1,C2 in Sec-
tion 5.

As explained in Section 2, the notion of a “controlled constant” is well-defined
thanks to (20). We make the Small € Assumption:

(21) e is less than a small enough controlled constant.

In this section, and in the next several sections, we assume (1)—(21) above.
We now define a function e; € Cﬁ)c(ﬁ ! Ii(;‘te'i” x R), by setting

(22) ez(x1,%x2) = %2 — @(x7) for x7 € cre 'Iiteror x; € R.

Note that (9) yields

(23) e2 =0on E,

while (6) implies the estimates

|0%e,| < C for ol =1, and [0%ey| < Cello|™' for |af = 2.

460 C. FEFFERMAN

Together with (3), the above estimates imply the following:

Let Q c ¢1e 'Ip x R be an open square. If e; = 0 at some point of Q,

24 -
() then H €2 HCZ(Q)S C€|Io‘ 1 .

Thanks to (7), we have the following:

(25) Given a point z € ¢ye 'IiMeMor x R we can compute the jet J,("e2) using C
operations and one call to the @-Oracle.
Next, for each dyadic interval

(26) IC Ip, we define a square

(27) QII) = (Cql x Jymeir ¢ B2,
where C Q is a large enough controlled constant (to be picked in a moment),
and

(28) center (J) = ¢ (center (I)).
If we pick CQ large enough, then (5) and (6) guarantee that

(29) For all x € 10241, ¢@(x) is well-defined and (x, @(x)) belongs to the middle
half of Q(I). Also, for Cq large enough, (6) yields

(30) Q(I') c Q(I) for I’ C L.

We now pick C Q to be a controlled constant, large enough to guarantee (29)
and (30).

In the next several sections, the function e, and the square Q(I) (I C Iy dyadic)
are as defined in this section. Note that, given I C Iy dyadic, we can trivially
compute the square Q(I) using work at most C, together with a single call to the
@-Oracle.

Let I C Ip be dyadic. Then 1024CQI C cre Iy, by (21). Hence, e, is well-
defined on 1024Q(I). Moreover, e = 0 at the center of Q(I), thanks to (28).
Therefore, (24) and (25) yield the following:

(31) For any dyadic I C Iy, we have || e2 [[c2(10240(1)< Cello| .

(32) For any dyadic I C Ip and any given z € 1024Q(I), we can compute J,(e2)
using C operations and one call to the @-Oracle.

Remarks

(33) As explained in the Introduction, one of the main ideas in our proof of
Theorem 1 is to introduce a Calderén-Zygmund decomposition of R? into
squares Q. For each Q., either

ENQv C {(xi,o(x1)) : x1 €R} or ENQv C {(e(x2),x2) : x2 € R}
for a C2-function ¢. (See (29), (30) in Section 0.)

Eventually, we will cut up each Q- into a grid of subsquares {Q~,i}, with
sidelengths 8¢, ; comparable to € - 8q, -

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 461

The assumptions made in this section will (eventually) be applied to compute
interpolants on a given Q+ ;. Our plan is then to combine our results for all the
Q~,i, to compute an interpolant on a given Q. (See Sections 18 and 19 below.)

(34) One might be tempted to reduce matters to the case @ = 0 in (5)—(9) above,
by making a change of variables such as X1 = x1, X2 = x2 — @(x1). Unfor-
tunately, when we transform the C2-norm to take such a change of variables
into account, we lose the Approximate Translation Invariance property, because
@ is merely C?.

(35) Recall that we have now postulated an Oracle and a @-Oracle (see Section 5
and assumptions (7), (8)). From now on, whenever we present an algorithm,
we regard the work charged by the Oracle, but mnot that charged by the
@-Oracle, as part of the work of the algorithm in question. We will always
provide an upper bound for the number of calls made to the ¢-Oracle in each
algorithm given below.

9. Marking the basic tree

In this section, we adopt the notation, assumptions, and boiler-plate constants of
Section 8. In particular, we recall the Small € Assumption, and the assumption

(1) 11_06100 <)Kkile) £ 100,

For any dyadic interval
(2) IC Io,
we define
(3) AD) = (27 1Z%) N Q(I).
Note that
(4) A(D) € Q(I) and #(A(I)) < Ce 2% thanks to (1).
In this section, we suppose we are given an interval
(5) 1C Iy dyadic, such that #(51NE) > 2.

We recall from the Section 7 that we have defined a tree T8°%2/(I) and a subset
Tdist(T) Telbal(T). Bach node 1 € T9st(I) is of “type” A,B,CO or C1. Each
I € T9st(I) of type A or B is marked with two points x,seft(i) and xft(i), the endpoints
of the non-degenerate interval J(I)= convex hull of 5" NE. (In particular, xlseft(i),
xft(i) € 251N E.) Each Ie :l—diSt(I) of type C1 is marked with a point x:(1),
the one and only element of 517 N E. (In particular, x;(I) € 251 N E.) For any
I € &bl (T) we have also defined two points x,cf (1) and x” (1) as follows: If I = I,
then [(1) = x$ (1) and xje?(I) = x5 (I). (This makes sense, since I is of type A
or B, thanks to (5)). If I e T&°b/(T) < (i}, then I € T'¢(I) . {I} for one and only
one I € T9t(1); and T is of type A or B. (Here, T'¢(I) is the “local tree” associated
to I; see Section 7.) We then have X[(1) = x{ (1), and x[s*(I) = x5(I). We have

i left
seen that x;f (I), xt" (I) € 25INE.

462 C. FEFFERMAN

For each I € T#°P2!(1), we have also defined xjer(I), xrt(I) to be the endpoints
of L.

We recall from Section 8 that E = {(x, @(x)) : x € E}, and that (x, @(x)) € Q(I)
whenever x € 251, I C Iy dyadic. Thus, we may define

(6) zigr(1) = (X (D), @ik (1)) € ENQ(I) and
(7) ze" (D) = (xg (1), @(x” (1)) € ENQ(I), for all T T&M!(T).

Also, we may define

(8) ziere(I) = (x1efe (1), @(xierc(1))) € Q(I) and
(9) ze(1) = (xee(1), @(x(1))) € Q(I), for all T € Teloba!(T).
Similarly, for all T € T9st(I) of type A or B, we define
(10) 28 (D) = (x4 (1), @(x24 (1)) € ENQ(T) and
(11) z&5(1) = (x&(D), @(x3 (1)) € ENQ(D).
For all T € T9st(I) of type C1, we define
(12) zi(1) = (x(D), @(xi(1))) € ENQ(D).
Next, for each I € T#°%/(1), we define a finite subset S(I) € Q(I). We take S(I)
to comsist of the following points:
(13) All the points of A(I) (see (3)).
(14) The points zh (1), zi" (1), ziere (1), zre(I).
(15) The points zjg (1), z5 (1) if T € Tdst(I) and 1 is of type A or B.
(16) The point z(I) if I € T¥*t(I) and I is of type C1.

Thanks to (4) and (6)—(12), we have
(17) S(I) € Q(I) and #(S(I)) < Ce 2% for all I Telobal(]),

The following algorithm computes the sets S(I) and the Whitney fields Js(1) (e2)
for each I e Tdist(]).

Algorithm MMBT. (“Make and Mark the Basic Tree”): Given a dyadic interval
I C I such that #(5INE) > 2, we compute the tree T9(I), and mark its nodes
as follows:

e We mark each I € T95t(I) to indicate its type (A, B, CO or C1).

e We mark each I € T9st(I) of type A or B to indicate the points Z|eft(i), th(i)
and the function values f(zleft()), (zrt(l))

e We mark each I € Td'St() of type C1 to indicate the point z/(I) and the
function value f(z,(I)).

e We mark each I € T9st(]) to indicate the points zief (1), znt(I), zlr:f‘i(i), 2P (1)

and the function values f(z{ipﬁ(i)) (2P (1)).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 463

e We mark each I € T9st(I) to indicate the square Q(), the sets A(I), S(I),
and the Whitney field Js(1) (e2).

The total work used to perform the above computations is at most Ce 2°°N +
CNlog N, together with at most Ce 2°°N calls to the @-Oracle. The storage used
is at most Ce 2%°N.

Ezxplanation: First, we apply Algorithm BT2 from Section 7. Thus, we obtain the
tree TdiSt(i)i mark each of its nodes as having type A,B,C0 or Cl; compute the
points Xieft (1), xrt(I) for each I € T9ist(1); compute the points X (1), x5 (1) for each
I € T9st(I) of type A or B; and compute x,(I) for each I € T9t(I) of type C1.

Applying the ¢- Oracle as needed, we can easily compute the points Z|eft(i)
2 (1), zleft(l), zrt(I) z:(1) as in the statement of Algorithm MMBT. We can then
look up the values of f at the points Zﬁaft(i) and th(i) for I of type A or B, and
z1(1) for 1 of type C1.

We next explain how to compute the points z* (1), z<P(I) for each I € Tdst(I),

' ~ _ - left ~
For I =1, we have [(I) = x4 (I). and x/*(I) = x5(I); the points x,eft(l), x5 (1)
are a}ready known. For I € Tdst(I) ~ {I}, let I# be the parent of I in the tree
Tdist(I). Then I# e Tds(I) is of type A or B, and Ie RO(I#) C Tloe(I1#) ~ {I#}.
(See Section 7.) Consequently, xf:g(l) = xleft(l#) and X[(1) = x5, (I#); the points
Xt (1#) and x5,(I#) are already known. Thus, we can compute x{h (1), x"(I) for

each T € T9t(I). Tnvoking the @-Oracle, we obtain /st (1), it (I), as promised.

We can then look up the values of f at the points z{sh (1), zs"(I).

Next, for each I € T9st(I), we compute the square Q(~), as explained in the
section on “The Basic Set-up”. Each Q(I) requires a single application of the ¢-
Oracle. Tt is now trivial to compute the A(I) for all I € T9t(I), using (3). We
can then read off the set S(I) for each I € T¥st(I), by recalling (13)—(16). Finally,
once we know S(I), we can read off the Whitney field Js1) (e2) by using (32) from
Section 8.

Thus, we have computed everything promised in Algorithm MMBT. To esti-
mate the work and storage used by Algorithm MMBT, we have only to recall the
resources used by Algorithm BT2, as well as the estimates #(S(1)) < Ce 200 (each
I € T9st(1)), and #(T9st(I)) < CN.

It is now trivial to check that the resources used by Algorithm MMBT are as
promised.

10. A partition of unity

In this section, we keep the assumptions, conventions and boiler-plate constants of
Section 8. As in Section 9, we suppose that we are given

(1) 1C Iy dyadic, such that #(5I1NE) > 2.

Define an open set

(2) Q(I) ={(x1,x2) € R? :xq € IMeor |x; — p(xq)| < 1]} € R2.

464 C. FEFFERMAN

We will introduce functions 0 defined on R2, and functions 0 defined only
on Q(I). We write supp® to denote the set of all points z in Q(I) such that 0 is
not identically zero on any disc centered at z. As usual, we write supp 0 to denote
the set of all points z in R? such that 0 is not identically zero on any disc centered
at z.

For each I € Tg°/() we will define a function

(3) 81 € C2(Q(I)), defined only on Q(I), such that the following hold:
(4) Z 01 =1 on Q(I).
IE€Telobal ()
(5) suppO1 C Q(I) for each I € Telobal(]).
(6) 10%01] < Cl1I"1* on Q(I), for af < 2, T € Teloba!(T).
(7) 81 > 0 on Q(I) for each I € Teoba!(T).
Moreover, we will compute the jets of the 01 at each point of E.

To define the functions 01, we start by fixing cutoff functions xo,x1 € C2(R),
with the following properties:

(8) xa(t)=1for 3 <[t/ <1.

(9) 31 (8) = 0 for [t ¢ [155,1.01]
(10) x1(t) > 0 for all t € R.
(1) (&) W] < Clro<e<2 teRr,
(12) xo(t) =1 for [t| < 1.
(13) xo(t) =0 for [t| > 1.01.
(14) xo(t) > 0 for all t € R.
(15) (&) Xxo(®)| S Clor0< <2 teR,

We suppose that, given t € R and 0 < € < 2, we can compute (E) Xi(t) for
i=0,1, with work at most C. It is trivial to construct such xo,X1-

Also, for each dyadic interval I, we fix a cutoff function x; € C?(R), with the
following properties:

(16) x1 =1 on I, suppxr C (1.01)I, x; > 0 on R, and
(a7 (&) | <citforo<e<2 te R

We suppose that, given t € R, 0 < { < 2, and I a dyadic interval, we can
e . S
compute (%) x1(t) with work at most C. It is trivial to construct such xg.

Next, given I € Telobal([) | we define a cutoff function 8; € C2(R?%). The defini-
tion of O1 proceeds by cases.

Suppose [is a leaf of T€°P3/(I). Then we define

(18) QI(X],Xz) ZXI(X]) *Xo (%W) for (X],Xz) € Rz.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 465

Suppose I is an internal node of T&°P!/(T). Then we define
(19) B1(x1,%x2) =x1(x1) - X1 (7“7?1)\(%)) for (x1,x2) € R

We recall that |@’| < C, and |@”| < Caello]™' < Co|I7" on €1e o D (1.01)Ip D
(1.01)I; see (6) and (21) in Section 8. Hence, one obtains easily the estimate

(20) 10%61| < ClI|71*l on R2, for |« < 2, T € Teb2(]). Also
(21) 61 > 0 on R2, for all I e Telobal(T),

Let us study supp 01. From (18), (19) and the defining properties of X0, X1, X1,
we have:

(22) supp O C{(x1,%x2) €R?: x7 € (1.0NI, [xa—(x1)| < (1.01)|1]} for any I Tg'oba!(]),
Moreover,

(23) supp Oy C {(x1,%x2) € R? : xg € (1.0DL, 55511 < x2 — @ (x1)| < (1.01)[1]} for
any internal node I of T&'°P2!(]).

Note that {(x1,x2) € R : x7 € (1.01)I, [x2 — @(x1)| < (1.0N[I}} € Q(I), for all
I € Tebal(T). (This follows from (29) in Section 8.)
Together with (22), this yields the inclusion

(24) suppO; € Q(I) for all T e Te'obal(]),

We establish an additional property of supp 8. From (2) in Section 7, we recall
the function dps(x), defined for x € R. ~
Now suppose I € T&°P2I(T) and let (x1,x2) € supp8;. We will show that

(25) cldrs(x1) + Ixa —@x1)ll < |IJ < Cldrs(x1) + [x2 — @(x1)[].

Indeed, (22) gives |x2 — @(x1)| < (1.01)|1], x1 € (1.01)]; and Proposition BT12 in
Section 7 gives 81s(x1) < C|I|, except for the case I = I.

In the case I = I, we still have d;s(x7) < C|I|, by definition of &;s(x1), and
thanks to (1).

Thus, drs(x1) + [x2 — @(x1)] < C|I|, which is half of (25).

To prove the other half, we proceed by cases. Suppose first that I is a leaf of
Tglobal(i).

Then, by conclusion (IIT) of Lemma BT1 in Section 7, we have [I] < d1s(x1) <
[Brs(x1) + [x2 — @(x1)]]. Note that (III) applies, thanks to our assumption (1).
On the other hand, suppose that I is an internal node of Telobal(T), Then, since
(x1,%x2) € supp 01, we learn from (23) that |I| < (2.02)-[x2—@(x1)] < (2.02)[61s(x1)
+[x2 — @(x1)[]. Thus, in either case, we have [I| < C - [drs(x1) + [x2 — @(x1)]],
completing the proof of (25).

From (22) and (25), we obtain the following useful result:

(26) Let I e Tg°%\(I), and let (x1,x2) € supp®r;. Then x; € (1.01)I, and
clors(x1) +x2 — @(x1)ll < < Cldrs(x1) + Ix2 — @(x1)[.

466 C. FEFFERMAN

From (26), we obtain at once the following consequences:

(27) Let I,1, € T&2!(T), and suppose supp @1, NsuppO;, # 0. Then c[I;| <
12| < ClT4].

(28) Any given point z € R? lies in supp 01 for at most C distinct I € Telbal(]).

Next, we establish the following:

(29) Let z = (x1,%x2) € Q(I) be given. Then there exists I € T8°P!(I) such that
GI(Z) =1.
In fact, (2) gives x1 € L and [x; — @(x1)| < [1|.
The leaves of T#°P2/(I) form a partition of I. Hence, there exists a leaf I
of Tebal(T) containing x;. The nodes of T&°P2!(T) containing x; are I; € I, C
... Ip =1, where Iy 1 = (I)* (the dyadic parent of Iy) for each { < L. Since
Ix2 — @(x1)| < [IL|, we have either

(30) Ix2 —@(x1)l < |Ii], or
(31) Lol = Te—1] < [x2 — @(x1)] < |I¢ for some €(2 < ¢ < L).

If (30) holds, then, since I; is a leaf, and since x7 € I, we see from (12), (16), (18)
that 01, (x1,x2) = 1.

If instead (31) holds, then, since I, is an internal node and x; € I, we learn
from (8), (16) and (19) that 81, (x1,x2) = 1.

Thus (29) holds in all cases.

From (21) and (29), we see that

(32) > 6r>=1onQl).
I/ €Tglobal ()

Now it is easy to define our partition of unity on Q(I). We set

(33) 61 = él/[nggmbal(i) 01| on Q(I), for each I € T&lobal(T).

Note that Oy is defined only on Q(I). The desired properties (3)-(7) of the Oy

now follow trivially from the properties of the 01 established above. Moreover,

from (26)—(28), we have:

(34) Let T € T&(T) and let (x7,x2) € supp®;. Then x; € (1.01)I, and
cldrs(x1) + Ix2 — @(x1)ll < I < Cldrs(x1) + x2 — @(x1)ll.

(35) Let Iy,1, € T#°(1), and suppose supp@1, NsuppO;, # 0. Then c|lj| <
12| < ClLy.

(36) Any given point of Q(I) lies in supp 8; for at most C distinct I € Telobal (),

To prepare to compute the jets J,(01) for all z € E, I € T&"°/(I), we establish
the following result:

(37) Let z = (x1,x2) € E, and let T € Tg°P2/(I), If z € supp Oy, then I e T9ist(]), I
is of type C1, x1 = x(I), and x7 € (1.01)L.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 467

Indeed, suppose z = (x1,x2) € ENsupp 01, with I € T&°ba! (). Then, since z € E,
we have x1 € E and x2 = @(x7); see (9) in Section 8. Since (x7,%2) € supp 8 and
x2 — @(x71) =0, it follows from (23) that I cannot be an internal node of Telobal(]).
Moreover, since (x1,x2) € supp 01, (22) shows that x; € (1.01)L.

Thus, I is a leaf of T&°P!(T), and x; € (1.01)I N E. Hence, conclusion (I1I) of
Lemma BT?2 tells us that I € T9*(I), I is of type C1, and #(5I* NE) = 1. By
definition x,(I) is the one and only element of 57 N E. On the other hand, we
know that x; € (1.01)INE C 51" N E. Consequently, x; = x;(I), completing the
proof of (37).

Thanks to (37), we have

(38) I(xmq)(Z é[/) = Z](XMXZ)(ép) for each (x1,x2) € E, where

I/ € Telobal () eN(x1)

(39) Alx1) ={I' € T¥(I) : I is of type C1, x; = x,(I'), and x; € (1.01)I'} for
each x; € E.

Also from (37), we have

(40)](thz)(él) =0 for any I € T&b!(T) < A(x1), whenever (x7,x2) € E.

Regarding the set A(x1) in (39), we note that

(41) Each I € A(x1) is a leaf of T&9b!(T), and
(42) There are at most C distinct I € A(x4).

Here (41) and (42) hold for any x; € E. In fact, (41) is immediate from Propo-
sition BT9 in Section 7, and (42) follows from (41), together with Lemma BT1
(conclusion (IV)) in that same section.

We are now ready to compute the jets of the 01 at the points of E.

Algorithm JPU. (“Jets for the Partition of Unity”). Assume we have already
carried out Algori‘ghm MMBT in the section on “Marking the Basic Tree”.
For each x1 € E, we compute the set A(x7) C T9(I) as in (39).

For each z = (x1,x2) € ENQ(I), and for each I € A(x1), we compute the
jet J2(01).

We have #(/A(x1)) < C for each x1 € E, and J,(01) = 0 whenever z = (x7,%2) €
ENQ(D), I & Alx1).

The work used to carry out the above is at most CN, together with at most
CN calls to the @-Oracle. The storage used is at most CN.

Ezplanation: The assertions regarding #(/A(x1)) and J.(01) for I ¢ A(x1) are
immediate from (40) and (42). We recall that Algorithm MMBT marks each node
I of T9st(I) to indicate whether it is of type C1; and in case I is of type C1, then
Algorithm MMBT marks I with the point x;(I).

We compute the A(x7) for all x; € E by the following obvious procedure:

468 C. FEFFERMAN

First, we set all the A\(x7) = . We then loop over all the nodes I € T4st(I).
For each such I, we check whether I is of type C1, and (1.01)I > x,(I).

If so, then we set x7 := x(I), and we add I to the set A(x1).

Thus, we can compute all the A(x1), x1 € E. Since #(T9t(I)) < CN, the work
and storage used to compute the /\(x7) (all x; € E) are also at most CN.

Next, for each z = (x1,x2) € E, and for each I € A(x1), we compute the
jet J.(01). Thanks to (41), this computation is accomplished by (18). For each
such z, 1, the computation of J,(01) takes work and storage at most C, together
with a single appeal to the @-Oracle.

Finally, for each z = (x1,x2) € E, we check to see whether z € Q(I); this holds
if and only if x; € I since x, = @(x1). If z € Q(I), then, thanks to (38),
we have
(43) J=(01) =J=(61) / > Ju(6p),

I'e A(x1)
where the division is performed in the ring of jets at z. (Thanks to (32), we have
that 3 e p(x,)ép (z) > 1, so that (43) makes sense.)

Since #(\(x1)) < C, and since we have already computed all the], (61/) in (43),
we can compute a single J,(01) from (43) using work and storage at most C.

Thus, we have computed all the A(x1) (x1 € E), and all the J,(01) (z =
(X],Xz)GEﬂQ IE/\X])

The work and storage used are as promised. This completes our explanation
of Algorithm JPU.

We close this section by observing two simple consequences of (33), (39), (40):

(44) Let I € Tel°b2(1), and suppose z € supp 01 NE. Then I € T9t(1), I is of type
C1, and z = z/(I).
More precisely,

(45) Let z = (x1,%x2) € E, and suppose I € A(x1). Then I € T9(I), I is of type
C1, and z = z/(I).

(Here, we use also the definition of z,(I) in Section 9, together with assumption (9)

in Section 8.)

11. Simplifying a convex set

In this section, we use no boiler-plate constants. We work with the standard Eucli-
dean norm in RP. Our goal here is to present the following elementary algorithm:

Algorithm SCS. Suppose we are given the following data:
(1) A convex polyhedron K C RP | given by I constraints.
(2) A real number A > 0 such that [v] < A for all v € K.
(3) A real number € > 0.
(4)

4) A linear functional A : RP — R.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 469

Then we compute a convex polyhedron KcC RP, with the following properties:

(5) KCK.
(6) Given v € K, there exists v € K such that [v—v| < € and A(V —v) = 0.
(7) K is defined by at most C(A, e, D) constraints.

(In particular, the number of constraints defining K is bounded independently of 1.)
The work and storage used to compute K are at most a C(A, e, D, I).

Ezxplanation: We may trivially reduce matters to the case
(8) A(viy...,vp) =vp for (vi,...,vp) € RP.
Assuming (8), we proceed as follows: From (2), we have
KCQ:={(vi,...,vp) €RP : 1|, val,...,Ivp| < A}.

We subdivide Q into a grid of (closed) cubes {Q+}, each Q. having diameter
between 10~ 3¢ and e.
For each Q+, we compute I, := A(KNQ~y). Each I is a (possibly empty) closed
interval. Define
K# = J{veQy:Av) eI, } CRP.
v

Thus, K ¢ K# € RP, but K# needn’t be convex.

Let v € K#. Then, for some v, we have v¥ € Q, and A(v¥*) € I,. By
definition of I, there exists v € KN Q, such that A(v) = A(v¥). Since v¥*,v € Q.,
we have [v —v#| < e. Thus, we have proven the following:

Given v# € K#_ there exists v € K such that [v —v#| < € and A(v —v#) = 0.

We define K = convex hull (K#). Thus, K ¢ K ¢ RP.

Note that K# is a union of at most I# closed rectangular boxes, where I# may
be computed from A, e, D. Consequently, K is a closed, convex polyhedron, defined
by at most I constraints, where I may be computed from A, ¢, D.

Moreover, suppose v € K. Then we can write

J
V=2 v,
=1

with t1 +---+1t; =1, t; > 0 (each j), and vj# € K# (each j).
For each v, there exists vj € K such that |v; — vl#l < € and A(vj —v#) =0.

i j
Setting J
V= thv]- €K,
j=1

we have [v—v| < e and A(v—v) = 0. Thus, K satisfies (5), (6), (7). Moreover, one
checks easily that the work and storage needed to compute K are less than a con-
stant computed from A, e, D, I. This completes our explanation of Algorithm SCS.

470 C. FEFFERMAN

Remark. Let A, K, A, €,K be as in Algorithm SCS. Suppose we are given a point
v = (¥1,...,9p) € K. Then by (6), there exists v = (v1,...,vp) € K, such that
vi —vi] < e,...,lvb —Vp| < €, and A(v —¥) = 0. In particular, v — 9| < D'/?e.
Note that we can compute such a v by routine linear programming, once v, K, A, €
are given.

The work and storage used to compute v are less than a constant computed
from D and 1.

12. Simplifying a convex set of Whitney fields

In this section, we retain the notation, assumptions, and boiler-plate constants of
Section 8. We suppose we are given

(1) TC Iy (dyadic), such that #(51 N E) > 2.

We suppose that we have already carried out Algorithm MMBT with input I; see
Section 9. Thus, for each node I € T9st(I), we have computed the set S(I) and the
points zicf (1), ze" (1), ziere (1), zre(1).

Recall that f is defined at z;3; (I) and at z;" (I). Also, recall the real numbers &
and e from Section 8.

Under the above assumptions, we can carry out the following algorithm:

Algorithm SCSWF. (“Simplifying Convex Set of Whitney Fields”). Suppose
we are given an interval

(2) Te Tdst(])
and a convex polyhedron

(3) K C Wh(S(I)), defined by at most NC constraints.
Assume that for every P= (P*)zes(n) € K, we have

(4) val(P,z) = f(z) for z = 2 (I), 2P (1);

left
(5) val(d2P, ziere (1)) = &; and
(6) There exists F € C?(Q(I)) such that || F ez < € and Jsr)(F) = P

Then we compute a convex polyhedron K C Wh(S(I)), after which we can
respond to queries. (See (10)—(15) below.) The polyhedron K satisfies the following
conditions:

(7) KC K

(8) K is defined by at most NC constraints, where NC may be computed from e
and the boiler-plate constants. (In particular, NC is independent of NC.)

(9) Every P € K satisfies (4) and (5).

(10) A “query” consists of a Whitney field l:s = (f’z)zes(l) e K.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 471

The response to a query (10) consists of a Whitney field
(11) P = (P*).esn) €K,

such that there exists a function F¢" € C?(Q(I)), satisfying the following condi-
tions:

12) Js1y(Fs") =P —P.
13
14

15

‘acherr| < e]OOmZ lel on Q() for || < 2.

Fs™ =0 at z, (1), zt" (1).

02F" =0 at zier (1) and at zq(1).

(12) J
(13)
(14)
(15)
In particular, given any]:5 € K, there exist P € K and Fer € C2(Q(I)) satisfy-

ing (11)—(15). B
The work and storage used to compute K, and the work and storage used to
answer a query, are less than C(e, NC).

Explanation: Let V be the vector space of all Whitney fields P = (P)zes) €
WHh(S(I)), such that: val(P,z) =0 for z = Zieh (1), 27 (1); and val(92P, ziee(1)) = 0.
Let L: (x1,%x2) — Ao + A1x1 + Azx, be the one and only linear function on R?

such that: L(z) = f(z) for z =z~ (1), zis" (1); and 0,L = &,

left
Next, let pwi,...,um be an enumeration of the following linear functionals
on Wh(S(I)):

(P*),es(1) a“PZ(Z)/II\Z*W, for z € S(I), o < 2; and

(P#),es(1) — [0%(PF — Pz’)(z)]/\z — PRl for 2,2/ € S(I) distinct, |of < 2.
Since the intersection of the nullspaces of wi,..., Wy is just {0}, we can define a
Hilbert space norm on V. C Wh(S(I)) by setting

m

IIPIIIZ = > (1 (P))* for PeV.

j=1

We may trivially identify V with RP(D = dimV) so that the above norm agrees
with the usual Euclidean norm on RP.

Recall that #(S(I)) < C(e). Hence, Taylor’s theorem and the classical Whitney
extension theorem for finite sets tell us the following:

(16) Let F € C?(Q(I)) satisfy:
(a) [0%F| < [1271*l on Q(I), for |of < 2;
(b) F=0at 2 (1), z" (1),
(c) 92F =0 at zen(I).
Then

(d) Jsy(F) € V, and [[Js() (F)IIl < C(e).

472 C. FEFFERMAN

Conversely,

(17) Let PeV satisfy P/l < 1. Then there exists F € C2(Q(I)) such that:
(a) [0%F| < ClI)>~ 1™l on Q(I), for |«| < 2; and
(b) Js((F) =P.

Now let P = (P ?)zes(1) € K be given. By (4), (5) and definitions of L and V,

we have P — Js((L) = (P — L),es() € V. Moreover, let F € C2(Q(I)) be as

n (6). Then (4) (5), (6) yield F=f at Zieh (1), zi£P(1); and 92F(zier (1)) = &. Since
also |0%F| < C on Q(I) for |« < 2 (by (6)), it follows that [0%(F — L)| < C|I|?>~ I«
on Q(I), for |af < 2. Hence, applying (16) to the function F — L, we learn that
Js(y(F=L) € Vand [[[Js(1)(F—L)[[< C(e). Recalling that Js(1)(F) =P by (6), we
conclude that

(18) P—Js(L) € V, and [|[P — Js1y (L)l| < C(e), for all P € K.

Let € > 0 be a small enough number, to be picked below. Let A : V — R be
the linear functional

(19) A(P) = val(d2P, z(1)). Define
(20) Kred =K— IS(I)(L)'

Thus, by (3) and (18), we have the following:

(21) K™ C V is a convex polyhedron defined by at most NC constraints. More-
over,

(22) [|IP]ll < C(e) for each P € Kre.

We now apply Algorithm SCS to the convex polyhedron K¢, the small num-
ber €, the large constant C(e), and the linear functional A. Here, we identify V
with RP as noted above. The assumptions of Algorithm SCS hold here, thanks
o (21) and (22). (See the Section 11, on “Simplifying a Convex Set”.)

Thus, Algorithm SCS produces a convex polyhedron

(23) K C V, defined by at most I constraints, where
(24) T may be computed from €, e and the boiler-plate constants. Moreover,

(25) Kred C f(red’
and the Remark at the end of Section 11 yields the following:

(26) Given Pred € K™ we can compute Pred € Kred, such that |||Pred — Predll] <
C(G) -€ and)\(f)red - _’red) 0.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 473

Furthermore, the work and storage used to compute l~('ed, and to compute ﬁ,ed
in (26), are less than a constant that may be computed from €, e, NC, and the
boiler-plate constants.

Let Preq and Preq be as in (26). Then, since Pred € K™ C V and Py € K C V,
we have

—

(27) val(Peg — Preqyz) = 0 for z = zieh (1), 2 (1); and

—

(28) val(82[Pred — Preal, ziere(I)) = 0.

Also, since A(Preq — F_",ed) =0, we have

—

(29) Val(al[]sred - Pred]a Zrt(I)) =0.
Putting (26)—(29) into (17), we conclude that there exists F$" € C2(Q(I)), such that

(30) [9%Fs"| < C(e)-e-[I)*~1* on Q(I) for || < 2; and

—

(31) Js)(F{") = Pred — Prec.
In particular, (27), (28), (29) and (31) yield
(32) F§"(z) =0 for z = i (1), z;:*(I); and
(33) 02F{"(z) =0 for z = zjese (1), zne(1).
Now define
(34) K=K 4 Jg1)(L) C V+Js1)(L) € Wh(S(I)).
Thus, (23) and (24) show that:
(35) K C Wh(S(I)) is a convex polyhedron defined by at most NC constraints,

where NC may be computed from €, € and the boiler-plate constants.

Moreover, in view of (20) and (34), the inclusion (25) yields
(36) K C K.
Also, (34) and the definitions of V and L imply the following;:

rep

(37) Every p € K satisfies: val(g, z) = f(z) for z = z (1), z;s"(I); and

val(02P, zia(1)) = &,
Next, suppose we are given E € K. Then we set Igred = l:”— Jsy(L) € Kred
(see (34))
From IB,ed, we compute ﬁred € K" ag in (26). We have seen that there exists
Fer e C2(Q(I)) satisfying (30)—(33). We now set P := P +Js(1)(L) € K (see (20)).

Since P— P = Peg — ﬁ,ed, (31) is equivalent to

-

(38) Jsn)(F§™) =P —P.

474 C. FEFFERMAN

Thus, given P e l~<, we have computed P € K such that there exists F{" €
C?(Q(I)) with the following properties:

]S(I)(F?rr):ﬁ_ﬁ~
" < C(e) - €I“ " on or x| < 2.
(39) | [2*F"| < C(e) - &>~ (1) for & < 2

Fs™ =0 at zH (1), z" (1); and 0,F5" =0 at ziere (1), zne (1) .
We now take € to be a constant of the form c(e), picked small enough to
guarantee that

(40) C(e)-@ < €' with C(e) as in (39).

With this choice of €, the above computations produce a polyhedron K, and
answer queries, as promised in Algorithm SCSWF. Indeed, (7) holds, as we have
seen in (36). Also, (8) follows at once from (35), since we have taken € = c(e).
Property (9) is precisely our result (37).

Regarding queries of the form (10), we see from (39), (40) that our algo-
rithm produces P € K as in (11), such that (12)-(15) are satisfied for some
Fm e C2(Q(I).

Thus, our algorithm computes K and answers queries, as promised in Algorithm
SCSWEF.

Finally, the reader may easily check that the work and storage used to com-
pute K or answer a query are as promised in Algorithm SCSWF.

Our explanation of that algorithm is complete.

13. Computing the basic polyhedra

In this section, we adopt the notation, assumptions and boiler-plate constants of
Section 8. We suppose that we are given an interval

(0) 1C Iy (dyadic), with #(51NE) > 2.

We suppose that we have already carried out Algorithm MMBT from Section 9.
Thus, we have computed the tree Tdst(I) and its markings. In particular, for each
node I € T9t(I), we have computed a subset S(I) C Q(i), and the Whitney field
]Sm(ez). We recall that Q(I') ¢ Q(I) for I’ € RO(I), and that RO(I) is the set of
children of I in the tree T9st(I). Recall also that #(S(I)) < C(e) and #(RO(I)) < C
for each I € T9st(1): and that T9st(I) has at most CN nodes.

Let I € T9st(I). We will say that a Whitney field P € Wh(S(I)) is “adapted”
to I if the following hold:

e val(P,z) = f(z) for z = z,r:g(i), and for z = 2/ (I).

. val(azﬁ, ziewe (1)) = & (see Section 8 for &).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 475

o IfTis of type A or B, then val(ﬁ, z) =f(z) for z = z,seft(i), and for z = zft(i).

o If Iis of type C1, then val(l;, z) = f(z) for z = z,(1).
To understand this definition, we recall that Algorithm MMBT has marked
each node I € Td'St() as having “type” A,B,C0 or C1. If I is of type A or B, then
we have marked I with the points Z|eft() and Zrt(I). If T is of type C1, then we

have marked it with the point z(I). Each I € T9st(I) has been marked with the
two pomts Zleft(I)’ Zrep(). All these points lie in the set E. We have also marked

each I € T9st(I) with the points zies(I), z+(I), which need not belong to E.
We are ready to present our algorithms.
Algorithm MOK. (“Make One K”): Suppose we are given the following data:
(1) A positive integer NC.
(2) A node T e Tdst(]).
(3) For each I’ € RO(I), a convex polyhedron K(I') € Wh(S(I')) defined by at
most NC constraints.
Assume that

(4) P is adapted to I’ for each P € K(I'), I’ € RO(I).

Then we compute a convex polyhedron
K(I) € Wh(S(1))
satisfying conditions (5), (6), (7) below; after which, we can respond to queries as
n (8). The polyhedron K(I) satisfies the following conditions:
(5) K(I) is defined at most Cq(€e) constraints.

(In particular, the number of constraints in (5) is bounded independently of
the number of constraints in (3).)

(6) Each P € K(I) is adapted to 1.

(7) Let F € C2(2Q(1)) with norm < 1. Suppose that IS(i)(F) is adapted to I, and
that for each I’ € RO(I) there exists A;, € R such that IS(TI)(F_}‘TIQZ) e K(I").
Then Jg 3, (F) € K(I).

Conversely, we can answer queries, as follows:
(8) Given p € (1), we can compute P! € K(I') and A1, € R for each I' e RO(D),

such that there exist functions F,F*" € CZ(Q(T)), satisfying the following
conditions:

@) [FllezqapsT+e

(b) [0%Fer| < e1°°|1|2 l«l on Q(I), for |er] < 2.

(c) Fo" =0 at z;$h (1) and at [P (1).
(d)
(e)]

,Fe =0 at Zleft() and at Zrt(i)-
F + Ferr) i;

476 C. FEFFERMAN

(f) Js(1)(F—Apez) = PT for each I € RO(T).
(2) If T is of type A or B, then F = f and F&" = 0 at leeft(i) and at ert(i)
(h) If T is of type C1, then F = f and F&" = 0 at z,(I).

The work and storage used to compute K(I), and the work and storage used to
answer a query as in (8), are less than C(e, NC). We make no calls to the @-Oracle
here.

Ezplanation: Set

T'erRO(I)
Then S* Q(I), and #(S*) < C(e).
Let V be the vector space of all families of real numbers (A;,)3, erO(T) indexed
by the nodes I’ € RO(I). (If RO(I) is empty, then V = {0}.)
Applying Algorithm AUB4 from Section 6, we obtain a convex polyhedron

Kiug € Wh(S"), with the following properties (see the Remark after the expla-
nation of that algorithm):

(9) Kiyg is defined by at most C(e) constraints.
(10) Let F € C?(2Q(I)), with norm < 1. Then Js+(F) € K} -

(11) Let P* € K. Then there exists F € C2(Q(I)) with norm < 1+ €, such
that Js+(F) = P+.

The work and storage used to compute KXUB are at most C(e). We define
K+ to be the set of all (P, (At)iero(m)) € Wh(ST) @V, satisfying the following
conditions:

e PP e Ky

° P+’5(

i) is adapted to L

o ﬁﬂS(i') —?\i,]S(i,)(ez) € K(I'), for each I’ € RO(I).
Also, we define

(12) K={P* s, : (", AN ierom) € K1

Then KT+ € Wh(S*) @ V and K € Wh(S(I)) are convex polyhedra defined by at
most C(e, NC) constraints. (See (3).)

We can compute KT and K using work and storage less than C(e, NC).

Note that, by definition of K¥* and K, we have

(13) Each P € K is adapted to I.

Moreover, let P € K be given. By definition of K, K™+, we have P =]3+|s
) h

for some P € Kiyg- From (11), we obtain a function F € C?(Q(I)
<1+ €, such that Js+(F) = ﬁ*, and consequently, IS(T)(F) = §+IS(T)

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 477

Thus, we have proven the following:

(14) Given P c K, there exists F € CZ(Q(T)) with norm < 1 + €, such that
Is(i)(F) =P.

We can now apply Algorithm SCSWF, with inputs I,K,C(e,NC) in place
of I, K,NC. (See Section 12.) Note that assumptions (4), (5), (6) of that algo-
rithm are satisfied here, thanks to (13) and (14).

Algorithm SCSWF computes a convex polyhedron K ¢ Wh(S(I)); after the
computation of K we can answer queries, as explained below. The polyhedron K
satisfies the following conditions:

(15) K C K.
(16) K is defined by at most C(e) constraints.

Moreover, we can answer queries, as follows:

(17) A query counsists of a Whitney field PeK.

(18) The response to a query F:" consists of a Whitney field Pe K, such that there
exists a function F&" € C2(Q(I)), for which the following hold:

a) Js 1) (F7) = P —P.

(C Ferr = 0 at Z‘Ieft() and at Zrt (I)

(a)
(b) [0%FeT| < e100|1]2= 1l on Q(), for |of < 2.
)
(d) 02F" =0 at Ziefe (1) and at zy(I).

In particular, given P € K, there exist P € K and F € CZ(Q(i)) satisfy-
ing (18)(a)-(d).

The work and storage used to compute K from K, and the work and storage
used to answer a query as in (17), (18), are less than C(e, NC).

Finally, we set

(19) K() = {f; ekK: E is adapted to 1.

Thus, we have computed K(I), as promised in Algorithm MOK.

Let us check that K(I) satisfies (5), (6), (7), and then pass to the query algo-
rithm (8). First of all, (5) is immediate from (16) and (19); and (6) is immediate
from the definition (19).)

We check (7). Thus, let F € CZ(ZQ()) with norm < 1. Suppose that]S(i)(F)
is adapted to I, and that Js i (F—Aje2) € K(I') for each I’ € RO(I). We must
show that Jg 1, (F) € K(I).

From (10), we see that the Whitney field P+ = Js+ (F) belongs to KAius-

478 C. FEFFERMAN

Also, ﬁ+|5(i) =]S(i)(F) is adapted to i, by assumption. Furthermore, for each
I’ € RO(I), we have

P+|S(i') —7\1,]5(1,)(62) =]S(T’)(F) —7\1,]5(1,)(62) =]S(i,)(F—?\i,ez) € K(i/),

again by assumption. Comparing the above remarks with the definition of K**, we

see that (Js+(F), (A)i cro) € K** and consequently, (12) and (15) imply that
IS(i)(F) € K. Since also IS(i)(F) is adapted to I (by assumption), we see from (19)

that]S(T)(F) € K(I), completing the proof of (7).

Thus, we have proven (5), (6), (7) for our polyhedron K(I). One checks easily
that the work and storage used to compute K(I) as above are at most C(e, NC).
Moreover, we have made no use of the @-Oracle here. We now provide the query
algorithm (8).

Thus, let P € K(I) be given. By definition (19), we have
(20) P € K, and

(21) P is adapted to 1.

Applying the query algorithm (17), (18), we compute a Whitney field P € K such

that there exists Fe" € C2(Q(I)) satisfying (18)(a)—(d). Let us fix such an Fe.

The work and storage used to compute P are at most C(e, NC). We now recall
the definition (12). By routine linear programming, we can compute a point

(22) (]3+7 (Ai’)i'ERO(i)) S K++, such that
(23) P+|Sm =P.
Since K** is defined by at most C(e, NC) constraints, the work and storage used

to compute the point (22) are at most C(e, NC).
Comparing (22) with the definition of K**, we see that the following hold:

(24) P+ € K}yp-

(25)]3+~5(is adapted to L

I

(26) ﬁ+|s(i/) —ApJs i (e2) € K(T') for each I’ € RO(I).
Let us define

(27) PV = P[4, — ATgqy(ea) for I’ € RO(T).

Thus, Pl ¢ K(I') for I’ € RO(I), as asserted in (8). Since the IS(i/)(QZ) have been

precomputed by Algorithm MMBT, the work and storage used to compute the pr
from (27) are at most C(e).
Next, note that (11) and (24) show that there exists

(28) Fe C2(Q(I)) with norm < 1+ ¢, such that
(29) Js+(F) = P*.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 479

Thus, starting from our given P € K(I), we have computed Pl K(T) and
A; € R, for each I’ € RO(I); and we have defined the functions F,F" € C2(Q(I)).

One checks easily that the work and storage used to compute the P and A

from P are at most C(e,NC). Moreover, we have made no calls to the @-Oracle
here. L

It remains to show that P,P!, A;, satisfy (8)(a)-(h). Let us check that these
assertions are correct. In fact, (8)(a) is just our result (28); and (8)(b), (c), (d)
hold, because our F*" satisfies (18)(b), (¢), (d). To check (8)(e), we note that

(by (29)) 5

P (]3 o]—)') (by (18)(a%and (23)) =

]s(i)(F+Ferr) :P+|S(i)+]s(i)(Ferr) P.

Thus, (8)(e) holds.
Next, (27) and (29) show that

— —'il
Jsin(F—Apez) = PJF\S(T’) —AiJsiinle2) =P

for each I’ € RO(I), proving (8)(f).
Finally, to check (8)(g) and (8)(h), we argue as follows: From (25) and (29),

we see that Jg) (F) is adapted to I. From (21) and (8)(e) (which we have already

proven), we see that IS(T)(F + Fe") is adapted to I. Assertions (8)(g) and (8)(h)
follow trivially from the above remarks and the definition of “adapted”.

This completes our explanation of Algorithm MOK.
Algorithm MAK. (“Make All K’s”): For each I € T9t(1), we compute a convex
polyhedron K(I) € Wh(S(I)) satisfying the following conditions:
(30) K(I) is defined by at most C(e) constraints.
(31) Each P € K(I) is adapted to .
(32) Let F € CZ(ZQ(T)). Suppose that the following hold:
(@) | Fllcz2q(1))< 1— Cie (for large enough Cy).
(b) F=fon ENQ(I).
(c) 02F(ziere(I)) = E.
Then J 1, (F) € K(I).
Moreover, after we have computed all the K(I), we can answer queries as follows:

(33) A query counsists of a Whitney field Pl e K(I).

(34) The response to a query (33) consists of a family of Whitney fields Pl ¢

K(I) and real numbers 2\(1) (all j e T9(1)), such that there exist functions
Fy, 5™ e C2(Q(I)) (all T € T¥st(T)) for which the following hold:

(a) A(I) = 0 and P! is the given Whitney field from (33).

480 C. FEFFERMAN

Moreover, for each I € T@”St(i), we have:

() Js1)(Ff +F") =
() Jsi)(F + NI —)\(i Jle2) = P! for each I’ € RO(I).
(d) [Fy ||c2 1))<1+€

e ‘acherr‘ < €100|I|2 lel on Q() for || < 2.

)

)

(e)

(f) F" =0 at z (1) and at z;(1).
)
)
)

(g azFe" =0 at ziere(I) and at z.(I).
(h) If T is of type A or B, then Fi = f and F§" =0 at z,eft(i) and at zft(f).
(i) If T is of type C1, then F; = f and F§" =0 at zi(1).

In particular, for any Pl ¢ K(I), there exist Pl ¢ K(I), A(I) € R and func-
tions Fy, FS'", satisfying (34)(a)—(i). i

The work and storage used to compute all the K(I), and the work and storage
used to answer a query as in (33), (34), are at most C(e)N. We make no calls to
the ¢-Oracle.

Explanation: In our explanation of Algorithm MAK, the expression Cq(e) will
always denote the constant Cq(e) in (5).

By bottom-up recursion in the tree Tdist(), we define a convex polyhedron K(I)
for each I € T9st(I), such that

(35) K() c \/Vh(S(i)) is defined by at most Cq(e) constraints, and each P e K(I)
is adapted to I.

Given I € T9st(I), we make the inductive assumption that such polyhedra K(T)
have already been computed for all I’ € RO(I). Taking NC := C;(€), we see that
assumptions (1)—(4) hold.

Accordingly, we perform Algorithm MOK, to produce a polyhedron K(I) c
Wh(S(I)), again satisfying (35), as well as (7) and (8). Thus, we compute all the
K(I) (I € T¥t(1)), and we know that (30), (31) are satisfied. Note that the constant
C(e) in (30) does not grow as we proceed recursively up the tree Tdist().

The work and storage used to compute a single K(I) from Algorithm MOK are
at most C(e). Since Td'St() has at most CN nodes, the total work and storage used
to compute all the K(I) are at most C(e)N. Moreover, once we have computed all
the K(I), we can answer queries as follows, for each I € T9st(I). (See (8).)

(36) Given PI € K(I), we can compute Pl ¢ K(I') and A(L,T') € R for each
I’ € RO(I), such that there exist functions

a) Fi, FE" e C2(Q(I)), satisfying the following:

() IR

(b) Jg(1,(Fi + Fe") = PL.

() Js(i (F; — M1, T)e2) = PT for each I € RO(I).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 481

(d) | Fi llez <T+e
(e \a“Fe"\ < 19011271l on Q(I), for |af < 2
(f) F"=0at z,r:g(l) and at zrep(I).

The work and storage used~to produce the P and ?\(i, ') from Pl are at
most C(e). Furthermore, our K(I) satisfy (7).

Our next task is to prove (32). To do so, let A be a large enough constant, to
be fixed below. (Later, we will take A to be a large enough controlled constant C’,
but not yet.) We recall that each I € T4t(I) satisfies I C 1 C Ip. (See (0).)

By induction on I € T9t(I), we will prove the following:
(37) Let F € C2(2Q(1)). Suppose that the following hold:
() | Fllc2qin< 1= Aemy.
(b) F=fon ENQ(I).
(¢) d:2F(zier(I)) = &.
Then J 5, (F) € K(D).

Indeed, let us fix I € T9st(I) and assume that (37) holds for each I' € RO(I). We
will then prove (37) for the given I.

Thus, let F € C?(2Q(I)), and assume (37)(a), (b), (c). From (37)(a) and the
Bounded Distortion Property, we have [0%F| < C on 2Q(I) for |« < 2.

_ Since also Q() has diameter at most C|I, and since Z|eft(I) ziese(I') € € Q(D) for
I’ € RO(I), it follows that [02F(zier (1)) — 02F(ziere (I'))| < C|I|. Hence, by (37)(c),
the number

(38) Ay == 02F(ziere(1") — &

satisfies

(39) A7l < C|I| for each I’ € RO(I).

Now fix I’ € RO(I), and define

(40) F:=F —Aje2 € C2(2Q(T).

We recall that e; =0 on E, 02e2 =1 on ZQ(T’), and
(41) €2 e 2 < Cellol ™.

(See (22)—(24) and (31) in Section 8.)

482 C. FEFFERMAN

Consequently,
(42) F=f on ENQ(I), thanks to (37)(b); and
(43) 0:F(zier(I')) = &, by (38) and (40).
Moreover, from (37)(a), (39), (40) and (41), we obtain the estimate

~ Aelll |, Celll
(44) [Fllc2qinsT— |1€0| + |fo| :

If we take A to satisfy
(45) A > 2C, with C as in (44),

then we obtain from (44) the estimate
1
(46) || F le2pQin<1— AeI_

However, since T € RO(I), we know that I’ is a proper dyadic subinterval of I, and
therefore |I'| < % [I]. Hence (46) yields

~ A ‘ill
(47) H F ”CZ(ZQ(T’))S T— \fo\ .

We now pick A to be a controlled constant C’, large enough to satisfy (45).
Thus, (47) holds.

Our inductive assumption tells us that (37) holds for I'. Moreover, the func-
tion F satisfies (37)(a), (b), (¢), with I’ in place of I, as we see from (42), (43)

and (47). Consequently, Jg i, (~) e K(I'), i.e

(T
(48) Js(1)(F—Ape2) € K(I'),

(See (40).) We have proven (48) for each I’ € RO(I).

Recall that we have assumed that F € C2(2Q(I)) satisfies (37)(a), (b), (c).
Comparing the definition of “adapted to I” with (37)(b), (c), and see that

(49) Js(1)(F) is adapted to L.

Also from (37)(a), we have

(50) [IF llcz 2q(n<T-

Recall that our polyhedron K(I) satisfies (7). Therefore, from (48), (49), (50),
we conclude that

(51) Jg1)(F) € K(D).

We have thus shown that every F € C?(2Q(I)) satisfying (37)(a), (b), (c) must also
satisfy (51).
This completes our inductive proof of (37).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 483

Since we have picked A in (37) to be a controlled constant C’, and since 11 < |1o|
for each I € T9st(]), assertion (32) now follows from (37). We take up the query
algorithm (33), (34).

Let P! € K(I) be given, as in (33). By top-down recursion on I e T9Y(]), we
compute for each such I a Whitney field Pl e K(I) and real numbers A(I, I') indexed
by I’ € RO(I). Also, for each such I, we define functions Fi, B e CZ(Q(T)).

The recursion proceeds as follows: Suppose we have already computed P! for
a given ie Tdist(1). Applying the query algorithm (36), we compute Pl K(I)
and A(I,I') € R for each I € RO(I). These are such that there exist functions
Fi, F§" € C%(Q(I)), satisfying (36)(a)—(i). We fix such functions F;, Fe.

Since we are given ~15)I~ to start with, the above recursion computes all the pI
(for T € T4=t(1)) and A(I, 1) (for I € T9st(I) and I’ € RO(I)), and defines all the Fi,
Fer (for 1€ TsH(T)).

Each application of (36) uses work and storage at most C(e). Since the tree
Tdist(I) has at most CN nodes, the total work and storage used to compute all the
P! and AI,T') are at most C(e)N.

Our Whitney fields PT, numbers A(I, I'), and functions Fi, F§" satisfy (36)(a)-(i).

Comparing (36)(a)—(i) with (34)(a)—(i) we see that (34)(a)—(i) hold, provided

the real numbers A(I) (I € T9t(I)) satisfy the following conditions:
(52) A(I) = 0.

I
(53) M) —A(I) = AL, 1) for I € TIst(T), I € RO(I).

However, since the A(I, ') have already been computed, an obvious top-down
recursion in the tree T9st(I) computes numbers A(I) (all I € T9st(1)) satisfying (52)
and (53).)

The work and storage used to compute all the A(I) are at most CN.

Thus, we have computed P! € K(I) and A(I) € R, for each I € T9st(I); and

we have defined functions Fy, F§" € C2(Q(1)), such that (34)(a)-(i) are satisfied.
Moreover, the work and storage used to perform the above computations are at
most C(e)N.

This completes our explanation of the query algorithm (33), (34). Our expla-

nation of Algorithm MAK is also complete.

14. Local interpolants

In this section, we adopt the notation, assumptions and boiler-plate constants of
Section 8. We suppose we are given an interval

(0) 1C Iy (dyadic), with #(51NE) > 2.
We suppose that we have carried out Algorithm MMBT from Section 9, and the

one-time work of Algorithm MAK from Section 13. Thus, for each node I e Tdist(]),
we have computed the convex polyhedron K(I).

484 C. FEFFERMAN

Finally, we suppose that we are given a Whitney field
(1) Pl e K(I).

Using the query algorithm within Algorlthm MAK, we obtain from Pla family of

Whitney fields Pl and real numbers A(I) (each I e T9st(1)), for which there exist
functions Fg, F§" € C2(Q(I) (each I € T9st(1)), such that the following hold:

(2) For I =1, we have A(I) = 0 and Pl = Pl as in (1).
For each I € T9st(T), the following hold:

Pl e K(I); in particular, Plis adapted to L.

Jsq (Fi +Fe) = PL.

Js (i (Fi + AI) — A(T")]ez) = PV for each I € RO().

I Fillczon=T+e.

Ferr =0 at er:g() and at Zrep(I)-
02F" =0 at Ziese (1) and at zq(I).
(10

(11 If T is of type C1, then F; =fand F" =0 at zi(1).

)
)
)
)
7) [0Fer| < €021l on Q(I), for |l < 2.
)
)
) If T is of type A or B, then F; =fand " =0 at zlseft(i) and at zft(i).
)

Fix functions Fj, FE" as above. For each I € Telbal(T) we will define a function
Ff € C?(Q(I)). To do so, we recall from Section 7 the following facts about the
trees Tglobal(i)’ TdiSt(i), TIOC(I)I
(12) The children of a given node I in the tree T9st(I) are precisely the intervals
I' € RO(I).
(13) Telobal(T) {1} is the disjoint union of T'¢
(14) Let I € Tlo¢(I) N Tloc(1'), with I, T’ € Tdist(
Then either I =T’ € RO(I), or I =1 € RO(T').

(15) Let I be an internal node in the tree Telobal(T) “and let I , I be its two dyadic
children. Then there exists I € T9st(I) such that I, 1;, I, € Toc(1).

1) ~{I} over all T e T9ist(]).
)

(
I) distinct.

In particular, from (13), (14), we obtain the following:

(1
(16) For any I e T9t(T), we have T9st(T) N T'¢(T) = {I} U RO(I).

(I
(17) Any I € T&lob2!(T) T9ist(T) belongs to T°¢(I) for one and only one I € Tdst(I),

We are now ready to define the functions Ffﬁ. Let I e Telobal (),
Case 1: If I € T9st(T), then we define Ff¥ = F; + F¢" + A(I)ez

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 485

Case 2: Suppose I ¢ TdiSt(). Then I € T¢(I) for one and only one I € T9st(I). We
deﬁneF?&—[+ A(I |Q

In either case, we have

(18) F¥ e C2(Q(I)) for I € Teloba!(T),

Observe that we have defined Ff for each I € T&°P2/(), but we haven’t computed it.
There are an uncontrolled number of nodes I € T#°%2(I), so we cannot afford to
make computations for each such I.

The goal of this section is to establish the basic properties of the functions Ff
To do so, we first prepare to estimate the numbers A(I) in (2)—(11). Recall from (3)
and the definition of “adapted” that the following hold, for each I € Tdist(]):

(19) val(PL z) = f(z) for z = z,r:g(i) and for z = zI®°(I).

(20) val(2:P7, zin (1)) =

(21) val(ﬁi, z) = f(z) for z = z,eft(i) and for z = zrt(), if T is of type A or B.
(22) val(lﬁ,z) f(z) for z = z,(1), if I is of type CI.

We are ready to estimate the A(I).

Lemma 1. We have

(23) A(D) = MI)| < ClT| for each T € T9(1) and I' € RO(I).
Moreover,

(24) IAMD)| < C[| for each T € Tdst().

Proof. Let T € T9st(I), T' € RO(I). Since d,e; = 1 (see Section 8), we learn
from (5) and (20) that
£ = 02F;(ziere(1') + (D) — A(T')I.
Similarly, (4), (9) and (20) yield & = 02F; (ziefe (1)). Consequently,
(25) MD) = A(I') = 02F; (ziere (1)) — 02F; (ziere (1))

Recall that zieq (1) € Q(), ziese(I') € Q(" c Q(i), and that Q(i) has diameter less
than C[I|. Hence, from (6), we have

(26) 102F; (ziefe (1)) — 92F; (ziere(1'))] < CIII.

Assertion (23) now follows from (25) and (26).

We turn to assertion (24). Let I € Tt (1) be given. Passmg from the root I
down to I in the tree Td'St(), we obtain a finite sequence Io, Iy,. IL, with Iy = 1,
It =1, and Iy € RO(Iy) for 0 < ¢ < L.

In particular, I¢+1 is a proper dyadic subinterval of ie, hence

(27) ‘i€+1| < %|iz| for0<{<L.

486 C. FEFFERMAN
Moreover (21}) tells us [A(Igs1) — A(Le)| < ClI¢| for 0 < € < L. Consequently,
since A(Io) = A(I) = 0 by (2), we have
- - by (27)) . -
ADI=AI)I< Y M) =AM <C Y \Iz| < Clol =1,
0<e<L 0<e<L
proving (24). O
Lemma 2. For each I € T8%(I) we have
(28) || F?& lcz(Qu)< 1+ Ce.
Proof. Let T € T9t(T). Then I C I C I (see (0)). From Section 8, we recall that
ez llcziqin< Cello|~". Hence, by (24),
(29) | ADez [|c2 g1y < Celll - [Tol 7" < Ce.
Turning to (28), we proceed by cases.

Case 1: Suppose I € T9(I). Then since |I| < [Io| < Ce (see (3) in Section 8), we
learn from (7) that

(30) I F{" llc2 @< Ce,
while (6) yields
B1) | Frllczioup<T+e.

Since F# =Fr + F" 4+ A(I)ez in this case, (28) follows from (29), (30), (31).

Case 2: Suppose I ¢ TdiSt(D. Let I be the unique node of Td'St(I) such that
I € T°(I). Then Q(I) C Q(I), and, as in Case 1, we have || F; ch n<1+e,

and || A Des ||C2 in< Ce. Since

Ff = [F +ADe2l| o

in this case, we again have (28). O
Lemma 3. For each I € T8%(I) we have

(32) F# =f at zj (1) and at zs°(1).

left

Proof. Recall that e; = 0 on E, and that z; 3 (I), z"(I) € E. To check (32), we
proceed by cases.

Case 1: Suppose I € T9=t(I). Then, for z =z (1) or z = z;t"(1), we have
i (2) = Fi(2) + F{"(z)+ (Dez(2)
4
Thus, (32) holds in Case 1.

(by (19))

val(ﬁl,z) f(z).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 487

Case 2: Suppose 1 ¢ Tdist(). Let I be the one and only node in T9st(I) for which
I € Tloc(I). Then I € Tloc(T) ~ {I}, and consequently, I is of type A or B, and
2 (1) = z3, (1), and zigP(1) = z5,(1). (See (14) in Section 7 and (6), (7), (10), (11)
in Section 9.) We know that zleft(l), z5(1) € E, hence ey = 0 at those points. By
definition, at z = z; 2 (I) =z, (1) and at z= zrep(l) = z5(I), we have

Ff (2) = Fi(2) + MDea(z) = Fy(2) = f(z),
thanks to (10). Thus (32) holds also in Case 2. O

Lemma 4. Let I € T9(1), and let I € T°(1). Then, for || < 1, we have

(33) [0%(FF — [F; + A(Dea))| < Ce'0012 1l on Q(T).

Proof. We proceed by cases.
Case 1: Suppose I € T9st(I). Then by (16), either I = I or I € RO(I). By definition,
we have F?& =Fr + F" + A(I)e; in that case. Therefore, if I = I, then (33) follows
at once from (7). On the other hand, suppose I € RO(I). Then
(34) Jsn) (Ff — [Fy + AMDeal) = Js(y (Fr + K™ + A(Dez) — Jsqr (Fy + MDe)
= Js (F1 + F¢7) = Js o) (Fy + A(D) = A(D)lez) =0,
since Js(n) (Fr +F§) = P! by (4), and Js(1(F; + A1) — A(Dle2) = P! by (5).

Also, from (6), (28) and (29), we see that

Recall from Section 9 that A(I) € S(I), and therefore any given point of Q(I)
lies within distance Ce'%C|I| of S(I). Therefore, (33) follows from (34), (35) and
Taylor’s theorem. Thus, (33) holds in Case 1.

Case 2: Suppose 1 ¢ T9st(I). Then, by definition, F¥ = [F; + A(Des] lo(1)- Hence,
the left-hand side of (33) is zero, and thus (33) holds tr1v1a11y in Case 2. O

Lemma 5. Let I € T&°%(I) be an internal node, and let I be one of the two
dyadic children of 1. Then, for || <1, we have

(36) 10%(Ff —F7) < Ce' 0112~ 1ol op Q(I').

Proof. By (15), there exists I € T9st(I) such that I,I’ € T'(I). By Lemma 4, we
have [3%(F" — [F; +A(I)e2])| < Ce'®|12~1* on Q(T), and [0%(Ff, - [F; +-A(D)e2])| <
Ce!01)2~ 1ol on Q(I'), for |«| < 1. Estimate (36) now follows trivially, since

V| = 31l and Q(I') Q(I). O

Next, we discuss azF?é at the points zes (I), z(I). Recall that 9,e, = 1. (See
Section 8.)

488 C. FEFFERMAN

Lemma 6. Let I € T9t(I), and let I € T°<(I). Then
(37) azF# = 07F; +)\(i) at ziere (1) and at z(1).

Proof. We proceed by cases.
Case 1: Suppose I € T9t(I). Then by (16), either I = TorIeROM. If I =1,
then by definition, F# =F;+ F‘%” +A(I)e2. Hence, at zier(I) and at z.(I), we have
0:FF = 0,F; + 2FS + A(I) = 22F; + A(I) by (9).
Thus, (37) holds for I = I. On the other hand, suppose I € RO(I). Then by
definition, F?& =Fr+F"+A(l)ez. For z = zier(I) or z = zx(I), we have
(38) 02F7 (z) = 02(F1 + F&™)(2) + A(I) = val (92P,2) + A(I), thanks to (4).
Moreover, (5) yields
(39) 02F;(z) + IMI) — A(1)] = val (3,P, 2).
Combining (38) and (39), we obtain (37). Thus (37) holds in Case 1.
Case 2: Suppose I ¢ T9st(I). Then by definition, F/* = [F; + ?\(i)ez]’Q(U, from
which (37) follows trivially.
Thus, (37) holds in all cases. o

Lemma 7. Let I € T&%/(1) be an internal node, and let 11,15 be its two dyadic
children, with Iy to the left of 12. Then

(40) 32F] = 02F] at zier(1) = ziewe (1),

(41) 32F] = 02F}. at zu(I) = zx(I2), and

(42) 3,Ff = 0:F], at za(T1) = zie(12).

Proof. By (15), there exists I € T9t(I) such that I,I;,I, € T¢(I). Applying

Lemma 6, we learn that azF?é = 0,F; + AMID) at zier (1) and at ze(D); azFﬁ =

3:2F; + M) at zier(I1) and at ze(I1); and azFﬁ = 0,F; + A(D) at zier(I2) and
at Zrt(IZ)- Since Zleft(l) = Zleft(h)a Zrt(I) = Zrt(IZ)a and Zrt(h) = Zleft(IZ)a we
obtain (40), (41) and (42). O

Next, we compare each F# to the function Fgude from Section 8. Recall from
that section that Feuge € C*(R?), and that:
(43) Ferude = f on E;
(44) || Ferude |lc2(r2) < C; and
(45) ‘aZFcrude - £| < C€71 ‘IO| on E.

Lemma 8. Let I € T&°%(1), and let zo € Q(I). Define
(46) G = Ff' — [Ferude + [02F (20) — 92Fcrude(20)]e2) on Q(1). Then
(47) [0%G| < CII* 1™ on Q(I), for || < 2.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 489
Proof. We start by estimating [azFf(zo) — 02Fcrude(20)]. Since zih(I) € E, (45)
gives

(48) 102Fcrude (zighy (1)) — & < CeMIol.

Also, zif (1), zo € Q(I), and

(49) diam Q(I) < C[1|.

Hence, (44) yields

(50) 192Fcrude (z0) — 02Fcrude (zigh (1)) < CIII.

From (48) and (50), we obtain

(51) |92Ferude(z0) — & < Ce™ 1o, thanks to the inclusions

(52) TC1C I (see (0)).

On the other hand, there exists I € T9st(I) such that I € T'¢(I). Lemma 4
then tells us that

(53) [92Ff — 2F; — A(D)| < Ce™|1 on Q(I).
(Recall that 0,e2 = 1.))

Moreover, (3) and (4) imply 92 (F; +F‘if”) = & at zier(I); hence, by (9), we have
(54) 2F;(ziere(D)) = &.

Since zie (1) € Q(T) and zo € Q(I) C Q(T),Vwith diam Q(T) < C|1], we learn from (6)
that [02F;(z0) — 02F;(ziere (1)) < ClI| < C[I|. Together with (54), this gives

(55) 102F;(z0) — & < CII.
From (53), (55), Lemma 1, and (52), we obtain the estimate
(56) [02FF (z0) — &l < CII| < Cllol-

Combining (51) and (56), we obtain our basic estimate for [621:}&’é (z0)—02Fcrude(z0)],
namely

(57) 102Ff (20) — d2Ferude(z0)] < Ce~ Lo,
On the other hand, we recall from Section 8 that || ez [[c2(q(1))< Cello/™'.

Therefore, by (57), we have || [azF#(Zo) — 02Fcrude(z0)1€2 [|c2 (1)< C.
Together with Lemma 2, estimate (44), and definition (46), this tells us that

(58) || G llc2(@un = C.

Next, we recall that z;3f (I), z;; (I) € E; hence, e; = 0 and Feryge = f at those
points. Recalling also Lemma 3 and definition (46), we conclude that

(59) G =0 at z £ (1) and at z;"(1).

left

490 C. FEFFERMAN
Also, since 9e; = 1, definition (46) gives 92G(zo) = 0; hence, by (49) and (58),
we have:
(60) [02G(zigh(1)] < CI1J.
Let us write
(61) zigh (1) = (%1,%2) and z:P(I) = (%1,%2).
From Section 9, we recall that X2 = @(x1) and X2 = @(X1). Moreover, from
Section 8, we recall that |@’| < C; hence,
(62) %2 — X2l < IziR (1) — 2" ()] < Clxy — %] < CIIJ.

(The last inequality in (62) follows from (49).)

Also, we recall from Section 9 that the points z.f; (I) and z;"(I) are distinct.
Hence, (62) yields

(63) %1 #%1.
rep

Our plan is to estimate 91 G(zgf, (1)) by comparing G(z;"(I)) with its Taylor ex-

pansion about zjoh (I). From Taylor’s theorem and (58), we see that

Gz (1)) — [G(z& (1) + 91G(zih (1)) - (X1 —%1) + 02G(zi (1)) - (X2 —%2)]| <
< Clxi — %11 + Clx2 — %2/

Hence, by (59), (60), (62), it follows that

01G(zR (1) - (%1 — %) < 102G(z R (1) - (X2 — %2)| + C[R1 — %1 |* + ClX2 — %2

< ClI[- ClR1 — x| + Clx1 — x> + ClRy — x2* < C'[I] - X1 — %

This in turn tells us that

(64) 101G(zf (D) < C1,
thanks to (63).

From (58), (59), (60), (64) (together with Taylor’s theorem and (49)), we con-

clude that |G| < C[I|?, |[vG| < C|I], and |v2G| < C on Q(I).
Thus, (47) holds. O
We can use Lemmas 7 and 8 to give a crude estimate for a"‘(F F?,E,)
Q(I') N Q(I"), for certain I’,1” € Te&lob2!(]).
Lemma 9. Let I',1” e T&"°%(1). Suppose that the right endpoint of I coincides
with the left endpoint of 1”. Then

(65) [9%(Ff, —F{,) < C(T1+ 1")*>7'* on Q(I') N Q(1”), for |o < 2.

Proof. Let xo = right endpoint (I') = left endpoint (I”). Note that I’ lies to the
left of 1”7, Let I be the least common ancestor of I’ and I” in the tree T&°P2().

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 491

Descending from I to I’ in that tree, we obtain a finite sequence Iy, I%,..., I}, €
Telobal(1) | such that

(66) Iy =L, I}, =T', and Iy, ; is a dyadic child of Ij for 0 < € < T".
Similarly, we obtain 14,17, ..., 1/, € T&°2!(T) such that
(67) Iy =1L I{, =1", and I{,; is a dyadic child of I{ for 0 < ¢ < L”.

We prove a few elementary properties of the Ij, Ij. First, we show that

(68) Ij is the left dyadic child of I, and I is the right dyadic child of I.

Indeed, (66) and (67) tell us that I, I7 are dyadic children of I. We have
I # I, since I is the least common ancestor of I’ and I”. Therefore, (68) holds,
unless we have

(69) I is the left dyadic child of I, and I} is the right dyadic child of I.

However, (69) cannot hold, since I' C I}, I” C I{, and I’ lies to the left of I”. This
completes the proof of (68). Next we check that

(70) xo is the right endpoint of I}, for 1 < ¢ <L’ and
(71) xo is the left endpoint of I, for 1 < ¢” <L".

To see (70), (71), we note that Ij, C Ij and I}, C If for 1 < <L, 1 <" <L".
Hence (69) shows that

(72) T}, lies to the left of If,.

On the other hand,

(73) X0 c (I/)closure n (I//)ClOSUI’e C (Izl)closure N (I/e/”)closure.

Assertions (70) and (71) follow from (72) and (73).
From (66) and (70), we see that

(74) Tj,, is the right dyadic child of Ij, for T <€ <T'.

Similarly, (67) and (71) yield
(75) 1, is the left dyadic child of If, for T < ¢ < 1",

This concludes our discussion of the elementary properties of the I, If.

Next, we bring in Lemma 7. From (70), (71) and the definition of zje (1), (1)
in Section 9, we see that the points z.(Ij)(1 < € < I') and ziere (1) (1 <€ < L")
are all equal. Let zp denote this common point.

From (74) and conclusion (41) of Lemma 7, we learn that

(76) 32F7 (z0) = 02FF (z0) = -+~ = 02FF (20).
1 2 L/

492 C. FEFFERMAN

Similarly, (75) and (40) yield the equalities
(77) azFﬁ/ (z0) = azF?Z (zo) == azF?Z/N (zo).

Moreover, (68) and (42) tell us that
(78) aZFﬁ (Zo) == azFﬁ/ (Zo).

In view of (76), (77), (78), we have azF?fU (z0) = OZF#L/” (zo). That is,

(79) 32Ff (z0) = 02F}, (20), where zo = 2. (I') = ziege (I”).
(See (66) and (67).)
We now bring in Lemma 8. Note that
(80) zo =zn(I') = ziere (I”) € Q(I') N Q(I").
Hence, Lemma 8 tells us that

(81) 10%(F}; — {Ferude + [02F} (z0) — 82Fcrude(z0)le2})l < CII2~1l on Q(I'), for
o < 2.

Another application of Lemma 8 (and (80)) yields the estimate

(82) [0%(F7, — {Ferude + [02F7 (20) — 02Fcrude(20)le2})| < CII”[21% on Q(1”), for
loe| < 2.

The conclusion (65) of Lemma 9 follows at once from (79), (81) and (82). O

From Lemma 5, we can sometimes obtain a sharper estimate for \a“(F?,E — F#,)I.

Lemma 10. Let I',1” € Teba (). Assume I, 1” C T for some dyadic interval T of
length at most €% - (|I'| + [1”|). Then

(83) 10%(Fff —Ff,)l < Ce®® - (I + 1”271 on Q(I') N Q(1”) for o < 1.

Proof. Let I be the least common ancestor of I’ and I” in T#°°P2/(T). Then

(84) 11 < &2 (|| + ")),

Descendipg from I to I in the tree T&°2/(I), we obtain a finite sequence Io, Iy, ..., Iy
€ Te&lba(T) such that Io = I, Ip = I’, and I, is a dyadic child of I, for 0 < € < L.

Note that |Tg| = 27Y1| for each €, and that Q(Io) D Q(I;) D - D Q(Ir) = Q(I').
Lemma 5 gives the estimate

0%(Ff —F)l < Ce"L*'* on Q(I¢i1), for [l <1,0< L < L.
Summing on {, we find that

(85) 10%(F¥ —F#)| < Ce 00112~ 1l on Q(T'), for |a < 1.

Similarly,

(86) [0%(FF —Ff,)| < Ce'[1)2~1ol on Q(17), for |of < 1.

Our desired conclusion (83) follows from (84), (85), (86). O

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 493

Remark. In Lemma 10, we do not assume that the dyadic interval Tis a node of
the tree T&'°b2!(T).

We close this section with two simple observations.

Lemma 11. For the root I, we have

(87) Jsi)(F¥) =Pl (See (1).)

Proof. Since I € T9(1), we have by definition: F? = FI—I—F%*"—I—MI)ez. Recalling (2)
and (4), we obtain (87). O

Lemma 12. Let [€ Tslobal(]), If1 e Tdst(1) and 1 s of type C1, then F# =f
at z(1).

Proof. By definition Ff = Fy + F$" + A(I)es. At z = z/(I) € E, we have e; = 0.
Hence, F#(Z!(I)) = (Fr + F§")(z:(I)) = f(z:(I)), thanks to (11). O

15. Global interpolants

In this section, we adopt the notation, assumptions and boiler-plate constants from
Section 8. We suppose we are given an interval

(0) Ic Iy (dyadic), with #(51NE) > 2.

We suppose that we have carried out Algorithm MMBT from Section 9, Algorithm

JPU from Section 10, and the one-time work of Algorithm MAK from Section 13.

Thus, for each I € T9st(), we have computed the convex polyhedron K(I).
Finally, we suppose that we are given a Whitney field

(1) Pl e k().

Using the query algorithm within Algorithm MAK, we obtain from Pla family of
Whitney fields P! and real numbers A(I), indexed by the nodes I € T9st(I).
In Section 14, we defined a function

(2) Fff € C2(Q(I)) for each I e Talobal(]),
From Section 10, we recall the open set

(3) Q) ={(x1,x2) € R? : xq € IMerer |x; — (x1)| <[]},
and the partition of unity

(4) Z 01 =1 on Q(I), with
IeTgIobal(i)

(5) supp®1 C Q(I) for each I € TelbaI(T),

494 C. FEFFERMAN

Recall that the 01 are defined only on Q(I), and that supp 01 is the set of all

points z in Q(I) such that 01 does not vanish identically in any neighborhood of z.
In this section, we establish the basic properties of the function
(6) F¥:= > oiFf € C2(Q(D)).
IeTglobal(I)
Recall that, in Section 8, we supposed that we are given a real number T, used to

fix a dyadic grid §r. Whenever we speak of a “dyadic” interval I in this section,
or in Sections 10 or 14, our interval I is dyadic with respect to G+.

Recall also, from Section 4, the following definition:

(7) Let t,x1 € R, and let ko, { € Z, with ko > 0. Let T be the interval of length
2o+t in G containing x1. Then we say that (x1,£) is “ko-regular” for G, if
every I € G such that |I] < 2% and 3I 5 x; satisfies I C T.

Definition (7) will enter into the basic properties of the function F#. To see
this, we make the following further definitions:
We fix an integer ko, such that

(8) 2ko=T10 < =1 < 2ko,
For z = (x1,x2) € Q(I), we define

(9) ds(z) =drs(x1) + Ix2 — @(x1)| = drs(x1) +lea(z)l.
(See equation (2) in Section 7, for the definition of &rs(x1).)

Let I € T&°P(1), and let z = (x1,%2) € Q(I). Recall (see (34) in Section 10)
that if z € supp 01, then

(10) X1 € (].O])I and C]é[_s(z) < m < C]é[_s(z).

For the rest of this section, we fix ¢, Cy as in (10).

For z € Q(I), we define an integer {(z) by
(11) 20(=)-1 < Cidrs(z) < 2¢(=),

Thus, whenever z = (x1,%2) € Q(I) and I € T&°() satisfy z € supp 81, we
then have

(12) x7 € (1.01)T and ¢ - 2°®) < |1] < 2%(2).

Lemma 1. Let z = (x1,x2) € Q(I). Assume that either
(13) (x1,8(2)) is ko-regular for the grid G or
(14) 242 +ke 5 1727,

Then there exists a dyadic interval 1, such that for every 1 € T&9(1) satisfying
z € supp 01, we have

(15) T T and 1 < e 2|1

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 495

Proof. First, assume (13). Let T be the dyadic interval of length 250 +¢(2) contain-
ing x7. By assumption (13) and definition (7), we know that:
Any dyadic interval I such that x; € 31 and [I] < 2¢(=) gatisfies I c T.

Hence, (12) shows that any I € T&°P2(I) such that z € supp 8 satisfies I C 1.
Any such I also satisfies |I| > ¢ - 2¢(#) =¢.27*o 1 > c’e[l], thanks to (12) and (8).
Thus, (15) holds for every I € Telob2(T) such that z € supp©;. This proves our
lemma under hypothesis (13).

On the other hand, suppose (14) holds. We take T =1, and check that (15)
hold§ for every I € Telobal(]) sth that z € supp8;. Indeed, any such I satisfies
I C I, simply because I € T&"°ba!(I). Moreover, for such I, (8), (12) and (14) yield

I >c- 243 > c.27% /2] > ¢ - 3721 > €21l

Thus, (15) holds for all I € T&"°P?(I) such that z € supp 8. This proves Lemma 1
under assumption (14). O

Lemma 2. Let z = (x1,x2) € Q(I). Assume that either

(16) (x1,L(2)) is ko-regular for the grid G-, or

(17) 24E+ke 5 1/2]]),

Let I/,1" e T&°ba(1), and suppose z € supp O Nsupp 0. Then
(18) [0%(Fff —F)(2)| < Ce™S|I)1 for |of < 1.

Proof. By Lemma 1, together with Lemma 10 from Section 14, we have

(19) [0%(Ff, —Ffi) < Ce?8 - (|| 4 [1”])2~ 1) on Q(I') N Q(1”) for |«f < 1.
Recalling (5) and (12), we see that

(20) z € supp O Nsupp B C Q(I') N Q(I”), and

(21) 1] < 2¢2) < C|1'|.

Conclusion (18) now follows at once from (19), (20), (21). O

Dropping the assumptions (16), (17), we can still prove a crude version of (18).

Lemma 3. Let z = (x1,x2) € Q(I), and let I/, 1”7 e T&°b(T). If z € supp Oy N
supp 01, then

(22) 9%(Fff —F)(2)] < CIV2 1 for |of < 1.

Proof. From (12), we have c|I'| < |I”| < C|I'|. Hence, without loss of generality, we
may suppose |I”| < [I'|. Thus

(23) 1" < || < CJ1"].
Let I” be the dyadic interval containing I”, of length
(24) 1" =TI.

496 C. FEFFERMAN

Since I',1” € T#°ba(]), we know that |I'| < || and I C I. Thus, I and I” are
both dyadic intervals containing I, and moreover |I”| < |I| by (24). Consequently,
(25) I"c1” 1.

Next, we observe a useful corollary of conclusion (IT) of Lemma BT1 in Sec-
tion 7, namely:

(26) Let I,15,13 be dyadic intervals. If Iy, I3 € Tebal(I) and I; ¢ I, C I3, then
also Ip € Telebal(]).

From (25), (26) we conclude that
(27) 17 € Telobal(]).

Moreover, since z = (x1,x2) € supp 01 Nsupp 01, we know from (12) that
(28) x7 € (1.0NI' N (1.oNI” c (1.oNI' N (1.01T".
Together with (24) and the fact that I’ and I” are dyadic, this implies that either
(a) ' =17, or
(b) The right endpoint of I’ coincides with the left endpoint of I”, or
(¢) The right endpoint of I coincides with the left endpoint of I'.
Consequently, Lemma 9 in Section 14 tells us that Ia“(F#—F#)| < C-(|U|4]17]) 2 e

~ I//
on Q(I') N Q(T'), for |«| < 2. Thanks to (24), this is equivalent to

(29) \a“(Ff’f —F?f,)l < CU)2 1l on Q(I') N Q(I”), for | < 2.
On the other hand, by (25), there exists a finite sequence of dyadic intervals,
(30) Io D11 D D1, such that
(31) Io=1",1p =1”, and Is,; is a dyadic child of I; for 0 < € < L.

In particular,
(32) Q(I") = Q(lo) > Q(I1) >-+- 2 Q(Ir) = Q(I”) and
(33) [Tel =2 YTl =2 Y1 =241 for 0 < L < L.

By (31), together with Lemma 5 from Section 14, we have

[0%(FF —FF)] < Ce'T> 1
4 +1

on Q(ie+]), for |af <1, € < L. Hence, by (32) and (33), we have

|aoc(]:?’; _F#)| < C€100 -27(|I/|27‘“|

Tea

on Q(I"), for 0 < i< L, |a < T.

Summing over £, and recalling (31), we conclude that

(34) [9(FZ, — F,)| < Ce'|1'[2~1*l on Q(I"), for |of < 1.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 497

Now from (29), (32) and (34), we obtain
(35) [0%(F#, — Ffi,)l < CIU|Z 1l on Q(I') N Q(1”), for || < 1.

From (5), we have z € supp8p NsuppOr» C Q(I') N Q(I”). Consequently, the
conclusion (22) of Lemma 3 follows at once from (35). O

Recall that F# is defined by (6), with the 81 and F?& satisfying the following:

(36) Y 0r=10nQ(I).
IeTglobal(i)

(37) supp @1 C Q(I) for each I € Telobal(]).
(38) [0%0;| < C[T| ! for |« < 2, T € Telb2I(]),
(39) 61 >0 for each I € Telobal(]).
(40) Any given z € Q(I) belongs to supp 0 for at most C distinct I € T#°P/(T),
(41) Let I',1” € T#'°bal(T), If supp O N supp 07 # 0, then c|I'| < [1”] < C|I'|
(42) || ¥ llczquy) < 1+ Ce, for T € Teob!(T),
Indeed, (36)—(41) may be found in Section 10, and (42) is Lemma 2 in Sec-
tion 14. (See (3)—(7), (35), (36) in Section 10.)

Recall that [I| < 1 for I € T#°b2/(1), thanks to (0), together with assumption (3)
in Section 8.

The above remarks, together with Lemmas 2 and 3, allow us to apply Lemma
GPU from Section 5. Thus, we obtain Lemmas 4 and 5 below.

Lemma 4. Let z = (x1,x2) € Q(I). Assume that either
(43) (x1,L(2)) is ko-regular for the grid G-, or

(44) 2t=)tko 5 1/2]7),

Then

(45) [J.(F#)l. <1+ Ce.

Lemma 5. For any z € Q(I), we have

(46)]-(F#*)l. < C.

We next investigate how well Js(1)(F#) agrees with the given Whitney field p!
in (1).
Lemma 6. Let P! in (1) be given by
(47) P! = (P*)c(1)-
Then for z € S(I) N Q(I) such that
(48) lea(z)| > €*[1], we have
(49) [0%(F# — P?)(z)| < Ce”®|1]271% for || < 1.

498 C. FEFFERMAN

Proof. Let I e Tg°b!(T). Descending from I to I in the tree T&°P2(I), we obtain a
finite sequence of dyadic intervals Iy D I} D --- D Ij, such that each Ij belongs
to Tel(D), 1) = I, I} = I, and I}, is a dyadic child of I} for 0 < ¢ < L. In
particular, |I}| = 27Y1| for each ¢, and Q(I) > Q(I}) D --- D Q(I}) = Q(I). By
Lemma 5 in Section 14, we have

Q(Ff, —Ff,)l < Cemy)? e
4 41
on Q(Iy,), for |af < 1,0 < € < L. Consequently,
OX(Ff, —Ff)l < Ce'® .27t 1>
on Q(I), for [a] < 1,0 < { < L. Summing over {, we see that
(50) [0%(F¥ —F{)| < Ce' 21! on Q(I), for |of < 1.

Estimate (50) holds for all T € T&'b/(T),

Now suppose z = (x1,x2) € Q(I), and suppose that |ez(z)] = |[x2 — @(x1)] >
e*|I]. Then, for |&| < 1, we have

(51) PX(FF —F#)(z)| =[0%{ Y 01-(F/ —F])}(z)|

I Telobal (1)

<C Y > pYeua)- Y (FF —)
TeTglobal (1) o/ + /' =«
supp 013z

(52) There are at most C terms on the right-hand side of (51). For each of those
terms, we have ¢ [5rs(x1) 4+ [x2 — @(x1)ll <|I| < C-[drs(x1) + [x2 — @(x1)l],
and thus |I| > c|x2 — @(x1)] > ce?[I].

Consequently, for each term on the right in (51), we have

(53) [0%'8;1(z)| < ClI[71¥'T < Ce*[I|71«l while (50) gives

(54) 0" (F¥ —F{')(2)| < Ce'®[[>~1«"! since z € suppO; C Q(I).

Using (52), (53), (54) to estimate the right-hand side of (51), we learn that

(55) \a“(F?& —F#)(2)| < Ce?®|1]2 1% for |« < 1, whenever z € Q(I) and |e2(z)| >
e*|1).

Finally, suppose z € Q(I) N S(I), and suppose that le>(z)| > e*|Il. Recall-
ing (47) and Lemma 11 from Section 14, we see that conclusion (49) follows from
estimate (55). O

Next, we study how F# behaves at the points of E N Q(I).

Lemma 7. F# =f on ENQ(I).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 499

Proof. Fix z€ EN _O.(V)V Let I € T&°P2\(I), and suppose suppO; > z. Then by (44)
in Section 10, I € T9t(I), I is of type C1, and z = z(I). Hence, by Lemma 12 in
).

Section 14, F#() = f(z). Thus, we have shown that

(56) Ff(z) = f(z) whenever z € ENQ(I), I € T&b2(1), supp 6y > z.
The conclusion of Lemma 7 follows at once from (4), (6) and (56). O

We close this section with the following algorithm:

Algorithm CJF# (“Compute the Jet of F#”). Given the Whitney field Ple K(I)
as in (1), we compute the Whitney field]EQQ(T)(F#)' The work and storage used

to do so are at most CN. (Here, we do not count the work or storage of Algorithm
MMBT, Algorithm JPU, or Algorithm MAK.) We make no calls to the ¢-Oracle.

Ezxplanation: Fix a point
(57) z = (x1,%x2) € ENQ(I).
From Section 10, we recall the following:

(58) Anyl e Tg'°ba'(i) such that supp 01 3 z belongs to A(x1). Each I € A(x1) be-
longs to T9st(1), is of type C1, and satisfies z = z;(I). We have #(A(x1)) < C.

(59) Moreover, we have precomputed A(x1) as well as J,(01) for each I € A(x1);
see Algorithm JPU.

In view of (58) and the definition of F#, we have

(60) J(F¥) = > J.(Ff) @ J(01),

IE/\ x1)

and there are at most C summands in (60).

Let T € A(x1). Then (58) gives
(61) z=2z/(I) € S(I).

Moreover, since I € T¥(I), equation (4) in Section 14, and the definition of Ff in
that section, together yield

(62) Jsn(Ff) =P +A(D]s(r)(e2).

We have precomputed Js(1)(ez) in Algorithm MMBT, and we have precomputed p!

and A(I) in the query algorithm within Algorithm MAK. Consequently,]Z(Ff) may
be computed from (61), (62) using work and storage at most C. Therefore,], (F#)
may be computed from (59), (60) using work and storage at most C. (Here, we
do not count the work or storage of the Algorithm MMBT, Algorithm JPU, or
Algorithm MAK.)

Looping over all z € EN Q(I), we thus compute]EﬂQ(i)(F#) using work and
storage at most CN. Note that we have made no calls to the @-Oracle here. This
concludes our explanation of Algorithm CJF#.

500 C. FEFFERMAN

16. An almost OK interpolant

The set-up of this section is as follows: We adopt the notation, assumptions and
boiler-plate constants of Section 8.
We suppose we are given an interval

(0) T Io (dyadic), such that E C ™" and N = #(E) > 2.

Observe that (0) strengthens the assumption made on I in several previous sections.
We work with the open rectangle

(1) R(I) = Q(I) N [[ieror x R] R2.

Note that E € R(I). We suppose we are given a finite subset

(2) Soo C R(I), such that
(3) #(So0) < €2°°, and

(4) For every z = (x1,%2) € Soo, we have le2(z)| = |x2 — @(x1)] > 4e*1).
Finally, we suppose we are given a base point
(5) zo0o0 € Soo.

This completes the list of the assumptions made in this section. We recall a
few relevant definitions. For any x; € R, we define

(6) drs(x1) = inf{r > 0: [x; —1,%7 + 7] contains at least two points of E}, as in
Section 7.

For any point z = (x1,%2) € I x R, we define
(7) drs(z) =drs(x1) + Ix2 — @(x1)], as in Section 15.

Moreover, for all such z, we define an integer £(z) by

(8) 2Y=)=1 < Cy815(z) < 2Y%) | with Cy as in equations (10), (11) in Section 15.

(In Section 15, we defined 6L5(§) and {(z) only for z € Q(I); here, we define these
quantities for all z = (x1,x2) € I x R.)
As in equation (8) of Section 15, we fix an integer ko, such that

(9) 2k0—10 < ¢=1 < 2k,

The notion “(x1,{) is ko-regular for the grid §.” has been defined in Section 4,
and used, for example, in Lemma 1 in Section 15. Recall that we have picked a
dyadic grid G, in Section 8; see (1) in that section. Our goal here is to present the
following algorithm:

Algorithm AOK (“Almost OK Interpolant”): We compute a convex polyhedron

Koo € Wh(Sgpo), defined by at most C(€) constraints, such that the following hold:

(A) Let F € C2(2Q(I)). Suppose F = f on E, 9,F(z00) = &, and || F ”CZ(ZQ(T))S
1 — Ce for a large enough controlled constant C. Then Js,, (F) € Koo.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 501

(B) (Query Algorithm) After computing Koo, we can answer queries as follows:
e A query consists of a Whitney field P € Koo.

e The response to a query Pe Koo is a Whitney field PE ¢ WHh(E), such that
there exists a function F € C?(R(I)), having the following properties:

Jseo(F)=P; Je(F)=P% F=fonE 03,F(z00)=&;

moreover, if a given point z = (x1,x2) € R(I) satisfies either
(i) (x1,£(z)) is ko-regular for the grid G or
(ii) 2k0+l(z) > €1/2|i|7

then
J-(F)l- <1+ Ce.

For any z € R(I), we have |J,(F)|, < C.

The computation of Koo uses work at most C(e)Nlog N, storage at most C(e)N,
and at most C(€)N calls to the @-Oracle.

The work and storage used to answer a query are at most C(e)N. The query
algorithm makes no calls to the ¢-Oracle.

Explanation: We start by making some simple observations on the geometry of
the sets S(I), Q(I), R(I), Q(I). Next, we present the construction of the polyhe-
dron Kgp. Then we prove that Koo has property (A) above. After that, we present
the query algorithm in (B). Finally, we estimate the computer resources used to
compute Koo and answer queries. The geometrical observations are as follows:
Recall that

(10) Q) ={(x1,x2) € R?:xy € I™eror [x; — @ (x1)| < |1} € R
See equation (2) in Section 10. We check the inclusions

(11) Q(I) c R(I) c Q(I).

Indeed, let z = (x1,x2) € Q(I). Since ZIeTgloba'(I) 0r = 1 on Q(I), we have

z € supp Oy for some 1 € Telobal (), Recalling that supp8; C Q(I) C Q(D), we
conclude that z € Q(I), and thus Q(I) < Q(I). Since also every (x1,x2) € Q(I)
satisfies x; € '™ (11) is now obvious from (1).

Next, we prove the following:
Let z=(x1,x2) €R?, with x; eI and 2e*[I] < [x2 — @(x1)] < K1

Then there exists 2/ = (x},x5) eS(I)nQ(I), with the following properties:

(12) o |2/ —z| < Ce'[]].

o eIl < Ix, — @(x)) < 1.

e The closed line segment joining z’ to z is contained in Q(I).

502 C. FEFFERMAN

To see this, we recall from Section 9 that

(13) S /\ = (27 (&)[1)Z%) N Q(I), where

(D>
(14) 15190 < 27kile) < 100,

Now let z = (x1,x2) € R?, with

(15) x7 € Imerier and 2eI| < [x2 — @ (x1)] < F5/1I.
Then there exists

(16) x} € [interior 4 2—k1(e)|[|Z, such that

(17) Xy —x1] < Ce'01|.

(This follows from the fact that any interval of length greater than 1 contains an
integer.)
Fix such an x/, and fix

(18) x5 € 27 %1 (e)|1|Z such that
(19) \xz —x2| < Ce'00[I|. Then
(20) z':= (x},x5) € 2~ ki(e)|]|z? satisfies
(21) \z’ —z| < Ce'09]).
Let 2z = (x7,x}) lie on the closed line segment joining z’ to z. Then
1 X2
(22) X/]/ c iinterior7 since X],XI] c iinterior.
Since |Vez| < C on I"terior x R, it follows that |es(z”) — e (z)| < Ce'%9]], i.e.,
x5 — @(x7)] — x5 — @(x)]| < Ce' L.
Hence, by (15), we have
(23) eIl < x5 — o(x))l < F1I.
Comparing (22) and (23) with definition (10), we see that z” € Q(I). Thus,
(24) The closed line segment joining z’ to z is contained in Q ().
Also, note that
(25) eIl < Iy — (x4l < 21,

since we may take z” = z’ in (23). Moreover, (20) and (24) tell us that 2’ €
(2~ %1 (e)])Z2) N Q(I), and therefore

Z e 2709Iz2) n QD) = AD) ¢ s(D),
thanks to (11) and (13). Thus,
(26) 2/ € S() N Q(I).
The proof of (12) is complete, thanks to (21), (24), (25), (26).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 503

Next, we present the algorithm to construct the polyhedron Kop. The algorithm
proceeds in several steps.

Step 0: Using the ¢-Oracle, we compute the Whitney field Je (ez2).
Step 1: We execute Algorithm MMBT from Section 9.
Step 2: We execute Algorithm JPU from Section 10.

Step 3: We perform the one-time work of Algorithm MAK from Section 13.

Thus, we compute the convex polyhedron K(I) € Wh(S(I)), which satisfies

conditions (30)—(32) in Section 13. In particular, K(I) is defined by at most C(€)
constraints.
After Step 3, we will be able to respond to queries, as in (33), (34) of Section 13.

Step 4: We compute the set
(27) S* :=Soo U S(T).
Note that
(28) ST C Q(I) and #(ST) < Ce—2%°.
This follows from (1), (2), (3), together with the definition of the set S(I) in
Section 9.

Step 5: By applying algorithm AUB4 from Section 6, we compute a convex poly-
hedron

(29) Kiyg € Wh(ST), defined by at most C(e) constraints, such that the
following hold:

(30) Let F € C2(2Q(I)) with norm < 1. Then Js+(F) € K} p-
(31) Let P e KXUB; Then there exists F € CZ(Q(T)) with norm < 1+ € such
that Js+(F) = P+,

Step 6: Let A be a constant to be specified later. (We will later take A to be
a large enough controlled constant.) We compute the convex polyhedron K*+ C
Wh(ST) @ R, defined as follows:

(32) KTt ={(P*,A) € Wh(ST) @R : P € K} g, Al < AJll,
PHls i) + Mg (i) (e2) € K(I),val (3P, zo0) = &).

Recall that Jg) (e2) was already computed (along with many other things) in

Step 1 above. Also, K(I) and Kiyp were computed in Steps 3 and 5. Hence, we
can compute K** from (32), once we know the constant A.

Step 7: We compute the convex polyhedron
(33) Koo :={(P¥lseo) : (PF,A) € KTF} C Whi(So)-

504 C. FEFFERMAN
Since K(I) and Kiyug, are defined by at most C(e) constraints, we see by examining
Steps 6 and 7 that

(34) Koo € Wh(Spo) and K*+ C Wh(S*) @& R are defined by at most C(e)
constraints.

This completes the computation of Kop, except that we have not yet picked the
constant A in Step 6.

We now prove that Koo has property (A) for a suitable choice of the constant A.
To do so, let

(35) F e C?(2Q(I)) with norm < 1 — Ae, and assume that
(36) F=fon E, and 0,F(z00) = &.
We will prove that
(37) Jsoo (F) € Koo,
under certain assumptions on the constant A. To prove (37), we define
(38) P+ =Js+(F) and
(39) A =02F(z00) — 02F(ziee (1) = & — 02F(ziee (1)),
By (30) and (35), we have
(40) Pt e Kius-
From (35), we obtain the estimate
(41) Al = [02F(z00) — 02F(ziere (1))] < Cdiam Q(I) < C’|T]. We suppose that
(42) A > C', with C’ as in (41).
Then (41) yields at once
(43) I\ < AL

Recall that || €2 [[c22q(1) < Cello|™'; see estimate (31) in Section 8. Hence, (41)
yields also

(44) || Aez [lc2(2q(i) < Cell| - [To|~! < Ce, thanks to (0).

From (35) and (44), we see that the function

(45) F:=F+Ae; € C2(2Q(T)) has norm

(46) || F lc22q(in< 1—Ae+ Ce.
We recall that e; = 0 on E and d2e; = 1 on I x R. Hence, (36), (39) and (45)
imply the equalities

(47) F=f on E, and

(48) 02F(zien(1)) = d2F(ziere (1) +A = €.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 505

Comparing (46), (47), (48) with property (32) in the statement of Algorithm
MAK in Section 13, we see that

(49) Js1)(F) € K(1), provided
(50) A > C” for a large enough controlled constant C”.
Recalling (27), (38) and (45), we see that (49) is equivalent to the inclusion
(51) ﬁﬂsm + NJg(p)(e2) € K(D.
Note also that
(52) val (02P*, zoo) = &, since (38) holds and 92F(z00) = &,

Thus, assuming that A satisfies (42) and (50), we find that (PT,A) e Wh(ST) & R
satisfies (40), (43), (51) and (52). Hence, recalling the definitions (32), (33), we
conclude that

(53) (P*,A) € K+ and P*[s,, € Koo, if A satisfies (42), (50).

By (27) and (38), we have ﬁ+|500 = Js,o (F). Thus, (53) tells us that (37) holds,
provided A satisfies (42), (50).

We now pick A to be a controlled constant, large enough to satisfy (42) and (50).
Then we have proven that (35), (36) together imply (37).

Since A is a controlled constant, the fact that (35) and (36) together imply (37)
completes the proof of property (A) for our polyhedron Kopo.

We pass to the query algorithm (B) of Algorithm AOK. Suppose we are given
a query

(54) P € Koo-
We first explain how to compute the response PE € Wh(E) to the query (54);

then we prove that there exists a function F € C2(R(I)) having the properties
asserted in (B).

To compute the response ﬁE, we proceed as follows: Recall that Koo and KT+
are convex polyhedra, defined by at most C(€) constraints. Hence, thanks to (33)
and (54), routine linear programming allows us to compute a point

(55) (P+,A) € K™+, such that
(56) P*ls,, = P.

Recall that we have picked A to be a controlled constant. Hence, from (55) and
definition (32), we see that:

(57) P e Kiug;
(58) IAl < CI1I;
(59) ﬁﬂsm + Mg (e2) € K(I); and

506 C. FEFFERMAN

(60) val (92P T, z00) = &.

Recall that we have computed Jg 1)(€2) in Step 1 of the one-time work.
Hence, we can now compute the Whitney field

(61) P! = (P12).cq(1) = Prlsqq) + Mg iy e2).
Inclusion (59) tells us that
(62) P e K(I).

Accordingly, we can carry out the query algorithm within Algorithm MAK, for the
query P in (62). (See (33), (34) in the statement of that algorithm in Section 13,
and recall that we have carried out the one-time work of Algorithm MAK in Step 3
above.)

We are now in position to apply Algorithm CJF# in Section 15, taking as
data the Whitney field PLin (61), (62). (Note that by this point, we have already
executed Algorithms MMBT, JPU and Algorithm MAK, as assumed in Section 15.)

Applying Algorithm CJF#, we compute a Whitney field

(63) PCT = (P=).cp € WhiE)
such that there exists a function F# € C2(Q(I)), with the following properties:
(64) Let z = (x1,x2) € Q(I). Then [J,(F#)|, < C.

(65) Moreover, let z = (x1,%x2) € Q(I). If either (x1,{(z)) is ko-regular for the
grid G or 2ke+4z) > e1/2|]| then |J,(F#)|, < 1+ Ce.

(66) F# =f on ENQ(I) = E; see (0).
(67) Je(F#) = PCJ.
(68) For z € S(I) N Q(I) such that |e;(z)| > e*|I], we have [0%(F# — PLZ)(Z)I <

Ce?®|I|2 1™ for | < 1.

Indeed, (64), (65), (66) and (68) hold, thanks to Lemmas 5, 4, 7 and 6 in Section 15

(respectively); (67) holds because pCJ _is the Whitney field computed from Pl by
Algorithm CJF# and because E N Q(I) = E thanks to (0).
We now compute the Whitney field

(69) PE :=PCT —AJe(ez) € Wh(E).

(Recall that the Whitney field Jg(ez2) has been computed in Step 0.)

The Whitney field PE is the answer to our query (54).

Thus, we have shown how to compute the response PE to a query Pc Koo-
We prepare to show that there exists a function F € C2(R(I)) having the properties
asserted in (B) of Algorithm AOK.

To do so, we first return to (57). By (31) and (57), there exists a function

(70) F* € C2(Q(I)) with norm < 1+ €, such that
(71) Js+(F*) =P+,

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 507
Let us fix such an F'| as well as an F# as in (64)—(68). By (61) and (71), we
have
(72) Pl = Js(1)(F" +2Aez), hence
(73) PLz =], (F* + Aey) for all z € S(I).
Therefore (68) tells us that

(74) [0%(F# — Aey —Ff)(z)| < Ce?®|1)2 1™, for |l < 1 and z € S(I) N Q(I) such
that |ex(z)| > e*|I|.

Note that F# — Ae; — F* € C2(Q(I)) thanks to (11), since F# € C2(Q(I)) and
e, F* e C2(Q(I)).

We estimate the norm of F# — Ae; — F* in C2(Q(I)).

We recall that || €2 [[c2(q (1)< Cello|~" by (31) in Section 8. Hence, (11), (58)
and (0) together imply that

(75) || Ae2 llcz (o iy < Celll - To ™" < Ce.
Also, (11) and (70) yield
(76) | F™ llc2(qi)<1+e.
From (64), we have also
(77) 17 llcz o) < C.
From (75), (76), (77) and the Bounded Distortion Property, we see that
(78) [0%(F# —Aey — FH)| < C on Q(I) for |af < 2.
Now let z = (x1,%2) € Q(I), and suppose that
(79) 2e*1] < |x2 — @(x1)l < 511
we obtain a point

) N Q(I) such that

Applying observation (12),
(80) 2/ = (x},x5) € S(
(81) Iz — 2l < Ce'°[,

(82) eIl < Ix, — @(x})| < |, and
(

o=

83) The closed line segment joining z’ to z is contained in Q(I).
By (74), (80) and (82), we have

(84) [0%(F# — ey — FH)(2/)] < Ce?®[1)27 1% for o < 1.
From (78) and (83), we see that

(85) [0%(F# —Aey —F1)| < C for |af < 2, everywhere on the closed line segment
joining z’ to z.

508 C. FEFFERMAN

From (81), (84), (85) and Taylor’s theorem, we conclude that
0% (F# —Xez —F')(z)] < Ce”®|I*'* for o < 1.
Thus, we have proven the following:

(86) Let z = (x1,%x2) € Q(I), and suppose 2e*|T| < [x2 — @(x1)| <
Then [0%(F# — Xe, — FT)(z)| < Ce?8|I|2 1l for |of < 1.

1.
We note also that
(87) 92F*(z00) =&,

thanks to (60) and (71).

We prepare to patch together the functions F* and F# — Ae,, using a partition
of unity.
Fix functions 0i,, 8wt € C?(R), with the following properties:

(88) Oin + 0oyt =1 on R.
(89) O<6,n§1 and 0 < 0oyt < 1 on R.
(90) © =1 and B,,:(t) =0 for [t] < 2.
(91) © =0 and Qg (t) = 1 for [t| > 4.
(92)

92 ’() in(t)], ’(%)keout(t)
For (x1,%x2) € R(I) = Q(I) N [I"terior » R], we set

(93) Xln X])XZ - e|n 2 ;P\Jﬂ)) and Xout(XhXZ) = eout (%W)

<Cfork=0,1,2and t € R.

Note that Xin, Xout are defined only on R(I). Let us establish the basic properties
of these cutoff functions. Immediately from (88)—(93), we have the following:

(94) Xin + Xout = 1 on R(I).

(95) 0 < xin < T and 0 < Xou < 1 on R(I).

(96) Xin(x1,%2) =1 and Xout(x1,x2) = 0 for [x2 — @(x1)

(97) Xin(x1,%2) = 0 and Xout (x1,x2) =1 for |[xa — @(x1)] > 41|,
We check that also

(98) 10%Xinl, [0%Xoutl < C - (€*1))~'* on R(1), for [&f < 2.

To verify (98), recall that |Ves| < C and |[VZes] < C- (e MIo))™" on I x R; see
Section 8. Thus, on R(I),

(99) [9%es] < C- (e MIo)'~1* < C - (eI for 1 < o < 2. (See (0).)

On the other hand, for || < 2, 0%Xin(z) is a sum of terms of the form

Ak a ok 6"‘»62(2))
(100) {<dt) Oint) tii‘?’} uﬂ1< e)

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 509

with o7 +- -+ o = &, and with each |x,| > 1. By (92) and (99), each term (100)
has absolute value

<C-

p=1 et

Hence, [0%xin(z)] < C - (e*|I))~'* on R(I), for || < 2. The same argument applies
t0 [0%Xout(z)], completing the proof of (98).
As a consequence of (1), (10) and (97), we have the following:

(101) Let (x1,x2) € R(I) ~ Q(I). Then xin = 0 and Xou = 1 in a neighborhood
of (x1,%x2).

The basic properties of Xin, Xout are (94)—(98) and (101). We now define

98)
(102) F = Xin - (F* —Ae2) + Xour - F € C2(R(D)).
(This makes sense thanks to (101). Recall that F# € C2(Q(I)) and ey, F© €
C2(Q(I)).) We establish the basic properties of F. Let z € Soo. Then by (4), (97)

and (102), we have F = F" in a neighborhood of z. Consequently, (56), (60)
and (71) tell us that

(103) Js,, (F) = P and

(104) 92F(z00) = &.
On the other hand, let z = (x7,x2) € E. Then z € R(I) (as we observed just
after (1)); and ez(z) = x2 — @(x1) = 0. Hence, (96) applies, and therefore F =

F# —Ae; in a neighborhood of z. In view of the above remarks and (66), (67), (69)
we have

(105) F=fon E and
(106) Je(F) = Je(F#) — AJe(e2) = P — AJe(ez) = PE.

Next, we establish the following: Let z = (x1,%x2) € R(I). Then

(107) 1J2(F)l- < C.
(108) Moreover, if either (x1,{(z)) is ko-regular for the grid G or 2ko+l(z) 5
e'/2|1], then |J,(F)|. <1+ Ce.

To check (107), (108), we proceed by cases.

Case 1: Suppose [x2 — @(x1)| < 2e*/1].

Then (x1,x2) € Q(I) (see (1) and (10)), and (96) applies. Hence, F = F# —Ae;
in a neighborhood of z. Consequently, (107) and (108) follow from (64), (65)
and (75).

Case 2: Suppose |x2 — @(x1)] > 4e?[1.

510 C. FEFFERMAN

Then (97) applies. Hence, F = F" in a neighborhood of z. Consequently, (107)
and (108) follow from (70).

Case 3: Suppose 2e*|I] < |x2 — @(x1)] < 4€*|1).

Then, as in Case 1, (x1,x2) € Q(I), and (75) applies. Hence, (64), (65) imply
the following:
(109) [J=(F# —Aez)l. < C.
(110) Moreover, if either (x1,£(z)) is ko-regular for the grid G or 2ke+t(z) >
e'/2|1], then |, (F# — Aez)|, < 1+ Ce.

Also, (70) tells us that
(111) [Jz(FH)lz < 1 +e.

Since we are in Case 3, (86) applies. Thus,

(112) [0%(F# —Aey — F*)(z)| < Ce”¢|1)2 1% for |of < 1.

Recall that F is given by (102), with Xin and xout satisfying (94), (95), (98).
We define §, := €*|I|, and note that

(113) 0< 5, < 1,

thanks to (0) and assumption (3) in Section 8. The above remarks, together with
Lemma GPU in Section 5, imply (107), (108). Thus, (107) and (108) hold in all
cases.

Given a query P asin (54), we have thus computed a response PE in (69), and
proven that the function F € C?(R(I)) satisfies (103)-(108). This completes our
explanation of part (B) of Algorithm AOK.

It remains to estimate the computer resources used by Algorithm AOK. We
begin with the one-time work.

Step 0 requires work and storage CN and N calls to the @-Oracle.

Step 1 uses work less than C(e)NlogN, storage at most C(e)N, and at most
C(e)N calls to the ¢-Oracle.

Step 2 uses work and storage at most CN, and at most CN calls to the @-Oracle.
Step 3 uses work and storage at most C(e)N, and makes no calls to the @-Oracle.
Step 4 uses work and storage at most C(e), and makes no calls to the @-Oracle.

Step 5 uses work and storage at most C(e) (thanks to (28)), and makes no calls
to the @-Oracle.

Step 6 uses work and storage at most C(e), and makes no calls to the @-Oracle.
(Here, we use the fact that K}z and K(I) are defined by at most C(e)
constraints, and that #(S*) < C(e).)

Step 7 uses work and storage at most C(e) (thanks to (34)), and makes no calls
to the @-Oracle.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 511

The above remarks may be easily verified by looking up the computer resources
used by Algorithms MMBT, JPU, and MAK.
Consequently, the computer resources used to compute Koo are as promised.

We turn our attention to the query algorithm (B).

Starting from a query P as in (54), we first compute (P, A) as in (55), (56). This
linear programming requires work and storage at most C(€), and makes no calls
to the @-Oracle. .

Next, we compute the Whitney field Plin (61). Again, this step requires work
and storage at most C(e), and makes no calls to the @-Oracle (because we already
computed Jg i, (e2) in Step 1).

We then carry out the query algorithm from Algorithm MAK, for the query pl.
This requires work and storage at most C(e)N, and makes no calls to the ¢-Oracle.

The next step is to execute Algorithm CJF#, taking as data the Whitney
field PI. This step produces the Whitney field PCI and uses work and storage at
most CN, without calling on the ¢-Oracle.

Finally, we compute PE from PCJ using (69).

Since the Whitney field Jg(e2) was computed already in Step 0, this last step
uses work and storage at most CN, and makes no calls on the @-Oracle.

In view of the above remarks, the computer resources used to answer a query
as in (B) are as promised in Algorithm AOK.

17. Almost optimal interpolants

The interpolants F produced by Algorithm AOK fall short of satisfying the desired
estimate || F [[c2< T+ Ce. In this section, we remedy this defect by averaging
over an ensemble of dyadic grids. We recall our convention that (i.j) denotes
equation (j) in Section 1i.

The setting for this section is slightly different from that given in Section 8. In
this section, we make the following assumptions:

(1) We are given a positive real number €.

(2) We are given an open square Qoo = Ioo X Joo C R? with sidelength 8Qo0 =

Tool < Cre.
3) We are given a finite set E C Iop.
4) Let @ € C?(C1e 'Ipp), where Cre~ ! > 1.
)
)

5) On the interval ¢;e~ I, we have |@’| < C, and lp”] < é3€‘100|71.

(
(
(
(

6) Given a pointx; € ¢1e 'Ipo, a “@-Oracle” computes @(x1), @’ (x1), @” (x1),

charging us “work”
(7) Weo > 1 for the service.
(8) Let E ={(x1,@(x1)) : x1 € E} C R?.
(9) We assume E C Qqo-

512 C. FEFFERMAN

10) We assume that N = #(E) = #(E) > 2.

12

(10)

(11) We are given a function f: E — R.
(12) We are given a real number &,
(13)

13) We are given a family of norms |-|, on P (z € R?), and an Oracle, satisfying
conditions (1)-(4) in Section 5. We define C2-norms as in that section.

(14) We assume there exists Foude € C2(R?), such that || Ferude lc2(r2)< (234,
Ferude = f on E, and [02Fcruge — & < (7:5671 ITool on E.

(15) In this section, we take the boiler—plate constants to be C; ,C1, (:Iz, (:Ig,, (134, 65,
and the constants called cg, Cp, C1, C2 in Section 5.

Our choice (15) gives meaning to the notion of a “controlled constant” in this
section.
We make the following

Small € Assumption

(16) € is less than a small enough controlled constant.

This concludes our enumeration of the assumptions made in this section.

Given the above objects and assumptions, we introduce the following auxiliary
objects. We fix a half-open interval Iy = [a, b), such that

(17) Ioo is contained in the middle half of I,
(18) 50[Ioo| < [To| < 200[Ipol, and

(19) |Io| is an integer power of 2.

Thanks to (19), we can fix a real number to, such that

(20) Io € Gy, (see Section 4.)

We introduce integers Ko, kmax, K1(€), vo(€) such that
21) 107°[Igo| < 2% < 10~*(Iool.
22) 2ko—10 < =1 < Jko,

)
23) €100 < 27kile) < 100 apq
)

|

o
24) le=2 < 2vole) < g2

(
(
(
(

ol— =

From Section 4, we recall the set T(ko, Kmax), having the following properties:
(25) T(kO) kmax) - [O, zk"'ax].
(26) #(T(ko» kmax)) = Zko .

(27) Let x1 € R, { € Z. Tf £ < Kmax — ko, then there are at most 100 distinct
t € T(ko, Kmax) such that (x7,{) is not ko-regular for the grid G, ¢.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 513

For t € T(kg, Kmax), we define
(28) T(t) =to+t and
(29) To,e =To +t.
From (20), (28), (29), we have
(30) Io,t € Gy for t € T(Ko, Kmax)-

Also, (21) and (25) give T(ko, kmax) C [0,107*|Ipol]. Hence, by (17) and (29),

we have
(31) Ioo C (Io‘t)i"terim.
In addition, (18) and (29) give
(32) 50|Too0| < [To,¢| < 200[Ipol-
From (31) and (32), we have
(33) 107%C1e "o C Cre oo,
with €1 as in (4), (5), (6). Observations (30)—(33) hold for all t € T(ko, Kmax)-

Lemma 1. Let t € T(Ko,Kmax). Then assumptions (8.1)—(8.21) hold here, with
our present T(t) and Ip ¢ in place of T and Iy in Section 8, respectively. Moreover,
we can take the constants in (8.20) to be controlled constants independent of t.

Proof. (8.1) simply asserts that t(t) is a real number.

(8.2) asserts that 0 < € < ¢1. We take ¢; = 107%Cy; (8.2) holds thanks to our
Small e Assumption (16).

(8.3) asserts that Io¢ € Ger) and |Io| < Cye. This follows from (30), (32)
and (2), with C] = ZOOCL

(8.4) asserts that E C Io¢ is finite. This follows from (3) and (31).
asserts that @ € C?(cie '"Ip). This follows from (4) and (33), since we
have taken ¢; = 1074¢;

(8.6) asserts that on cje~'Io¢ we have [@’| < Cz and |@”| < Czellp,¢|'. Thanks
0 (33), and thanks to our choice ¢; = 107*¢y, this follows from (5) and (32),
with C; = C; + C3 - 200.

(8.7), (8.8) assert that, given any x; € ¢1e 'Iot, the @-Oracle computes @(x1),
@' (x1), " (x1), and charges us “work” Wy,o > 1. Since we have taken
¢1 = 107%¢y, this follows from (6), (7), (33).

(8.9) asserts that E = {(x1, @(x1)) : x1 € E} C R?, which is just (8).

(8.10) asserts that N = #(E) = #(E) > 2, which is just (10).

(8.11) asserts that we are given f: E — R, which is just (11).

(8.1

1
2) asserts that we are given a real number &; that’s just (12).

514 C. FEFFERMAN

(8.13) asserts that we are given a family of norms |-|, on P (z € R?), and an Oracle,
as in Section 5. That’s just (13). We use the same constants cg, Co, C1, C2
in (8.13) as in (13).

(8.14)—(8.17) assert the existence of a function Feryde € C?(R?) such that Ferude = f
on E, ‘aZFcrude - E»‘ S C3€7]|10,t‘ OI£ E, argd H Fcrude ||C2(R2)§ C3~
This follows from (14), with C3 = C4 + Cs, thanks to (32).

(8.18), (8.19) are just (23) and (24).

(8.20) declares that the boiler-plate constants for Section 8 are ¢y, Cq, Ca,C3,
together with co,Co,C1,C2. Recall from our discussion of (8.1)-(8.19)
that ¢; = 107451, C] = 20061, Cz = Cz +ZOOC3, Cg = C4 + 65; and
co, Co, C1,Cy are as in (13), (i.e., as in (1)—(4) in Section 5).

Hence, by (15), all the boiler-plate constants of Section 8 are controlled
constants in the sense of the present section.

It follows that any controlled constant in the sense of Section 8 is also a con-
trolled constant (in the sense of the present section), that does not depend on t.
Consequently, (8.21) follows from our Small € Assumption (16). The proof of
Lemma 1 is complete O

Thanks to Lemma 1, the definitions made in Section 8 make sense here, and
the observations made there are valid here (with T(t) and I+ in place of T and Io,
respectively). Also, as observed in the proof of Lemma 1, any controlled constant
in the sense of Section 8 is also a controlled constant (in the sense of the present
section), that does not depend on t.

From Section 8, we recall that we have defined the open square
(34) Q(Io,¢) C R?, with sidelength
(35) 8q(1,,) = Callol,

for a controlled constant CQ independent of t. We recall (8.29), which tells us in
particular that

(36) (x1,@(x1)) belongs to the middle half of Q(Io) for all x1 € Io .
Note that (36) implies
(37) 8Q(10.) = oyl ie., Cq > T1in (35).
As in Section 16, we introduce the open rectangle
(38) R(Io,t) = Q(Lo,t) N [Ig‘ff’im x R].
We have (34)—(38) for all t € T(ko, kmax). The following result relates Q(Io ¢) and
R(Io,t) to Qoo (see (2), (9)).
Lemma 2. For any t € T(ko, Kmax), we have
(39) Qoo C R(Io,t) and
(40) 2Q(Io,¢) € CQoo-

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 515

Proof. Let Z = (X1,X2) € E. Then X7 € Ipo C I'"te”Or and X2 = @(X1); see (3), (8)
and (31). Consequently, z lies in the middle half of Q(Io t); see (36). Also, zZ € Qoo
by (9). Hence,

(41) Qoo intersects the middle half of Q(Io,¢).

In addition, we know from (2), (32), (35) and (37) that

C
8Qo0 = ool < = 5—8\10,t| < ClIool.

I
50‘ 0 t‘ 50 Io't)
['hus,

(42) 5O(SQoo < 6Q(Io,t) < CéQOO'
From (41) and (42), we see that (40) holds, and
(43) Qoo C Q(Io,e).

Moreover, Qoo = Ioo X Joo C Ipo xR C (Io‘t)i_“teri_or x R; see (2) and (31). Together
with (43), this gives Qoo C Q(Io,¢) N [(Io,¢)""" x R] = R(Ip,); see (38). This
proves (39), completing the proof of Lemma 2. O

We are now ready to present the main result of this section.

Algorithm AOI. (“Almost Optimal Interpolant”): We suppose we are given the
objects and assumptions (1)—(16). Suppose also that we are given a finite subset

(44) Soo C Qoo, such that
(45) #(Soo0) < €29 and

(46) |X2 — (p(X])‘ > €3|Ioo‘ for all (X],Xz) € Soo.

Finally, suppose we are given a base point
(47) zo0 € Soo-

Then we compute a convex polyhedron K(Soo, Qoo,z00) € Wh(Spo), defined by at
most C(e) constraints, such that the following hold for a large enough controlled
constant Ca:

(48) Let F € C*(CaAQoo) with norm < 1 — Cae, and suppose that F = f on E
and 02F(zo0) = & Then Js,, (F) € K(So0, Qoo, zoo)-

(49) After we have computed K(Soo, Qoo, zo0), we can answer queries as follows:
A query consists of a Whitney field Pe K(So00, Qoo,z00). The response to
a query P consists of a Whitney field PE ¢ Wh(E), such that there exists
F € C?(Qoo) with norm < 1+ Ce, such that F = f on E, 9,F(z00) = &,
Jsoo (F) =P, Je(F) = PE.

516 C. FEFFERMAN

The computation of K(Soo, Qoo,zo0) uses work at most C(e)NlogN, and storage
at most C(e)N; and makes at most C(e)N calls to the @-Oracle. To answer a given
query as in (49), we use work and storage at most C(e)N, and we make no calls
to the @-Oracle.

Explanation: We start by computing Ip, to, ko, Kmax, K1(€), vo(€) and T(ko, Kmax)
as in (17)-(27). For each t € T(ko, kmax), we compute T(t) and Io ¢ from (28), (29),
as well as Q(Io,¢) as in Section 8 and (34)—(38). These trivial computations use
work and storage at most C(€), and make at most C(e) calls to the @-Oracle.

We prepare to apply Algorithm AOK (from Section 16), for each t € T(ko, Kmax)-
To do so, we first check that the assumptions of Section 16 hold here, provided we
set 1= Io,¢, and take Io ¢ and T(t) in place of Io, T respectively.

Indeed, Lemma 1 tells us that the assumptions of Section 8 hold. The boiler-
plate constants of Section 16 are those of Section 8. We have seen in Lemma 1 that
those constants are controlled (in the sense of the present section) and independent
of t.

The remaining assumptions of Section 16 are (16.0)—(16.5). Let us check that
those assumptions hold here.

(16.0) asserts that Io ¢ C Io,lo,t € Ge(t), E C Ig‘ff”"’, and N = #(E) > 2.
These assertions follow from (30), (3), (31), and (10).

(16.1) defines R(Ip¢), precisely as in (38).

(16.2) asserts that Soo C R(Ip,¢), which follows from (44) and (39).

(16.3) asserts that #(Soo) < € 2°°, which is just (45).

(16.4) asserts that [x; — @(x1)| > 4€*|Io ¢| for all (x1,x2) € Soo-

This assertion follows from (46), since €3|Ioo| > 4€*|Io 1|, by (32) and (16).

(16.5) asserts that zpo € Soo, which is just (47).

Thus, as claimed, the assumptions of Section 16 hold here, with Iy in place
of 1, Io,¢ in place of Ip, and T(t) in place of T. The boiler-plate constants of
Section 16 may be taken here to be controlled constants independent of t.

Note that our present ko is the same as the ko in Section 16. (See (22)
and (16.9).) We now make the following definitions:

For x1 € R, we define

(50) Srs(x1) =inf{r > 0: [x; —T,x1 + 1] contains at least two points of E}.
For z = (x1,x2) € Qoo, we define

(51) drs(z) = drs(x1) + Ix2 — @(x1)l;
and we define {(z) for such z by

(52) 2¢2)=1 < Cy81s(z) < 247,

Here, C; is the controlled constant from equation (16.8). Note that C; is indepen-
dent of t, since it is computed from the boiler-plate constants of Section 16.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 517

Our definitions (50), (51), (52) agree with definitions (16.6), (16.7), (16.8).
More precisely, (50) is the same as (16.6), while definitions (16.7), (16.8) are more
general than our present definitions (51), (52). (Here, we assume z € Qqo, whereas
for (16.7), (16.8) we assume merely that z € Ip ¢ x R. As usual, we are taking Io ¢
in place of I. We know that Qoo C Io x R; see (38) and (39).) Note that {(z) is
independent of t, for fixed z € Qoo.

We can now pass to the next steps in Algorithm AOI.

For each t € T(ko, Kmax), we perform the one-time work of Algorithm AOK,
taking Ip ¢ in place of I, Io ¢ in place of Ip, and T(t) in place of T.
Thus, for each t € T(ko, kmax), we obtain a convex polyhedron

(53) Koo(t) € Wh(Soo), defined by at most C(e) constraints, such that the
following hold:

(54) Let F € C%(2Q(Io,+)) with norm < 1— Ce for large enough C, and suppose
F=fonE and 0,F(zp0) = &. Then Js,, (F) € Koo(t).

(55) After computing Koo (t), we can answer queries as follows: A query consists
of a Whitney field P € Kgpo(t). The response to a query P is a Whitney field

ﬁf € Wh(E), such that there exists Fy € C?(R(Io,¢)) with the following
properties:
(a) Fo=f on E, 3:Fi(z00) = &, Jsoo (F) =P, Je(Fy) = PL.
(b) Let z= (x1,x2) € Qoo. Then [J.(F¢)|, < C. Moreover, if either
(i) (x1,€(z)) is ko-regular for the grid G or
(ii) 2ko+L(z) > 61/2|Io,t|

then |J,(F¢)l; <14 Ce.

(In (55)(b), we have taken z € Qoo rather than z € R(Io,¢). That’s allowed, thanks
to (39).)
We recall the following from Algorithm AOK:

(56) The computation of a single Koo(t) uses work at most C(e)NlogN, and
storage at most C(e€)N; and it makes at most C(€)N calls to the ¢-Oracle.
To answer a query as in (55), we use work and storage at most C(e)N,
and make no calls to the @-Oracle.

The polyhedron K(Soo, Qoo, zo0) is defined as

(57) K(So0, Qooyz00) = N Koo (t).
teT(kO 7kmax)

Since #(T (Ko, kmax)) = 250 < Ce™ ', we have

(58) K(So0, Qoo,z00) € Wh(Sgo) is a convex polyhedron, defined by at most
C(e) constraints.

518 C. FEFFERMAN

Once we have computed all the Koo (t)(t € T(ko, kmax)), we can compute K(Spo, Qoo,
z00) from (57), using work and storage at most C(e), and making no calls to the
@-Oracle.

We now check that our polyhedron K(Soo, Qoo,2z00) satisfies (48).

Indeed, let F € C2(CaQoo) with norm < 1—Cae, and suppose F = f on E and
02F(z00) = &. If Ca is a large enough controlled constant, then (40) shows that F €
C2(2Q(Io,¢)) with norm < 1 — Cage, for each t € T(ko,kmax). Consequently, (54)
yields Js,, (F) € Koo(t) for each t € T(ko, kmax). By definition (57), we therefore
have Js,, (F) € K(So0, Qoo, z00), completing the proof of (48).

Next, we provide the query algorithm (49). Suppose we have finished the
computation of K(Soo, Qoo,200). Then, for each t € T(ko, kmax), We can answer
queries as in (55). Now let Pc K(So0, Qoo,200) be a query. We must compute
a response PE ¢ WHh(E) such that there exists F € C?(Qoo) with the properties
asserted in (49). By (57), we have P € Koo(t) for each t € T(ko, kmax). Hence,
applying (55) for each such t, we compute Whitney fields ﬁf € Wh(E) for which
there exist Fy € C2(R(Io)) satisfying (55)(a) and (55)(b). Recalling (39), we see
that each F; belongs to C?(Qoo). We now define

(59) F= [#(T(kO)kmax))]il Z Ft € CZ(QOO) and

teT(k07kmax)
(60) PE = [#(T(ko,kma)) ' Y PE € WhE).
teT (ko,kmax)

This is the long-promised averaging over the ensemble of dyadic grids. Note that,
once we know the PE for each t € T(ko, kmax), we can compute P® from (60) using
work and storage at most C(e)N, without calling on the @-Oracle.

Let us check that PE and F have the desired properties given in (49). First of
all, since (55)(a) holds for each t € T(ko, kmax), (59) and (60) yield at once that

(61) F=fon E, 9:F(z00) = &, Js,, (F) = P, and Jg(F) = PE.
Using (55)(b), we will prove that
(62) || Fllc2(Qoe)< 1+ Ce.

From (61), (62), we will be assured that our PE from (60) correctly answers the
query P, as in (49). To prove (62), we fix z = (x1,%2) € Qoo, and note that

(63) J2(F)lz < #(T(koykmax))I ™'+ > [J2(Fe)lz, thanks to (59).
teT (ko,kmax)

We distinguish two cases.

Case 1: Suppose 2K0+4z) > e1/2|15|. Then, for each t € T(ko,Kmax), we have
2kott(z) & 61/2|Io‘t‘; see (29). Consequently, (55)(b)(ii) applies, and thus |, (F¢)|, <
1+ Ce for each t € T(ko, kmax). Therefore, (63) yields the estimate

(64) 1J2(F)l. <1+ Ce in Case 1.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 519

Case 2: Suppose 2ke+t(z) < e1/2|[;|. Then (18), (21) and (16) tell us that
2ko+t(z) < 20061/2‘100| < 20061/2 . (105 . zkmax) < 2kmax
Thus, kKo + £(z) < Kmax. Accordingly, (27) applies.
From (27), (28), we learn that:
(65) There are at most 100 distinct t € T(ko, kmax) such that (x1,£(z)) is not
ko-regular for the grid G (y).
Together with (55)(b), this tells us the following:

(66) We have |J.(Ft)|. < 1+ Ce for all but at most 100 distinct t € T(ko, Kmax)-
Moreover, |],(Ft)|, < C for all t € T(ko, Kmax)-

From (63), (66), we obtain the estimate

100
TRl <1+ Cet omp — - &

Recalling that #[T (Ko, kmax)] = 2X¢ > ce~! (see (26) and (22)), we conclude that
(67) [J=(F)l. <1+ Ce in Case 2.

From (67) and (64), we see that |J.(F)|, < 1+ Ce for all z € Qpo, completing

the proof of (62). Thus, our query algorithm answers queries correctly.

In view of the comments provided above (regarding work, storage and calls to
the @-Oracle), it is now trivial to check that our use of computer resources is as
promised in the statement of Algorithm AOI.

18. Almost optimal interpolants, version 2

In this section, we adopt the following assumptions:
(1) We are given a positive real number €.
2) We are given an open square Qoo = Ioo xJoo C R?, with 8Qo0 = ool < Cie.
3) We are given a finite set E C Ioo.

(2)
(3)
(4) A function ¢ is given in C%(c1e~ 'loo), where cre™ ! > 1.
(5) On 51671100, we have |@'] < C, and lp”| < Cg€|100‘7].
(6)

6) Given a pointx; € ¢1e Ipp, a “@-Oracle” computes @(x1), @’ (x1), @” (x1),
charging us “work”

(7) We, > 1 for the service.
(8) E={(x1,9(x1)) :x1 € E} C R2.

520 C. FEFFERMAN

(9) We assume E C Qqo-

(10) N = #(E) = #(E) > 2.

(11) We are given a function f: E — R.

(12) We are given an interval Ir C R, with |Ir| < Cqe~Iool.

(13) We are given a family of norms |-|, on P (z € R?), and an Oracle, satisfying
conditions (1)-(4) in Section 5. We define C? norms as in that section.

(14) We assume that there exists Feude € C%(R?), such that || Ferude | c2r2)<
Cs, Ferude = f on E, and 02Fqude(z) € Iy for all z € E.

(15) In this section, we take the boiler-plate constants to be ¢1, C1, C2, C3, C4, Cs
above, together with the constants called cg, Co, C1, C2 in Section 5.
We make the following Small € Assumption:

(16) € is less than a small enough controlled constant.
The main result of this section is as follows:

Algorithm AOI, Version 2. Suppose we are given the above objects and assump-
tions, as well as the following data:

(17) A finite subset Spo C Qoo, such that

(18) #(So0) < €2°° and

(19) |x2 — @(x1)] > €3[Ioo] for all (x1,%2) € Soo.
(20) A base point zgp € Soo.

Then we compute a convex polyhedron K € Wh(Sgp), defined by at most C(e)
constraints, such that the following hold for a large enough controlled constant Ca :

(21) Let F € C?(CaAQoo) with norm < 1 — Cae. Suppose F = f on E and
azF(Zoo) € Ir. Then]Soo(F) c K.

(22) After we have computed K, we can answer queries as follows: A query
consists of a Whitney field P € K. The response to a query PeKisa
Whitney field PE ¢ WHh(E) such that there exists F € C?(Qqo) with the
following properties: || F [|c2(q,0)< 1+ Ce; F = f on E; 92F(zo0) € Ir;

Jso0 (F) = P; Je(F) = PE.

The computation of K uses work at most C(e)N log N, storage at most C(e)N, and
at most C(e)N calls to the @-Oracle. To answer a query as in (22), we use work
and storage at most C(€)N, and make no calls to the @-Oracle.
Ezplanation: We first compute a finite list of points

(23) &1y...y &y, € I, such that

(24) Any given & € Ir satisfies |§ — & | < elIr| for some v, and

(25) Vmax < Ce™ 1.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 521

For each v, we note that assumptions (1)—(14) of Section 17, as well as (16) in
Section 17, hold here, with &, in place of & Moreover, the boiler-plate constants
given in (15) of Section 17 are controlled constraints in the sense of this section.
(See (15).)

In addition, assumptions (44)—(47) of Section 17 hold here. (We leave to the
reader the trivial verification of the above remarks.) Hence, for each v, we may
perform Algorithm AOI, with &, in place of & Thus, for each v, we obtain a
convex polyhedron

(26) Ky C Wh(So0), defined by at most C(e) constraints, such that the follow-
ing hold, for a large enough controlled constant C>1:

(27) Let F e C2(CQoo) with norm < 1 — Ce, and suppose that F = f on E and
azF(Zoo) =¢.. Then]500 (F) e Ky.

(28) After we have computed K, we can answer queries, as follows: A query
consists of a Whitney field P € Ky. The response to a query Pek,isa

Whitney field 135 € Wh(E) such that there exists F, € C2(Qoo) with the
following properties: || Fy [[c2(Q,0)< 1+ Ce; Fy = fon E; 02Fy (z00) = &v;
Jsoo (Fv) =P, Je(Fy) = PE'
The computation of a single K, requires work < C(e)Nlog N, storage < C(e)N,
and at most C(€)N calls to the @-Oracle. Thanks to (25), the same holds for the
computation of all the K.

Once we have computed all the Ky, the work and storage used to answer a
query in (28) are at most C(e)N; and we make no calls to the @-Oracle in (28).
For the rest of this section, we fix C as in (27). As in many previous sections, we
work with the function

(29) ea(x1,x2) =x2 — @(x1), defined for (x1,%2) € CQoo-

From (5), we see that on éQoo, we have: [07e2] < C, 02e2 = 1, 6%262 =
8%262 =0, and \a%ez\ < Cellpo|~". Note also that e; = 0 at any point of E, and
0 #E C Qoo C éQoo. Moreover, €|Ioo|~' > c; see (2). By the above remarks and
Taylor’s theorem, we have

(30) [Ie2 llcz(eqqee) < Cellool ™'
We have

(31) e2=0o0n E, and 02e2 =1 on éQoo, as noted many times before.

Next, let F € Cz(éQoo), and suppose F = f on E and 0;F(zg0) € Ir. Then
there exists v such that [&, — 02F(zo0)| < €[] < Cllool (see (12) and (24)). Fix
such a v, and define

F=F+4[& —02F(zo0)le2 € C*(CQoo)y, 1= [02F(z00) — &1
Then F = f on E, 0,F(z00) = &+, and

I Fllcz(eqo0) SIF llcz(¢ges) +ClTool - Cellool ™" (by (30)).

522 C. FEFFERMAN

I Fllcz(eqee)S T—Cace for alarge enough controlled constant Ca > C then
we have shown that || F ”CZ(éQoo)S 1— ée, F=fon E, and az?(zOo) = &+; hence

Jsoo (F) € Ky, by (27). For the rest of this section, we fix Ca as above.
Thus, we have proven the following:

(32) Let F € C?(CaAQoo) with norm < 1 — Cae. Suppose F = f on E and
02F(zo0) € Ir. Then for some v (1 < v < Vpax), and for some real
number p, we have Js,, (F) € Ky + ptJs,, (e2) and |y < Cgllool-

For the rest of this section, we fix Cg as in (32).

We now continue with our description of Algorithm AOI-Version 2.

(33) We compute the Whitney fields Js,, (e2) and Je(ez).

Thanks to (10) and (18), this requires work and storage at most C(e)N, and
at most C(e)N calls to the ¢-Oracle.

We define a convex polyhedron K € Wh(Spo) as follows:
(34) A given P € Wh(Soo) belongs to K if and only if
(35) val(02P,z00) € Ir,

and moreover P can be represented in the form

Vmax
(36) P = Z APy + Ws,, (€2), where (A1, ..., Ay, are real numbers,

v=1

(37) Iul < Cgllools Ay > 0 for each v, Ay +--- + Ay, =1, and
(38) P, € Ky for each v.

Then K € Wh(Spo) is a convex polyhedron defined by at most C(e) constraints.
We can compute K from Js,, (e2) and the Ky, using work and storage at most C(€).

Moreover, given Pe K, we can compute wA1,...,Ay, ., ﬁh ... »ﬁvmax satisfy-
ing (36), (37), (38). The work and storage used to do so are at most C(e), and no
calls to the @-Oracle are involved.

We will prove that (21), (22) hold for the above K.

Let us start with (21). Thus, suppose F € C?(CaAQoo) with norm < 1— Cage,
and suppose that F = f on E and 02F(zp0) € Ir. We will show that Js,, (F) € K.
Indeed, val(02]s,, (F)yzo0) = 02F(z00) € Ir, hence (35) holds for P = Jsoo (F)-
Moreover, (32) shows that we can represent P in the form (36), (37), (38), by taking
a single Ay to equal 1, and all the rest of the Ay equal to 0. Thus, P = Jsoo (F)
belongs to K, as claimed. This proves (21).

We turn to the query algorithm (22).

Suppose we have finished the computation of K. Then we have computed
Jsoo(€2), Je(e2), and all the Ky. Let P € K be given. We compute p,A1,...,Ay, ..,
Piy...,Py,. asin (36), (37), (38).

Vmax

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 523

For each v =1,..., Vmax, we then apply the query algorithm (28) for the query
P, € Ky; see (38). Thus, for each v, we compute a Whitney field P € Wh(E) for
which there exists a function F, € C?(Qoo) of norm < 1+ Ce, such that

(39) Fy = f on E, 02F(200) = &v, Jseo (Fv) = Py, Je(Fy) = PE.

Let us fix functions F, as above. We compute
(40) PE = Z)\vﬁs + pJe(e2) € Wh(E), and define
v=1

Vmax

(41) F= Z?\VFV + ez € C3(Qoo).

v=1

From (31), (36), (37), (39), (40), (41), we conclude that

Vmax
(42) F=> A f=fonkE;
v=1

Vmax

(43) Jsoo (F) = 3~ APy + wlsy(e2) = P and
v=1

Vmax

(44) Je(F) = > APE + pfe(ez) = PE.

v=1
Moreover, since P € K, we know that P satisfies (35). Hence, (43) implies that
(45) 02F(zoo) € Ir.
Also, since each F, has norm at most 1+ Ce in C?(Qqp), estimates (30) and (37)
tell us that
Vmax

(46) || Fllc2(Qoo)< D Av - (14 Ce) + Callool - Cellool ' < T+ Ce.

v=1

Our results (42)-(46) show that PF and F are as asserted in the query algo-
rithm (22). Thus, we have successfully responded to the query P, proving (22).

The reader may easily check that the computer resources used to carry out
Algorithm AOI-Version 2 are as promised. This completes our explanation of
Algorithm AOI-Version 2.

19. Almost optimal interpolants, version 3

In this section, we make the following assumptions:
(1) We are given a number € > 0.
(2) We are given an open square Qo = Iy x Jo such that |Io| < Cj.
(3) A given function ¢ € C?(21y) satisfies |@’|<Cz and |@”|< C3|Ip|~! on 2Ip.

524 C. FEFFERMAN

(4) Given x1 € 2Ip, a @-Oracle returns @(x1), @©’(x1), ©”(x1), charging us
“work” We,0 > 1 to do so.

(5) We are given a finite set E C Io; let N = #(E).

(6) We define E = {(x1, @(x1)) : x1 € E}.

(7) We assume that E C Qo.

(8) We are given a function f: E — R.

(9)

9) We are given a family of norms |-|, on P (z € R?), and an Oracle, satisfying
conditions (1)-(4) in Section 5. We define C? norms as in that section.

(10) We are given a finite set So C Qo.

(11) We assume that #(So) < e~ 1°°.

(12) We assume that [x; — @(x1)| > €38q, for all (x1,x2) € So.
(13)

(14)

13) We are given a base point zp € So.

14) We are given a convex polyhedron T'(zg) C P, defined by at most Cy4
constraints.

(15) We assume that [0%(P; — P2)(z0)| < C56€)‘°‘| for || < 2, Py, P2 € T'(z0).
(16) We assume that there exists Feude € C2(R?) such that || Feruge llc2r2)<
Cé, Ferude = f on E, and Izo (Fcrude) € F(ZO)-

(17) We take the boiler-plate constants for this section to be Ci,...,Cs in
assumptions (1)-(16) above, together with co, Co, C1, C2 in (1)-(4) of Sec-
tion 5. We assume that C¢ > 1 in (16).

(18) We assume that € is less than a small enough controlled constant.

This concludes the list of assumptions made in this section.

Our goal here is to present the following algorithm:

Algorithm AOI, Version 3. Given the above assumptions we compute a con-
vex polyhedron K € Wh(Sy), defined by at most C(€) constraints, such that the
following hold for a large enough controlled constant Ca:

(19) Let F € C?(2Qo) with norm < 1 — Cae. Suppose that F = f on E and
Jzo (F) € T'(z0). Then Js, (F) € K.

(20) After computing K, we can answer queries as follows: A query consists of
a Whitney field P € K. The response to a query PeKisa Whitney field
PE € Wh(E) for which there exists F € C?(Qp) with norm < 1+ Ce, such
that F=f on E, J., (F) € (z0), Js, (F) = P and Jg (F) = PE.

The computation of K uses work < C(e)(N+2)log(N+2) and storage < C(e)(N + 2),
and makes < C(e)(N + 2) calls to the @-Oracle.

To answer a query as in (20), we use work and storage at most C(€) - (N + 2),
and we make no calls to the ¢@-Oracle.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 525

Explanation: First of all, note that our present assumptions, unlike those made
in many previous sections, allow for the possibilities E = (), #(E) = 1. Hence, we
write N 4 2 above, so that we get a sensible result for log(N + 2) in case N = 0.
When E = (), we have Wh(E) = {0}, and the equation Jg(F) = PE in (20) holds
vacuously for P = 0.

We begin the work of achieving (19), (20). We first compute a set ST such that
21)
22) #
23)

)

24) For any z € Qo there exists z© € S such that |z —z"| < €28q,.

(So € ST C Qo,
(#(ST) <2100,
([x2 —@(x1)| > € 5Qo for all (x7,x2) € ST, and
(
We can trivially compute such an S*, using work and storage at most C(e),
and making at most C(e) calls to the @-Oracle.

We will compute a convex polyhedron K* € Wh(S™), defined by at most C(e)
constraints, such that the following hold for a large enough controlled constant Ca:

(25) Let F € C%(2Qo) with norm < 1 — Cae. Suppose that F = f on E, and
that J., (F) € T(z0). Then Js+(F) € K*.
(26) After computing K™, we can respond to queries as follows: A query consists

of a Whitney field P+ € KT. The response to a query P™ € K* is a Whitney
field P® for which there exists F € C?(Qo) with norm < 1+ Ce, such that

F=fonE, Jz(F) €N(zo), Js+(F) = P*, and Je (F) = PE.

(27) Moreover, the computation of K™ uses work < C(e)(N + 2)log(N + 2),
storage at most C(e) - (N + 2), and at most C(e) - (N + 2) calls to the
@-Oracle. To respond to a query as in (26), we use work and storage at
most C(€) - (N + 2), and we make no calls to the @-Oracle.

Once we compute Kt as above, we can simply set K = {ﬁlso P e KT} Tt is

then trivial to check all the assertions made in the statement of Algorithm AOI-

Version 3. Thus, our task is to compute K*, as above. We explain how to do so.
We partition Qp into a grid of congruent squares {QV}, with

(28) 84, = § for each v, where cedq, < & < Cedq,. Thus,

(29) The number of squares Q, is at most Ce 2

For each QV, we can trivially compute an open square Q., such that

(30) QoN3Qv C Qv C Qo, and
(31) 8q, =56 = 58q ,, for each v.

The computation of all the QV and Q- uses work and storage C(€), and involves
no calls to the ¢@-Oracle.

526 C. FEFFERMAN

Next, we introduce cutoff functions 0, € C?(R?), with the following properties:
(32) 8, > 0 on RZ?, 0, >1on QV, 0, = 0 outside ZQV;
(33) [0%0,| < C5— 1ol = Czsg‘"' on R2, for |f < 2.

We may take 0, such that, given z and QV, we can compute]Z(év) using work
and storage at most C. We then define a partition of unity on Qo, by setting

(34) 0y = év/Zéw on Qo, for each v.

Thus, the 6, are defined only on Qg. For each v, we have
(35) 8y € C2(Qo), 6y > 0 on Qo, supp Oy € Qo N2Q+ C Q.

Here and below, supp 8y denotes the set of points z € Qo such that 6, does not
vanish identically in any neighborhood of z. Moreover,

36) 10%0,| < C& 1ol < 5. on 0, for || < 2; and
QV
(37) E 0y =1 on Qo.

In addition,

(38) Given z € R?, and given Q,, we can compute J,(6,) using work and
storage at most C.

For each v, we compute Jg (6+); this takes work and storage at most C(e)- (N +2),
and requires no calls to the @-Oracle.

Let z € suppOy Nsup@ys. Then by (24), there exists z© € S* such that
z—zt| < €%8g, < Ced. (See (28).) Since z € 2Qv N 2Q+ by (35), and since
0g, =08g,, = 8, it follows that z© € 3Q N 3Q+-.

Also, zT € ST € Qo. Thus, z* € QoN3Qy and z* € QuN3Q,,. Consequently,
zt € Qv N Q+, thanks to (30). Thus, we have proven the following:

(39) Let z € supp 6y NsuppB,,. Then there exists zt € ST such that z© €
Qv N Qv and [z —zt| < €28q,.
For each v, let us write
(40) Qv =1y x Jv, and define
(41) Ev =ENQy,
(42) By ={x1: (x1,%x2) € By},
(43) Sy = S* N Q.

Note that S, is non-empty, thanks to (30), (31), and (24) applied to the center
of Q.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 527

For each v, we pick

(44) Zo,v € S..

The computation of all the E, E, Sy, zo,v uses work at storage at most C(e) -
(N + 2), and requires no calls to the @-Oracle. Next, let

(45) 12 ={092P(z0) : P € T(z0)}.

Since I'(zg) C P is a convex polyhedron defined by at most C constraints, it
follows that I? is an interval. Moreover, we can compute I2 using work and storage
at most C, without making calls to the @-Oracle.

Thanks to our assumption (15), we have

(46) 12| < Cdq,-

Suppose F € CZ(QO), with norm at most Cg. (See (16).) Then [02F(z) —
02F(z0)| < C8q, for all z € Qo. Hence, for a large enough controlled constant C#,
the following holds:

(47) Let Ir = {& € R: distance (£,19) < C#8q, -
(48) Let F € C?(Qo) with norm at most Cg (as in (16)), and suppose that
Jzo (F) € T(z0). Then 02F(z) € Ir for all z € Qo.

Moreover I is an interval of length

(49) Ir] < CéQo'

The main step in our computation of Kt is to do the following, for each of
the Q+:

(50) We compute a convex polyhedron Ky € Wh(Sy), defined by at most C(e)
constraints, such that the following hold for a large enough controlled
constant Ca:

(51) Let F € C*(CAQ+) with norm < 1 — Cae. Suppose F = f on E, and
62F(zo,v) € Ir. Then]5V (F) e Ky.
(52) After computing Ky, we can answer queries as follows: A query consists

of a Whitney field P € Ky. The response to a query PeKyisa Whitney
field PE € Wh(E,) such that there exists F € C?(Q,) with norm < 1+ Ce,

satistying F = f on Ey, 32F(z0,v) € I, Js, (F) = P, Je, (F) = PL.

(53) The computation of K, uses work < C(€)(N + 2)log(N + 2), storage <
C(e)(N +2), and at most C(e)(N + 2) calls to the @-Oracle.

(54) To respond to a query as in (52), we use work and storage at most C(e)-
(N + 2), and make no calls to the ¢-Oracle.

We first explain how to achieve (50)—(54) for each v; then we explain how to
use (50)—(54) to compute KT and satisfy (25), (26), (27).

528 C. FEFFERMAN

To achieve (50)—(54), we distinguish two cases.

The Easy Case: #(E.) < 2.
The Hard Case: #(E,) > 2.

We first tackle the Hard Case. Recall that (18.x) denotes expression (x) in
Section 18.

We check the following;:

(55) Assumptions (18.1)—(18.14) hold here, with our present Q. = I, X Jy,
E,Ey and N, := #(E,), respectively, in place of Qoo = Ipo X Joo, E,E
and N in Section 18. Moreover, the constants listed in (18.15) may be
taken here to be controlled constants (in the sense of the present section;
see (17)). Consequently, the “small € assumption” (18.16) follows from
our present small € assumption (18).

Indeed,
(18.1) just says that € is a positive real number; this is our assumption (1).
(18.2) says that Qv = Iy x Jy is an open square, with 8¢, < Ce. We have
defined Q+ to be an open square with sidelength 55. Hence, 8g, < Ce, by (2)
and (28).
(18.3) says that Ey C I is a finite set. This follows from (40), (41), (42), since E
is a finite set.
(18.4) says that ¢ € C*(ce 'l), with ce ' >1. We know that I, C Io, by (2), (30)
and (40). Also, |Iy| =56 < Cellp|. Hence,

(56) ce ', C 2l and |Io|~" < Cell,| 7.

Consequently, (18.4) follows from (3) and (18).
(18.5) asserts that |@’| < C and |@”| < Ce|ly|~" on ce 'I,. These estimates follow
from (3) and (56).
(18.6) and (18.7) assert that, given x; € ce 'ly, the @-Oracle returns ¢(x1),
@'(x1), " (x1), and charges us work W, > 1. This follows from (4) and (56).
(18.8) asserts that Ey = {(x1, @(x1)) : x1 € Ey}. This follows from (6), (41), (42).
(18.9) says that Ey C Q. This follows from (41).
(18.10) says that Ny = #(E,) = #(Ey) > 2. B

We have N, = #(Ey) by definition, and #(Ey) = #(Ey) thanks to (18.8),
which we just proven. We have N, > 2 because we are in the Hard Case.

(18.11) says that f: Ey — R, which follows from (8), (41).
(18.12) says that Ir is an interval, and that |Ir| < Ce~"|I,|. Since |Iy| = 55, this
follows from (28) and (49).
(18.13) is the same as our present (9).
(18.14) asserts here that Fouge € C2(R?), || Ferude llc2g2)< C, Feruge = f on Ey,
and 05Fcuge(z) € Iy for all z € E,.

Except for the assertion 02Fqude(z) € Ir, the above properties of Feuge are
assumed here in (16), since Ey C E by (41).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 529

Moreover,]z, (Faude) € T(2zo) and || Feude [lc2(0q)< Cs, by (16). Hence,
02Fcrude(z) € Ir for all z € Qp, thanks to (48). In particular, 9:Fcude(z) € Ir
for all z € Ey C E; see (7) and (41).

This completes the proof of our Claim (55).
Next, we check that

(57) Assumptions (18.17)-(18.20) hold here, with Sy, Q~, zo,v in place of Soo,
Qoo, zoo in Section 18.

Indeed,
(18.17) says that Sy C Qv (and Sy finite), which follows from (43).
(18.18) says that #(Sy) < €2°°, which follows from (22) and (43).

(18.19) asserts that [x2 — @(x1)] > €35QV for all (x1,x2) € Sy. This estimate
follows from (23) and (43), since Qv C Qo by (30).
Finally, (18.20) says that zo,v € S+, which we know from (44).

This completes our verification of (57).

Thanks to (55) and (57), we may apply Algorithm AOI-Version 2. Thus, we
compute a convex polyhedron Ky, satisfying (50)—(54). This concludes our discus-
sion of (50)—(54) in the Hard Case #(E) > 2.

We pass to the Easy Case #(E+) < 2.

We refer to Section 6, and to the Remark in that section, following the discus-
sion of Algorithm AUB4.

Thus, using work and storage at most C(e) (and no calls to the @-Oracle), we
compute a convex polyhedron K2UB < Wh(S, U E,), defined by at most C(e)
constraints, such that the following hold:

Let F € C2(2Q+) with norm < 1. Then Js, g, (F) € KAUB,

Let P € KAUB, Then there exists F € C2(Q,) with norm < 1+ Ce, such that
Js,ue, (F) = P. We now set

Ky = {Pls, : P € KAYB val (P,z) = f(z) for all z € E, val (02P,z0.y) € Ir}.

It is trivial to check that (50)—(54) hold.
This completes our discussion of (50)—(54) in the Easy Case. Thus, we have
achieved (50)—(54) in all cases.

We now use our Ky from (50)—(54) to define and compute K¥, and establish
(25), (26), (27). We take

(58) Kt = {P € Wh(St): Pls. € K, for each v, and ﬁIZO € I'(zo)}-

Thus, Kt € Wh(S™") is a convex polyhedron defined by at most C(€) constraints.
Moreover, once we have computed the K, it takes work and storage at most C(€)
to compute K from (58).

530 C. FEFFERMAN

Let us check that (25) holds for our K*. Suppose F € C?(2Qo) with norm
< 1—Cace, and suppose also that F = fon E and], (F) € I'(zg). For each v, we have
CaQ~ C 2Qo, since Qv C Qo and 8q, =56 < Cedq,. Therefore, F € C*(CaQ~)
with norm < 1—Cae, and F = f on E, by (41). Also, 0:F(zo,v) € Ir, by (48).
(Recall that zov € Sy C ST C Qo.) Consequently, (51) tells us that Js_ (F) € Ky
for each v. Since also J,, (F) € I'(zo) by assumption, a glance at (58) shows that
Js+(F) € KT, completing the proof of (25).

We pass to the query algorithm (26). Thus, suppose we are given a query
Pt € K*. By definition (58), we have P*|s_ € K, for each v, and

(59) P+ = (P#),es+, with P20 € I'(zo).

Applying the query algorithm (52) to the query ﬁ*\gv, we obtain for each v a
Whitney field

(60) P% = (P5#).ce, € WhE,)
for which there exists

61) Fy € C?(Q+) with norm < 1+ Ce such that

(

(62) v="fonkEy, azF(Zo v) e lr,
(63) s, =Pts,,

(64) Je. (Fy) = P5.

The l_js may be computed from P+ using work and storage at most C(€)-(N+2),
and without calls to the @-Oracle; see (43) and (54).

From (63) and (59), we obtain in particular that J,, (Fy) = Pz0 € I'(zo) when-
ever zg € Sy. Also, since zg € Sp C St (see (13) and (21)), we learn from (43)
that zp € Qv implies zp € Sy. Consequently,

(65) Jz, (Fy) = P#° for all v such that Qv > zo.

We bring in the partition of unity (35)—(38). Let us define F € C?(Qo) and
(66) PE = (P®2),ce € Wh(E), by setting
(67) F= ZG Fy on Qo, and

PEZ:Z]Z @ZPEZforaHZEE
QVBZ

Since supp0y C Qy and F, € C?(Qy) for each v, (67) makes sense, and F €
C2(Qo). Also, (41), (60) and (64) yield J.(Fy) = P52 for Qy > z, z € E. Hence,
comparing (67) and (68), we find that], (F) = P®* for each z € E, i.e.,

(69) Je(F) = PE.

Let us check that F and PE have all the properties promised in (26).

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 531

We start by estimating the C2 norm of F.

Fix z € Qo, and suppose z € supp 0~ NsuppO/. Then z € Qy N Q. By (39),
there exists z* € ST N Q, N Q such that

(70) lz—z*| < €28q, < Ced (see (28)).

Thus, z" € Sy N Sy/, by (43). Therefore, (59) and (63) tell us that J,+(Fy) =
J.+(Fy) = P=". In particular,

(71) Jo (Fy —Fur) = 0.
Also, (61) and the Bounded Distortion Property imply that

Fy —Fy € C*(Qv N Qyv/),
and
(72) [0%(Fy —Fy/)| < Con Qv NQ+/, for |af < 2.
From (70), (71), (72) and Taylor’s theorem, we learn that
(73) [0%(Fy —Fy/)(z)] < C- (e8)?7 1ol < Ced? 1ol for |af < 1,
whenever supp 0 Nsupp B0/ > z. We recall that

(74) 10%0+(z)] < CO~!* for |af < 2, and that
(75) |]Z(Fv)|z <1+ Ce for supp ev > Z;

see (36) and (61). Note also that z € supp 6 for at most C distinct 0+; see (30),
(31), (35), and recall that the Qy form a grid of squares of sidelength 6. Also,
recall that & < Cedg, < Ce < 1 (see (2) and (28)), and that 6, >0, } 6, =1

on Qo.

The above remarks and Lemma GPU from Section 5 tell us that

(76) 1J-(F)lz <1+ Ce.

Since z € Qo is arbitrary in (76), we conclude that

(77) I Fllcz(@oy= 1+ Ce.

Next, let z€ E. For any v such that supp6y 3z, we have z€ Qy N E=E,; hence
F.(z) = f(z) by (62). Consequently, (67) and (37) give F(z) = Y 0+ (z)f(z) = f(z).
Thus,

(78) F=fon E.

Next, let z € ST. For any v such that supp 6y > z, we have z € Q, N ST =Sy;
hence, (59) and (63) tell us that J.(F,) = P=. Consequently, (67) and (37) give
Jo(F) =3 ,J2(6y) ®, P* = P* for all z € S*. That is,

(79) Js+(F) =P,

532 C. FEFFERMAN

In particular,
(80) Jzo (F) =P € T'(zo),

thanks to (13) and (59).

Our results (69), (77), (78), (79), (80) show that F and PE are as promised
n (26). Thus, we have succeeded in answering the query Pt € K*. This completes
our discussion of the query algorithm (26).

The reader may easily check that the computer resources used to compute K+
and answer queries (26) are as asserted in (27).

Our explanation of Algorithm AOI-Version 3 is complete. With AOI-Version 3,
we have carried out Step I of the strategy presented in the Introduction. In [4], we
will carry out Step II and complete our interpolation algorithm for C?(R?).

References

[1] BIERSTONE, E. AND MILMAN, P.: C™-norms on finite sets and C™ extension criteria.
Duke Math. J. 137 (2007), no. 1, 1-18.

[2] BRUDNYI, Y. AND SHVARSTMAN, P.: Generalization of Whitney’s extension theo-
rem. Int. Math. Res. Notices 1994, no. 3, 129-139.

[3] CALLAHAN, P. B. AND KOSARAJU, S. R.: A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. J. Assoc.
Comput. Mach. 42 (1995), no. 1, 67-90.

[4] FEFFERMAN, C.: Nearly optimal interpolation of data in C?(R?). Part IL. In prepa-
ration.

[5] FEFFERMAN, C.: The C™ norm of a function with prescribed jets I. Rev. Mat.
Iberoam. 26 (2010), no. 3, 1075-1098.

[6] FEFFERMAN, C.: The C™ norm of a function with prescribed jets. II. Rev. Mat.
Iberoam. 25 (2009), no. 1, 275-421.

[7] FEFFERMAN, C. AND KLARTAG, B.: Fitting a C™-smooth function to data. I. Ann.
of Math. (2) 169 (2009), 315-346.

[8] FEFFERMAN, C. AND KLARTAG, B.: Fitting a C™-smooth function to data. II. Rev.
Mat. Iberoam. 25 (2009), no. 1, 49-273.

[9] FEFFERMAN, C. AND KLARTAG, B.: An example related to Whitney extension with
almost minimal C™ norm. Rev. Mat. Iberoam. 25 (2009), no. 2, 423-446.

[10] FEFFERMAN, C.: A sharp form of Whitney’s extension theorem. Ann. of Math. (2)
161 (2005), no. 1, 509-577.

[11] LEGRUYER, E.: Minimal Lipschitz extensions to differentiable functions defined on
a Hilbert space. Geom. Funct. Anal. 19 (2009), no. 4, 1101-1118.

[12] HARTMANIS, J. AND SIMON, J.: On the power of multiplication in random access
machines. In 15th Annual Symposium on Switching and Automata Theory (1974),
13-23. IEEE Comput. Soc., Long Beach, Calif., 1974.

[13] MALGRANGE, B.: Ideals of differentiable functions. Tata Institute of Fundamen-

tal Research Studies in Mathematics 3, Tata Institute of Fundamental Research,
Bombay; Oxford University Press, 1966.

NEARLY OPTIMAL INTERPOLATION OF DATA IN C?(R?). PART I 533

(14]

(15]

[16]

[17]

[18]

[19]
[20]

[21]

PREPARATA, F. AND SHAMOS, M.: Computational geometry: An introduction, (se-
cond edition). Texts and monographs in Computer Science, Springer-Verlag, New
York, 1985.

VON NEUMANN, J.: First draft of a report on the EDVAC. Moore School of Electrical
Engineering, University of Pennsylvania, Philadelphia, Pa, 1945. Reprinted in IEEE
Ann. Hist. Comput. 15 (1993), no. 4, 27-75.

SHVARTSMAN, P.: The Whitney extension problem and Lipschitz selections of
set-valued mappings in jet spaces. Trans. Amer. Math. Soc. 360 (2008), no. 10,
5529-5550.

SHVARTSMAN, P.: Lipschitz selections of multivalued mappings and traces of the
Zygmund class of functions to an arbitrary compact. Dokl. Acad. Nauk SSSR 276
(1984), 559-562. English translation in Soviet Math. Dokl. 29 (1984), 565-568.

SCHONHAGE, A.: On the power of random-acess machines. In Automata, languages
and programming, 520-529. Lecture Notes in Computer Science 71, Springer, Berlin—
Heidelberg, 1979.

STEIN, E. M.: Singular integrals and differentiability properties of functions. Prince-
ton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.
WHITNEY, H.: Analytic extensions of differentiable functions defined on closed sets.
Trans. Amer. Math. Soc. 36 (1934), 63-89.

WHITNEY, H.: Functions differentiable on the boundaries of regions. Ann. of
Math. (2) 35 (1934), 482-485.

Received June 10, 2007.

CHARLES FEFFERMAN: Department of Mathematics, Princeton University, Fine Hall,
Washington Road, Princeton, New Jersey 08544, USA.
E-mail: cf@math.princeton.edu

Supported by grants #N00014-08-1-0678 & DMS-0901040.

mailto:\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/sc/9 {\OT1/cmr/m/n/9 }\OT1/cmr/m/sc/9 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/sc/9 {\OT1/cmr/m/n/9 }\OT1/cmr/m/sc/9 \size@update \enc@update cf@math.princeton.edu

	Introduction
	Notation
	Conventions regarding constants
	Convex polyhedra
	Dyadic grids
	C2 norms
	Approximate unit balls
	The basic tree
	The basic set-up
	Marking the basic tree
	A partition of unity
	Simplifying a convex set
	Simplifying a convex set of Whitney fields
	Computing the basic polyhedra
	Local interpolants
	Global interpolants
	An almost OK interpolant
	Almost optimal interpolants
	Almost optimal interpolants, version 2
	Almost optimal interpolants, version 3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

