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Singular integrals with flag kernels
on homogeneous groups, 1

Alexander Nagel, Fulvio Ricci, Elias M. Stein and Stephen Wainger

Abstract. Let IC be a flag kernel on a homogeneous nilpotent Lie group G.
We prove that operators T' of the form T'(f)= f*K form an algebra under
composition, and that such operators are bounded on L?(G) for 1 < p < oco.

1. Introduction

This is the first of two papers dealing with singular integral operators with flag
kernels on homogeneous nilpotent groups. Our goal is to show that these operators,
along with appropriate sub-collections, form algebras under composition, and that
the operators in question are bounded on LP.

Operators of this kind arose initially when studying compositions of sub-elliptic
operators on the Heisenberg group (such as the sub-Laplacian £ and Op) with
elliptic-type operators. In particular in [7] one saw that operators of the form
m(L,iT) (where m is a “Marcinkiewicz multiplier”) are singular integrals with
flag kernels and satisfy LP estimates. The theory was extended in [9] to encompass
general flag kernels in the Euclidean space RV, and the resulting operators arising
via abelian convolution. In addition, aspects of the CR theory for quadratic man-
ifolds could be studied via such operators on various 2-step groups. More recently,
flag kernels have been studied in [13] and [2]. In view of this, and because of their
potential further application, it is desirable to extend the above results in [9] to
the setting of homogeneous groups of higher step. To achieve this goal requires
however that we substantially recast the approach and techniques used previously,
since these were essentially limited to the 2-step case.

Our main results are two-fold. Suppose G is a homogeneous nilpotent group
and K denotes a distribution on G which is a flag kernel (the requisite definitions
are given below in Definition 2.3).

Theorem A. The operators T of the form T(f) = f x K form an algebra under
composition.
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Theorem B. The above operators are bounded on LP(G) for 1 < p < co.

Given the complexity of the material, in this introductory section we provide
the reader with an outline of the main ideas that enter in the proofs of the above
theorems. Moreover, in order to simplify the presentation we will often not state
matters in the most general setting and sometimes describe the situation at hand
a little imprecisely.

1.1. Flag kernels

We start with a direct sum decomposition RY = R® @ - - - @ R, with Z?Zl aj=N,
and we write x = (x1,Xa,...,X,), with x,, € R?. We also fix a one-parameter
family of dilations &, on RY, given by 6,.(x) = (r¥ixy,...,r%x,), with positive
exponents d; < dy < --- < dp.! We denote by Q) = diai the homogeneous di-
mension of R% . We also define the partial “norms” Ny (x) = |xk|é/d’“, where |xx|e

is the standard Euclidean norm on R%*.

In this setting, a flag kernel K is a distribution on RY which is given by in-
tegration against a C'*° function K (x) away from x; = 0 and which satisfies two
types of conditions. The first are the differential inequalities for x; # 0:

n
(1.1) 02 K(x)] < Co [] Vi(x) + Na(x) + - + Ny (x)) Qe
k=1
with o = (a1, ..., ). The second are the cancellation conditions. These are most

easily expressed recursively. Let (K, ¢) denote the action of the distribution K on a
test function ¢. At the beginning of the recursion there is the following condition,
in many ways typical of the others:

(1.2) sup (K, oRr)| < o0

where R = (Ri,Rs,...,Ry), ¢r(z) = o(R{'z1, R¥xy,... ,Rix,), and ¢ is
an arbitrary C*° function which is supported in the unit ball. More generally,
one requires that the action of IC on a test function in some subset of variables
{Xmy»- -+ Xmy} produces a flag kernel in the remaining variables {x;,,...,x, }.
The precise formulation of these conditions is given in Section 2 and Definition 2.3
below.

1.2. Dyadic decomposition

A main tool used in studying flag kernels is their dyadic decomposition into sums
of “bump functions”. This proceeds as follows. Let I = (i1,1i2,...,i,) denote any
indexing set of integers that satisfies.

(1.3) 17 Zdg Kovs K1 gy

LOne can also allow non-isotropic dilations on each subspace R%. See Section 2 below.
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Also let {¢’} be a family of C* functions supported in the unit ball that are
uniformly bounded in the C'™ norm for each m. Set

[(pI]I(X) — 9= 11Q1 —i2Q2— - —inQpn (pl(z—dlilxl’ s 2—dninxn) )

so that the [¢!]; are L'-normalized. We say that the ! satisfy the “strong can-
cellation” condition if for each k& with 1 < k < n,

(1.4) / Ol (X1, Xpy oo, X)) dXg = 0
Rok

when all the inequalities (1.3) for I are strict. In the case that there are some
equalities in (1.3), say ip—1 < ig = ig41 = -+ = i) < ig41, then only cancellation
in the collection of corresponding variables is required:

(1.4 / Ol (X1, Xy e Xpy e, Xy ) dXy - dxg, = 0.
ROL G- P RO

The first result needed is that any sum

(1.5) >

I

made up of such bump functions, with the cancellation conditions (1.4) and (1.4),
converges in the sense of distributions to a flag kernel, and conversely, any flag
kernel K can be written in this way (of course, not uniquely).

There are two parts to this result (which in effect is stated but not proved
completely in [9]). The first is that the sum in (1.5) is indeed a flag kernel. To see
this, one can use the estimate in Proposition 10.1 given in Appendix II below; one
also notes from this that even without the cancellation conditions (1.4) and (1.4),
the sum (1.5) satisfies the differential inequalities (1.1). The converse part requires
Theorem 6.1 below, and the observation that the parts of the sum (1.5) contributed
by I’s where there may be equality in (1.3) give flag distributions corresponding
to various “coarser” flags.

However, what will be key in what follows is that the strong cancellation condi-
tions (1.4) or (1.4') can be weakened, and still lead to the same conclusion. While
these “weak” cancellation conditions are somewhat complicated to state (see Defi-
nition 5.5 below), they are easily illustrated in the special 2-step case. Here we
have the decomposition R” = R* @ R, x = (x1,%2). The cancellation condi-
tion for the second variable is as before: f @I(xl,xQ)dx2 = 0. For x; the weak
cancellation condition takes the form

(1.6) /R o (x1,%z) dxy =272 )pl (xy),
ay

for some € > 0, with I = (i1,42) and n’ an L' normalized bump in the x5 variable.
In this context, the main conclusion (Theorem 6.8) is that the sum (1.5) is
still a flag kernel if the weak-cancellation conditions are assumed instead of (1.4)
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and (1.4'), and the functions {¢!} are allowed to belong to the Schwartz class
instead of being compactly supported. In understanding Definition 5.5, one should
keep in mind that conditions like (1.4), which involve vanishing of integrals, are
equivalent with expressions of the ! as the sums of appropriate derivatives. (This
is established in Lemma 5.1).

1.3. Other properties of flag kernels

Along with the results about decompositions of flag kernels, there are a number of
other properties of these distributions that are worth mentioning and are discussed
in Section 6. First, the class of flag kernels is invariant under changes of variables
compatible with the structure of the flags. We have in mind transformations
x — y = F(x), with y, = x; + Pr(x), and P, a homogeneous polynomial of
X1,...,Xk_1, of the same homogeneity as x;. The fact that ICo F' satisfies the same
differential inequalities (1.1) as K is nearly obvious, but the requisite cancellation
conditions (such as (1.2)) are subtler and involve the weak cancellation of the bump
functions. (See Theorem 6.15.)

A second fact is that the cancellations required in the definition of a flag kernel
can be relaxed. For example, assuming that the differential inequalities (1.1) hold,
then the less restrictive version of (1.2) requires that the supremum is taken only
over those R for which Ry > Ry > --- > R, > 0. The formulation and proof of
the sufficiency of these restricted conditions is in Theorem 6.13.

Finally we should point out that at the basis of many of our arguments is an
earlier characterization in [9] of flag kernels in terms of their Fourier transforms:
these are bounded multipliers that satisfy the dual differential inequalities given
in Definition 6.3.

1.4. Graded groups and compositions of flag kernels

Up to this point our discussion of flag kernels has focused on their definition as
distributions on the Euclidean space R"Y. We now consider convolutions with flag
kernels on graded nilpotent Lie groups G whose underlying space is R™. The
choice of an appropriate coordinate system on the group G, and its multiplication
structure, induces a decomposition RN =R &- - -@R% and allows us to find expo-
nents dy < dg < --- < d,, as above so that the dilations d,(x) = (r¥1xy,...,r%x,),
with r > 0, are automorphisms of G.

The proof of Theorem A reduces to the statement that if IOy and ICy are a pair
of flag kernels, then KCq * Ko is a sum of flag kernels, where the convolution is taken
with respect to G. Note that when G is the abelian group RY, the result follows
immediately from the characterization of flag kernels in terms of their Fourier
transforms, cited earlier, and in fact the convolution of two flag kernels is a single
flag kernel. In the non-commutative case the proof is not as simple and proceeds as
follows. First write K1 = >, [¢']r, Ko = Y, [¢/]; in terms of decompositions
with bump functions with strong cancellation. Now, formally,

(1.7) KisKa =) Y [+ [07]s.
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We look first at an individual term [o!]; *[¢7] 7 in the above sum. It has three
properties:

(a) [!]r * 7] 5 = [017]x with [077]x a “bump” scaled according to K, where
K =1V J;thatis K = (k1,ka, ..., k), and k,, = max(in,, jm), 1 < m < n.
This conclusion holds even if we do not assume the cancellation conditions
on [p!]; and [v7];.

(b) Next, because we do have the cancellation conditions (1.4) and (1.4"), we have
a gain: There exists € > 0 so that [#/]x can be written as a finite sum of
terms of the form

HQ—Eliz—jzl H 9—€l(imr1=im)+(Gmt1—dm) [§I7J]K
leA meB

where [[97 /1) is another bump function scaled according to K, and A and B
are disjoint sets with AU B = {1,...,n}, with n ¢ B.

(c) Strong cancellation fails in general for [#*/]x, but weak cancellation holds.

Statements (a), (b), and (c) above are contained in Lemmas 6.17 and 6.18.
With these assertions proved, one can proceed roughly? as follows. We define

o= > [P+l

IVJ=K

where the sum is taken over all pairs (I, .J) for which I vV J = K. Because of the
exponential gain given in (b) this sum converges to a K-scaled bump function.
Moreover, because of (c), Oy satisfies the weak cancellation property. As a result,
the sum ZKQZJK converges to a flag kernel, and hence IC; * Iy is a flag kernel as
was to be shown.

We comment briefly on the arguments needed to establish (b) and (c¢). Here we
use the strong cancellation properties of [¢!]; (or [/7] 7). For (b) we express [¢!]; as
a sum of derivatives with respect to appropriate coordinates, then re-express these
in terms of left-invariant vector fields, and finally pass these differentiation to [1/”] .
The reverse may be done starting with cancellation of [1//];. To obtain (c), the
weak cancellation of [¢!]; * [¢)7];, we begin the same way, but express [¢!]; in
terms of right-invariant vector fields and then pass these differentiations onto the
resulting convolution products. The mechanism underlying this technique is set
out in the various lemmas of Section 3.

The argument is a little more complex when we are in the case of equality
for some of the indices that arise in I or J. This in effect involves convolutions
with kernels belonging to coarser flags. The guiding principle for convolutions of
such bump functions (or kernels) is that if /C; are flag kernels corresponding to the
flags F;, j = 1,2, then Ky * ICy is a flag kernel for the coarsest flag F that is finer
than F; and F». The combinatorics involved are illustrated by several examples
given in Sections 7.3 and 7.5.

2There are actually additional complications. We must first make a preliminary partition of
the set of all pairs (I, J), and the result is that /1 * K2 is actually a finite sum of flag kernels.
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1.5. LP estimates via square functions

The proof of the L? estimates (Theorem 8.14) starts with the descending chain of
subgroups G = G; D Go D --- D G, where

Gm:{x:(xl,XQ,...,x,L):x1:O,x2:O,...,xm_1:O}

when m > 2. We observe that the dilations , restrict to automorphisms of the G,,.
We then proceed as follows:

(i) The standard (one-parameter) maximal functions and square functions on
each group G, as given in [3], are then “lifted” (or “transferred”) to the
group G.

(ii) Compositions of these lifted objects lead to (n-parameter) maximal functions
and square functions on G. Among these is the “strong” maximal function

M(f)(x) = sup /R Fy ) dy,

1
m(Ry)

for which one can prove vector-valued L inequalities. Here Rs = {x : |x;| <
sz’“}, with (s1,...,s,) restricted to s1 < s < -+ < s,. There are also a pair
of square functions, S and &, with the properties:

(1.8) [[fllze < Ap [ S(F)llLe and [|S(f)llze < A} || f e, for 1 <p <oo.

(iii) The connection of these square functions with our operators T, given by
Tf = f=* K with £ a flag kernel, comes about because of the pointwise
estimate:

(1.9) S(Tf)(x) < c6(f)(x),
which is Lemma 8.13 below.

Now, (1.8), together with (1.9), prove the LP boundedness of our operators.
Among the ideas used to prove (1.9) is the notion of a “truncated” flag kernel:
such a kernel is truncated at “width a”, a > 0, if it satisfies the conditions such
s (1.1), but with Ny + - -+ + Ny, replaced by a + Ny + -+ - + Ny, throughout (see
Definition 6.20). A key fact that is exploited is that a convolution of a bump of
width b with a truncated kernel of width a yields a truncated kernel of width a+b.
For this, see Theorem 8.7, and its consequence, Theorem 8.9.

1.6. Final remarks

The collection of operators with flag kernels contains both the automorphic (non-
isotropic) Calderén—Zygmund operators as well as the usual isotropic Calderén—
Zygmund operators with kernels of compact support (broadly speaking, the stan-
dard pseudo-differential operators of order 0). But flag kernels, by their definition,
may have singularities away from the origin. Thus the algebra we are considering
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consists of operators that are not necessarily pseudo-local. The study of a nar-
rower algebra that arises naturally, which consists of pseudo-local operators and
yet contains both types of Calderén—Zygmund operators, will be the subject of the
second paper [10] in this series.

The authors are grateful to Brian Street for conversations and suggestions about
the decomposition of flag kernels into sums of dilates of compactly supported func-
tions. We would also like to thank the referee for a very careful reading of the paper.
We note that the topic of this paper was the subject of several lectures given by
one of us (EMS), in particular at a conference in honor of F. Treves at Rutgers,
April, 2005, and at Washington University and UCLA in April and October 2008.
During the preparation of this paper we learned of the work of Glowacki ([4], [5],
and [6]) where overlapping results are obtained by different methods. We should
also mention a forthcoming paper of Brian Street [12] that deals with the L2-theory
in a more general context than is done in the present paper.

2. Dilations and flag kernels on R¥

Throughout the paper we shall use standard multi-index notation. Z denotes the

set of integers, and N, the set of non-negative integers. If a = (ag,...,ay) € NV,
then |a] = a; + -+ ay and a! = ai!---ay!. If x = (21,...,2x5) € RV,
then x* = " ---23". For 1 < j < N, 0,; (or more simply 9;) denotes the

differential operator % If « € NV, then 0% denotes the partial differential
J
operator 07" - - - O
The space of infinitely differentiable real-valued functions on RY with compact
support is denoted by Cg°(RY™) and the space of Schwartz functions is denoted
by S(RY). The basic semi-norms on these spaces are defined as follows:

if o € CRY), gllom) = sup {10000 < [a] <m, x € RV };
if o € SRY), gl = sup {I(1+ [x)e) 0] < o] + 18] < M, x € RV }.

Here |x|. denotes the usual Euclidean length of x € RY.

2.1. The basic family of dilations

Fix positive real numbers 0 < d; < dy < --- < dp, and define a one-parameter
family of dilations on RY by setting

(2.1) Sx]=r-x=(r"zy, ... .r™Vay).

Also fix a smooth homogeneous norm |x| on R so that |r-x| = 7 |x|. The homoge-
neous ball of radius 7 is B(r) = {x € RY : |x| < r}, and the homogeneous dimen-
sion of RY (relative to this family of dilations) is @ = dy + --- + dy. Recall that
Ix|e = /2% + - - - + 2%, denotes the ordinary Euclidean length of a vector x € RY.

If m(x) = cx® = ca{" - - - %" is a monomial, then m(r-x) = rorditFavdyy (x)
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and the homogeneous degree of m is A(m) = aydy +- - -+ andy. In particular, the
homogeneous degree of a constant is zero. We shall agree that if the homogeneous
degree of a monomial is negative, the monomial itself must be identically zero.
With this convention, if m is any monomial, we have

(2.2) A(d;m) = A(m) — dj.

We denote by H4 the space of real-valued polynomials which are sums of monomials
of homogeneous degree d. We have the following easy result:

Proposition 2.1. If P is a polynomial, then P € Hg if and only if P(x) =
Zaem Ca X%, where $Hg = {a = (aq,...,ay) € N"| Zjvzl a;d; = d}. Moreover,
(1) if P € Ha, then P(r-x) = r? P(x);

(2) if P € Hag, and Q € Ha,, then PQ € Hay+dy;

(3) if P € Hq, then Ox(P)(x) =0 if dy, > d.

2.2. Standard flags and flag kernels in RY

If X is an N-dimensional vector space, an n-step flag in X is a collection of sub-
spaces X; € X, 1 < j <m,suchthat (0)C X1 CXoC---C X, 1CX,=X.
When X = R we single out a special class of standard flags. These are param-
eterized by partitions N = a1 + --- + a,, (where each a; is a positive integer) as
follows. We write

(2.3) RN =R“ @...0oR™,
and we write x € RV as x = (x1,...,%,) with x; € R%. With an abuse of
notation, we identify R% with vectors in RY of the form (0,...,0,%,0,...,0).

Then the standard flag F associated to the partition N = ay + - - - + a, and to the
decomposition (2.3) is given by

(24) 0)CR*" CR*" 'R C---CR”&---dR" CR"@---®R =R".

In dealing with such decompositions and flags, it is important to make clear
which variables in RY appear in which factor R*. We can write x € RY ei-
ther as x = (21,...,2n) with each z; € R, or as x = (x1,...,X,) with x; =
(Tps- -5 g ) € R so that ¢ = p; +a; — 1. Denote by J; = {pi,p1 +1,...,q} the
set of subscripts corresponding to the factor R* so that {1,..., N} is the disjoint
union J; U -+ U J,. There is a mapping 7 : {1,...,N} — {1,...,n} so that
J € Jrgj for 1 < j < N. Thus for example 7(10) = 3 means that the variable 1o
belongs to the factor R%3.

With the family of dilations defined in (2.1), the action on the subspace R is
given by

(2.5) rexX; = (pol Tpys--- ,rda qu).
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The homogeneous dimension of R% is
(2.6) Qu=dp ++dg =Y dj.
JEJ

The function

(2.7) Ni(xi) = sup ||/
P<s<q
is a homogeneous norm on R so that N;(r-x;) = r N;(x;). Ifa=(ay,...,an) NV,
let &y = (ayp,,-- -, Qg ), and set
(2.8) [[&l]] = apdy, + -+ agdg = Z ojd;.
JES

We introduce a partial order on the set of all standard flags on RV,

Definition 2.2. Let A = (ay,...,a,) and B = (by,...,bs) be two partitions of N

sothat N=a1+---+a, =by +---+ bs.

(1) The partition A is finer than the partition B (or B is coarser than A) if there
are integers 1 = a3 < ag < -++ < ag41 = r + 1 so that b, = Z?g&:l a;. We
write A < Bor B> A If A=<Bbut A+#B we write A < Bor B> A.

(2) If F4 and Fp are the flags corresponding to the two partitions and if A < B
(or A < B), we say that the flag F 4 is finer than Fp (or Fp is coarser than
F) and we also write Fu =< Fg and Fp = F4 (or Fa4 < Fp and Fg > F4).

We recall from [9] the concept of a flag kernel on the vector space R associated
to the decomposition R & - - & R, equipped with the family of dilations given
in equation (2.1). Let F be the standard flag given in (2.4). In order to formulate
the cancellation conditions on the flag kernel, we need notation which allows us to
split the variables {x1,...,x,} into two disjoint sets. Thus if L = {l4,...,l,} and
M = {my,...,mg} are complementary subsets of {1,...,n} so that a+ 3 = n, let
No=ai, +--+ay, and Ny = @, +- -+ am,. Write x € RN as x = (x/,x”) where
x' = (x1,...,%,) and X" = (Xm,, ..., Xm,). If f is a function on RY« and g is a
function on R, define a function f ® g on RV by setting

f®g(xla' . 'axn) = f(xl1? s 7Xla)g(xmu' . 'axm5)-
Definition 2.3. A flag kernel adapted to the flag F is a distribution K € &' (RY)
which satisfies the following differential inequalities (part (a)) and cancellation
conditions (part (b)):
(a) For test functions supported away from the subspace x; = 0, the distribution K
is given by integration against a C*°-function K. Moreover, for every a =

(a1,...,an) € ZN there is a constant C,, so that if ax = (ap,, ..., aq, ), then
for x; # 0,

07K ()] < Co T [Na(o1) -+ Ny ()] @71,
k=1
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(b) Let {1,...,n} = LUM, with L = {ly,...,la}, M = {mq,...,mg}, and
LN M = { be any pair of complementary subsets. For any 1 € C5°(R™*) and
any positive real numbers Ry,..., Rg, put

¢R(Xm1, ce axmg) = ¢(R1 cXmpgee- aR,B : Xmg)-
Define a distribution ICffiR € §'(RoutFa) by setting

<’C§7Rv <P> = <’C7 wR & <)0>

for any test function ¢ € S(R*:1+ 4 ) Then the distribution IC?;R satisfies

the differential inequalities of part (a) for the decomposition R*1 @ - .- @ R%r.

Moreover, the corresponding constants that appear in these differential in-

equalities are independent of the parameters {R;,..., Ry}, and depend only

on the constants {C,, } from part (a), the semi-norms of ¢, and the support of ¢).
The constants {C,} in part (a) and the implicit constants in part (b) are called
the flag kernel constants for the flag kernel K.

Remarks 2.4. (a) This definition proceeds by induction on the length n of the
flag. The case n = 1 corresponds to Calderén—Zygmund kernels, and the in-
ductive definition is invoked in part (b).

(b) With an abuse of notation, the distribution ICZ?i g is often written

KﬁR(xll, Ce X)) = / . / K(X) VR Xmys - Xm.) AXpny -+ - dXoy
RYm1 g...p ROms

3. Homogeneous vector fields

In Section 6.6 below, where we consider a nilpotent Lie group G whose underlying
space is RV, we will need to consider the families of left and right invariant vector
fields on G. At this stage, before we introduce the group structure, we consider
instead two spanning sets of vector fields {Xi,..., Xy} and {V7,...Yn} on RN
which are homogeneous with respect to the basic family of dilations given in (2.1);
this means that if Z; is either X; or Y; for 1 < j < N, then Z; can be written®

(3.1) Zi[W)(x) = 0;[)(x) + Y Pj(x)a[](x),
di>d;

with P! € Hg,—q;. It follows from part (3) of Proposition 2.1 that dx(P}) = 0
if di > d;. Thus we can commute the operators given by multiplication by the
polynomial P} and differentiation with respect to x; and also write

(3.2) Z;[$](x) = 0;[)(x) + D a[Pj]().

dl>dj
It follows from (3.1) or (3.2) that Zy = On.

3Despite some risk of confusion, we do not introduce different notations for the coefficients
of X j and Y}
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Proposition 3.1. If P € Hq and Z; is either X; or Y;, then Z;[P] € Hq—q,, and
ZfdJ > d, ZJ[P] =0.

Proof. Tt follows from (2.2) that if P € Hg, then 8;[P] € Ha—q,, and since P} €
Ha,—a;, it follows from part (2) of Proposition 2.1 that P} Oz [P] € Hq—a;. Thus
Z;[P] € Ha—a;. The last conclusion then follows from part (3) of Proposition 2.1.

O

In equations (3.1) or (3.2), the vector fields {Z;} are written in terms of the
Euclidean derivatives. Because these equations are in upper triangular form, it is
easy to solve for the Euclidean derivatives in terms of the vector fields.

Proposition 3.2. For each 1 < j < N, let Z; denote either X; orY;. Then there
are polynomials QY € Ha,—a, such that, for ¢ € S(RY),

Ok)(x) = Ze[W)(x) + Y QLX) Z[Yl(x) = Zu[](x) + Y Zi[Q}] (%)
d;>dy dy>dy

Proof. We argue by reverse induction on the index k. When k = N it follows
from equation (3.1) that Oy = Zy = Xn = Yn. To establish the induction step,
suppose that the conclusion of the proposition is true for all indices greater than k.
From equation (3.1) and the induction hypothesis, for either choice of Zj we have

N N
Ol = 2l = > Plonlvl = Zel] = Y B[ Zulw LY ]
dp >dy, dm >dy, d;>dm,
N
S oRzalwl- Y [ Y Pl zilvl.
Ay >dy, di>dy  dp<dm<d;

But according to part (2) of Proposition 2.1, P{* Q!,, € Ha,—4,, and this completes
the proof. O

For ¢ € S(RY) and ¢ > 0 set ¢(x) = ¥(t~! - x). Then multiplication by
a polynomial P € H4 is an operator homogeneous of degree d in the sense that
P(x)i(x) = t4(P1)i(x), and the vector fields X; and Y; are operators homo-
geneous of degree —d; in the sense that X;[p](x) = =% (X;0):(x), Yjlpd](x) =
t=% (Y;p)(x). In particular, the commutators [X;, Xj] and [Y}, Y] are vector
fields which are homogeneous of degree —(d; + d). It follows that we can write

[Xj’Xk] = Z ;Y,Lk(x) Om = Z ;nk( )Zﬂ% with Q; oo It EHdm_dj_dk’

A >dj+dy dm>dj+dy
~m — ~m
Z ijk(x) O = Z j»k(x) m, With QJ k? 7, kgtHdm*dj*dk'
dm>dj+dy Ao >dj+dp

If the operators {X;} and {Y;} are bases for a Lie algebra (as in the case of left
or right invariant vector fields), the coefficients { R}’ } and {R .} are constants.
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Equations (3.1) or (3.2) express the vector fields {Z;} in terms of the standard
derivatives {0;}, and Proposition 3.2 expresses the standard derivatives in terms of
the vector fields. We shall need analogous identities for products of r vector fields
Zy, -+ Zy, or products of r Euclidean derivatives O, - --0k,. The formulas are
somewhat complicated, since they involve products of operators of various lengths.
To help with the formulation of the results, it will be convenient to introduce the
following notation:

Definition 3.3. Let ky,..., k. € {1,...,N} be a set of r integers, possibly with
repetitions.

(1) For any non-empty set U C {1,...,r}, put du = >,y dr, and
JU)={me{l,....,N}:dpn>dy).

Note that if U consists of two or more elements and m € J(U), then d,, >
supyey A, -

(2) For each integer 1 < s < r, let Ul denote the set of partitions of the set
{1,...,r} into s non-empty disjoint subsets U = {Uy,...,Us}.

The following proposition then shows how to write products of vector fields in
terms of products of Euclidean derivatives.

Proposition 3.4. Let ky,..., k. € {1,...,N} be a set of r integers, possibly with
repetitions. For 1 < { < r, let Zy, denote either Xy, or Yy,. Then there are
polynomials P7'* € Ma,, —dy, such that

Ziy - T[] =D 3 S ST Oy O [PO PR

s=1 (Up,...,Us)eUr m1€T(Ur) ms€I(Us)
N
If s =r, so that U; = {k;}, the polynomial Py (x) = 1.

Proof. We argue by induction on r. The case r = 1 is contained in equation (3.2),
so suppose we are given vector fields {Z,, ..., Zy, ., } where each Zy, is either X,
or Yj,. Then, by induction,

Zk1 - Zkv-*—l [w] = Zk1 s ZkT I:ZkT+1 [w]]

T

(3.3) :Z Z Z Z aml...ams[pgzl...p(zs[zkr+l[¢]]]_

s=1 (Ul,...,Us)eug ’n’I1€j(U1) mbECi(Ub)

Since we can write

ZkT-H W] = 8kr+1 [w] + Z Om [P/??erl w]

{m:dm>di, ,}

where P € Ha,, —d,, . the derivative Op,, -+ - O, [Pt - P2y, . [¥]]] in the
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last line of (3.3) can be written

aml T ams [P[Tll T P{]rzs [ZkT+1 [w]]]
= 3m1 .. .3m5 [P;ﬁl .. p[}n [C{’k,,.ﬂ W)m

+ Z Omy -+ Om. [P{}il szb [5m[P1?Z+1¢m

dm,>dkr+1

= Om, " '8m53k,,.+1 [szl .. p(?}zqw]
— Omy O, [8;@,#1 [P{Xl . P[?:]w]
+ Z Omy ++ Om.Om [P;J’il - PSZS P]?:Hw]

dm,>dkr+1

- Z 8m1 amg [am[P[rjril P[?Zb]PIg)?+1w]

dm,>dkr+1

The terms in the first and third lines of the last expression have the right form
for the case 7 + 1. Thus in the term Op,, - - O, Ok, ., [P1* -+ P'*¢], r has been
replaced by r + 1, and the set {1,...,7,7 + 1} has been decomposed into s + 1
subsets {Uy,...,Us,Usy1} where Usy = {ky41}, and Pgrj: (x) = 1. The same is
true for cach term Opy, - - - O, Om [P - P{Z‘“P,;’:Hw] , except that P = P .
For the terms in the second and fourth lines, we use the product rule; we write

O [P{}Il .. P{jn] and O, [P{}Il . PIT] as a sum of s terms. For example,
> Oy O, [0 [PLPRE - PP W]
dm>dp,. |
:8m1"'8m5 {( Z am[szl]P1§7+1>Prz2Pl}2”/’}
dm>dg,
= Oy, O, [pgzlpg;z P{an]
where ]5[1]?1 = de>dlw+1 Om [PS?]P,?:H € Hdml_dUl g These terms also have
the right form for the case r + 1, since we now let U; = Uy U {ky41}, so that
{k1,...,kry1} = U1 UU2 U---UUs. This establishes the proposition. O

The next result shows how to write products of Euclidean derivatives in terms
of products of vector fields. Since the proof is similar to that of Proposition 3.4,
we omit it.

Proposition 3.5. Let ky,..., k. € {1,...,N} be a set of r integers, possibly with
repetitions, chosen from the set {1,..., N}. There are polynomials QZL; € Ha
such that

akl...a,%[w]:z Z Z Z Zuy - Zn [ QP+ Qpap).
s=1 (Uy,...U)€UT mi€3(U1)  ma€I(Us)

Here each Z; is either X; or Y;. If s = r, so that Uy = {ke}, the polyno-
mial Q77! (x) = 1.

my —du,
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4. Normalized bump functions and their dilations

4.1. Families of dilations

Fix the family of dilations on RY given in equation (2.1). We introduce an N -para-
meter family of dyadic? dilations. For f € L'(RY) and I € Z" set

of . x = (27l . 27NN g,
(4.1) N
— > deie
[Fl,x)=2 = f2"x).
Then H[-f]IHLl(RN) = [|fllz1m~). The set of monotone increasing indices is de-
noted by
(4.2) En ={I=(i1,...,in) €Z" |iy <ig < -+ <in}.

When we consider flag kernels corresponding to the decomposition 2 given by
N=a;+---+a, and RN =R @ ... @R, we consider the n-parameter family

of dilations parameterized by n-tuples I = (i1,...,i,) € Z™:
2 x = (2" . xy,...,2" . x,), where
(43) Qié “Xe = (27dp[i£xpev R 27dq[ie I(M), and
- i Queie

lix) =2 = 2" x).
The set of monotone increasing indices in this case is denoted by
(4.4) En={I=(i1,....in) €Z" iy <ip < -+ <iin}.

Given the decomposition 2, there is a mapping pg : £, — En given by

. . ’._(11% 4_(525 /_(i;
(4.5) poalin, ...y in) = (zl,...,zl,22,...,22,..., zn,...,zn).

We shall want to write flag kernels as sums of dilates [¢]; of normalized bump
functions ¢. Roughly speaking, a family of functions {p,} in C5°(RY) or S(RY)
is normalized if one has uniform control of the supports (in the case of C§°(RY))
and of the semi-norms ||¢a||(m) or ||@all(ar- The following definition will simplify
the precise statements of our results.

Definition 4.1. (1) If ¢, ¢ € Cg°(R™), then ¢ is normalized in terms of ¢ if®
there are constants C,C), > 0 and integers p,, > 0 so that:

(a) If the support of ¢ is contained in the ball B(p), then the support of ¢ is
contained in the ball B(Cp).

(b) For every non-negative integer m, ||@]|(m) < Com ||l (m+pom)-

4In Section 8, we shall use a continuous version of this dyadic family. If t = (¢1,...,tx) with
each t; > 0, we will set fi(x) = f(tclllzl, .. .,tﬁlVNa:N).

5We shall sometimes use the expressions ‘normalized with respect to’ or ‘normalized relative
to’ as a variant of ‘normalized in terms of’.
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(2) If 9, '[/; € S(R™), then zZ is normalized in terms of 1 if there are constants
Cn > 0 and integers py > 0 so that [|¢|[n] < Cn |[¥||[n4py) for every non-
negative integer N.

(3) If P, P are polynomials, then P is normalized in terms of P if P is obtained
from P by multiplying each coefficient by a constant of modulus less than or
equal to 1.

If p € C3°(RY), it is sometimes convenient to write ¢ as a sum of products of
functions of a single variable. That this is possible follows from the following fact:

Proposition 4.2. Let ¢ € C°(RY). Then for each o € NN and 1 < k < N there
are functions oo € C5°(RY) so that

P(x1,. . aN) = Y Caa (1) Pan(En),
aeNN

where for any M > 0, there is a constant Cpy such that |co| < Car (14 |af)™M.

Proposition 4.2 follows easily by appropriately periodizing ¢, expanding ¢ in a
rapidly converging Fourier series, and then multiplying by appropriate cutoff func-

tions (x1) - - Y (aN).

4.2. Differentiation and multiplication of dilates of bump functions

In this section we study the action of differentiation or multiplication by a homoge-
neous polynomial on dilates of bump functions. The key results are Proposition 4.7
and Corollary 4.8 below. We begin with the following result, which follows easily
from the definitions and the chain rule:

Proposition 4.3. Let 1 € S(RY). Then

(4.6) 27ROl (x) = [Opy]i(x) and 27wy 91 (x) = [ex )1 (%)
More generally, if I = (i1,...,in) € ZN, and a € NV then

@n 2oyl = [00], and 2] = [,

where [a - I] = S0, apdyiy.

We will frequently use the following generalization of the second identity in
equation (4.7):

Proposition 4.4. Let P € Hy where d < d;. If I € Ey, there is a polynomial
Pr € Hg, normalized in terms of P, so that

P(x)[y]1(x) = 2" [Pry] (%)
for ¢ € S(RV).
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Proof. Write P(x) =)  cg CaX® with

ﬁd:{a:(al,...,aN)ENN: a1d1+~~~+aNdN:d}.

Since d < dy, if a € $4 we have a; = 0 for j > I. According to Proposition 4.3, it

follows that P(x)[¥]1(x) = >_,cq, co 2l [x*9] ;(x), and

-1 -1 -1 -1
[ IT =) mdmim =11 Y Ctmdin = Oy (i1 =) = diy = _ (i1 — i)
m=1 m=1 m=1 m=1

Thus S ( |
_ odi = o (i1 —im ) g
Px)[]1(x) =2 [ 3 a2 . 1—im) w}l(x).

a€fNg
Since I € Ey, each exponent — Zi;=11 QW (1 — i) < 0. The proof is complete
if we set Pr(x) =3, cq, Ca2” iy Qo (11— im) g o

Remark. Equation (4.6) shows that the operator 29x%+ 3, , applied to the I-dilate
of a function ¢, is the I-dilate of a function @ normalized in terms of ¢, and
multiplying the I-dilate of function ¢ by 279z, is the I-dilate of a function @
normalized in terms of . Thus at ‘scale I’, the operators 293, and 2~ %ir g,
are ‘invariant’; they map the collection of I-dilates of normalized functions to itself.

A key observation, which is used when we consider convolution on homogeneous
nilpotent groups, is that we can replace the operator 2%, with the operator
24kir 7, or conversely the operator 2% Z; by the operator 2%, | at the cost
of introducing an error involving terms 2%% Z; or 2%%9;, where [ > k, multiplied
by a ‘gain’ 2~ % (=) The precise statement is given in Proposition 4.5 below.

Let P,i € Ha,—q, be the homogeneous polynomials that are coefficients of a vec-
tor field Zj, as in equations (3.1) or (3.2), and let Q% € Hg4,—q, be the polynomials
in Proposition 3.2. Since d; — dj, < d;, we can use Proposition 4.4 to write

Py(x)[$]1(x) = 24 [P o] (x),

4.8 ,
) QL)[¥]1(x) = 21 Q) 1v] (x),

where P,iJ, Qﬁﬂ € Haq,—a, are normalized relative to P,i and QL

Proposition 4.5. Let I € Ey, and let {P};} and {Q} ;} be the homogeneous
polynomials defined in equation (4.8). Let b € C°(RYN) (respectively 1 € S(RY)).
Then,

N
(2‘1’“"’“ Ze)W)r = (Qdki’“ak)w]l + Z 27 d(i—in) (leilal) [Pli,ﬂ/}]l’
d;>dy

N
WOl = M Zll + Y 27T M Z2)[Q) 0]

dy>dy
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The functions {Pli,ﬂ/’} and {Qﬁdw} are normalized with respect to v in CS°(RY)
(respectively in S(RN)).

Proof. The first identity follows immediately from equations (3.2) and (4.8). To
obtain the second, use Proposition 3.2 and equation (4.8); we have

N
24Kk ), 1) = 2%k Zy [h] + 2%k Z ZiQL )Yl

I=k+1
N
_ 2dkik Zk [w][ + Z Q*dk(iz*ik)(deil Zl) [Qéﬁ,]'l/}]l
I=k+1
which is the desired formula. O

Corollary 4.6. If ¢ € C°(RY) (respectively ¢ € S(RN)) and if I € Ey, then
there is a function $ € CS°(RY) (respectively € S(RY)), normalized with respect
to @, such that 29 Z[o]r = (@1

We shall need an analogue of Proposition 4.5 for r-fold products of vector fields
or Euclidean derivatives. If {F;"} and {Q{7'} are the polynomials appearing
in Propositions 3.4 and 3.5, we use Proposmon 4.4 to define polynomials P{};f I
and Q7' ; by the formulas

PR (x) )1 (x) = 200 =00 [P ] (),

O (W1 () = 2= ) [QE 0] (x).

Proposition 4.7. Let ky,..., k. € {1,...,N} be a set of r integers, possibly with
repetitions, and let I € En. Let Zy denote either Xy or Y. Then

(4.9)

(255 Zyy ) - (2% Zy ) W]
:ZT: DS oo Hhethe ™ 2 e AU
s=1 (Uy,...,Us)eUT m1€T(Ur) ms€JI(Us)
I Oy (20 0, ) [P - P
and

(29171 Qg ) - (200 O, )WL

T

= Z Z Z o Z 2521 diyir, 7522:1 im,du

s=1 (Ul7 ,Ub)eu‘;‘ M1€3(U1) mbECi(Ub)
(20t Zy, ) (20t Z ) [QF - QU Y] -
In either identity, if s =r so that Uy = {ke}, 1 < € <r, the polynomials
Py (x) = Qrf, (x) =

<
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Proof. Using Proposition 3.4, we have

(2dk1ik1 3k ) - (Qdkri’" ak)[w]l

E diyik, my m.
Z Z Z Z Zm1 T mg [Q WU, [w]j]

s=1 UeUT j=1m,;eT(U;)

Z ey ik, Z Z Z Z Z imy (dm, —du,) Zml L Zmb[ 7{1]1;1 Ué,,I 1/)]

s=1 UeUr j=1 m;eI(U;)
B zr: Z Z Z dryin, — 231 im,du
s=1 Jj=1m;€3(Uy)
. ( dmliml Zml) . (2dmsims Zmb) [le ;Jn:,l ]

eur

This completes the proof of the first identity. The second identity is established in
the same way. O

In Proposition 4.7, we can rewrite the exponent of the power of 2 as follows.
Having chosen U = (Uy,...,Us) € UL , there is a unique mapping o = oy :
{1,...,r} = {1,...,s} so that £ € Uy for 1 < ¢ <r. Then

T S T
E :dkezkz - E :ZmedUe = E :dkelke E :2ma([) E :dkz ’Lma(e) Zke)'
/=1 /=1 /=1

Since £ € Uy(py and mg(py) € I(Ug(yy), it follows that dp,,,, > du,,, > di,, with
equality only possible if U,(¢) = {o(¢)}. Thusif I € Ey, it follows that iy, ,, > ik,,
in which case

92 =1 diping =3y imgdu, < 97 € 2= (g )~y )’

where we can take e = d; > 0.

We can now recast the identities in Proposition 4.7 in a way which, although
losing some information, makes them more useful and easier to work with when
dealing with flag kernels.

Corollary 4.8. Fiz a decomposition RN = R“ @ --- @ R, Let ky,..., k. €
{1,...,N} be a set of r integers, possibly with repetitions, with ks € Jﬂ(g).ﬁ For
1 < ¢ <, let Zy, denote either Xy, or Yy,. Let I € &,, and let ¢ € S(RY)
or C(RY).

(1) The function (2%t~ Zy ) -+ - (2% i) Zy V[)]1 can be written as a finite sum
of terms of the following form. Decompose the set {1,...,r} into two disjoint
complementary subsets A and B with 7(j) # n for any j € A and B # (). Let

6Recall from page 638 that 7 : {1,...,N} — {1,...,n}; for any coordinate z;, 1 < j < N,
then z; is a coordinate in the factor R*~(4), and Jx(j) 1s the set of indices of all the coordinates
in R4 (),
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B ={t1,...,Ls}, and choose integers m = {my, ..., ms} so that eachm; € Jy,.
Then a typical term in the expansion of (2914~ Z; ) -+ (2%ki=t) 73 VW] is
9= 2 jcalin()+1=in(5) (Qd""li‘ﬂ'(l) Oy ) - (Qdmsiﬂs)ams)[wA B m]l,

where Y, B,m is normalized relative to 1.

(2) The function (2915 @y, ) - - - (2%+ix1 Oy Y1b]; can be written as a finite sum
of terms of the following form. Decompose the set {1,...,r} into two disjoint
complementary subsets A and B with w(j) #n for any j € A and B # (. Let
B ={t,...,Ls}, and choose integers m = {my, ..., ms} so that eachm; € Jy,.
Then a typical term in the expansion of (2% @y ) - - - (2%t Oy Vab]1 is

27 Xjealizrri=ix) (gdmis) 7, Y. o (24005 Z,, )[4, Bom]

where Y, B,m s normalized relative to 1.

Remarks 4.9. (a) The essential point of part (1) in the corollary is that, when
replacing the operator

(200870 Z3,) - (2001500 2 s
with a sum of terms of the form
9=¢2jealin)+1=ix(5) (Qdmliwm oy ) (2dmrsi7r(5) Om.) [¢A7B777L]I,

either the factor (2%:=(® Z; ) is replaced by a term (2¢m¢i= 9, ), where the co-
ordinate x,,, belongs to the same subspace as zj, and hence has the same dilation
ix(¢), OF it is replaced by the gain 2-¢lix)+1=x»)) | Part (2) is the same assertion
with the roles of the vector fields and Euclidean differentiation interchanged.

(b) One term in the expansion of (2%1 % Z ). .. (24krixt) Z Y[4)]; in part (1)
arises by letting A = ) so that B = {1,...,r}, and then choosing m, = k.. We
have seen that in this case the function 14, g,m» = 9, so we get the term

(2Bt Gy ) - (28O By [

Every other term in the expansion then involves either a gain 2~ <= +1=ix@®) or
the replacement of a variable x, by a different variable x,,, with d,,, > d,. We
shall say that any term of the form

27 Xiealinmt1=ix() (20miin g ). .. (2%msin g, ) [$a,5,m] .
where either A # () or some d,,,, > di, is an allowable error. Thus the difference
(20001700 74, ) (2001200 23, )]y — (205700, ) - (207000, ) [
is a sum of allowable errors.

(¢) Since Euclidean derivatives commute, it follows that if o is any permutation
of the set {1,...,7}, then the difference

(282070 Z, ) - (28O Zy ) ]r = (28950 Zig ) - (2000 Zy VWD

is a sum of allowable errors.
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5. Cancellation

A function is often said to have cancellation if its average or integral is zero. For
our purposes, we shall need a more refined notion involving integrals in some subset
of variables. Let J = {j1,...,7s} C {1,...,N}. If ¢ € S(RY), write

(5.1) /w(x) dXJ = - w(.l‘l,...,l‘N)dl‘jl "'dl‘js.

Note that [ (x)dx, is then a function of the variables zy, for which k ¢ J. We say
that a function ¢ has cancellation in the variables {xj, , ..., xz; } if [p, ¥(x)dx; =0,
where J = {j1,...,js}. Later, in Section 5.2, we shall give additional definitions
of ‘strong cancellation’ and ‘weak cancellation’ for a function ).

5.1. Cancellation and the existence of primitives

We begin by showing that cancellation in certain collections of variables is equiv-
alent to the existence of appropriate primitives.

Lemma 5.1. Let i € S(RY), and let Ji C {1,...,n} be non-empty subsets for
1 <k <r. Ifthe sets {Jx} are mutually disjoint, then the following two statements
are equivalent:

(a) For1<k<r, /w(x)dxjk =0.

(b) There are functions v;, ;. € S(RN), normalized with respect to 1, such that

W)=Y D 0 0,0, (%)

J1€J1 Jr€Jr

Moreover, if the function i € C§° (RN), then we can choose the functions v;, .. ;. €
CS(RYN) normalized with respect to 1.

It follows easily from the Fundamental Theorem of Calculus that (b) implies (a).
The main content of the lemma is thus the opposite implication. This will follow
by induction on r from the following assertion:

Proposition 5.2. Let 1 € C°(RY). Suppose that Jy,Jo C {1,...,N} are non-
empty and disjoint. If [(x)dxy, = [(x)dxy, =0, then for each k € Jy there
is a function 1y, € CS°(RYN), normalized relative to v, so that:

(i) we can write Y =Y, ; Oni ;

(ii) for each k € Jy we still have [y (x)dxz, = 0.

If ¥ € S(RY), the same conclusions hold except that the functions v € S(RY)
and are normalized relative to 1.
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Proof. By relabeling the coordinates, we can assume that J; = {1,...,k}, and
that Jo € {k+1,...,N}. Suppose that ¢ has compact support in the set B =
{x € RY : |z;] < a;}. Choose x € C§°(R) with support in [—1,+1] such that
Jr x(s)ds = 1, and put x;(t) = aj_lx(aj_lt) so that x; is supported in [—a;, +a;]
and still has integral equal to 1. Put

o1(%) = $(x) — x1(21) /Rws,m, . an)ds

and for 2 < j <k, put

7j—1
@j(x): [HXl(xl)} ) 1/1(81,...,ijl,l'j,...,iﬂ]\/')dsl"'de,l
=1 Ry

J
- {Hxl(ml)} W(s1,...,8,Tj41,- .., TN)dsy - - - ds;.
=1 R7

Then the functions {;} have the following properties. First, since [ 1 (x) dx s, = 0,
the second integral in the definition of the last function ¢y is zero, and hence
Y(x) = Z?zl ©;(x). Next, it is clear that each ¢; is supported in the set B.
Finally, for 1 < j <k,

/@j(xlv'"7xj*1787xj+17"',1'N)d8:0,
R

so if we put

z;
wj(x):/ ©i(@1, .. =1, 8, &jq1,...,2TN)dS

— 00

(5.2)

o0
7/ wi(@1, .. xj—1,8, %41, ..., xN) dS,
zj
then 1); is supported on the set B, and ¢;(x) = 0;1;(x). It is clear that one can
estimate the size of the derivatives of the functions {4} in terms of the derivatives
of 1, s0 ¢; is normalized in terms of 1. Moreover, since [ (x)dxj, = 0, it follows
from their definitions that [ ¢;(x)dxs, = 0, and hence [;(x)dxys, = 0. This
completes the proof if ¥ € C°(RY). If ¢ € S(RY), the proof goes the same way.
One only has to observe from equation (5.2) that the functions 1; € S(RY). This
completes the proof of Proposition 5.2, and hence Lemma 5.1 is also established.
O

5.2. Strong and weak cancellation

In this section we introduce two kinds of cancellation conditions that can be im-
posed on functions in S(RY) or C5°(RY). As discussed in Section 1.1, these con-
cepts are used in the context of the decomposition RN = R @ ... @ R% given
in (2.3), where a1 +---+a, = N and each a; > 1. Recall that if x € RY, we write
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X = (X1,...,X,) where x; = (2p,, Tp, 1, .-, Zq ) € R*. We then let J; denote the
set of integers {p;,p +1,...,q}. If o € S(RY), set

(5.3) / O(X1, ... Xy) dx) = / O(X1,. .., Xy) dzp, - - dxg, .
R* R*

Definition 5.3. Fix the decomposition (2.3), and let ¢ € S(RY). The function ¢
has strong cancellation if and only if

/ O(X1,...,Xp)dxe =0, 1<l<n.
R

That is, ¢ has strong cancellation if and only if it has cancellation in each collection
of variables {zp,,...,xq } for 1 <1 <n.

Remark 5.4. It follows from Proposition 5.2 that ¢ has strong cancellation if and
only if there are functions ¢, ... ;, normalized with respect to ¢ so that

n

o= Z C Z Gjl v 8jn90j1,m,jn'

Ji€e1 In€Jdn
We now introduce a weaker cancellation condition.

Definition 5.5. Fix the decomposition (2.3) of RY. Let ¢ € S(RY) or ¢ €
C(RYN), and let I = (iy,...in) € &,. The function ¢ has weak cancellation with
parameter € > 0 relative to the multi-index I if and only if

o= Z ( H 2—6(i5+1—z‘s)) Z Z 05, -+ 0;.) [PaBjr. )]

AUB={1,....n} s€B J1€Jay Gr€Jay
A={ai,...,ar}
n¢B

where each ¢4 B j, .. 4. i normalized relative to ¢. Here the outer sum is taken
over all decompositions of the set {1,...,n} into two disjoint subsets A and B such
that n € A.

According to Remark 5.4, ¢ has strong cancellation if it can be written as a
sum of functions of the form 9, - -+ 9;, ¢; i.e., as n*B-derivatives of functions where
there is one derivative in a variable from each of the n subspaces R*. Definition 5.5
imposes a weaker condition; a function ¢ has weak cancellation if again it is a sum
of terms, but the term 0;, - --9;,¥j,,....j. is itself replaced by a new sum of terms.
If a derivative 0;, does not appear, so that the term does not have cancellation in
the subspace R%, there is instead a gain given by 2~ ¢(t+1=i),

Remarks 5.6. There will be occasions when we will use the fact that a function ¢
has weak cancellation with respect to I € &, to draw inferences about existence of
primitives and smallness in only some of the subspaces {R*}. In particular, the
following assertions follow easily from Definition 5.5:
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(1) Suppose that I € &, and that ¢ has weak cancellation relative to I. Let
M c {1,...,n}. Then

o= X ([ ) T 3 0 00) s

AUB=M seB J1€Ja, Jr€Ja,
A:{al,m,a,,.
n¢B

where each © 4, B j,,... . is normalized relative to ¢, and where the outer sum
is over all subsets B C M, with the understanding that if n € M then n ¢ B.

(2) In particular, if we take M = {1}, it follows that if ¢ has weak cancellation
relative to I € &,,, we can write

ay
o= Orlipr] + 270 g
r=1
where {¢o, ¥1,- .., Pa, } are normalized relative to . Here, the derivatives are
with respect to the variables in the first subspace R,

We can also characterize weak cancellation in terms of the “smallness” of inte-
grals, to be compared with the characterization of strong cancellation in terms of
the vanishing of integrals given in Lemma 5.1. For any partition {1,...,n} = AUB
with A = {j1,...,ja} and B = {ky,..., ky}, write x € RY as x = (x4,xp)
where x4 = (Xj,,...,X;,), XB = (Xp,,...,Xp,). Let dxa = dx;, ---dx;,, and let
dXB = dxkl e dxkb.

Proposition 5.7. Lete > 0 and I € &,. A function ¢ € C§°(RY) has weak cancel-
lation with parameter e relative to I if and only if for every partition {1,...,n} =
AU B into disjoint subsets we have

/ 0 if neB,
Y(xa,xp) dxp = S .
S [ep 2007 ga(xa) if n ¢ B,

where Y4 € S(P ;4 RY) is normalized relative to . If ¢ € C§°(RY), the func-
tions 4 € CgO(éjeA R%).

Proof. Tt is clear that if ¢ has weak cancellation, then it satisfies the condition of
Proposition 5.7, so the main content is the opposite implication.

Let x; € Cg°(R*) have support in the set where [x;| < 1, with [p., x(x) dx; = 1.
For ¢ € S(RY) and 1 <1 < N, define

Lily)(x) = ¥(x) = xi(xt) (x) dxy,

R*
Mi[)(x) = xi(x1) (x) dx;.
R*
It is easy to check that the operators {L1,..., Ly, Mi,..., My} all commute, and
that

M [Y](x) dx; = (x)dx; and / Li[y](x) dx; = 0.
Ra1 Rt R
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Since L; + M; is the identity operator, if ¢ € S(RY),

w(x) = [ (Lo + M)

=1

> (ITe)(IIm)wix = Y das).

AUB={1,....,n} jJ€EA keB AUB={1,...,n}

It is clear that the functions {14 g} are normalized relative to ).
Now suppose that 1) satisfies the hypotheses of Proposition 5.7. Since

( H Mk) ( H Xk(Xk) ) / ¥(xa,xp) dxp,
Drep R
it follows that 14,5 =0 if n € B. Also, for every j € A we have
Ya,B(x)dx; =0.
R%J

Thus for every decomposition {1,...,n} = AU B with n € A, it follows that

( 11 Mk) [ H 27 (1™ “)MA XA ( T e )

keB keB

where 14 is normalized relative to 1. But then

vant0 = (T] ) (T Me) 1)

JjEA keB
= { H 276(i’“+17i’“)} ( H Ll) Yal(xa) ( H Xk (X )
keB JjEA keB

Now the function (H]EA Li)[al(xa) (TTrep xk(xx)) has cancellation in each of
the subspaces R% for j € A. If we write A = {ai,....}, it follows from
Lemma 5.1 that this function can be written as a sum of terms of the form
0j, - 0j.[Ya,B,s], where the variable x;, belongs to the subspace R%w. This
then makes it clear that ¢ has weak cancellation, and completes the proof. O

6. The structure of flag kernels

In this section we establish four important properties of flag kernels. The first
(Theorem 6.1) shows how to decompose a given flag kernel into a sum of dilates
of compactly supported functions with strong cancellation. The second (Theo-
rem 6.8) shows conversely that a sum of dilates of Schwartz functions with weak
cancellation converges to a flag kernel. The third (Theorem 6.13) shows that the
cancellation conditions imposed in part (b) of Definition 2.3 can be relaxed. The
fourth (Theorem 6.15) shows that the family of flag kernels is invariant under
appropriately chosen changes of variables.
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6.1. Dyadic decomposition of flag kernels

Every flag kernel is a product kernel in the sense of Definition 2.1.1 of [9]. (This
is proved in [9]). Then Corollary 2.2.2 in that reference implies that if K is a
flag kernel, then there are functions ¢! € C°(RY), I € Z" with strong cancel-
lation and uniformly bounded seminorms ||¢? [|(m), supported in the set where
2 < Nj(x;j) <4 for every j, such that K = 3, .,.[¢']; in the sense of distribu-
tions. Recall that &, = {I = (i1,...,in) € Z" : 43 < iy < --- < i,}. Since a
flag kernel satisfies better differential inequalities than a general product kernel,
one expects that it should be possible to write K as a sum of dilates of functions
! € C°(RY) where the dilations range only over the set &, instead of over all
of Z™. Such a result is stated in Corollary 2.2.4 of [9], but the precise statement
there is not correct because one must allow additional terms involving flag kernels
adapted to coarser flags. This section provides a correct statement and proof.

Theorem 6.1. Let K be a flag kernel adapted to the standard flag F
(24) (0)CR*™" CR*™ @R C---CR® @ ---BR" CR?@&--- @R CRY

Then there is a decomposition K = Ko+K1+- - -+ IC,, with the following properties:

(1) For each I € &, there is a function o' € C§°(RYN) so that Ko = Y- e [0"]r
with convergence in the sense of distributions. Moreover,

(a) the support of each function ¢! is contained in the unit ball B = {x € RN :
x| <1}

(b) there are constants C,, > 0 (depending on the constants for the flag ker-
nel K) so that for each I € &, and all m >0, ||¢!||(m) < Cny:

(c) each function @' has strong cancellation in the sense of Definition 5.3: for
1<j5<n,

/ O(X1, .., Xy, Xy) dxj = 05
R
(d) for each I € &,, ¢'(x1,...,%,) =0 for |x1| < %.

(2) For 1 < j < n, each K; is o flag kernel adapted to a flag which is strictly
coarser than F.

Recall that in Section 1.2 we distinguished between elements I = (i1, ...,i,) € &,
where we have strict inequality i1 < i < +++ < ip,—1 < i,, and elements where
some of the entries are equal. Underlying this dichotomy is the fact that &, is a
polyhedral cone in Z™, the set of elements with strict inequality form the ‘open’
n-dimensional interior, and elements with various sets of equal elements corre-
spond to lower dimensional faces. In Theorem 6.1, we may as well assume that
the dyadic sum representing Ky extends over the interior n-tuples with strictly
increasing components, leaving the “boundary n-tuples” with repeated indices to
parametrize the dyadic terms of the sums representing the other KC;’s.
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Using induction on the number of steps in a flag, Theorem 6.1 immediately
gives us the following corollary:

Corollary 6.2. Let IC be a flag kernel adapted to a standard flag F of length n.
There is a finite collection of flags {Frs}, 1 <k <mn and 1 < s < by, with the
following properties:

(1) Fork=mn, b, =1 and Fp1 =F.

(2) For each k < n, the flag Fi s has length k and is strictly coarser than F.

(3) For each (k,s) there is a uniformly bounded family of functions {gpi,s} C
C(RYN), J € &, all supported in the unit ball and having strong cancella-
tion relative to the decomposition of RN corresponding to the flag Fr,s so that
in the sense of distributions,

(6.1) K= Z Z [ei.s] -

The proof of Theorem 6.1 relies on three preliminary results. The first, which
gives the characterization of flag kernels in terms of their Fourier transforms, was
established in [9]. We briefly recall the relevant definitions. Let (R™)* denote the
space of linear functionals on RY, and for a subspace W C R¥ let W+ c (RV)*
be the subspace of linear functions which are zero on W. If F is the flag in RV
given in (2.4), the dual flag is F* given by

(O)J_ > (Ran)J_ D (Ro @Ran)l O D(R2®--- @R‘I")J‘ = (RN)J‘.
If we identify (R @- - @R )L with (R®1)*@- - @ (R%*-1)*, the dual flag becomes
(6.2) (0) C (Ral)* C (Ral)* o (Ra2)* c..-C (Ral)* QD (Ran—l)* C (RN)*.

If £ € (RN)*, we write £ = (&1,...,&) where & = (§,1,...,&j,q0,) € (R)*. The
family of dilations on RY defined in equation (2.1) induce a family of dilations
on (RY)* so that (r-x,&) = (x,7-£). We let |¢] be a smooth homogeneous norm
on (RN)* and if & € (R%)*, we let |¢;| be the restriction of the norm to this
subspace.

Definition 6.3. A flag multiplier relative to the flag F* given in (6.2) is a function
m(§) which is infinitely differentiable away from the subspace &, = 0, and which
satisfies the differential inequalities

(&) + -+ [€a]) 1L,
1

08 - 0 m(€)| < C

J

n

We can now state Theorem 2.3.9 of [9] as follows:

Lemma 6.4. Let K be a flag kernel adapted to the flag F. Then the Fourier
transform of IC is a flag multiplier relative to the dual flag F*. Conversely, every
flag multiplier relative to the flag F* is the Fourier transform of a flag kernel
adapted to the flag F.
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The next preliminary result provides a decomposition of test functions in S(R™V).

Lemma 6.5. Let i € S(RY). Then there are functions {1*} C C(RY), k =
0,1, 2,..., such that

P(x) =D 27y Fx),
k=0

where Q is the homogeneous dimension of RN . Moreover these functions have the
following properties:

(a) each ¥* is supported in the unit ball;

(b) for any § > 0 and any o € NV, there exists M € N depending on § and a so
that

sup |0 (x)] < [|9]|ar 277
xRN

(c) if 1 has strong cancellation, then each ¥ has strong cancellation.

Proof. Choose 1 € C§°(R) supported in [—1, —] U [$,1] with 5(t) = n(—t) such

that
—+o0

> one M) =1
k=—oc
for all t # 0. For any ¢ € R, including ¢ = 0, set no(t) =1 — > p-, n(27%¢). Then
no € C5°(R) is supported in [—1,+1], and no(t) + > oy n(27Ft) = 1 for all t € R.
Recall that x — |x]| is a smooth homogeneous norm on R¥. Set

i = [EOOm) if ) =0,
X) =
2@ ah(2F . x)n(]x|) if k> 1.
Then 27+€ % (2_’“ -X) = (%) 77(2_k|x|) for k> 1, and so ¢(x) = E;O:O 2~k
Wk (2_’“ -x). From the choice of  and the definition of 7 it follows that each s
is supported on the set where |x| < 1, and this gives the assertion (a).
Since ¢ € S(RY), it follows that for every M € N and every a € NV with
|a] < M we have

(6.3) 0% (x)] < |[9lar (1 + [x]e) =,

where |x|. is the BEuclidean length of the vector x € RY. If x belongs to the
support of ¥ when k > 1, we have |x| > 272, and so [2¥ - x| > 2¥=3. Assertion (b)
then follows easily from equation (6.3) and the fact that |x|? < |x|. if [x|. > 1.

Finally, suppose that ¢ has strong cancellation, so that fR% (X1, ..., X)) dXy;
=0for 1 <k <n. It follows from Lemma 5.1 that we can write ¢ as a finite
sum of terms of the form 0y, ---9;, ;... ;, Where z; is a coordinate in xj for
1 <k < n, and each function v, ;. € S(RY) is normalized relative to 1. Using
assertions (a) and (b), we can write

oo
G0 = 320 7 )
k=0
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and so

Ojy -+ 04 iy (x) = Z 2—k(d11+~~+djn+Q)ajl 0, k (Tk - x).

J1sedn
k=0

Since each term 27 F(dn ++din) g, ... 9, ;-“1 . has strong cancellation, summing

over a finite number of such terms establishes (c), and completes the proof. O

Finally, we will need the following result, which provides a decomposition of
test functions in Cg°(RV):

Lemma 6.6. Let ¢ € C5°(RY) have compact support in the unit ball, and suppose
that ¢ has ca_ncellation n Xy, i.e., fRal ©(X1,X2,...,X,)dx; = 0. Then there are
functions {p?} C C(RYN) such that

0
O(X1,X2,...,Xp) = Z 27k I (277 xy Ko, ... X)),

j=—o0

where Q1 1s the homogeneous dimension of R* . Moreover, these functions have
the following properties:

(a) each @7 is supported in the unit ball;

(b) each ¢’ is normalized relative to the function ¢;

(c) for —oo < j <0 we have p?(x1,Xa,...,X,) =0 if |x1] < %;

(d) if ¢ has strong cancellation, then each function @’ has strong cancellation.

Proof. Choose n € C5°(R) such that 7(t) vanishes if t > 2 or t < 1, and such that
Zlgon(Q_lt) =1for 0<t<1. Put A;(x2,...,%x,) =0, and for j <0, put

x;(x1) =7 (277 x1)
%) =) [ )i

R*1

-1

aj(Xg,...,Xn) :/ @(Xl,x%"',xn)Xj(Xl) Xm,
Re1

0
Aj(xa,...,xp) = Zs:j as(Xa, ..., Xp).

We have >, x;(x1) =1 for 0 < [x1| < 1, and since ¢ is supported in the unit
ball, we can sum by parts for x; # 0 to get

p(x) = Z O(X1, ..., X)X, (X1)

<0
=3 el %)y (x1) — Xy (x1)a; (%2, ., %0)]
7<0
+Z(>?j(x1)—%j—l(X1))Aj(X2,--->Xn) = @ (x).
Jj<0 j<0

Let

O (X1, X2, .., Xp) = 21@1 @j(2j “X1,X2y ... Xp)
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Then
(6.4) <pj(x) = 2i@ [gp(Qj “X1, - S Xn)Xo(x1) — 2-i Xo(x1)a;(x2, ..., Xpn)
+27@1 ()zo(xl) — 2715, (2- xl)) Aj(xg,... ,xn)],
and
0
(6.5) (X1, Xp) = Z 2791 (279 . Xy, X9, ..., Xp).

j=—o0

The functions {a;} and hence also the functions {A;} are infinitely differen-
tiable functions supported in the unit ball of R*2 & .- - @& R*. Moreover, it follows
from the fact that x;(x1) is supported on the set |x;| < 2/F! that there is a
constant C' so that for each integer m, we have

(6.6) llajllmy < C 272 |@l|m)-
The function Zi:—oo xs(x1) is also supported on the set |x;| < 2/! and is
bounded independently of j. We have
j+1
Aj(x2,...,%Xp) +/ o(x1) Z Xs(x1) dx1 = / o(x1,X2,...,X,) dx; =0,
Re1 R

al
S§=—00

and it thus follows that we also have
(67) ||Aj||(m) < CQleHSDH(m)'

It is clear from our construction that each function ¢’ has compact support in
the unit ball. Tt follows from equation (6.4) that each ¢’ vanishes when |x;| < %,

and also that if ¢ has strong cancellation, then [;., 0l (x1,X2,. .., Xp) dxp = 0
for 1 < k < n. Finally, equations (6.4), (6.6), and (6.7) show that ||¢7]] ) <
C27791|¢||(n). This completes the proof. O

Let KL be a flag kernel adapted to the flag F, and let m = K be the flag
multiplier on the flag F* which is the Fourier transform of K. Choose a function

n € C&°(R) supported in [4,4] such that Zjezn(th) =1 for all ¢ > 0. For each

I={(i1,...,1n) € En, set

(6.8) nr(€) =n2" &) - n(2 ).

Note that 7y is supported where [¢;| ~ 27% for 1 < j < n. We shall establish the
following result:

Lemma 6.7. Let m be a flag multiplier relative to the flag F* given in (6.2). Then

n

(6.9) m(&) =Y mo(&)ni(€) + > mx(§)

1€, k=1

where myq is the Fourier transform of a flag kernel relative to the flag F, and for
1 < k < n, the function my, is the Fourier transform of a flag kernel adapted to a
flag strictly coarser than F.



660 A. NAGEL, F. Riccr, E. M. STEIN AND S. WAINGER

Proof. Let 0 be a smooth function on R supported where ¢ > 10 such that 6(t) =
for t > 20. Write

m(€) = m(€)0 (|&n—1]1&l7") +m(E)[L =0 (|€n—r] €] 71) ] = 11 () +ma(€).

On the support of 6’ (|§n,1| |fn|*1) we have [£,-1] ~ |&,|. Also, by homogeneity
we have

Otw 1(|£n 1|)| S len_1|1—|04n—1‘ and ’8?:(

5” . §n|)| < C|§n|1_‘an‘-

Thus Lemma 6.4 implies that n1(§) and m; () are flag multipliers relative to the
flag (6.2). On the support of m; we have |,—1]|&,|~" < 20. Thus we can group
together the variables &, and &,—_1, and it follows that m; (&) is a flag kernel relative
to a flag coarser than F*. Also [¢,_1| > 10|¢,,| on the support of ny.

Next write

n1() = n1()0 (|€n—2![€n1]7") +11() [1 = 0 (|n—2 [€n—1]7") | = n2(€) +ma(€).

Since 6 (|€n—2||&n—1|7") is supported where [£,—2| ~ [£,—1] and |&,—1] > 10]&,], it
again follows that no and mo are Fourier transforms of flag kernels relative to the
flag F*. On the support of my we have |, |£,—1]|7! <20 and |&,—1] |, 7! < 20.
Thus we can group together the variables &,,&,—1 and &,_2, and it follows that
ma(§) is a flag kernel relative to a flag coarser than F*. Also [£,-1] > 10/&,-1],
and |£,—1| > 10|&,| on the support of ns.

We proceed inductively to see that

m(€) =mo(§) + Y mi(§)
k=1

where each my(§) is the Fourier transform of a coarser flag kernel and mg(§) =
ny,(€) is supported where |£;| > 10[€j41] for 1 < j <n —1.

From our choice of 7, it follows that

L= > (@& @

J=(j1,--Jn)EL"
don@Mal) - n @G+ D (@Gl (2

JeE, JEL—E,

&nl)

&nl)

Thus if Y ;ce 7 (2j1|§1|) (2j”|§n|) # 1, there is an n-tuple J = (J1,...,7n)
and integers 1 < r < s < nsuch that j, > j, and n (277|¢,|) n (27+|¢]) # 0. Since n
is supported on [ ,4], it follows that |¢,.| < 4279 < 4279: < 8|¢|. However, on
the support of mg we have |¢,.| > 10|&s|. Thus on the support of my we have

L= (" al])--n (2

JEEn

&nl)
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and so N
m(€) = Y mo(&)n (2'&]) -+ (277 [&al) + Y mu(©),
Je&n k=1
which completes the proof. O

We now turn to the proof of Theorem 6.1. If we write K; as the inverse Fourier
transform of the flag multiplier m; of Lemma 6.7, we have shown that

K=Ko+> Kj,

j=1

and for 1 < j < n, K; is a flag kernel adapted to a flag which is coarser than F.
Also since mo(§) = > ;ce. mo(§)n1(§), we can write

(6.10) Ko=) [¥'],

JeEn

where . . .
W) =mo(27" - &1y, 27 - &) - ml&]) - n([&nl),

and the sum converges in the sense of distributions. The differential inequalities
for mg imply that each function ¥/ € S(RY), with Schwartz norms uniformly
bounded in I. Also since ¥ vanishes on the coordinate axes, for 1 < k < n we
have

(6.11) /‘III(Xl,...,Xn) dxy = 0.

In order to complete the proof of Theorem 6.1, it remains to show that we
can replace the Schwartz functions W' in equation (6.10) by functions in C§°(RY),
all supported in the unit ball with strong cancellation, and which vanish when
|x1| < e. This is done in two steps, using Lemmas 6.5 and 6.6.

First, according to Lemma 6.5, for each I € &, there are functions ¢*! €
Cs°(RY), each supported in the unit ball and having strong cancellation, so that

Plx) =Y 27Fyh 27k x),
k=0

and for every A > 0 and every positive integer m there is an integer p,, so that

195 M my < 27 17|t

Thus

[1/JI]I(X) _ Z2*@1(k+i1)*~~'*Qn(k+in) 1/)1@,1(27(1'1%) X1, ',27(in+k) 'Xn),
k=0
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and so formally

oo

DG =Y Y 27 DTyl (=t gy 970 h) . )

I€€E, k=0Ie&,

:Z Z 2= Q() == Quln) gkl (9=it .y . 27 . x,)

k=0J€eé&,
— Z Q*Ql(jl)f”'*Qn(jn) |:Zrl/)k»1:| (27‘7.1 XLy, 27‘7.'" . Xn)
Je&n k=0
o0
=3 [ .
Je&, k=0

The estimates we have on the functions {1)"} show that the series Y7 "1 = @1
converges in Cg°(RY) to a function supported in the unit ball which has strong
cancellation. This formal calculation is easily justified by applying it to finite sums
of dilates. Thus we have shown Ko = > ;¢ (2], with convergence in the sense of
distributions, where the functions @ € C5°(R”) all have support in the unit ball,
have strong cancellation, and are uniformly bounded in each semi-norm || - [ ().

Finally, Lemma 6.6 shows that for each I € &,, there exist functions ¢! €
Cs°(RYN) with strong cancellation, each supported in the unit ball, normalized
relative to ¢/, and vanishing when |x1| < £ so that

0
@I(xl,XQ,...,xn) = Z 21 <pj’1(2_j “X1,X2y e, Xp) -

Jj=—00
We then have
[@I]I(xl,xQ, cey Xp)
0
— Z 2_(j+il)Q1_iZQQ_"'_iw,Qn¢j7[(2_(j+il) - X1, 9~z Xa, ..., 9—in . Xn)7
Jj=—00

and so, since we are summing only over non-positive indices j, we have

0
Z [7']1(x) = Z Z 9—(+11)Q1—12Q2——inQn SDJ'J(Q*(J'H&) Xp,...,270 0 x,,)

I€E, j=—o0 I€&,
0
_ Z Z 9= 11Q1—12Q2——inQn SDJ'J(Q*ZE X1y, 9~in | Xn)
j=—oc I€&,
0
_ Y prnenn@ [ 3 ] g, 2 x,)
Ieé, j=—00
0

> [ > soj’IL(X)-

Ie&, j=—o0
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The estimates we have on the functions {7/} show that the series Z(;:_ oo PP =0p!

converges in C5°(RY) to a function supported in the unit ball which has strong

cancellation, and which vanishes when |x1| < %. This at last completes the proof
of Theorem 6.1.

6.2. Dyadic sums with weak cancellation

The main result of this section, Theorem 6.8, is a strengthening of the converse
to Theorem 6.1 which would assert that sums of dilates of appropriate compactly
supported bump functions with strong cancellation are flag kernels; we consider
sums of Schwartz functions instead of compactly supported functions, and more
critically, we assume only weak cancellation instead of strong cancellation relative
to the decomposition RY =R @ .. @ R,

Theorem 6.8. For each I € &,, let o' € S(RY), and suppose

(a) there are constants C > 0 so that ||¢"||n) < Cn for each I € &, and for
each N > 0;

(b) there is a constant € > 0 so that each p! has weak cancellation with respect
to I with parameter e relative to the decomposition RN =R & ... @ R,

Then we have the following conclusions:

(1) For any finite set F C &,, the function Kp = Y ;. ple’]r € S(RY) defines a
flag kernel Kpg for the flag F with bounds which are independent of the set F'.

(2) Let R C F» C --- C F,,, C -+ be any increasing sequence of finite subsets
of Ex with Exy = Jy_, Fin. Then for any test function ¢ € S(RY),

exists and defines a flag kernel K € S'(RN) which is independent of the choice
of the finite subsets. We write this limit as
K= lim [!]r.
FEN Ize;

Since the proof of this result is somewhat involved, let us indicate the main
steps. If F C &, is any finite set, let Kp = > ,cple’]r. We show (in Propo-
sition 6.9) that Kp = > ;e [gpl]] satisfies the correct size estimates, and also
(in Proposition 6.11) that Kp satisfies the cancellation conditions with constants
independent of F' of Definition 2.3. This will establish part (1) of Theorem 6.8.
To establish the existence of the limit in part (2), we use the weak cancellation
of the functions {¢’} to show that for any test function 1, the bracket <IC F,w>
can be rewritten as the integral of ¥ and its derivatives against locally integrable
functions. The existence of the limit then follows from the Lebesgue dominated
convergence theorem.

We now turn to the proofs. Note that in the next proposition we impose no
cancellation conditions on the functions {,!}.
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Proposition 6.9. For each I € &,, let ' € S(RY), and suppose there are con-
stants Cyr so that for all I € £, and all M, ||g0[||[M] < Cpy. Let F C &, be a finite
subset, and let Kp(x) =Y ple’]1(x). For any o = (@, ..., a5) € N® x- - xNo»
with |a| < M, there is a constant Ayr independent of the finite set F so that

|02 Kp(x)| < Aps [T [N1(x1) + Na(xa) + -+ + N;(x;)] " (@itlaD
j=1

Proof. 1t follows from Proposition 4.3 that

|0S K p(x)] = ‘ > ommiau@tlalodpl 27 xy, L 270 xy)
IeF

Since ¢! € S(R™), for any M we have the estimate

N
|02["1(27 %1, .., 27" xp)| < O (1 +3° 2*ikN,c(x,€)>
k=1

Thus

N
02K p(x)| < Cy Y 27 Zi=in(@etlond) (1 +) 2_ika(Xk))
IeF k=1

Proposition 6.9 thus follows from estimate (10.2) in Prop. 10.1 in Appendix II. O
The next result provides estimates that will be used in establishing the can-

cellation conditions (part (b) of Definition 2.3) for finite sums Kp = 3, p[e]s.
Recall that these cancellation conditions involve integrals of the form

/K(xl,...,xn)w(Rl Ky R X ) Xy - dXi

where {m1,...,mg} is a non-empty subset of {1,...,n}. Let M = {mq,...,mg},
and let L = {l;,...,lo} ={1,....,n}\ M. Let N, = a;, +--- + a;, and Ng =
Uy + -+ Gy 50 that Ny + Ng = N. For x = (x1,...,Xp) € RN, write

x' = (x,,...,%x,) € RNa

x = (x',x") with {x” — (X e ey Xm,) € RV
For I = (i1,...,1y) € &,, write
[=(I'I") where {Il = (nesiiy) € Bo
1" = (imys- -y im,) € Bp
If R=(R,...,Rp) is a B-tuple of positive real numbers, write
R-x"=(Ri-Xm,,.. ., Rp - Xmy),
2""R.x" = (2""1 Ry - Xpn,,....2""9 Ry Xy )-

Finally, let P(M) denote the set of all partitions of the set M = {m1,...,mg}
into two disjoint (possibly empty) subsets A and B.
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Proposition 6.10. With the above notation, let I = (i1,...,i,) € En, and let
o € S(RY). Let ¢ € C&° (RNﬂ) so that ¥ can be regarded as a function of the
variables X" = (X, ..., Xm,). Let R = (Ry,...,Rg) be a B-tuple of positive real
numbers. Define ® on RN~ by setting

d(x') = /]RNﬁ llr (X', X" ) p(Ry - Xy s s R - Xim) Xy - A%y

(1) There exists © € S(RN), normalized relative to ¢ and v (with constants
independent of (Ra,...,Rg)) such that ®(x') = [O]p (x).

(2) If ¢ has weak cancellation with respect to I, there are constants C' and € inde-
pendent of R = (Ry,...,Rg) so that © = Z(A B)eP(M) O, B, where for each
partition M = AU B andn ¢ A,

©as) <C [ 2 Crmesm) I min {(Re27me) b, (R20me) ™}
m,.€A msEB

Thus for each partition M = AU B of the set of variables {X;,,...,Xms},
|©.4.5(x')| is small due to two kinds of gains: there is a gain 27 (imr+1=im:)
for every index m, € A, and there is a gain min { (R, 2% )%, (R, 2'm )=} for
every index m, € B.
Proof. Make the change of variables
1

X = (Xm1 g ,Xm[s) = (Qiml IR ERER) 21‘7”6 ! Xm[s)'

Then
— 3 Qs , ,
O(x') =2 *=1 /N e27 %1, 27 X ) V(R Xy s - -5 RpXomy ) A%y - - - A%
RN

B /N [90] I (Xla X/l)w(Rlziml IR CEREER) RBQimﬁ : Xm/s) dxml T deB
RNB
= (0], (%),

where

(6.12) @(X/) = /N @(Xlaxl/) ¢(R12im1 “Xmyy e R62imﬁ : Xm/s) dXpm,y + - deB'
RN

Now

(14 |x'PM ;}@(X'):/ (14 |X)Mo% p(x', x") (2" R -x") dx",
RN

and we can estimate the S(R™V«)-seminorms of © in terms of those of ¢ and the
supremum of ||, independent of the choice of R. This establishes assertion (1).
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To prove the decomposition and additional size estimates for © asserted in
part (2), assume that ¢ has weak cancellation relative to I. Since the defini-
ton (6.12) of © involves integration with respect to the variables {xpm,,...,Xm,},
we will only use the weak cancellation in these variables. We can use the first of
the Remarks 5.6 to write ¢ as a sum of terms of the form

( H 2_5(is+1—’is)) ( H aa(t)) [Ba5.0]
sEA teB

where {my,...,mg} = AUB with ANB =0 and n € B if n € {my,...,mg}.
Also, 0: B — {1,...,N} so that o(m¢) € Jp,, and each ©4 p, is normalized
relative to .

If we write B = {my,,...,my,}, it follows that ©(x’) is a finite sum of terms

of the form
H 9~ €(ist1—is )/Nﬁ acr(mzl) .. ao'(mgs)[QZA;B;o']
sEA

p(R121 - Xy Rp2"8 - X, ) dXony - - A%y -
We can use integration by parts to move the differentiations Oa(mél) 0o (my,)
from @ 4.p. to . Differentiating the function ¢ (R12%1 - Xy, , ..., Rg2"™8 X )
with respect to the variable To(my,) with o(my,) € Jmek brings out a factor

i do(m .
(R, 2" )7 and so we have the estimate

! (jlv.,,vjﬁ7A0' <H2—e(z<+1 is) H 2% do(ry

s€A reB

On the other hand, without integrating by parts, since 1 has compact Support
the integral in the variables {x,, !7" € B} is taken over the set where |Xp,,.| <
(R,2im+)@mr for r € B, and this set has volume bounded by a constant times
[Tep(Rp20mr)=@mr Tt follows that there exists € > 0 so that

(6.13) [I(j1, ... ds; Aso)| < JJ 27U %) [] min {(R.2"r )b, (R27) <.
seEA reB
This completes the proof. O
We now show that if the functions {¢!} have weak cancellation, then the sum

Kp(x) satisfies the cancellation condition (condition (b)) of Definition 2.3. We
use the same notation as in Proposition 6.10. Thus L = {l,...,l,} and M =

{m1,...,mg} are complementary subsets of {1, 2,..., n}, and we set Ny = a;, +
“tay, and Ng =ty + A0, fx = (x1,...,%x,) € RY | we write x = (x/,x"),
with X' = (x,,...,%x,) and X" = (X, .. Xmy). T = (i1,...,ip) € &,, write

I = (ill,...,’ila) € E,and I” = (iml,...,’imﬁ) €E5

Proposition 6.11. For each I € &, let o' € S(RY), and suppose there are
constants Cyr so that that for all I € &, and all M, ||<p1||[M] <Cpy. Let F C &,
be a finite subset, and let Kp(x) = Y cplo’]1(x). Let 1 € C5° (RN#) be a bump
function in the variables X" = (X, ,...,Xm;). Let R = (Ry,...,Rg) be a B-tuple
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of positive real numbers, and let ¥ = (yi,,...,m,) € N1 @ - -®N%a . There exists
a constant Cy, independent of R so that

81;1 O Kr(x',x") (R -x")dx"

Proof. Recall the definitions of I’ and I from just before the statement of the pro-
position. Using Proposition 6.10 to write [[p!]p(x',x")¢(R-x") dx" = [0 (x'),
we have

J e S T B L S CU e}

I€FCE, I€eFCE,

Each ©7 is normalized relative to ¢. We write the sum over I € F as an iterated
sum as follows. Let

Ey={I'=(ii,,...,i1,) €Z%|(in,...,in) € F},
and for I’ € Ey, let

Exs(I') = {I" = (imy,- - imy)} € Z° | (i1,...in) € F C &y}

If I € F, we write I = (I',I") with I’ € Ey and I"” € E5(I"). Then

/Kp(x/,x")'tl)(R~x”)dx: Z[ 3 @(I/’I”)L/(x').

I'EB,  I7eEy(I")

We must show that this sum satisfies the differential inequalities for flags on the
space R & - - @ R%, with constants independent of the finite set F'. This will
follow from Proposition 6.9 provided we can show that for each I’ € Fy, the sum
D orren, (1 OU"T") converges to a normalized Schwartz function. However, this
follows from the estimates in part (2) of Proposition 6.10. m

We now turn to the proof of Theorem 6.8. As already indicated on page 663,
just before the statement of Proposition 6.9, part (1) is an immediate consequence
of Proposition 6.9 and Proposition 6.11, so we only need to establish part (2). Let
¢ € S(R™), and for each I € &,, let ¢! € S(RY) have weak cancellation relative
to I. According to the second of the two Remarks 5.6, we can write

a1
ol =) dilpt] +27 g,
=1

and so
al

[0']; =D (2% de)lpf]r + 272 [i5f] .
=1
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Then integrating by parts, we have

b4 fadef i - —e(iz—i1) %) dx
/RNW( Z/RNQ “letli(x) - (x) +/RN2 ol (x)d

Thus if F C &, is a finite subset, and Kp(x) =Y, x[¢']1(x), we have

Kr(x)(x)dx
RN
:—Z/ 2211612 aw d +/ 22 6(12 11) :|w( )d
IeEF RN 'R
0
:Z ) P i+ [ K x) w00 dx,
mé RN
where
= > 2 pl]i(x), 1<t<a,
IeEF
= 2l
IeEF
If @ = (aq,...,an) € NV, we have
aO‘KF( ) ZQZldKQ 23 1ZJ(QJ+|IOLJ]]) aa[ ]( I'X),
IeF
aaKF ZQ e(ia— 11)2 >0 Qi+ o] aa[QOé](QiI'X).
IeF

It follows from Proposition 10.1 in Appendix II that (at least if dy < Q1 + [aa])

c 4 Nj(x)] " @itledD) - and

<
Q
=
=
I
Q
5
3‘
||::]:
5
3‘

|0° K (%)] < CNl(Xl)E(Nl(X1)+N2(X2))_EH [Ny (1) + - -+ Nj(x;)] 7 (@it

The functions on the right hand side of the last two inequalities are integrable
on RN, The proof of (2) then follows from the dominated convergence theorem:

: 0
Flgrgl (Kp,) = E /]RN (x) dx + RNK (x) P(x) dx,
where

K'() =Y 2"%[pfli(x), 1<l<an,
Ieg,

=2 2l

Ie&n
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6.3. Rewriting sums of bump functions with weak cancellation

It follows from Theorem 6.8 that a sum of dilates of normalized bump functions
with weak cancellation converges to a flag kernel, and it follows from Theorem 6.1
that a flag kernel can be written as a sum of dilates of normalized bump functions
with strong cancellation plus a sum of flag kernels adapted to strictly coarser flags.
It follows that a sum of dilates of functions with weak cancellation can be rewritten
as sums of dilates of functions with strong cancellation relative to coarser flags. In
this section we give a direct proof of this fact. The basic idea is to use telescoping
series to replace a function with weak cancellation by a sum of functions with strong
cancellation plus an error term which belongs to a flag which is coarser than the
original flag. Aside from its intrinsic interest, we shall need this observation in the
forthcoming paper [10].

Thus consider the standard flag F4 on RY of step n associated to the decom-
position

(A) RN =R“ @...pR™,

Any strictly coarser flag F = F.4 then arises from a decomposition
(B) RN:Rb1@~~~@Rbm

where m < n and each R% = R @ --- ® R*5 where 1 = 71, n = 8, r; < sj
for1<j<m,andrj;; =s;+1forl1 <j<m—1 Asusual we let &, denote
the set of n-tuples of integers I = (i1, ...,i,) with iy < --- <4,. For any strictly
coarser flag Fp of step m < n as above, we let £g denote the set of m-tuples of
integers J = (j1,...,Jm) with j1 < -+ < j,,,. Given the argument for part (2) of
Theorem 6.8, we shall only concern ourselves with finite sums, and thus will not
need to worry about convergence questions.

Proposition 6.12. Let F4 denote the standard flag associated to the decomposi-
tion RN = R™ @ --- @ R . Suppose that

(6.14) K(x)= Y [¢'li(x)

Ieg,

is a finite sum, where each @' is a normalized bump function for the flag F.4, with
weak cancellation relative to I € &, with parameter €. Then we can write

(6.15) Kx)=> Y [,),

B>=AJe€n

where the outer sum is taken over decompositions equal to or coarser than A, and
each 7)% s a normalized bump function which has strong cancellation relative to
the flag Fp associated to the decomposition B.

Proof. We argue by induction on the number of steps n in the original flag A. For
n = 1 there is nothing to prove, because then there is no distinction between weak
and strong cancellation.
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Thus suppose the proposition has been established for all flags of step less than
or equal to n — 1, and consider the flag of step n corresponding to the decom-
position A. The inductive step itself requires an induction. Let the function K
be given by (6.14). Since each ! has weak cancellation with respect to I with
parameter €, we can write

QOI — Z 2752l63(‘7‘l+1*jl) 7)§
Sc{1,2,....n—1}

where the sum is over all subsets S of {1,...,n — 1} and each 77{.; is a normalized
bump function which has integral zero in each multi-variable x,. with r ¢ S. Thus
we have

(6.16) K=>" S 27 XiesUni) [pi]

I1€&, SC{1,2,....n—1}

We will prove by induction on k, for 1 < k < n, that K can be written

(6.17) K=>" S 2 Tiesld) [ph] + 37 K5,

T€E, SC{1,2,....n—k} B A

where the functions {#5} and {K5} have the following properties:

(i) Each normalized bump function 77§ has integral zero with respect to each
variable x, with r ¢ S.

(ii) For each B > A, (i.e., for each decomposition B strictly coarser than .4 and
hence whose corresponding flag has step strictly less than n), the function K5
can be written as a finite sum

K = Z [eé]Ja

JEE(B)

where each Gé is a normalized bump function with weak cancellation with
some parameter ¢ > 0 relative to the flag arising from the decomposition B.
(It follows from the induction hypothesis that each such function can be
rewritten as a sum of dilates of normalized bump functions with strong can-
cellation.)

(iii) The bump functions {n%} and the {63} are uniformly normalized relative to
the normalized bump functions {p!} defined in (6.14).

Clearly equation (6.16) gives the desired conclusion in (6.17) for k£ = 1. Moreover,
when k£ = n the set S must be empty and thus we will have written K as an
appropriate sum of dilates of normalized bump functions with strong cancellation.

Thus we turn to the induction step. Suppose that equation (6.17) holds for
a given k < n. We must show that (6.17) also holds with & replaced by k + 1.
We split the first sum into two parts depending on whether or not the subset S
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contains the element n — k:

K = Z 2_52165(jl+1_jl)[ng]J + Z Q—EZzes(jHl_jl)[né]I + Z KB
JEEL Ieg, B>-A
SC{1,2,....,n—k} SC{1,2,....n—(k+1)}
n—keSsS

(618) =K+ Ky + Ks.

Now K5 + K3 is already of the form in (6.17) with k replaced by k + 1, so we only
need to deal with K;.

Thus let n — k € S C {1,2,...,n — k}, and consider the corresponding term
n = né in Ky. Let Q,_j denote the homogeneous dimension of the space R%»—*.
Then the function

(né)’(xl, ceyXp) = 2Q”—’“né(x1, 2 Xy ,xn) — né(xl, e Xy e ,xn)
has cancellation in the variables x, for all » ¢ S" = S\ {n —k}. Note that

S c{1,2,....,n—(k+1)}. Let J = (j1,...,Jn). Using a telescoping series we
have

jn—k-%-l*jn—lc

né(x) = Z 27iQn_k(n§)/(X1w",27i 'ank,"',xn)
=1
+ 2_(jn—k+1_jn—k)Qn—kng (Xl, o 9= Un—k+1=in—k) Xp—ky .- ’Xn)’
and hence
(6.19)
jn—k+1
J _ A J

[nS]J o ‘ Z 1[(775) :I(j17~~~7jn—k—l7i7j7L—k+17~~~7js)+[T}S] (15 osdn—k—1sdn—k+1:Tn—k41,Js)

1=Jn—k+

We regard the last term as associated to the coarser flag of step (n — 1) associated
to the decomposition

(B) R @ ROn—k-1 @ I:Ran—k o) Ran—k+l] @ RI—k+2 @ ... @ R

where R—# @ R -++1 is now considered one factor. If we set

—

—k . . . . — . . . .
Jz‘(n ):<.717"')jn—k‘—lala.jn—k‘-i-la"'ajn))Jn k:(jla'-')jn—k‘—lajn—k-‘rla'-')jn)a

then JZ-("_k) €&y for jo_r+1<i<j,_r+1 and J"/_\k € &z. Moreover, né has
weak cancellation with respect to the flag (B) with parameter e. Formula (6.19)
then becomes

jn—k-f—l

(6.20) il = Y. [(md)] o+ A=

1=jn—kt1
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Applying the identity (6.20), we obtain

K, = Z Z 2752,@(;‘“17;‘;)[%](]

JEE, SC{1,2,...,n—k}
n—kes

— Z Z 97 Xiesutn—ky Urt1=01) [ngu{n—k}}]J
JEEn SC{1,2,..,n—k—1}

Jn—k—1

) ) n—k
= Z Z 27€Elesu{n—k}(ﬂ+1*]l) Z [(775 ))l]Ji‘”"“)
Je&n SC{1,2,....n—k—1} 1=Jn—k+1
+ Z Z Q_EZlESU{”'_k}(jL+1_jl)[ngﬂ]yﬁ\k
JEE, SC{1,2,....n—k—1}
=31 + Xo.

In ¥, we change the order of summation, grouping together all the terms for
which Ji(”_k) is a given J' = (j1,...,7,) € &Ey. Clearly, this condition forces J to
differ from J’ only in its component j,_, and we have j;,_, | < jn—i < Ji,_p-
In order to express the factor 27 2iesutn—r I+1790) iy terms of J’, we split the
summation over the subsets S into two parts; the first consists of subsets S not

containing n—k—1 and the second consists of the subsets which do contain n—k—1.
We then have

Jnok—1
¥ = Z Z 92— ¢€ Zzes(jzl+1—jz/)( zk: 9—e(in k41— [(ng/)/] J/)
J'E€E, SC{1,2,...n—k—2} =5y
nok=1
+ Z Z 2_5Zzes(jz/+1—jzl)2_5(j;,—k+1—j;,—k—ﬂ( Z [(ng/u{nfkfl})l] J/)
JI€En SCT{1,2,....n—k—2} =5,

=X11+212.

Each function appearing in ¥ ; has integral zero in each variable x, with r ¢
B c {1,...,n —k — 2}, and each function appearing in 3, » has integral zero in
each variable x, with r ¢ BU{n —k —1} C {1,...,n —k — 1}. All the #’ in the
above formula are normalized relative to the initial data. Hence, the term in ¥; ;
indexed by (J',S) contains a function 74 normalized relative to the initial data,
and multiplied by a factor

Il
2_€Zles(jl/+1_jll) Z Q—E(j;,—k+1_i) < 2_Ezles(jl/+l_jl/) ,
I
whereas the corresponding term in ¥  is a bump function ﬁg/u (n—k—1} normalized
relative to the initial data and multiplied by

—€ -/ Al —c .’/7 ,7"7 B ./ ., 75/2 L (J’ 7‘7/)
2 2ies Uit JL)2 (Gn—k=In—r 1)(.7”7]6,.7”71671)52 tesufn—k-1} i1 I
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with &’ < e. Hence,
¥ = Z Z Q*EZzes(jzl-*—l*jz/) [f’g/]f ,
J'€Ey SC{1,2,...,n—k—1}

and X together with K5 gives the first sum in (6.17) with & replaced by k + 1.

It remains to prove that X9 can be absorbed in the remainder term (second
sum) of (6.17). We group together the terms at the same scale and separate the
sets S containing n — k — 1 from the others. Indexing the elements J' of £z as
J =Gl g1 s -5 Jh1) € En—1, we have

Z Z 2*EZl€Su{nfk}(jl+1ijl) [nén/_\k]J”/_\k

JEE, SC{1,2,....,n—k—1}

Z Z ( Z 2*€Zzesu{n—k}(j’+liﬁ)[Ugm]ef"‘/‘\»

J'e€En_1 SC{1,2,....n—k—2} Jeg,’“]m:‘p
D 3 3o ety G =30 [ 7
+ ( 97€ X iesutn—k—1,n—ky i+ [775 ]Jﬁ)
J'€€n—1 SC{1,2,....n—k—2} JESnZJn/_\k:J’

=01+ 222 .

D)

As in the previous discussion, each term in parentheses is a function normalized
relative to the initial data, multiplied by a factor controlled by

Jnk
2_52165(jl+1—jl) E 2_5(j;,—k_i) < 2_52165(3{4-1_3{) ,
~Y
=y g1

for the terms in X5 ; and by

2*5Eles(jl+1*jl)Q*E(j;,_k*j;_k_l)(j;_k _ j?”L—k—l) < 2_5/ Ezgsu{n—k—l}(jzl+1_jz/) ,

~

with ¢’ < g, for the terms in o 5. It follows that
D S S O
J'e€n 1 SC{1,2,....n—k—1}

and this concludes the proof. O

6.4. Restricted cancellation conditions

Our next result shows that the cancellation conditions in the definition of a flag
kernel can be relaxed. As usual, let F denote the standard flag

(0) CR*" CR*™ 1 @R C---CR2@---@R™ Cc RV .

Theorem 6.13. Let K be a distribution in S(RYN) which satisfies the conditions
of Definition 2.3 for the flag F, except that in condition (b), the values of the
parameters Ry, ..., Ry are restricted to Ry > Ry > -+ > Rs. Then K is a flag
kernel.
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Before giving the formal proof, let us explain what needs to be done. We
are asserting that if the cancellation conditions in part (b) of Definition 2.3 are
satisfied when Ry > Re > --- > R, then they are satisfied for all values of the
scaling parameters. To do this we fix a non-empty subset I C {1,...,n}, and a
constant p; > 0 for every ¢ € I. For each i € I we choose ¢; € C5°(R*) equal to
1 on the N;-ball of radius 1 and supported on the N;-ball of radius 2, and with
bounds on the norms {|[);||(m)}. We set X7 = (X;)ier and x; = (X;)igr, and put

W (xr) = [T iloi-xi) -
iel
Let /
K?,p = Ic\i#hp(xl) = <IC’ ‘IJP>

denote the distribution in the variables x7 such that

(K3 0) = (K, ¥, @)

for every test function ¢ in the variables x7. We must then prove the following:
Suppose that K satisfies the hypotheses of Theorem 6.13. Then

(a) If I ={1,...,n}, then |(K,¥,)| < C where C is independent of the choice of
{pi} and {ap;}.

(b) If I is a proper, non-empty subset of {1,...,n}, let igp = min{j |j ¢ 1}. Then
ICip coincides with a smooth function for x;, # 0, and for every multi-indez &,

_ —Qi—[as]
(6.21) 02,8, < CTT (X M)
idl 1l
1<i

where {Cy} are independent of the choice of {p;} and {1;}.

In proving (a) or (b), we may assume that K has compact support, and look
for non-restricted cancellation estimates that only depend on the constants in
Definition 4.1, and not on the size of the support. For general IC, the conclusion
will then follow by a limiting argument, based on the following construction. We fix
a C°-function ¢ on the real line, equal to 1 on a neighborhood of the origin, and set
P=p® --®pcCPRY), . =d06,-1. Then K, = ®,K has compact support,
satisfies the hypotheses of Theorem 6.13 uniformly in r, and lim, ., K, = K in
the sense of distributions.

Proof. For i € I, define R; as

(6.22) R; = r?ealxpg .
1>i

Then Ry > Ry > -+ -, and so by hypothesis IC?  satisfies the estimates in (6.21).
Thus it suffices to prove that the difference Kﬁ, b /Ci p, does as well.
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Denote by I° (respectively I7) the set of i € I such that R; = p; (respectively
R; > p;). Setting

ni(xi) = Vi(pi - xi) — i(Ri - x;),

we have
W, () = Wa(x) = ([T vl -x)) ( [T viloi-x0) = T] wilki-x0))
i€l0 ielt ielt
= ( H Vi (R; Xz))( H (Vi (R; - %) +mi(x7)) H Pi(R; - x;) )
ieIo eI+ iel+
= ( H Vi(Ry Xz)) Z (Hm(xz))( H Vi( Ry 'Xi))
ieI0 0#£ICI+ i€ i€It\J
Z (Hm(&))( H 'l/)i(Ri'Xi)> .
0£ICI+ i€d ieI\J

Fix J C I, J # (. By definition of I° and I't, for each i € J, R; = p; for
some l € 1% 1 >i. Seti=min{l € I°:1>iand R; = p;} and J = {i:i € J}.
By the cancellation of K in the variables x; for i € I'\ (J U J),

KLoK= 30 (K5 (TIw) (TI00m0)) -

P£JCI+ ieJ

where each IC?’& is a distribution in the variables x; with i € I U J U J, satisfying
condition (a) of Definition 2.3.

Notice that this pairing can be expressed as an integral because the right-hand
side f in the pairing above is supported where IC# is smooth. To see this, denote
by ip the smallest element of I U J U J. Then IC is smooth for x;, # 0. On
the other hand, if x = (X;);ccru 0.7 € supp f, all coordlnates x; are bounded away
from zero except for those in J. But every element of .J is strictly larger than some
element of J, therefore ig & J.

We estimate the a-derivative of each /C;f by

0%, K% (), x.7,%)

629) < Co [T Nie)) (lHJ_ (X V=)™ ) 1 (§Nl<xl>)‘Q"‘“a”“ ,
l g

where Jy ={i€ J:i=1}={i € J: R, = R}. Since the J; form a partition of J,

we have

|/C§p(x}) - Kﬁ,R(X/I” < C(H (ZNZ(XI)) Z HVl )

il gl 0AICIt 1]
1<i

—Qi—[as]
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With m; denoting the cardinality of Jj,

= (<) Qi . —Q )
W /{Nj(x7‘,)>Rll7Vi€Jl} /Nz(xl)<Rll( H N’L(Xl) ><Z NZ(X1)> Xm H dX,L

i€J; i€J; i€J;
-Q
:R;Ql/ . . (HNZ(X1)7Q1>(ZN1(X1)> l H dXi
INi(xa)>R;7, Vie iy ey, = icd
< CR; QZH/ X))~ Qi=Qi/mu gy < O .
ieJ; (x’)>R_
This concludes the proof. O

6.5. Invariance of flag kernels under changes of variables

We study the effect of a change of variables on the class of flag distributions. If
K € S'(RY), then formally (K w = fpn K x) dx, where K is the ‘kernel’
associated to IC. Let F: RV — RN be a dlffeomorphlsm with inverse G. We want
to define a new distribution K# which is the composition of K with the change of
variables F'. Now formally

KoRw)= [ KEQWEx= [ KEW(EE) a6 y)dy
RN RN
where JG is the Jacobian matrix of G. Thus if % (y) = ¥(G(y)) det(JG)(y), and
if the change of variables has the property that ¢ € S(RY) implies ¢# € S(RY),
we can define K# = K o F by setting (K#, ) = (K,¢#) for all ¢ € S(RV).
We are primarily interested in changes of variables of the form

F(xy,...,zx) = (1 + P(X),..., 2N + Pyn(x))

where Py, ..., Py are polynomials of the form Py (z1,...,2n) = Y. cf o - 2"
with coefficients ¢ € R. Thus P; depends only on the variables {x1,...,zr_1},
and this guarantees that F' is a diffeomorphism with inverse G of the same form. In
particular, det(JG)(x) is a polynomial. Thus if ¢ € S(RY), then det(JG) ¢ oG €
S(RYN), so K# is well-defined. We want to show that if K is a flag distribution
adapted to the decomposition RY = R @ --- @ R, then K# has the same
property. In order to show this, we need to make additional assumptions on the
coefficients {c{ }.

Definition 6.14. A change of variables y = F(x) of the form y;, = ) + Pr(x)

where Py(x) =3, cp, cral’ - coapt )t is allowable if

k—1
By, = {(al,...,ak—l) € Nk_1| ;ajdj = dk}-

Theorem 6.15. Let K € S'(RY) be a flag kernel adapted to the standard flag F
coming from the decomposition RN = R @ --- @ R . Ify = F(x) is an allow-
able change of variables, then K# = K o F is a flag distribution for the same
decomposition.



SINGULAR INTEGRALS WITH FLAG KERNELS ON HOMOGENEOUS GROUPS I 677

Proof. We can assume that K =3, . [¢!]r where each ¢! is a normalized bump
function having strong cancellation. Let I € Ey. We consider the dilate [p!];
composed with an allowable change of variables. We have

P FC) = [ (-t Pular, i),
_ Q—Zg=1dkik<pl(...,2_dlil[£€l JrPl(xla-'wxlfl)]"")

Put
07 (x) = <p1( a4 2T W p oty o odimvtioag, ) )
so that [07]7(x) = [p!];(F(x)). Put

P)ZI(X) = 27dlllf)l(21 . X) = E 27d”l+2k:1 djajzj ng?l . I‘Zill )
B,

Then 6’ (x) = ¢! (21 + P{(x),...,2n + P§(x)). Since the change of variables is
allowable and I € &,, we have

-1 -1
—dyi; + deakik = — Z Ozkdk(il — ik) <0.
k=1 k=1

It follows that each P/ is normalized relative to P, and this shows that [¢!];(F(x))
= [67]7(x), where 8 € C3°(RY) is normalized relative to (.

Next we study the cancellation properties of 1. If we can show that each ! has
weak cancellation relative to the multi-index I € &, it follows from Theorem 6.8

that
KoF =Y [p'lioF=> [0

is a flag kernel, which is what we want to show.
To do this we use Proposition 5.7. Let {1,...,n} = AUB with ANB = . We
study

/ HI(XA,XB)dXB
>}

a
kep RYF

= / (pI< ST+ 27dlil.Pl(2dli1£C1, ey le_lil_llﬂl,l), R ) dxp.
Drep R

Since ¢! has strong cancellation, we can write it as a sum of terms of the form
dj, -+ 0;, ', where each index j; € J;. Tt suffices to consider the integrals

~I —di dyi dj,. i, di 17—
/ajl"'ajn<p ("'7xl+2 l”]Dl(2 ”11'1,“'72 ”Z”xjm"',Q o 11’l71)7"')de~

Drep R¥
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Let r € B. In this last integral, replace the term
27dm]3[(2d1i1£81, ceey 2%iriir Tjyeens le_lil_lmlfl)

for I > j, by the term 2=%% P (20t . 0,...,2%-10-10 1) je., weset xj, =0
everywhere in the integrand except where it appears by itself in the j** entry of
8]‘ ce (‘3% gZI. Now

/ajl 05, @ (v 2R P (2T 0, 20 gy ) ) dxp =0
Drep R

since one of the variables we integrate is z;_, and we are integrating the derivative
of a Schwartz function. Thus it suffices to estimate the integral of the difference:

~1 —dyi dyi djij, di_vig
/ [8j1-~-8jngp (...,ml+2 P (20 gy, ... 2% gy L 200 1ml_1),...)
Drep R

- 8]‘1 ce 8%@1( - + 2_dlilf)l(2d1ill‘1, ey 0, ey 2dl*1il*ll‘l_1), e ):| dXB.
A typical term in the polynomial P, has the form coz{"--- ;" " where ard; +
-+ 4+ aqq_1d;—1 = d;. Thus we get a ‘gain’ whose size can be estimated by a sum of
terms of the form

|Co<| g~ dviitandiintdoar_adi—1ii—1 |l-1|0‘1 S |.Z‘l_1|al_1
where ;. > 0. However,
-1 -1 -1
—diis + Y agdyiy = [ —di + Y ondy]ir+ Y aydy(iy — i)

t=1 t=1 t=1

-1
=3 audy(iy — 1) < —ound,(iy — ip) < —€(ipgr —ir).

t=1

Thus for every r € B we have shown that
’ / 91 (XA, XB) de‘ g 275(i7v+17i,.).
@kGB Rk

Thus with a smaller € we have

’/ QI(XA,XB)dXB‘ N H 2 elirri=in),
Dpcp R reB

and it follows from Proposition 5.7 that # has weak cancellation. This completes
the proof. O
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6.6. Homogeneous nilpotent Lie groups

We now begin the study of operators f — f * K where K is a flag kernel, and
the convolution is on a homogeneous nilpotent Lie group G with Lie algebra g.
To say that a Lie group G is homogeneous means that there is a one-parameter
group of automorphisms §, : G — G for r > 0, with 6; = Id. As a manifold,
G is an N-dimension real vector space, and we assume that with an appropriate
choice of coordinates, G = RY and the automorphisms are given by 6,[x] = r-x =
(rfrzy,...,r%Wey) with 1 < dp <dy <--- < dy. We begin by summarizing the
facts about group multiplication, invariant vector fields, and group convolution
that we need in this context. Additional background information, and in particular
the proofs of formulas (6.24) and (6.25) below, can be found in the Chapter 1 of [3].

The product on G = R¥ is given by a polynomial mapping; if x = (z1,...,2x)
andy = (y1,-..,yn), the k*' component of the product xy is given by
(6:24) (xy)k = wptypt Me(x,y) = metyet . cplaftal iyl gy
a,BEMy,

where {cg’ﬁ } are real constants, and

k—1
M, = {(04;5) = (a1,...,o5-15B1, ..., Br—1) ‘ ;dl(al +5) = dk}.

Note that
Mk(T X, T Y) = TdkMk(X>Y)'

Next, let {X1,...,Xn} and {Y7,...,Yn} be the left- and right-invariant vector
fields on G such that, at the origin, X3 =Y} = 05,. Then

9 = ) i)
Xy = — E P, E af N
k al‘k + kl( )al‘l amk + Z kl Y11 8%[7
i TR
1>dk 1>0ak
(6.25) 5 N 5 5 N 5
Yy =— E P (X)=— = — E ay ottt =
b al‘k + kl( )al‘l amk + Z ki 1 =1 8%[7
I=k+1 =k+1a€Na,—q,
dy>dy dl>dk

where {af } and {af, } are real constants, and the index set )4 is defined in Propo-

sition 2.1. It follows that Py,, Py, € Ha,—d, -
The bi-invariant Haar measure on G is Lebesgue measure dy = dy; - - - dyn.
The convolution of functions f, g € L*(G) is given by

frglx /fxy1 y)dy = /f )g(y~'x)dy,

and the integral converges absolutely for almost all x € G. The following result
can be found on page 22 of [3].
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Proposition 6.16. Let f,g € C}(G) N L'(G).

(1) If X is a left-invariant vector field and Y is a right invariant vector field, then
X[fxgl=[fxXgl and Y[f gl =Y[f] +g.

(2) If X is a left-invariant vector field and Y = X s the unique right-invariant
vector field agreeing with X at the origin, then X[f]*xg = f*Y]g].

(3) If § = 0¢ denotes the Dirac delta-function at the origin, then p(x) = p*xd(x) =
dx@(x) for o € C(G). In particular, if X s a left-invariant vector field and
Y is a right invariant vector field, X[p] = ¢ * X[0] and Y[p] = Y[0] * ¢.

Using the formulas in (6.24), we can write the convolution of integrable func-
tions f and g as

(626) f*g(X): BN (7mm7ym*PM(X7y)’)g(vym,)dyldyN

where each P, is a polynomial in the 2m—2 variables {1,..., Zm—1,Y1,. -, Ym—1}
satisfying P, (25X -x,2K .y) = 2kndm P (x,y). In the formula (6.26), the variables
in x appear in the argument of f. However by a change of variables we can move
some or all of them to the argument of g. Thus if S is any subset of {1,..., N},
we can write

(627) f*g(X) :/ f(ul(X,y)w" 7UN(X7y)) g(vl(X,y),"' ,UN(X,y)) dyl dyN

RN
where
_ JTm = Ym — Qm(xa Y) ifmes,
Um (X,y) = .
Ym if m ¢ S,
(6.28)
v (Xy)_ Ym ifmGS,
e Tm — Ym — Qm(xa y> it m ¢ S.
Here each Q,, = Q5 is a polynomial in the variables {z1, ..., Zm_1,Y1, -, Ym_1}

with the same homogeneity as P,,; that is Q,, (2 - x,25 . y) = 2kndn @, (x,y).

6.7. Support properties of convolutions [¢]r * [¢]s

In this section we study the support properties of the convolution of dilates of
normalized bump functions with compact support. Given integers i, j € Z, we set
iV j =max{i,j}. Given N-tuples I = (i1,...,in), J = (j1,...,jn) € ZN, we set

(6.29) IVJ=(i1Vji,...,in VJN).

We want to show that the convolution [p]; * [¢] s is the TV J-dilate of a normalized
function.
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Lemma 6.17. Let ¢, € C°(RY) have support in the ball B(p). Then for any
I,J € Ex there exists 0 € C5°(RY) supported in the ball B(Cp) such that [¢]r *
Wy = [0lrv, and [|0]]m) < Culloll @)1l my- The constants C and {Car} can
depend on the radius p, but are independent of the functions ¢ and 1.

Proof. Let K =1V J and put
0 = [lelr * [¥]s]_ -

It suffices to show that 6 is supported in the set {x € RN : |z4| < Cp, 1 <k < N}
and that [|0]]m) < Cm [|@]]m)|[¥l|(m) for some absolute constants C' and {Cy, }.

Making the change of variables v, — 2%y, and using the homogeneity of
the functions {u,,} and {v,,}, we have

[lelr * [Wal] _ ()
= 2% m b (] % [1h] 1) (21 Ry, ... 29V EN )

:2Zm2dmkm/ [(p]j(...,um(leklxl,...,QdeNmN,y),...)
RN
'W]J(--~>Um(2d1kl$1a-~-a2deN$N>Y)>~-~)dyl"'dyN

— 22771, dm(ka_im_jm) / ()0( e QdM(km_iM)Ur,n(X,y), . )
RN

1/)( . '72dmy(km_jm>fum(X,y), s )dyl ! dyN

Note that 2¢m(km=im) > 1 and 2¢m(km=im) > 1 Tt follows that if [or * 7]k (x)#£0,
there exists y = (y1,...,yn) € RY so that for 1 <m < N,

[t (x, )| < 2% =i |y (x, )| < p,
lom (x,y)] < Qdm,(km—jm)wm(x’ y)l <p.

(6.30)

We show by induction on m that these inequalities imply that |z, |+|ym| < Amp
for an appropriate choice of constants A; < As < -+ < Ay. When m =1, we
have |x1 —y1] < p and |y1| < p, so |z1| + |y1] < 3p, and we can take A; = 3. Next,
assume by induction that |zs| +|ys| < Asp for 1 < s < m. Since Q,,(x,y) depends
only on the variables {z1,...,%Zm—1,¥Y1,...,Ym—1}, it follows that |Q.,(x,y)| <
By.p, where B,, is a constant that depends on the coefficients of the polyno-
mial @, on the constants {A;} for s < m, and on p. We have |y,,| < p and
|Tm — Ym — Qm(%,¥)| < p, 50 [Tm| + |Ym| < (Bm + 2)p. This completes the proof
of the statement about the support of 6.

To establish the estimate |[0]] () < Cml|@l|(m)|[%]|(m), We again use (6.27), but
this time with the set S = {m € {1,...,N} |jm < ipm = kp}. Of the two factors
{2dm(kin=im) 9dm(kn=jm)l the one which equals 1 multiplies the expression , —
Ym—Qm (X, y), while the term y,, is multiplied by the larger factor 2¢m (km = (imAjm))

Thus with this representation of the convolution ¢;*1;, the integration takes place
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over the set E = {y € RY : |y,,| < 27%m(Fm=(mAim)) 1 Thus we can estimate the
size of [[go]; * (9] J:| _K(x) by

|[pr % ] _ e ()| < 225m dmEhm=im=im) || ]| [[3h]|o /E dy < Co [lello [[%]lo

since 2k, — im — Jm — Kkm + (im A jm) = 0. When we take derivatives of [[<p] Ik
[]s] (%), the terms involving the variables x are multiplied by the factor 1, and
so we obtain in the same way the estimate

1| Tor *5] e llmy < Con l1€ll iy ]l m)-

This completes the proof. O

6.8. Decay and cancellation properties of convolutions [¢]r * [¢] s

We want to study the decay and cancellation properties of the convolution [¢]; *
[t)]; under the assumption that ¢ has cancellation in the variables {x,,...,z;, }
and 1 has cancellation in the variables {Zy,,,...,%m,}. Here decay means that
the size of [p]r * [¢]; is small due to the difference between the N-tuples I and J;
cancellation means that the integral of [p]; * [¢)]; with respect to some variables
is zero. (See Section 5.2 and Definition 5.3 for the precise definition of strong and
weak cancellation). Before stating our results, let us see what we should expect
by considering the much simpler case in which the convolution [p]; *. [¢0] s is taken
with respect to the Abelian (Euclidean) vector space structure of RV rather than
the general homogeneous nilpotent Lie group structure G.
Let I = (i1,...,in) and J = (j1,...,Jn), and put

Ao ={se{l,...;a}|i, <j.},

A ={se{l,...;a}|i, > 4.} ={1,....a}\ Ao,
Bo={te{1,....b} | jm, <im,}

By ={te{1,....b} | jm, > im,} = {m1,...,ms} \ Bo.

Because of the hypothesis on cancellation, we can write

90 = all "'alagav
w = aml to ambi-

For each s € Ay we can integrate by parts in the variable z;, in the integral
[©]1 *e []7, moving the derivative 9, from ¢ to ¢. Since the width of the dilate
[¢]r is narrower in this variable than the dilate [¢/], this integration by parts gives
a gain of 27Ut ~:) and we get such a gain for each s € Ag. A similar argument
shows that we get a gain of 2~ ¢(im:=Jm:) for each t € By. Thus the total gain from
integration by parts is [[,c 4, 2—€lits —ius) [Licn, 2=€(im,=3m¢)  In addition to this
gain, we observe that in the convolution [¢]s *. [1] s, the derivatives J;_ for s € Ay
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and Op,, for t € By can be pulled outside the integral. The final result is that there
is a compactly supported function 0, normalized relative to ¢ and 1, so that

lelr #e W]y = [T 2@t I 27<Cme=imd T T1 0 0mo 611w

s€Agp teBo s'’€AL t’eBy

In other words, we get exponential gains from variables where there is cancellation
for the function with ‘narrower’ dilation, and the resulting convolution still has
cancellation in the remaining variables.

When dealing with convolution on a homogeneous nilpotent Lie group, we
cannot move Euclidean derivatives from one factor to the other. However, we can
write Euclidean derivatives in terms of left- or right-invariant vector fields which
can be moved across the convolution. But this process introduces error terms
involving derivatives with respect to ‘higher’ variables, and these come with a gain
involving the differences between entries of I or J. Thus in the case of nilpotent
Lie groups, we might hope that convolution results in three kinds of terms: gains
of the form 2~¢le~i¢l coming from integration by parts in narrow variables with
cancellation, residual cancellation of the convolution in some variables which are
not used in the integration by parts, and finally gains of the type 2 ¢(ie+1—i)
and 27¢Ue+1730) | This is in fact the case, and is made precise in the next lemma.

Suppose we are given two decompositions

(A): RY=R“"@--- @R,
B): RV=R"q.. .oR".
Let {J{%, ..., J2} be the indices corresponding to (A) and let {J5B, ..., J531 be the
indices corresponding to (B). Define
o:{1l,...,N}—={1,...,n} suchthat (¢ J(ﬁe),
7:{1l,...,N} = {1,...,m} suchthat I[¢€ Jf(l).

In what follows, 4 and 75 denote mappings from the set {1,..., N} to itself with
the properties that m4(¢) € J(;“(Z), and (1) € JTB(Z). Also recall from equation (4.5)
in Section 4.1 that we can introduce mappings p4 : &, — Enx and pp : &, — En
so that

al as An
pA(zl,...,zn):(21,...,21,22,...,22,...,zn,...,zn),

b1 b2 bm
pB(.h?""]m):(.717"',.71,.72,"',.727"',]m,"'vjm)'

Lemma 6.18. Suppose that p € Cg°(RYN) has cancellation in the variables x, for
(e Ac{l,...,N}, and that ¢ € CS°(RY) has cancellation in the variables x; for
le BcA{l,...,N}. Let I = (i1,...,in) €En and J = (j1,. ., Jm) € Em. Set

Ao = {t e Alisw) < jrny}

By ={l€B|jq <iow}-
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Then [p]r * [¥]; can be written as a sum of terms of the form

H 9—€lio(r)+1lo(r)) H 9—€lir(y+1=ir1)) H 9—€lir @) ~io(r)) H 9—¢€lic(y=ir))

leAy leBy VEDS 1€ By
871' YA Oﬂ 9:|
{egg “ )lg3 B0 atyvps(1)

where 0 is normalized relative to ¢ and, A= A;UA3UAs and B = By UByUDB;3
are disjoint unions, and we have Ay C Ay C A1 U As and By C By C By U Bs.
(We will have o(£) # n and (1) # n.)

Proof. Using the cancellation hypotheses, it follows from Lemma 5.1 that we can
write

o= (TT 0w )leal el = (T (2" 0x,) )lpalr,

LeA leA
b= (}JB On, s, [1)s = (g (247 0,,) ) [65ls,

where ¢4 is normalized relative to ¢, and g is normalized relative to ). We can
use Corollary 4.8 to write [¢]; as finite sums of terms of the form

( H 276(1‘6(@)4—171-(7(@))) H (Qd,rA(z)ia(z) ZWA(E))[SDAJI
4621 LeAq

where A; C A is a possibly empty subset, A=A \ Ay, each Z (s is either the
corresponding left- or right-invariant vector field, and ¢4, is normalized relative
to . Moreover, according to the Remarks 4.9 following Corollary 4.8, the operators
{Zx 40y} can be put in any desired order. Similarly [¢/]; is a finite sum of terms
of the form

( H 276(]‘7’(1)4—17]-7'(1))) H (QdﬂB(z)jr(z)ZWB(l)) [@Bl]f

legl leBq

It follows that [p]r * [¢]; is a finite sum of terms of the form

H 9—€(ict)+1~ia(0)) H 9—€Urm)+1=J-@)

Zégl l€§1
(I @%a00 2o lpalis T] @050 Zoy)lin,l, ).
e A, leB,
Now let

Ao ={l € A1 iy < jrpy} = A1 N Ao, Az ={LE A1 i@ > jrry} = A1\ Az,
By ={le B ’jr(l) < ia(l)} = By N By, Eé ={le B ’jr(l) > ia(l)} = B\ Bs.
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We choose Z; and Z; as follows:

Zg: 1=

Ly ifKEAQ, 7 L iflgBQ,
Ry ifKEAQ, R, iflg.ég.

Then since left-invariant vector fields commute with right invariant vector fields,
we can use Proposition 6.16, part (1) and then Proposition 6.16, part (2) to write

( [[ @*aoeoz w)leadi = [1 (Qd“B‘””“’Zm(l))[@Bl]J)

e Ay leB:
_ H (QdMu)ia(z) R, .0) H (deijT(z)LWB(l))
e 1€ B>
( H (Qd".A(‘f)if’(‘f)Lﬂ,A(g))[gOAl][ * H (Qd"B(l)jT(l)Rl)[¢Bl]J)
LeAy leB>
_ H (QdWA(e)ia(e) RZ) H (Qd,rB(z)jT(z)LﬂB(l))
e 1€Bs
([@Al]l o I ==L, ) I] (QdWBu)ijRﬂB(l))[¢Bl]J),
LeAs leB>

where 4, and ¢, are normalized” relative to ¢ and 1. (Here [1c Al is actually
the product of the operators in the reverse order). Now we want to commute the
operators

H (QdﬂA(z)ia(z)Le) and H (de(z)jT(z)Rl)

leAs leB2

before applying them to [¢p,]s. According to the third of the Remarks 4.9, the
result is a sum of terms of the form

H 9—€(io(@)+1 1o (r)) H 9—€Urm)+1=Jr) H (deB(z)jr(z)Rl) H (deA(/z)ia(/z)Re)[wBB]

LAy l€B; l€B; (€A

where
As C Ay, Az = AL\ As,
B3 C By,  Bs = B,\ Bs.

Thus
lpadr+ ] @a@io L) TT @070 Ry) g, ],

e Ag l€B>

"The function @A, also depends on A and ¢, also depends on B. With minimal risk of con-
fusion, we shall omit such notation.
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is a sum of terms of the form

H 9=€(io(e)+1=io(r)) H 9—€Urmy+1=Jrw)

e 1€B;

(lpair = TT @%seime ) T %40 Re) )

l€B3 leAs

_ H 9—€(io()+1 o)) H 9—€(rm)+1=J-®)

(e Ay leBy

( [ @*=07oRr)palr+ [ (Qd""‘("i”“)Rf)[wBs])

l€Bs3 leAg

_ H 9—€(io()+1 1o ()) H 9—c(rmy+1=3-1) H 9= dng) (iry —Jr )

LeAs leBsy I€B3

H 2_d7‘A(2)(j0(‘3)_i6(2))(H(Qd“B(l)iT(l)Rl)[goA Ir * H (2du<mo<e>R4)[w33])

lEA3 leAs

H 9—€(io()+1 o)) H 9- E(Jr(z)+1 —Jr@)) H 9= drg) (tr) —Jr))

[y leB; leBs

I1 Q*dwma(ﬂ'auria(a)( LTI Riead, = [ I] Revs, >

leAs leB3 leAs

Now according to Lemma 6.17, we can write

[HRM@AJ [HRWBJ] 04, 5]

ZEA”

where 04, p, is normalized relative to ¢ and ¢ and K = IV J. Thus it follows
that [¢]; * [¢0] is a finite sum of terms of the form

H 9—€lic(o)+1 =10 (s)) H 9—€lrwy+1=Jrw)) H 9= dr 4 (1) Uo (o) —io(e))

e A UA3 leB,UB; €A
—do 1y (ir 1y — i dr  (0yio(e dr oy
[ 20030 T @0 ) [ @000 L), 1
leBs ZEIZZ lEEg

However, it follows from part (1) of Corollary 4.8 that we can write the product
of vector fields [], 7. (29 aio Ry) [Lics, (2% 5w ITO [))[04, By]1vs as a sum of
terms of the form

H 9= €elia(0)+1~ta()) H 9—eliry+1=dr1))

éeggl lE§4

H (QdﬂA(E)ia“)aﬂA(g)) H (QdWB(DjTU)aTrB(l))wAzL»BAIVJ'

LeAy leBy
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Thus we have shown that [p]; * [¢0] s is a sum of terms of the form

H 9—€(Ur)+1=J-@) H 9= dx 4 (0) o (e) ~io(e)) H 9= dr ) (ir(y —Jr )
le ByUB3UB, LEA; l€B;

H (QdﬂA(miU(()Rﬂ'A(Z)) H (2dw5(l)j7(l)LWB(I))[0A4,B4]IVJ'
leA, leBy

This has the form asserted by the lemma, and so completes the proof. O

Corollary 6.19. Let ¢, € C3°(RY) have strong cancellation relative to the same
decomposition RN = R @ .- @ R%. There exists ¢ > 0 so that if I,J € &,, it
follows that [p]r * [¢] s is a finite sum of terms of the form

H g—€(ier1—ie) H 9—e€lie—jel H 9—€(Jiy1=31) H 9—elii—jil [04.8]1v7,
leA teA leB 1B

where,

(a) the set {1,...,n} is the disjoint union of the sets A and Z, and of the sets B
and B, withn ¢ A andn ¢ B;

(b) each function 64,5 is normalized relative to ¢ and 1.
Proof. Let J; denote the set of subscripts ¢ such that z, € R*, and let
o:{l,...,N} = {1,...,n}

be the mapping such that o(¢) € J; for all £. Since ¢ and ¢ both have strong
cancellation relative to the decomposition RY =R @ ... @R, if Ay and By are
the sets defined in Lemma 6.18, it follows that {o(¢) |£ € ApU By} ={1,...,n}.
This means that the sets A3 and B3 of that Lemma must be empty, and the result
follows. O

6.9. Truncated flag kernels

Definition 6.20. A flag distribution K adapted to the decomposition RV = R @
-+ @ R is a truncated kernel of width a > 0 if the differential inequalities given
in part (a) of Definition 2.3 are replaced by

n
!aaK H (Z+N1 X1 ,+Nk(xk)]*Qk*ﬂakﬂ.
KC is an improved truncated kernel if it is a truncated kernel, and in addition satisfies

< C’ - H a+N1(x1) .+Nk(xk)]*Qk*[[5¢k]]'

5 a
|axK(X)| a+ Ni(xq1)

Our objective is to establish the following:
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Proposition 6.21. Let K be a flag distribution.

(1) If ¥ € C°(RYN) has support in the unit ball, then K*1 and 1+ K are truncated
flag kernels of width 1.

(2) If ¥ € C°(RYN) has support in the unit ball, and if [on ¥(x)dx =0, then Kx)
and 1 * IC are improved truncated flag kernels of width 1.

Proof. We can write K = 3", c¢ [¢]1 +>27_, Kj, where {¢’} are normalized unit
bump functions with strong cancellation, and {K,...,K,} are flag distributions
adapted to coarser flags. If ICp = Zlesn [¢!]7, it suffices to show that the propo-
sition is true for KCy. We consider 9 * y. The case of K¢ * 1 is handled similarly.
We have

pxKo= Y vxlpli=) w*wwi Dol i+ > vl

IcE, IcE,; k=1Te&k [Eg:{
n—1
=1+ I +1I
k=1
where
Ey ={I={(i1,...,in) € En | in < 0},

{I
Evic:{]':(ilwu»in)ggn!ik§0<ik+1}7
{I=C(ir,...,in) €Ex] 0 <ir}.

Denote the element (0,...,0) € &, by 0. If I = (i1,...,i,) € EF, then iy < iy <
- <14 <0, and we put I, = (0,...,0,%%41,...,0n). Then

0 iflef,,
INVO={1T, ifIeé&k
I ifreé&r.
Let ~
5£:{I€5n|21:"':2k:0}~

Note that if I € £F then I, € gff According to Lemmas 6.17 and 6.18, each
term 1 * [p!]; has weak cancellation. Moreover, for each I € &, there exists
67 € C5°(RY), normalized with respect to ¥ and ¢, so that

Ieg, = o= [901]1 — 2_5(‘i1|+"'+‘in|)[91]6’
(6:31) Tegh = plpl) = amenleriabpr),
Ie&h = Y[ =[0"r.
We have

I(x) = Z gellinlt+linD [g1]o (x) = Z g—cllinl++lin gl (x) = §°(x)
reg; ree-
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where the series converges to a normalized unit bump function 0°. Next, we can

write
W) = Y vl = Y [ D wxle'li| )
Iegk Je&k IcEk
T=J
-y {Z Qfe<m|+---+|ik|>[9’]’1;}(X)
JeEk IcEk
In=J
= Z {Z 2_5(‘i1|+"'+|ik|)91:| (x) = Z [§J]J(X)’
JEEE I€€k ! Jegk
Th=J
where
Z o—e(lil++lir gl — g7
Iegk
Tn=J

converges to a normalized unit bump function. Thus each Il is a flag kernel with
a decomposition into dilates of normalized bump functions where all of the dilation
parameters are non-negative. This is also true of the term III.

Thus we have shown that

YxKo= Y [0"r

Iegst

where
8,:_ :{I: (ila---ain) GZ”|OSZ'1 <oy < v-- Sin}-

But then it follows from the second inequality in Proposition 10.1, as in the proof
of Proposition 6.9 that 1 * K satisfies the differential inequalities of a truncated
kernel of width one.

If we assume in addition that [,y ¢ (x)dx = 0, then we can write 1) = Zf\il Uy,
with

/ (1,1, 6 241, 2n) dt = 0.
R

We can repeat the argument given above with ¢ replaced by ;. It then follows
from Lemma 6.18 that instead of the formulas given in equation (6.31), we get

reé, = i~ [801]1 = 2‘6<\i1|+~~~+\z‘n|)[61]67

(6.32) Tegh = dyxpf)y =27l Hnbiph, o
Tegl = yyxpl]y =2 digmelnltHiDph. i g >,
Ire&f = guxlplr=2"""10"

Again using the second inequality in Proposition 10.1, and observing that the
case | = 1 gives the worst estimate, we see that i, *x Iy satisfies the differential
inequalities of an improved truncated kernel of width one. O
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Remark 6.22. We point out that we can relax the C*° requirement on the func-
tion v in Proposition 6.21 in the following way. An examination of the arguments
in Sections 6.6 and 6.8 and the proof just given shows that for any integer m there
exists an integer M, so that IC %1 and 1 * IC satisfy the required differential in-
equalities and cancellation properties for orders of differentiation not exceeding m,
if 7 is supposed to be of class CM.

7. Convolution of flag kernels

Let K € S'(RY) be a flag distribution on the homogeneous nilpotent Lie group
G = RY, adapted to the standard flag associated with the decomposition RV =
R @ - @R, Define a left-invariant operator Tx : S(RY) — C>(RYN) by setting

Tic[¢)(x) = ¢ * K(x) = (K, ¢%)
where, if ¢ € S(RY), we set ¢% (y) = ¢(xy1). If K1 and Ko are two flag kernels
on GG, we want to make sense of the composition Tx, 0T, , and show that the result-
ing operator is of the form T, where K3 is a third flag kernel on G. Now formally

T, o Tic, [¢] = (Tie, [9]) * K2 = (¢ % K1) * K2 = ¢ * (K1 * K2),

so the operator Tk, o Tx, should be given by convolution with the distribution
K1 Ky, However we cannot directly define the composition T, o Ti,[¢] =
Tic, (Tic, [¢]), even if ¢ € C5°(RY), since Tk, [¢] need not belong to S(RY). Also, in
general one cannot convolve an arbitrary pair of distributions unless one of them
has compact support.

We will define the convolution K1 % Ko somewhat indirectly. In Section 7.1 we
show that if ¢ € S(RY), then Ti[¢] € L*(RY) and the mapping Tk : S(RY) —
L?(RY) has a (unique) continuous extension to a mapping of L?(RY) to itself. This
allows us to define Ti, o Ti, as the composition of two mappings from L?(RY) to
itself. Then in Section 7.2, we show that this composition is given by convolution
with a distribution which is given as a sum of convolutions of dilates of bump func-
tions. The key is then to recognize this sum as a flag kernel. The combinatorics
are rather complicated, so in Section 7.3 we work out an explicit example. In Sec-
tion 7.4 we prove the main result, Theorem 7.4, which shows that the convolution
of two flag kernels is a sum of flag kernels. Finally in Section 7.5 we work out some
additional examples.

7.1. Boundedness on L2

In this section we show that convolution with a flag kernel extends to a bounded
operator on L*(RY). Later in Section 8 we will see more: such operators are
bounded on LP(RM) for 1 < p < oo.

Lemma 7.1. Let K be a flag kernel on RY. Then there is a constant C so
that if Tic[¢] = ¢+ K for ¢ € SRY) then || T[]l 2@y < Cllol|L2@ny- As a
consequence, there is a unique extension of T to a bounded operator from L?(R™N)
to itself.
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Proof. Using Corollary 6.2, we can assume that I is a flag kernel adapted to a
standard flag F of length n as given in equation (2.4), and that there is a uniformly
bounded family of functions {p’} C C§°(RY), each having strong cancellation
relative to the decomposition RN = R @ --- @ R such that K = 3,0 [¢']s
with convergence in the sense of distributions.

Foranylegn,letTI[f] Torf] = fxle 7. Then ||Tr[f]|z2 < |l o [1f]] 2z
If (f,9) = [an f( x) dx is the standard inner product in L#(RY), it follows
from Fubini’s theorem that (T1[f],9) = (f. Trlg ]) where T5[g] = g * [¢']; and
@'(x) = ¢!(x~1). Thus the Hilbert space adjoint of the operator T,: is the
operator T7 = Tzr. Fubini’s theorem also shows that 77 o T = Tj1,,s and
T50Tr = wa*w Thus if I,J € &,, the L?-norm of the operators T] o T* and
Tj o Ty are bounded by the L1 norms of [¢7] 7 * [¢!]r and [p!]; * [@7],. Tt follows
from Corollary 6.19 that

Pl [elrllorny + MMl * [@lllLr @)

(7.1) o n_l e ) VP o
<C2 €lin—Jjn| H [2 elig J/z\erm{Q e(iot1 le),Q e(Jet1 Jz)}]'

For any finite subset F' C &,, set Kp(x) = > ,;cple’]r(x). Then for any
¢ € SRN), (K,¢) =limp ¢, (Kp,¢), and in particular, if ¢¥ (y) = ¢(xy 1),

T [](x)= (K, ¢%) = Jim (Kp, %) = Jim I%;ﬁ* [p']r(x) = lim Z Tilo

FE,

It follows from the almost orthogonality estimate in (7.1) and the Cotlar—Stein
Theorem (see for example [11], page 280) that there is a constant C' independent
of the finite set F' such that

H ZTWM]HL? < C1¢llL2-

IeF

But then Fatou’s lemma implies that ||Txc[¢]||z2 < C||¢||z2 for all ¢ € S(RY).
This completes the proof. O

Corollary 7.2. Supposet that K is a flag kernel, and that KK =Y, cc [¢']r. Then
for all f € L*(RY),

=0.

A | I;Tmf[f] ~ Txlf]| L
Proof. Since S(RY) is dense in L?(RY), and since Tk is bounded on L?(RY); it suf-
fices to show that limg e, || 3 ¢ p Tipr, (] = Tic[¢]]| 2 = 0 for ¢ € S(RY). (Both
Ti and Y ;. Tipr), are bounded on L?(RY) with norm independent of F). But
for 1 € S(RY), the result follows from Theorem 6.8 and the discussion following
it on page 663. This completes the proof. O
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7.2. Composition of convolution operators

Let K;, j = 1, 2, be two flag kernels on RY, and let Tx,[¢] = ¢ * KC; be the corre-
sponding convolution operators. According to Lemma 7.1, each of these operators
is bounded on L?(R™), and hence the composition Ty, o Tk, is well-defined as a
bounded operator on L?(RY). Our main result is the following.

Theorem 7.3. Let Fi, Fa be two standard flags on RY, and let Fy be the coarsest
flag on RN which is finer than both Fy and Fa. For j = 1,2, let K; be a flag kernel
adapted to the flag Fj. Then Tk, o Ti, is a flag kernel adapted to the flag Fo.

In order to study the composition Tk, o Tk,, we want to relate it to the decom-
positions of K1 and Ko as sums of dilates of normalized bump functions. According
to Corollary 6.2, we can assume that the flags F; and Fs are given by

Fi: (O)CR™CR" '@R™C...CR®?@---@R™ CR",
Fo: (0) C Rbm C Rbm—1 e RO C ... C Rb2 DD R C RN,

and the flag kernels are given by Ky = Y 0 [¢”]r and Ko =Y ;0 [17], where
{p!|T € &,} is a uniformly bounded family of compactly supported functions
with with common support and strong cancellation relative to the flag F;, and
{v'|J € &} is a uniformly bounded family of compactly supported functions
with with common support and strong cancellation relative to the flag F».

If ¢,0 € S(RY), then

— 1 1 _ J
Telo) = Jim > ox[p'ls and Te,0] = Jim > 0«7,
IEF JeG
where the limits are in L?(R") and are taken over finite subsets F C &, and
G C Em. For every fixed finite set F' C &,, the function Y,z ¢ * [¢']; € S(RY).

Since T, is a continuous mapping from L?(RY) to itself, it follows that

Tic, (T, [¢]) = lim T;CQ(Z¢*[¢I]I) = lim lim ZZW[@I]I*W]J
F & IeF Fren G Em IeF JeG

lim lim ¢ * [Z Z[SDI]I*W)J]J]

F /€, G Ep
4 7 IeEF JeG

So in order to prove Theorem 7.3, we must study the finite sums >-; - > /- o[']1
#[¢7];, and show that these converge in the sense of distributions to a finite sum
of flag kernels, each adapted to a flag which is equal to or coarser than Fy.

Since the general situation is rather complicated, we first present an example
which may help understand the difficulties.
7.3. An example
Suppose that we are working in R® with the family of dilations given by
(7.2) §-x=0-(x1, xo, T3, 24, x5) = (0121, 0% 1y, 6% x5, 6% 1y, 6% 25)

with d; < -+ < ds. The standard flags on R® correspond to partitions of N = 5.
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Consider two flags F; and F» corresponding to the partitions 20 = (2, 3), where
we write R® = R2@R?, and B = (1,2, 2), where we write R® = R@R?®R?. Thus

Fi is the flag  (0) C {z; = 25 = 0} 2R3> C R®,

Fy is the flag  (0) C {z1 = 23 = 23 =0} 2 R? C {z; = 0} 2 R?* ® R? C R®.

We are given flag kernels

Ki=> [l and Ko=) [],

I€&s JeEs

adapted to these two flags. We then want to study the infinite sum

(7.3) S 1wy

Ic&y JeEs

arising from the composition of the operators Ti, o Tk, .

Suppose I = (i1,i2) € & and J = (j1,J2,73) € &, so that i3 < ig, and
g1 < jo < js. Il 7 € C3°(RY), we have

[(pl]](x) — 9~ (dit+d2)—iz(dz+datds)

Io—dit —dat —d3t —dat —dst
'@(2 111‘1)2 211‘2)2 321‘3)2 421‘4)2 521‘5))

[¢J]J(X) — 9—idi—j2(d2+d3)—js(da+ds)
. wJ(Q_dljlxl’ 2_d2j2l‘2, 2_d3j2l‘3, 2_d4j3.1‘4, 2_d5j3l‘5).

Note that dilation by I = (iy,i2) on R? @ R3 is the same as dilation by the 5-tuple
I = (iy,41, 49, %2,%2) on R®, and dilation by J = (j1, j2, j3) on RGR2®R? is the same
as dilation by the 5-tuple J = (41, J2, 42, J3, 73) on R5. Also note that we can recon-
struct 7 and J from I and J by consolidating repeated indices. By Lemma 6.17,
the convolution [!]; * [1)7]; is equal to [#7+7]x where 677 € C5°(R?), and where

K= (kl,k27k3,k4,k5) = j\/ j: (il,ilvi%i%i?) \ (j17j27j2,j3,j3)

(7.4) o o o o o
= (max{zlvjl}vmax{zl,]2}7max{227]2}7max{227j3}7max{'LQ»]i’)})'

We must consider the sum in (7.3) of the convolutions [p!]; * [1)7] 7, taken over
all I € & and J € &. Each pair (I,J) € & Xx & gives rise to a 5-tuple K € &;.
However, not all elements of &5 actually arise in this sum. (For example, it is clear
from (7.4) that we must have k4 = k5, so the 5-tuple (1,2,3,4,5) does not arise).
Let £(A,B) denote the set of all 5-tuples K = (ky, k2, ks, k4, ks) that do arise as
in (7.4). (The notation reflects the fact that this set of 5-tuples is determined by
the partitions 2 = (2,3) and B = (1,2,2) of N =5). Then for each K € £(2,B),
let £(K) denote the set of pairs (I, J) € & x & which give rise to the 5-tuple K.
Once K € £(A,B) is fixed, each of the terms in the inner infinite sum on the
right-hand side of (7.3) is the K dilate of a normalized bump function 67/, Then
we can write the sum in (7.3) as

@5 Y Y= Y Y W= Y Y 0k

Ic&s Je&s Ke&(A,B) I,JEE(K) KeE(U,B) I,JeE(K)
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We will need to show that the infinite inner sum »; ;e (g (077 x actually
converges and is the K dilate of a normalized bump function. However, this is
not enough to give the right description of the sum in (7.3) as a flag kernel. In
the outer sum on the right-hand side of (7.5), the 5-tuple K runs over £(2,B)
and not over all of &5. We still need to partition (2, B) into a finite number of
subsets based on which indices in K are repeated. To make this clear, we further
analyze (2, B).

As one sees from (7.4), the 5-tuple K = IV J depends not only on the tuples
I = {i1,i2} and J = {J1,J2, 3}, but also on the ordering of the larger set consist-
ing of {i1,12,j1,J2,j3}. We know that ¢; < iz and j; < jo < js, but this does not
determine the ordering of the larger set. Such orderings are in one-to-one corre-
spondence with decompositions of the set {1,2,3,4,5} into two disjoint subsets of
sizes 2 and 3, where elements of the first set are indices from I, and elements of
the second set are indices from J. Thus there are (g) = (g) = 10 such orderings.
A description of these is given in the following Table 1:

Decomposition Ordering K New decomposition| Free
E@A,B)1 ={1,2} U{3,4,5} |i1 <2 < g1 < g2 < g3 |{j1,52,72, 03,73} R ® R? @ R? i1, 2
E(A,B)2 = {1,3} U{2,4,5} |ix <1 < iz <j2 <js|{j1,j2,52,3,53}| ROR’OR? i1, o
E(A,B)3 ={1,4} U {2,3,5} |ir < j1 < jo < iz < ja|{j1,d2,02,43,43}| ROROGROR? i1
EQRA,B)a = {1,5} U{2,3,4} |i1 <ji < g2 <js <iz|{j1,j2,92,42,32} | RORGOR’ i1, js
ERLL,DB)s = {2,3} U{1,4,5} |41 < i1 <2 < g2 <3| {i1, 2, 52,73, 53} R ® R? @ R? i2, j1
E(A,B)e ={2,43U{1,3,5} |51 < i1 < j2 <2 < js|{i1,j2,i2,43,03}| ROERGR SR> g1
EA,B)7 ={2,5} U{1,3,4} |j1 <i1 <ja2 <js <da|{i1,f2,i2,02,42})| RORGR’ Ji,Js
ERL,B)s = {3,4} U{1,2,5} |51 < j2 < i1 <2 <ga|{i1,i1,42,53,73} R ® R @ R? Ji, j2
E(A,B)o = {3,5} U{L,2,4} |j1 < j2 <1 <z <idz|{i1,41,42,92,492} R® @ R® J1s 2,73
(A, B)10 = {4,5}U{1,2,3}|j1 <2 < js <ia <in|{in, i1, 02,02, 02} R? ® R® 1,42, 3

TABLE 1. Decomposition of £(2,B).

In the first column, we have given the decomposition of {1,2,3,4,5} into two
subsets, the first with two elements and the second with three. This then gives
an ordering of the elements in the set {i1, 42,3, 74,5} which is given in the second
column. The third column gives the value of the 5-tuple K = IV J. In this tuple,
certain entries can be repeated, and this corresponds to a new decomposition of R?.
The fourth column gives this new decomposition of R? dictated by the repeated
indices of K. Finally, in each of the decompositions, certain of the indices from I
or J appear in the 5-tuple K. In the sixth column of Table 1, we list the ‘free’-
variables which do not appear in K are listed. It is precisely these free variables
which appear in the inner sum on the right-hand side of equation (7.5).
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Table 1 shows that if K € £(,*B), then K takes one of five forms:
(ki1, k1, ko, ko, k2) (decomp. 9 and 10) leading to the flag R? @ R3,
(K1, ko, ko, k3, k3) (decomp. 1, 2 and 5) leading to the flag R & R? @ R2,
(7.6)  (k1,ka, ks, k3, ks) (decomp. 4 and 7)  leading to the flag R & R @& R3,
(k1, k1, ko, ks, k3) (decomp. 8) leading to the flag R? @ R @ R?,
(ki, ko, k3, kg, ks) (decomp. 3 and 6) leading to the lag R R &R @ R2

The outer sum on the right-hand side of (7.5) thus splits into five separate sums:

SO e e

Ic&Er JeEs
- > S+ Y > @+
Ke&yUEro I,Jeg(K) Ke&E1UEUES I,Jeg(K)
+ ) Sl + > > =kl

Ke&iUer 1 jeE(K) KeBs 1,Je€(K)

+ o> D IR P

KeBsUEs [ jeg(K)

Our object is to show that these five sums are flag kernels, each adapted to one of
the five flags listed on the right-hand side of (7.6). To see this, we must show that
in each case, the inner infinite sum converges, and has weak cancellation. Let us
see why this happens in one case.

Case 1: K € EgU Eg.

In this case, K = {i1,11,12,1%2,i2} is fixed, and the inner sum ), JEE(K) [o!]r *

[¢7] is over the free variables {j1, ja, j3} which satisfy the inequalities
J1 < ja <y < j3 <o or J1 < jo2 < j3 < i1 <io.

In order to apply Theorem 6.8, we need to check that the sum converges to the
K-dilate of a normalized bump function 67/, and moreover that #77/ has weak
cancellation relative to the decomposition R? @ R3.

To show that the sum over the free variables {ji, j2,j3} converges, we want
to show that each term in the sum can be bounded by 2~ €l(li=i)+(l2—j2)+(ls—33)]
where l1,1la,l35 € {ig,izo}, and j1 < 1, jo < o, and j3 < l3. This will follow
because, by hypothesis, 1/ has strong cancellation relative to the decomposition
R @ R? @ R%. Thus ¢’ has cancellation in 1, in either x5 or x3, and in either
x4 or 5. In the variable z1, j; < 41, and so by Lemma 6.18, we get a gain of
2—cln—nl < 9=elin—72l If there is cancellation in 2, we have j, < i, so we get a
gain of 2-€l1=72| while if there is cancellation in x5, we have j3 < is and so we get
a gain of 21273l Finally, if there is cancellation in x4 or x5, we have js < ia,
and so we get a gain of 2712773l Taking the best of these estimates, we see that
the size of [¢!]; *[1)7] s is dominated by a constant times 2~ ¢llf1—7l+li =7zl +li2=3sl],
Thus in this case we can take I =iy, lo = i1, and I3 = is.
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The key points in this convergence argument are the following;:

(a) If fs is a free variable, it does not appear in K. Since the entries ks € K are
the maxima of the corresponding entries of iy, € I and j, € J, the free variable
must satisfy fs < k.

(b) Since we will sum over the free variable fs, but the variable ks € K is fixed, it
suffices to show that there is a gain 27 ¢(ks—fs)

(c) The function ¢! or ¥/ with the free variable f, may not necessarily have can-
cellation in the variable xs. (For example, the free variable jo comes from the
function t(1:72:72:38:38) " and we only know that this function has cancellation in
the variable zo or the variable x3). However, if there is no cancellation in the
free variable, there is a smaller free variable where there is cancellation, and
where the corresponding element of K is the same. (In our example, t)(72:72:33)
has cancellation in x1, and k; = k»).

To see that the sum of the terms [¢!]f * [1)”/]; has weak cancellation relative to
the decomposition R? @ R?, we again use Lemma 6.18. We only need to observe
that either ! or 17 has cancellation in one of the variables {1, 22}, and also that
either ¢! or ¢/ has cancellation in one of the variables {x3,z4,75}. But this is
clear: for example, )’/ has strong cancellation relative to the decomposition R @
R2®R2, and so has cancellation in 1, and ¢! has strong cancellation relative to the
decomposition R? @ R?3, and so has cancellation in one of the variables {x3, x4, z5}.

7.4. The general decomposition

Now let us return to the general situation. Suppose F; and F» are standard flags
arising from two (in general different) decompositions we label as (2() and (B):

): RVN=R" @ .- @R,

(B): RV=R" @...9R".
Let K1 and Ky be flag kernels adapted to the flags 77 and F>. We only need to
consider the parts of these kernels given by sums of dilates of normalized bump
functions with strong cancellation. (That is, for each kernel we focus on the part

called KCy in Theorem 6.1 and disregard the other terms since they correspond to
coarser flags). Thus we can write

(7.7) K= > [, Ka= Y [,
Ieé, JEER

where each (! has strong cancellation relative to the decomposition 2 and each 17
has strong cancellation relative to the decomposition 8. Let

kK= W kK§= > W,
IeFCE, JEGCEM
where F' C &, and G C &, are finite subsets. We study the double sum

(7.8) rekg= > 3 | W]

I€EFCE, JEGCEER



SINGULAR INTEGRALS WITH FLAG KERNELS ON HOMOGENEOUS GROUPS I 697

Let Fy be the coarsest flag which is finer than both F; and F5.
Theorem 7.4. Let K1 and Ko be the flag kernels given in (7.7). Then

lim K *K§ =Ky« K
pog, 1T TR
G Em
converges in the sense of distributions to a finite sum of flag kernels > KC,,, each
of which is adapted to a flag F,, which is equal to or coarser than the flag Fo.

Before outlining the proof, we review our notation. If x € RY, we can write
_ / / 4 !/ a; _ 1! 1 : "
X = (X1,...,x,) with x; = (mp;,...,mq;,) € R%, or x = (x7,...,x]) with x}/ =

(Tpys s xqr) € RY . We let J; = A{pj,...,d;} and J;! = {p,...,q} so that
{1,...,N} = U;.Lzl Ji = Upey Ji- Define

oa:{l,...,N} = {1,...,n} sothat le€.J, ¢ forl<I<N;
7 i {l,...,N} = {l,...,m} sothat le€J] ¢ forl<I<N.

If Q; is the homogeneous dimension of R% and @} is the homogeneous dimension
of Rb, then

Q;':dp;.Jr"'erq;:Zdl» g:dPZJr"'erqZ:Zdl'
leJ; leJy

If I € &, and J € &, the notation [p!]; and [1)7]; refers to the families of dilations

[<)0[](X) = 27[Q1i1+m+@;in] 90(271-1 : Xll’ R 271‘” - X, )7

n

[Q/JJ](X) _ 2—[Q/1/j1+"'+Q;:ij] 90(2_jl . X/1/7 s 9—Jm . X;v/z)

In order to compare multi-indices I = (i1,...,i,) € &, and J = (j1,...,m) €
Em which parameterize different families of dilations, we identify them with multi-
indices of length N with repeated entries. Thus we define py : £, — En and
ps - Em — En so that pg(I) is the N-tuple with i1 repeated a1 times, is repeated
as times, etc. We define py analogously. Thus

a ar Qn

pg[(l):I:(Il,...,IN):(zl, ......... B T O ,zn,...,zn),
b1 bs bm

pa(J)=J=(J1,....JIn) = (J1, s fiseennnn Ty e s B P sgm )-

Explicitly, pa(I) = (I1,...,In) and pn(J) = (J1,...,Jn) where I; = i, and
Ji = jrq)- Next set K = (Ky,...,Kn) = pa(I) V ps(J) = (ki1,...,kn). This
means that for 1 <[ < N

Jray ey < Jray

(79) Kl = ia(l) \/.77-([) = max {iU(l))jT(l)} = { o '
iey 1 Jray <ioq)
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Note that we can then define amap w7 7 : {1,...,N} = {1,...,n,n+1,...,n+m}
so that

)

te{l,...n} it Ky = iy0;
n+le{n+1,....,n+m} if Kj=j. .

Now let us outline the proof of Theorem 7.4. For each I € &, and J € &,
it follows from Lemma 6.17 that there is a function 67 € C5°(RY), normalized
relative to ! and 17, so that

(7.11) [0 % (7] = 107 L ()vw (1)
and hence equation (7.8) can be written
(7.12) KF kS = > (0" Npa (1) () -

(I,J)EFXGCEnXEm

We analyze this sum by decomposing the set &, X &, into disjoint subsets. Let
PB(n, m) denote the set of permutations v : {1,...,n,n+1,...,n+m} — {1,...,n,
n+1,...,n+m} which preserve the order of the first n elements {1,...,n} and of
the last m elements {n+1,...,n+m}. (Explicitly, this means that if u € P(n, m),
then 1 < s <t < n implies pu(s) < u(t) and n+1 < s <t < n+m implies u(s) <
wu(t)). This corresponds to the ten cases in the example studied in Section 7.3.
The cardinality of P(n,m) is (”+m). Let I € &, and J € &,,, and let us write

n
I=(a1,...,q) and J = (nt1,--.5Qntm), O that

o <ay<---<a, and Opi1 S Qpgo < - < Qpgm-

Then let L(I,J) be the (weakly) increasing rearrangement of the set I U J =

{a1,...,Qnim} so that

(7.13)

if 1<r<s<n then a,. comes to the left of ay,
f n+l<r<s<n+m then o, comes to the left of oy,

if 1<r<n,n+1<s<n+m and a, < as; then o, comes to the left of aj,
if 1<r<n,n+1<s<n+mandas;<a, then ay comes to the left of «, .

This rearrangement of {av, ..., anim} is given by L(I,.J) = {aua), - Qpinm) b
where p is a permutation of the set of subscripts {1,...,n,n 4+ 1,...,n + m},
and it follows from (7.13) that p € PB(n,m). In this way we associate to each pair
(I,J) € E,xEy aunique p = p(I, J) € P(n,m). Conversely, for each u € P(n, m),
let

(714) 8n7m(/,6) = {(I,J) €& XxEn | L(I, J) = {O‘u(l)’ .. .,Oz#(ner)}}.

It follows that we have a disjoint decomposition &, x &, = U#Em(m’n) En,m (1),
and we can write equation (7.8) as

(7.15) Kf«kg= > ( > [GIJ]PQL(I)VP%(J))'

neP(m,n)  (I,J)€E€n m(W)N(FXG)
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Now let
(716)  En(p) = {K € Ex | K = pa(I) V px(J) where (I,.J) € Enm(p)} -

Note that in general En(u) is a proper subset of Ey, and an element K € Ey(u)
can be represented in many ways as po(I) V ps (J) with (I,.J) € &, m(p). We can
then rewrite (7.15) as

Kfars= > (> > k)

p€P(m,n) KeEN(n) (L,J)E€En,m(R)N(FXG)
pa(I)Vpe (J)=K

- > ([ X o)

pEP(m,n) KeEN(n) (I,J)EEn m(m)N(FXG)
pa(I)Vps (J)=K

(7.17)

We will prove in Lemma 7.8 below that because the functions {¢!} and {17} have
strong cancellation, the innermost sum

(7.18) > ol = lim > o7

F &,
(I,J)EEn. m () G & (IT)EER m ()N (FXG)
pa(I)Vps (J)=K pa(I)Vps (J)=K

converges to a function ©F € C$°(RY) which is normalized relative to the families
{p!} and {¢7}. From this it follows from (7.17) that

(7.19) KisKo= lim K «k§= > ( Z )
G Em pEP(nm)  KEEN(u

We will also see in Lemma 7.8 below that for each fixed p, the functions {©%} for
K € Ex(p) have weak cancellation relative to a decomposition of RY depending
on g, RV = R @ ... @ R, and hence the inner sum on the right hand side
of (7.19) is a flag kernel relative to the corresponding standard flag F,,. Once this
is done, we will have established Theorem 7.4.

We now turn to the details of the proof. We begin by studying the N-tuple
K= (Ky,....,Kn)=pal)Vpa(J)if (I,J) € &, m(p). Partition K into disjoint
subsets of consecutive entries where two successive elements K; and K1 belong
to the same subset if and only if either

(1) Ki =00 = Jrq), Kiv1 = io@s1) = Jras1), and o(l) = o(l+1);  or

(1) Ki=Jjrq) = io@)s Kiv1 = Jras1) = Goarr), and 7(1) = 7(1 +1).

In particular, if two successive elements K; and K;y; belong to the same subset,
they must be equal. Thus we write

K=(Ki,....,Kn) = ({Kars- - Ko}y {Kans o Ky by oo { Ky Kp, })
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where
Koy = Koy11 == Kg,,
Koéz = Bag+1 = - :Kﬁza
Ko =Ko 1= =Ks.
We can also write . o .
—_—— —— /—’TA
(720) K:(Kl,...,KN): (kl,...,kl; kg,...,kg;...; kr,...,kr),

so that ¢; +co+ -4+ ¢, = N. Note that 1 < r < m 4+ n since either i; or j; does
not appear in K. We have the following properties of this decomposition:

Proposition 7.5. The integers {a1,f1,...,ar, B} depend only on the permuta-

tion p and are independent of the choice of (I,J) € Enm(p). In fact, let K =

{Ku,s-..,Kp} be one of the subsets of consecutive indices in K = py(I)Vpxs(J) €

Enm (). Then:

(1) The starting position «y coincides either with the starting position of one of
the subsets of po(I) or with the position of one of the subsets of pss(J). More
precisely, for 1 > 2,

(1a) If Ko, = io(ay), then o(aq) > o(oq — 1), so the start of K, coincides with
the start of the index iy(q,) in pa(I).
(1b) If Koy = jr(an), then T(aq) > T(cq — 1), so the start of K, coincides with
the start of the index j;(q,) in pns(J).
(2) If the ending position of K, does not coincide with the end of the corresponding
segment of pu(I) or ps(J), the entries of the segment which do not appear

in K; are bounded above by the corresponding entries of K. More precisely,
forv <N,

(2a) Suppose that Ko, = ig(a,), 50 that Ki = iy(q,) for ay <t < 3. Suppose
that Iy = I, for oy <t < v and that v > ;. Then I, < J; = K for
Bi+1<t<n.

(2b) Suppose that Ko, = jr(a,), 0 that Ky = jr(a,) for oy <t < By Suppose
that Jy = Jq, for o <t <y and that v > ;. Then J; < I; = Ky for
Bi+1<t<n.

Proof. We begin by establishing part (1a). If it were not true, then since j;(4,—1) <
Jr(ay), We would have

j‘r(alfl) < jT(al) < ia(al) = ia(alfl)a

and by condition (i) in the definition of K; it would follow that K, and K,,_; be-
long to the same subset. Part (1b) follows in the same way. To establish part (2a),
observe that since Jg,41 < J¢, it suffices to show this for t = 3, + 1. However,
if Jg,41 < Ig,+1, it would follow from (i) that Kg 11 belongs to the same subset
as K,,. Part (2b) follows in the same way.
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Now parts (1) and (2) show that the positions where we decompose K depend
on the ordering of the entries of po () and peg (J), and not on the entries themselves.
This shows that the decomposition depends only on pu, completing the proof. O

Definition 7.6. Let u € PB(n, m).

(1) It follows from Proposition 7.5 that the permutation p determines r and the
integers {c1,..., ¢ }. Thus y determines the decomposition RY =R @ - .- @
Re. We let F,, denote the corresponding standard flag (0) C R C R~ &
RrC .- CR2@--- @R CREL@--- @R = RV, For x € RV, we
write x = (X1,...,X,), and we let {J1,...,J,} denote the corresponding sets
of subscripts so that x; is a coordinate in R if and only if [ € Tk

(2) Let I = (i1,..-y0n),Jd = (J1,---+Jm) € Enm(p). An index 4 is free if I, < J,
for all ¢ such that o(t) = I. An index j; is free if J; < I; for all ¢ such
that o(t) = . In particular, a free index does not appear in the set K =
pa(l) vV pxs(J) € En(p).

Note that whether or not an index is free depends only on the choice of u, and

not on the choice of (I,J) € &, m(p). The number of free elements is equal to

m+n—r,and 1l <m+n—r<m+r.

Proposition 7.7. Fiz p € PB(n,m), and let (I,J) € Eypm(p) with I = (i1,...,0p)
and J = (j1,...,jm). Let o107 € C(RYN), and suppose that o' has strong
cancellation relative to the decomposition RY = R™ @& .. @& R, and that ¢’ has
strong cancellation relative to the decomposition RN = Rb @ ... @ Rbm.

(1) Suppose that an index i; is free, and that iy = I, = I,41 = --- = I, is the
corresponding group of indices in py(I), so that I,_1 = i;—1 and Is11 = ij41.
Then the function gpl has cancellation in the variables {xy,_,...,x1.}, and I} <
Jy forr <t<s®

(2) Suppose that an index j; is free, and that {j; = J, = Jpp1 = -+ = Js} is the

corresponding group of indices in py(J), so that J.—1 = ji—1 and Js41 = ji41.
Then the function ¥’ has cancellation with respect to one of the variables
{27.,...,05.}, and J; < I; forr <t <s.9

(3) Let RN = R @ ... @ R be the decomposition corresponding to pi, and let
{J1,...,Jr} be the corresponding sets of subscripts. Let 1 <1 <r.

(a) Suppose that Ko, = ---= Kg, =iy so that o(aq) = --- = o(0;) = . Then

either o' has cancellation in a variable x; with t € jl, or o has cancella-
tion in a coordinate xy with t > B, in which case Ky = J; > I = iy.

(b) Suppose that Ko, = --- = Kp, = jo so that 7(aq) = --- = 7(8;) = {. Then
either ¥’ has cancellation in a variable z, with t € J;, or ¥’ has cancel-
lation in a coordinate x; with t > B, in which case Ky = I; > J; = jy.

8Tt follows from Lemma 5.1 that o can be written as a sum of functions each of which has
cancellation in one of the variables {zz,,...,z,}.

91t follows from Lemma 5.1 that ¥” can be written as a sum of functions each of which has
cancellation in one of the variables {zj,_,..., 2, }.
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Proof. To prove assertion (1), note that since 4; is free, it does not appear in K.
Hence for any r < t < s, i; # max{[;, J;} = max{i;, J;}, and so J; > iy = I;.
Since ¢! is assumed to have strong cancellation and {x;_,...,xs, } are precisely
the variables corresponding to the index i,, this establishes (1). The proof of
assertion (2) proceeds in the same way.

To prove assertion (3a), note that by Proposition 7.5, part (1a), the only way
in which it is possible for <pI not to have cancellation in a variable x; with t € jl
is if Iy = I,, for a; <t <~ and that v > ;. But then the conclusion follows from
Proposition 7.5, part (2a). The proof of assertion (3b) follows in the same way. O

Lemma 7.8. Fiz u € B(n,m).

(1) Let K € Ex(pn). Then there exists ©F € C5°(RY), normalized relative to the
families {¢'} and {1’} so that the sum

S el

(I,J)EEn,m (1)
pa(I)Vpss (J)=K

converges (uniformly) to [OK] k.
(2) The function ©X has weak cancellation relative to the decomposition of RN

corresponding to .

Proof. Let (I,J) € E,m(p). Suppose that ¢! has cancellation in the variables
{@pyy ..y, }, with 7 € J], and that ¢/ has cancellation in the variables {zs,, . ..,
xs,, } with s; € J/'. Let

Ag={le{1,....n}|ir, <jn}, Bo={le{l,...,m}|js, <is}.

Then it follows from Proposition 7.7 that if 4; is a free index, [ € Ay and if j; is
a free index, then [ € By. On the other hand, according to Lemma 6.18, we can
write each [o!]; * [¢7]; as a finite sum of terms of the form

H fo\jzs*izsl H 276‘7;"%7']-”%' H Qfe\izs-u*izs\

scA’ teB’ seA”
(7.21) I1 2 bmersmd 1T 0 T w16
teB// SeA/// teB///
where

1. A; A7) A" are disjoint subsets of {1,...,n} with A/UA"UA" ={1,...,n};

2. B', B”, B" are disjoint subsets of {1, ..., m} with BUB"UB" = {1,...,m};

3. ACAyCcAUA"and B' C By C B'UB", and n ¢ A” and n ¢ B”;

4. each function gdepends on {A, A", A" B’ B"”,B"} and is normalized rel-
ative to ¢ and 1.

Since K is fixed, the sum for pg(I) V ps(J) = K is precisely the sum over the set
of free indices in {i1,...,%n,J1,...,Jm}, and these are contained in the indices in
A"U A" U B U B”. The exponential decay in the powers of 2 in equation (7.21)
show that the sum over all the free indices converges, and what remains satisfies the
requirements for weak cancellation in Definition 5.5. This completes the proof. O



SINGULAR INTEGRALS WITH FLAG KERNELS ON HOMOGENEOUS GROUPS I 703

7.5. Further examples

It may help to consider two additional examples.

Example 2: Suppose that N = 5, and that the two partitions of {1,2,3,4,5} are
A ={2,3} and B = {2,3}. Thus A and B come from the same decomposition
R = R? @ R3. There are (g) = 6 different decompositions of {1,2,3,4} into two
disjoint subsets of cardinalities 2 and 2. The six decompositions, the 5-tuples I,J,
and IV J, and the resulting new decomposition C' of {1,2,3,4,5} are listed in
Table 2 below. This example is typical of the convolution of two kernels coming
from the same flag (in this case coming from the decomposition {2,3}). Note that
all decompositions lead to the same decomposition {2,3}. Thus the convolution
will be a flag of the same type.

New
Decomposition Ordering K decom- C | Free variables
position
{1,2} U {3,4} |ir <ido <jv <jo|{j1,d1.d2, 52,52} | R®BR® [{2,3} in, o
{1,3YU{2,4} |ir <jr <o < jo|{j1, 51,52, 02, 52} | R @R® [{2,3} i1, iz
{1,4} U{2,3} |i1 < g1 < g2 <z | {J1, 1,02, 42,42} | RZBR?® |{2,3} i1, j2
{2,3YU{L,4} |1 <i1 <z < jo| {in i1, 2,52, 42} | RZ®R? |{2,3} ia, ji
{2,4}U{1,3} |41 < i1 < ja <z | {i1,01,42,02,i2} | RZGR?> [{2,3} J1,J2
{3,4} U{1,2} |j1 < j2 < i1 <iin| {i1,41,02,42,92} | RZ® R |{2,3} J1,J2

TABLE 2.

Example 3:  Suppose that N = 5, and that the two partitions of {1,2,3,4,5}
are A = {5} and B = {1,2,3,4,5}. Thus m = 1 and n = 5. There are then
6) = 6 different decompositions of {1,2,3,4,5,6} into two disjoint subsets of
cardinalities 1 and 5. The six decompositions, the 5-tuples Z, J, and Z V J, and
the resulting new decomposition C' of {1,2,3,4,5} are listed in Table 3 below.

This example is typical of the convolution of a Calderén—Zygmund kernel with
a kernel that is as fine as possible. In this case, the flag A is coarser than flag B.
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Decomposition Ordering K geec‘zmposition C Free variables
{1}0{2,3,4,5,6} |i1 <j1 <jo2 <ijs <ja <Js |{j1.,J2,J5,J4.55} | ROROROGROR| {1,1,1,1,1} i1
{2}U{1,3,4,5,6} |j1 < i1 <jo <jsz <ja <js |{i1,J2,J3,J4.45} |[RORSRSRSR|{1,1,1,1,1} g1
{38YU{1,2,4,5,6} |51 <j2 <ir <js <ja <js | {in,i1.ds.da.05} | RPGRORGOR | {2,1,1,1} e
{4}3U{1,2,3,5,6} | j1 <j2 <j3 <i1 <ja <js | {i1,91,91,54,55} R®@ROR {3,1,1} J1,J2,J3
{53U{1,2,3,4,6} | j1 < j2 <jz < ja <i1 <js| {i1,i1,01,01,5} R*®R {4.1} J1,J2:73,5
{63U{1,2,3,4,5} |1 <j2 <j3 <ja <js <in | {i1,41,91,91,41} R® {5} J1,J2,J3,J4,J5

TABLE 3.

8. LP-estimates for flag convolutions

In this section we establish the boundedness in LP(G) for 1 < p < oo of the
operator f — K x f given by convolution on G with a flag kernel. To simplify the
notation, we limit ourselves to the special situation where the exponents of the
dilations dy,ds, ..., d, in equation (2.1) are positive integers. The results proved
below will go over to the more general context with essentially no change in the
proofs. We will also find it convenient to consider a continuous parameter sy for
the dilation of the z;, variable, in place of the dyadic version 2% appearing in the
previous sections. Again, the various results above stated for the dyadic dilations
have simple modifications valid for their continuous analogues.

8.1. Maximal functions

As usual, G is a homogeneous nilpotent Lie group that we identify with RV as in
Section 6.6. We also let

Gk:{X:(Xh...,xn)ERN|X1:...:X]€71:0}

:{(0,...,O,xk,...,xn)ERN}xjeRaJ"ijSn}_

We can identify Gy, with R @ --- @ R, and it follows from the formula (6.24)
for group multiplication that Gy is a subgroup of G. We let m(FE) denote the
Lebesgue measure of a set £ C G = G1, and my(E) denote the Lebesgue measure
on Gy, of a subset £ C G. For s = (sk,...,sy), let

Ry = RM™ = {(xp,...,%,) € Gy, : [xi| < sk, ..., [xp| < 57}

We say that the size of the rectangle Rg is acceptable if s < spy1 <--- < sy
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Definition 8.1. The maximal function M, defined on G = G, is given by

iy [ ey iy

M(f)(x) = sup
where the supremum is taken over all acceptable rectangles Ry = Rél) CG=0Gy.

Theorem 8.2.
(a) M is a bounded map of LP(G) to itself, for 1 < p < oo.

(b) For 1 < p < oo there are constants A, so that if {f;} are scalar-valued func-

tions on G then
H<Z M(fj)z)l/z’ @) = APH(Z|fj|2)1/2‘
J J

Lr(G)

To prove this theorem, we consider the standard maximal function My on the
subgroup Gy, defined by

Mi(f)(x) = sup —— /B Fy™)dy

p>0 m(By) Jp,
where B, = Bék) is the automorphic one-parameter ball given by
B,()k) = {(Xk, - %n) € Gt |xi| <P, [xiga| < PFT L Ixn| < 07}

Let Mk be the maximal function in G obtained by lifting My in Gy to G. (Facts
about lifting are reviewed in the Appendix, Section 9). The key lemma is

Lemma 8.3. There is a constant C' so that
M < CM,LOM”_10~-~OM1.

Proof. Let s = (Sk, Sk+1s---55n) and 8 = (Sg41,...,8,). Let

X g = the characteristic function of the rectangle Rék) in the subgroup Gy,

Xpotn = the characteristic function of RékH) in the subgroup Gy41,

XBg’;> = the characteristic function of the ball Bg’:) in Gg.
Let MR s MR+ s 7735? be the normalized versions of these functions, so that,
for example, Mg = mk(Rék))*l X g with a similar definition for Mg - The
first observation to make is that if s < sp41 < -+ < s, there is an estimate
e < 773,22) * YNGR in the sense there are constants ¢, C, so that

(8.1) Nr® < C?]Bgz) * (Ox, ®7]Rék+1))

where the convolution is now on the group Gy, and dx, denotes the delta function
of the xj, variables.'©

0Tnequality (8.1) is essentially contained in Subsection 6.7.
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In fact,
Xp * (Ox, @ Xpeeen)) = /Gk X (x- yfl)XR;kw (v)dy.
We introduce a new coordinate system in Gy, so that if x € Gy, then
X = (Xky Xkt1y - -, Xn) = (Xk, 0,...,0) - (O,x;Hl, conxh) = (xk) X,
with x” € Giy1. In this new coordinate system the integral can be written as

/

(8.2) / X (X y) XngH)(.Y/_l -x')dy’.
Gk+1 Sk S

Now if x € REE), and ¢ > 0 is small, then |xj| < cksﬁ and x’ € Rggl), with ¢’ small
with ¢. (This is because xj = ¢;(x), with ¢; homogeneous polynomials of degree j,
k+1<j<n) Soify € Béf,:ll) then y'~!.x' € RékH). Thus for x € Rgé), the
integrand above is 1, whenever y’' € Bﬁ?:jﬁ. The result is that the last integral

exceeds mp41 (Bgsk +1)) for x € Rgs). Dividing through by the normalizing factors
and observing that

1 1
me(BS)  mppa (RETY)

1

Bk+1) - -
mk( )

: mk+1( csk_H)

proves the claim (8.1). Proceeding this way by downward induction, starting with
the trivial case k = n, gives

(8.3) M < Cligo * (G @ pe) %% (Oxy oy @1 pew)

whenever s; < s9 < -+ < s,. The inequality (8.3) then implies Lemma 8.3. O

We now turn to the proof of Theorem 8.2. For each k, the maximal functions My,
satisfy the usual weak-type and L estimates on LP(Gj) (because the balls Bgf)
satisfy the required properties for the Vitali covering argument). Moreover, the

vector-valued version
/2
LP(Gk) H(Zlf] ) ’

also holds. This can be shown by following the main steps in the case of R™
(see, e.g., Chapter 2 of [11]). In fact, one proves first a weak-type inequality for
the vector-valued case, using a Calderén-Zygmund decomposition, which estab-
lishes (8.4) for 1 < p < 2. An additional argument is needed for p > 2, and is
based on the fact that

s (Sanwr)”

Lr(Gk)

Mi(£)* (%) w(x) dx < A /G £ OO (Miw)(x) dx

Gy
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for all positive functions w. Next a lifting argument (see the Appendix) allows one
to lift (8.4) on Gy to G to get

0 () /2\

(S wr) ]

As a result we obtain a similar inequality for M,, o M,,_10---o M, and an applica-
tion of Lemma 8.3 then proves Theorem 8.2.

LP(G) Lr(G)’

Our actual application of the estimate in equation (8.4") is contained in the
following;:

Corollary 8.4. Suppose Fy(x) is a measurable function of (t,x) € (RT)" x RV,

Then
H(/(R+)n(M(Ft))(x))2dt>1/2‘ b < A”H(/(Rﬂn |Ft(x)|2dt>1/2'

Proof. Assume first that Fy(x) is jointly continuous and has compact support. For
each € > 0, apply the conclusion (8.4") to the case where {f;(x)} are an enumer-
ation of the 6"/2Fei1,ei2,m,ei” (x), for (i1,42,...,i,) ranging over (Z)", and then
let € — 0, obtaining the desired result in this case. For the general Fy, assuming

that H (f(]R+)n
functions of compact support, with F(”)( ) — Fi(x) almost everywhere, so that

H(/(Rﬂn'Ft(n)th)l/Q‘ o H(/(R+)n|pt|2dt>1/zum

and apply the previous case, via Fatou’s lemma. O

LP(RN)

Fy(x)[2dt) UQHLP(G) is finite, find a sequence Ft(n) (x) of continuous

It will also be useful to observe that effectively the estimate (8.3) can be reversed
in the following way.

Lemma 8.5. We have
(8.5) M * (Oxy @Npe) * oo % (Oxyixn o @ Tpem) < Onpa

for an appropriate C > 0. Here s* = (s7,...,s}), with s; = max{s;, 1 <j < k}.
Note that we do not require that s1 < s < -+ < sp,.

The proof is based on the observation that Mg * (0x, ® nRék‘,-f—l)) < CNRp®,
where's = (5, ..., 8,) and
. max{sy,s;} if j >k,
Ea {sk if j = k.

In fact if x ¢ RCS (for some large C) then either |xx| > C'sk or x' ¢ Rgﬂ).
Looking back at the integral in equation (8.2) we see that the mtegral vanishes,

because Xz (Xk - y’) = 0 in the first case, or x g+ (y'~!-x') = 0 in the second

case. Moreover as above, this integral is majorized by C’m(B(k'H)) Altogether

CSp 41
then, we have Mgk * (0, ®77R(k+1)) <cn and an induction proves Lemma 8.5.
St s

R
El



708 A. NAGEL, F. Riccr, E. M. STEIN AND S. WAINGER

Now let As denote the function appearing on the left-side of (8.5). Then as a
consequence we have

(8.6) I(f * As)(x)] < CM(f)(x),

for all s = (s1,...,8n), not necessarily in increasing order. Similarly if A% =

(0xq,xn 1 @ 7)B<n>) X ook (7713(”) we also have A(x) < cnpm. This follows
Sn s s*

from (8.5) if we observe that A%(x) = As(x~!). As a result, in analogy to (8.6),
we have for all s

(8.6") I(f % AD)(X)| < e M(f)(x).
Indeed, one has R;l = Ry« if, in defining Rg, a coordinate system is used where
the inverse of x = (x1,...,X,) is given by x~! = (=x1,...,—x%,). Alternatively,

if we use canonical coordinates of the second kind, as above, then one has R. s« C
RZ' C R,s-, for two appropriate constants ¢; and cy; this also leads to (8.6").

8.2. Comparisons

The basic comparison function is
n
Te(x) =ty ty-tn- [[(tr+t2+ - +tn + Ni(x) + -+ Ny(x)) "
k=1

for t = (t1,...,tn), t; > 0. Recall that Ny(x) = Ixx|'/* and Qy = kay, with ay the
dimension of the zj space.

Theorem 8.6.
(57) sup | (f T4 (0)] < CM(/)()

where the supreme is taken over all t, with t; > 0.

Proof. Note that it suffices to restrict attention to t’s that are of acceptable size.
Indeed, let s; =t +ta---+1t;, 1 <j<k. Thens; <s;jii but k(t; +---+1t;) >
s1+ s2 + -+ + sg. Hence,

(t1+...+tk+N1+...+Nk)_Qk_1SCk(sl+82...+Sk+N1+...+Nk)_Qk_17

with ¢, = k@+F1. Therefore I't(x) < c¢I's(x), which shows that it suffices to con-
sider t’s that are increasing.

We next fix t = (t1,...,t,) and decompose the space G = R" into a preliminary
dyadic partition as follows. For each J = (j1,...,jn) € Z7} we let

Ni(x) + - + Ni(x)
by +tg+ -+ 1y
with the understanding that if j; = 0 the inequality should be taken to be

Ni(x) -+ Ne(x) _
tittot -t T

Rjz{xeRN|2f'k—1< §2j",fork:1,2,...,n},
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Notice that UJeZi Ry = G gives a partition of the space G. However, in

general each R; is not comparable to an acceptable rectangle. We remedy this as

follows. For a suitable constant ¢, define s” = (s{,...,sJ) by

(8.8) s{ =ct129) 5] = P22, .. 5] = c"t, 20

Now if Ry is non-empty, then since t; <ty < --- < t,, we have

Ni(x) = 127, Ni(x)+ No(x) = 12272, ... Ni(x)+No(x)+- -4 Ny (x) = t,277.
As a result, for sufficiently large ¢, it follows that s{ < sg <. < s/,

Now define RY = {x : Nj(x) < s{,k = 1,...,n} for those J where R; is not
empty. Then clearly R; C R% and each RY% is a rectangle of acceptable size (in
fact, essentially the smallest rectangle of acceptable size containing R ;). However,
for f >0,

/ oy Telv)dy = s ) Te(y) dy.
Jery
Recall that by (8.8), t ~ s{277%, and on R, we have Ni+--+ Np~ (t +t2+
o+ t5)27% & s, Thus, on Ry we have I't(y) < H (s{)~ k. (2*ijlc). So
k=1

oy ray £ 3 20l [ pyay.
B

R

However, each R is a rectangle of acceptable size and i (s{)¥* = cm(R%). Thus
k=1
by the definition of M, the last sum is majorized by

ey [T m(f) =M(y),

J k=1
and (8.7) is proved. O

8.3. Truncated kernels

Recall that we defined truncated kernels and improved truncated kernels in Defi-
nition 6.20 (Section 6.9). Suppose that 1 € C5°(RY) with support in the unit ball.
For b > 0 write

Yp(x) = b~ D@ =@ (b7 Ik b7 %%y, ..., b7Ky,),
the automorphically dilated ). We also say that 1, has width b.

Theorem 8.7. Suppose K is a truncated flag kernel of width a, and vy is as above
of width b. Then

(1) K1y and ¢y * K are truncated kernels of width a + b.

(2) If in addition [, (x)dx =0, then K x4, and ¥y x K are improved truncated
kernels of width a+b. Moreover, then K %, and 1y * K are actually improved

truncated kernels of width a + b, multiplied by the further factor +b
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Note that the statements of the hypotheses and conclusions have an automor-
phic-dilation invariance, so in proving Theorem 8.7, it suffices to consider two
cases: b=1,a < 1;and a = 1, b < 1. In the first case we use Proposition 6.21,
since any truncated kernel is actually an un-truncated kernel. Thus we get that
K x 11 and 1 * K have width 1, which is essentially the same as having width
1+ a, since a < 1.

The second case would be easy if every truncated kernel of width 1 were of the
form K x ;. Its proof is a little more involved and requires the following lemma.

Lemma 8.8. Given any M, there exist ng and n1 both of class CM) | supported
in the unit ball, and a (non-communicative) polynomial P(Xy,...,Xn) = P(X)
in the right-invariant vector fields of G, so that

(8.9) P(X)no = o + .
with dg the Dirac delta at the origin.

Proof. Consider the elliptic operator of order 2r, P(X) = (Z;VZIXJZ)T, with r
a positive integer. Then by the standard theory of pseudo-differential operators
there is a locally integrable function F' which is C'*° away from the origin, so
that P(X)F = 6o+ 1/, with ' a C* function. Moreover, I’ satisfies the estimate
| (%)a F(x)| < A, whenever |x| <1 and 2r > N+ |a| (these estimates also follow
from Theorem 1 in [8]). Thus we only need to take 2r > M + N and set ng = u- F,
where p is a C*° function supported in the unit ball, and p(x) = 1 in the ball of
radius 1/2. Then since 7 is supported in the unit ball, so is 71 = P(X)no — do; and
since F' is C*° away from the origin it follows that 7n; is in fact C*° everywhere.

This completes the proof of Lemma 8.8. O

We now return to the proof of Theorem 8.7. We consider K * 1), when K has
width 1, and b < 1. Now by the lemma K ¢, = K * §g * ¢, = K * P(X) * 1o *
Yy + K xm1 %1y, since P(X) is a right-invariant differential operator. Now since K
has width 1, K *« P(X) is also a truncated kernel of width one, and in particular
an un-truncated kernel. However, 79 * 1, has width 1 + b, which is essentially
one. Also, it is of class C™) (uniformly in b), since 7o is of class C™). Thus
K x P(X) % ng * 1y, satisfies the differential inequalities for a truncated kernel of
width one for all orders < m. However, the term K x 1 %1, clearly does the same,
for all orders. Notice we can make m as large as we wish by making M sufficiently
large. (See Remark 6.22 on page 690.) A similar argument works for v, * K and
thus part (1) of Theorem 8.7 is proved.

Part (2) is proved in the same way, using conclusion (2) of Proposition 6.21.
The further improvement given by the factor b(a + b)~! comes about as follows.
As before, we may take a = 1, and b < 1. Since [¢(x)dx = 0, both g * 1, and
m * 1, give an improvement of b. In fact, since [9(x)dx = 0, it follows from
Lemma 5.1 and Proposition 4.5 that we can write

(8.10) vy =3 X))
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for suitable C>° functions ¥(*) supported in the unit ball, with {X}} ranging over

right-invariant vector fields of degree k , k > 1. Thus no* 1, = > b (1o * X * gk)
and this gives a gain b, b < 1. Similarly for the term 7y * .

8.4. Key estimates: kernels

Suppose ¢*) € Cs° is supported on the unit ball of the group Gy, with
/ ©®) (x) dx = 0.
Gy

We set <p§k) (x) = t= @ =@nip(8,-1(x)), with Qi = kap and let ) to be the

corresponding distributions lifted to the full group G; i.e., ¢§’“) = Oxy x0-xp_q ©

<p§k). We let &y = @g}) * @gf) koK @E:) for t = (t1,...,t,), and write

R R
Recall the comparison function I'y discussed in Section 8.2. Note that here we will
allow the functions ¢ and ® to take their values in finite-dimensional vector spaces.

Theorem 8.9. Suppose K is a flag kernel. Then
(1) |K * ®¢(x)| and |PF x K(x)| are both majorized by c¢T¢(x) for all t.

(2) If X,f’ s any right-invariant vector field of degree k, then

| XF(K % )| < c(ty + -+ 1) "5 De(x).

(3) If X} is any left-invariant vector field of degree k, then

| XF(E + ®)| < ety + -+ 1) TF (%)

For the proof we need to do our calculations in a particular coordinate system,
already used in the proof Lemma 8.3. Here we represent a point x = (x1,...,X,) €
G via adapted canonical coordinates of the second kind; i.e., we take x = exp(x]
X1) exp(xy - Xa) -+ -exp(xy, - Xn), where X" = () 1, @) 4, )s 1Xk 15+ oy Xipap } 18
a basis of the subspace of vector fields of degree k, and x}, - Xj, = ij;c,ij»j' The
passage from the initial (x1,...,X,) coordinates to the (x],...,x]) coordinates
is of the form treated in Section 6.5, so that the basic comparison function I'y is
essentially unchanged when passing from x to x’. We therefore freely use instead
the new coordinate system x’, and now relabel x’ by x. The advantage of this
coordinate system is that, firstly y = (y1,..., Y&, Yk+1,---,¥n) € Gk if and only
if yi1 =0,...,yx-1 = 0, but more importantly, if x € G, and y € G, then
XY = (X1, .0y Xp—1, Xk, - - -, Xpn ), with Xy (for £ > k), depending only on xg, . . ., Xy,
and yg,...,¥n, and not on xy,...,Xg_1.

Now set K*) = K @gi) ®e ok @gf). Consider first K = K * <p(1). According

ty
to Proposition 6.21, part (2), since [ oM (x) dx = 0, then for each x;, the kernel
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K®M(x1,Xa,...,%,), as a function of (xa,...,x,) on Ga, is a truncated kernel of

width t1 + N1 (x1 ), multiplied by the “constant” factor ¢, [tl +N; (Xl)] @1 Also

we have a similar conclusion for afllK (1 (x), except now the improving factor is
O —1—

t1 [tl + Nl(Xl)] @ 61.

Consider next the inductive hypothesis: for a given k,

(a) foreachxy,...,xx, K*)(x1,...,x,), thought of as a function of (xgi1,...,X,)
on Gp41, is a truncated kernel of width ¢y + - -+ + ¢, + Ny(x1) + - - - + N (Xk),
—Q;—1.

multiplied by the improving factor H§=1 t; [tl +o N+ ~+Nj] ;

(b) for each r < k, a similar statement holds for 97 K*®)(x), except that now
the " part of the improving factor is ¢, [tl 4ot Ny - -+NT] TQ@rmlrh

Notice that if the inductive hypothesis holds for k, that is for K (*), then since
KFD (%) - x,) = K®) % @ifjll), where since the convolution is taken on the
group Gp41, it therefore does not involve the variables x1,...,x; because of the
nature of our coordinate system. As a result, we get the conclusion for k£ + 1, that
is for K(¥*1)_ To see this, we merely apply Proposition 6.21, part (2), for the case
of the group G41.

More precisely, we are convolving a truncated kernel of width a = t1+- -+t +
Ni+- -+ N, (on Gi41) with a function ¢ (which equals go(kﬂ)) of width b = tg41.

tht1
The result is a truncated kernel of width a +b =% + -+ +tp41 + N1+ -+ + N
on Gpy41, together with a further factor aL-s-b' That is, for K*t1) as a function of
Xp+2, - - -, Xn, We have a truncated kernel of width ¢1 + -+ +tx41+ N1+ -+ Ngyq,

times a factor of the form b(a + b)~!. So the full improvement is

b a+b trt1

aer. (a+b+Nk+1)Qk+1+1 - (t1+"'+tk+1+N1+"'+Nk+1)Q"“+1’

as was needed. The same kind of improvement holds for the estimates of
9% KD (x), for £ < k + 1.

Thus, the inductive hypothesis (now the conclusion of the induction) holds for
k =n. As aresult, it is clear that |K * ®¢(x)| < ¢T'¢(x) and

|0 (K % ®¢(x))| < e[ty + -+t + Ny + -+ Ni] " To(x),

for every k, 1 < k < n. Since X,f = Ox, + Zbkhlz Ox, where h’; is a homogeneous
polynomial of degree £ — k, it follows, in particular, that

XP(K # ®y)(x) < c[tr+- -+ 1] "To(x).

The results for ®; * K and X[ (®; x K) follow in the same way, but require

a canonical coordinate system in the reverse order. Alternatively we can deduce

them from the previous case by using the inversion x — x 1.
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8.5. Key estimates: operators

We define P(f) = f % @y, and Py = f =+ @f, with t = (t1,12,...,t,) and t; > 0,
1 < j <n, with ®&; and ®f defined at the beginning of the previous section. We
suppose K is a flag kernel and T'f = f* K when f is a Schwartz function. We recall
the maximal operator M and let M = M o M, i.e., M(f) = M(M(f)).

Theorem 8.10.
(a) [PT(f)(x)| < cM(f)(x), all t.
(a) Similarly, [(TF)(f)(x)] < ¢ M(f)(x), all t
(b) [BTES()(X)] < (s, ) M

'y(s,t)gc( I mln(sk tk)) .

k=1 tk Sk

(f)(x), where, for some § > 0,

Note: the conclusion will be seen to hold for § = 1/n?.

Proof. The function PT(f) is given by (f * K) x @y = f * (K * ®y). Hence con-
clusion (a) is a direct consequence of Theorem 8.6 and Theorem 8.9, part (1). The
same is true for conclusion (a/).

Turning to (b), we first fix k, and consider the situation when ¢ /s, = p > 1.
With this p given, we next divide our consideration in two cases.

Case I. With o a positive constant, to be specified below, s;_1/s; > p° for at
least one j, with 2 < j < k.

Case II: sj_1/s; < p? for all j, with 2 < j <k.

To handle Case I we need the following observation, that will give us the needed
gain. Recall the notation Nt =Mk (B,()k))_le<k> used above in Section 8.1.

Lemma 8.11. If sj_1/s; > p?, p > 1, then
(J) (G-1)
<cp” (7) G ) * (7)B§§:§>>'

Proof. In analogy with equation (8.10) in Section 8.3, we have that on G;

(s.11) P =3 (s5) XEWL)

r>j

@9 x o~

where X are left-invariant vector fields on G, with (") C> functions supported
in the unit ball. Now

(5 ® XE@E) + 0 = (0 @) « X (G7D).
and X[ (gpgiill)) is of the form s;_rl wsjr_)l. Combining these gives a sum
Zrzj(sj/sja) G sl

and since s;/s;_1 < p~7, the lemma is proved. O
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Consider the operator P; given by P (f) = f«®}, with &} = <p§2)*g5§: 11) -k
@2{). Because of Lemma 8.11 and since j > 2, we have |®F| < cp™> 7 00 *-- - *
o = cp~9 = cp=27 A%, in the notation of Section 8.1. So by equatibgn (8.6")
thé;e7 it follows that |P(f)(x)| < cp™2° M (f)(x). Combining this with the first
conclusion already proved that |P.T(F)(x)| < cM(F)(x), with F = PF(f), yields

(8.12) |PTP;(f)(x)] < ep™ M(f)(x)

since M = M - M.

We now turn to Case II. Here s;_1/s; < p?, for all j, 2 < j < k. Thus
55 < spp”*=9) for 1 < j < k. If we set s, = SUp; << S5, then s. < spp o(k=1),
Next we recall the following fact:

If X/ is a right-invariant vector field of degree £ > j on G, then one can write

X (a) = > a" " X F (),

r>0

where XF are left invariant vector fields of degree r. This follows by writing
Xk = Z he (%)X, with hg ,(x) a homogeneous polynomial of degree r — ¢, and
arguing as in Proposmon 3.2.

With this in hand, consider wgk) >x<<p§]z 1) ceek @2?. First use that ka ©F) (x)dx

= 0, which by the analogue of assertion (8.10) (for left-invariant vector fields on
the group Gy,) gives an expression involving the action of left-invariant vector fields
(of degrees > k). Next pass from the left-invariant vector-fields acting on wg) to
the corresponding right-invariant vector fields acting on @’;;_11, via the rule

(8.13) (XF)x =1 x X[

At this point utilize the remark on page 714 to pass to left-invariant vector fields,
and then use the rule (8.13) above to pass to @52 | etc.
Putting this all together leads quickly to the following conclusion: the convo-

lution
(k)

P * @l wx gy
is a finite sum of expression of the form
(8.14) ()00 G - x XE(LD)

for » > k. Here we use the fact that s, > s;, j < k. Now consider
(8.15) <p(k) * gagk Dosx gbg) * K x @y

By applying the rule (8.3) we can pass the left-invariant vector field X* as a right-
invariant vector field acting on K * ®y. We keep in mind that » > k, and use Theo-
rem 8.9, part (2). Therefore @« K «Py = M gD *Q(l)*K*CI)t is majorized

by a constant multiple of s, - ;" A * Iy, where A = M) * M gn—1) %+ k1] 50).
sSn Sn—1 s1
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In view of Theorem 8.6 and inequality (8.6') in Section 8.1, we get that
(8.16) |PTF(f)(x)| <c sup (sity ") M(M(f))(x).

o(k—1) 1

We now pick o = 1/2k. Since s, < sip ,and sp/ty = p~*, p > 1, we get
|PTPI(f)(x)] < ep /> M(M(f))(x).

Combining this with the previous case given by (8.12) yields
N Sk 1/n )
IPTR(H] < (7)) T MU, if tifsi > 1.

By a parallel argument the analogous result holds for sj/t; > 1. Hence

IRTP ()] < e min (3£, 5) M) x).

Since this holds for all k&, 1 < k < n, we can take the geometric mean of these
inequalities. The result is conclusion (b) of Theorem 8.10, with § = 1/n?. O

8.6. Square functions and LP-boundedness

We will construct the square functions for G as products of the (one-parameter)
square functions of the subgroups Gj, 1 < k < n. Each G} is a homogeneous
group with family of dilations ¢,, and so there exists a finite-dimensional in-
ner product space Vi and a pair o*) (*) of Vj-valued functions, with ¢*) e
C5°(Gy,) supported in the unit ball, and ¢*) € S(G}) a Schwartz function, so that
Ja. o) (x) dx = e, Y (x) dx = 0, and

(8.17) /OOO B ey - o) (9) 22

a

= do.

Here got(lk) (x)=a~ @ Q1= =Qnp(k) (5 _(x)), with a similar definition for ) (x).
Also - denotes the inner product in V. See Theorem 1.61 in [3].

We define operators Pék) and Q((Ik), acting on functions on Gy, by setting
P (f)=7f = <p,(1k) and Q,(lk)(f) =f=x wt(lk). Note that (8.17) shows that

(o]
(8.18) / Pk Q) ‘i—“ = Id.
0

Next, define the square functions Sy and S,f by setting
o daN1/2 oo da~1/2
sune) = ([ IEOner ) stne = ([ 1eRner )"
0 a 0 a
The usual theory of singular integrals in [11] and [3], together with (8.18), then

gives the inequalities

(8.19) I f oo =N Sk(f) e =1 SE(f) llze

for 1 < p < 0o on G. The result is valid not only for scalar-valued f, but also for f
that take their values in a Hilbert space.
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Having recalled the known results for Gy, we transfer them to the whole group G
by writing

ﬁ’ék)(f) =f* (6X1"'Xk71 ® %(zk))a Qt(zk)(f) =f* (6X1"'Xk71 ®w¢(zk))’
- o | dan1/2 _ oo dan 1/2
5= ([ 1emor )" st = ([ awer)”.

We get as a consequence

(o)
- ~ o d
(8.18") / PW . QW &L g
0 a
on (G, and
(8.19) I f ey = Sk(f) e = 11 S*(F) e -
With the above one-parameter theory arising from each Gj we come to the
square functions on G that are relevant for us. For each t = (t1,...t,) € (RT)",

we set Py = Pt(:) ~]5t(::1) e Pt(ll). That is, Py(f) = f* ®¢, where &y = gbg) * gbg) *

gf) = 0xyooxpy @ gpif). Note also that ®¢ is a V-valued function,

*(ﬁg:) and @
where V=V, @ Vo ® --- ® V,,. Similarly, we define P = ﬁt(ll) ~P~’t(22) e ﬁ’t(:), Q¢ =
Q- Q) and Q5 = Q4 - Q. Also Qu(f) = frdhe, with Py = i, - x4y
and 1 is also V-valued. Finally, we set
dt\1/2
sne = ([ morg)”
00 = (J . IRNP )

Here we use the abbreviation that [t] =¢1 - tg -+ - tp,.

ﬁ)1/2-

st = ([, meurg

Lemma 8.12. We have

ol
@ [ R =

(b) (1 f lzr< Ap [ S(F) llzr, 1 <p < o0;

) 16(f) ler< Ap || £ llzr, 1 <p < oo.

To prove (a), we take first the identity (8.18) when k = 1, and a = ¢;. Next we
multiply on the left of both sides by Pt(22) and on the right of both sides by Qg)
and integrate in to, using (8.18") for & = 2. Continuing this way yields (a). Inequa-
lity (b) follows from repeated comparisons of the corresponding inequalities (8.19")
for Sy.. Also (c) follows by applying (8.19') for 575 and a two-fold application of
the vector-valued maximal function in Corollary 8.4, for Fy(x) = Q¢(f)(x)-[t] /2.

The final lemma needed is as follows:

Lemma 8.13. Suppose K is a flag kernel and T(f) = f = K. Then,
(8.20) S(T(f)(x) < cS(f)(x).
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Proof. Now P.T(f)(x f(R+)n CTPrQs(f)(x) & fs] by part (a) of the previous
lemma. Hence Theorem 8.10, part (b) shows that

TN [ A0 M@

where (s, t) = ¢ ([[;_, min (t—" 8—")) Thus,

[s]

(s, t) %, by Schwarz’s inequality. But sup, I(t) = A < oo,

PT(GOR S [ 906, MR T - 10

with I(t) = f(R+)”
since

[e'e] Py tr [e%}
Sk Tk dsk _ _ —1—
/ mm( > —:tk‘S sk1+6dsk+t2 sk1 Sdsp = =
0 ty sk/ sk 0 t

A further integration in t (noting that also f(R+)n (s, t) flt] < A) then gives the
desired result. O

Theorem 8.14. With Tf = f+ K as above, we have | T'f ||pr(y< Ap || f |lLrc
for1 < p<oo.

This now follows directly from (8.20), once we apply Lemma 8.12, part (b),
for T'f in place of f, and then part (c¢) of that Lemma.

9. Appendix I: Lifting

Suppose that T(f) = f * K is a convolution operator on Gy with f € S(Gi
and IC € S’(Gk), a tempered distribution. Then T'f can be written T'(f)(x)

ka ’1)dy = (K, Fx), where Fyx is the element of S(Gy) given by
Fy (y) f(xy 1) for y 6 Gk We Can lift T to a convolution operator on G, de-
noted by T', given by T'(f ka xy 1) dy = (K, Fx), where f € S(G),

and Fx(y) = f(xy )foryGG;C

We describe this lifting in terms of the coordinate system used in the proof
of Theorem 8.9. We can write each x € G as a product x = x’' - x, with x’ =
(X1,+++,Xk-1,0,...,0) and x € Gy, where x = (0,...,0,xx,...,X,). With this
coordinate system, we define K eS8 (G) as 6y @ K, where x = x’ - %, and we set
T(f)(x) = ( * K)(x) for f € S(G) and x € G. Then T(/)(x) = T(/)(X' - ).
However observe that T'(f)(x"-%) = T(f*)(x), where f*' is the element of S(Gy)
given by f*(y) = f(x'-y), y € Gi. Therefore

(9.1) T(f)x %) = T(f) ()
Next, suppose that T satisfies the bound

(9.2) I TC) e < Al f e
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for each f € S(G). Then, applying this to f = * via (9.1) (and assuming p < 00),
gives
[ omesrax < ar [ @,
Gy Gy

for each x’, and an integration in x’ yields

(9.3) I TC) ey < Al S llzece -

Suppose next that K depends on a parameter t, K = K; and set T;(f) = f* K.
Then the same argument shows that

| 5D [T ooy < AN S vy forall f € S(G)

whenever

| 59 TPl 1oy < Al S vy forall £ € S(G).

This proves that the lifted maximal inequality || My (f) ||z < Ap || f [l1o(c)
follows from the corresponding inequality on Gj, by considering first the case
when f is non-negative (and K; = 7)1(3]?), and then by replacing f by |f|.

In the same way the vector-valued maximal inequality (8.4) on Gy, can be lifted
to the corresponding inequality (8.4") on G. In fact, it suffices to prove (8.4") when
there are only m non-zero f;’s, 1 < j < m, with bounds independent of m. With

this understanding, set

f:(fla---afm)a t:(tl,...,tm),

and
To(f) = (TL (), T (fm)),  TL(f) = F K],
with
m 1/2 n , 1/2
n=(S )" mo=(S mur)”
j=1 =1
Note that

J

m . 1/2
(3 sup 17(1)2) " = sup [T
paci® t
Then as before the inequality

| sup (TN | oy < AN e f € S(Gn)
! (Gn)

implies the corresponding inequality for T lifted to G, that is for T}, and this then
yields the desired result.

We should remark that the lifting procedure used here can be viewed in terms
of the more abstract “transference” method presented in [1].
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10. Appendix II: An estimate for a geometric sum

Recall that &, = {I = (i1,...,i,) € Z" |i1 <y < --- <'i,}. More generally, if
0< B <By<---<B,, let

(10.1) AB)={I=(i1,....in) €& | B; <29 for 1<j<n}.

We establish the following estimate for geometric sums which we shall use several
times.

Proposition 10.1. Let oj > 0 for 1 < j < n, and let M > Y, _, ap. There is
a constant C' depending on n, on M, and on the numbers {a;} so that for any
A, A, €(0,00) and any 0 < By < By < --- < By,

[The, (277%) - —a;
(10.2) > 7 < C T+ As -+ A)) 7,
IeE, 1+Zk 127 “‘Ak) j=1

n —1
_q(270)
(10.3) § - — -
reacmy (1+200_ 27 Ay)

Proof. Note that if we take B; = --- = B,, = 0, then the inequality (10.3) gives
the inequality (10.2). If for zq,...,x, > 0 we put

<CJJ(Ar+ A+ +A; +B;)™
j=1

M

gp(:ﬂl,...,mn):(Hmi"“)(lJrZ:ckAk) )
k=1 k=1
then, if 1 <s; <2 for 1 < j <n, we have
n n -M
90(813517 R Snxn) < 2‘04 H »TZ”“ (1 + ZxkAk:> < 2‘0490(5517 s 7xn)
k=1 k=1

For each I = (i1,...,i,) € Z", let Qr = {x € R" | 1270 < gy < 27} Tt follows
that there is a constant C' = C'(n, &) depending only on n and « such that

ot [ () Bt = 27" (o) T,
Q[ _fL‘l P ‘r"L - (1 + 22:1 2_1kAk)M - QI -1'1 “e . _fL‘n
Thus
9~k )k dxy - - dx,
k=1(27") <C p(x) 2 A

, M
1A (B) (1 + Zk:l 2—’LkAk) Ureacs) Q1 T1-- T
On the other hand, it is easy to check that if I € A(B) and x € Qy, then 0 <
Tp1 <2z for 1 <k <n—1and xg SBk_l for 1 < k < n. Thus if we put
topp Sap < Byt for1<k<n-1 }
0<z, <B;*! ’

Q(B):{xeRi :{
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then UleA(B) Q1 C Q(B). Thus to prove the proposition, it suffices to show that

n ag n
/ ( [ i dzy dm”<CHA1+A2+ “+Aj+ Bj)T”
Q(B

n M
L+ 3k oedi) ™ P10 In j=1
However,
M dy dx
/ H l‘ (1 + Z l‘kAk) 17

QB) k=1 k=1 v n
:/ tM —t H_{L‘ak —kaAktdml dl‘n} dt
Q(B)k 1 Tyceemn 1ot

We will show that we can estimate the inner integral on the right hand side by

n
/ an —apAgt A1 dry,
I | Tt e _—
QB) - L1 T

(10.4) .
H 14+t7%)( A1+ As+ -+ Aj + B;)™

and since M > ZZ=1 ay, this will complete the proof.

-1
To establish (10.4), we first establish an estimate for ff stemsAt %. On the
2
one hand, we have

-1

B ds 1 B 1

/ Sae—sAt < e*ga:At / Sail ds 7167§xAtha'
x
Z 0

: S
2

On the other hand we have

B! ds [e ]
/ sae—sAt =< (At)—a/ s Lle=8 g < Ca( ) ae—za:At.

z s TTAt

Putting the two together, we have the estimate

-
ds
(10.5) / e S < 0L A (A 4 B) T < e H (A B) (1410,

z

2

We now establish (10.4) by induction on n. When n = 1, we use (10.5) with
z =0 to get

Bt d
/0 B A TR < Cu( A BT (1),
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For the induction step, we have

/ R dzy - -dxy
Q(B 1Ty
B~ 1
_ / H mak —xp Agt [/ ! 11—t d‘rl} dxg - --dzy
- 1
/(B)k 5 2 T X" Tp

< Ca(Ar+ B) ™ (1417™) / Hw —rednto-foaar T2 AT
’(B)k 5 m2...xn

Here,

)

Q'(B) = {xeRl‘ : { okt S BT frasksn ol }
0<z, <B,

and we have used the estimate in (10.5). The last integral on the right-hand side

is thus of the same form as the original integral, except that n has been replaced

by n — 1, and A, has been replaced by As + %Al. We can thus use our inductive

hypothesis on this integral, and we obtain the desired estimate. This completes

the proof. O
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