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Singular integrals with flag kernels

on homogeneous groups, I

Alexander Nagel, Fulvio Ricci, Elias M. Stein and Stephen Wainger

Abstract. Let K be a flag kernel on a homogeneous nilpotent Lie group G.
We prove that operators T of the form T (f)=f ∗K form an algebra under
composition, and that such operators are bounded on Lp(G) for 1 < p < ∞.

1. Introduction

This is the first of two papers dealing with singular integral operators with flag
kernels on homogeneous nilpotent groups. Our goal is to show that these operators,
along with appropriate sub-collections, form algebras under composition, and that
the operators in question are bounded on Lp.

Operators of this kind arose initially when studying compositions of sub-elliptic
operators on the Heisenberg group (such as the sub-Laplacian L and �b) with
elliptic-type operators. In particular in [7] one saw that operators of the form
m(L, iT ) (where m is a “Marcinkiewicz multiplier”) are singular integrals with
flag kernels and satisfy Lp estimates. The theory was extended in [9] to encompass
general flag kernels in the Euclidean space RN , and the resulting operators arising
via abelian convolution. In addition, aspects of the CR theory for quadratic man-
ifolds could be studied via such operators on various 2-step groups. More recently,
flag kernels have been studied in [13] and [2]. In view of this, and because of their
potential further application, it is desirable to extend the above results in [9] to
the setting of homogeneous groups of higher step. To achieve this goal requires
however that we substantially recast the approach and techniques used previously,
since these were essentially limited to the 2-step case.

Our main results are two-fold. Suppose G is a homogeneous nilpotent group
and K denotes a distribution on G which is a flag kernel (the requisite definitions
are given below in Definition 2.3).

Theorem A. The operators T of the form T (f) = f ∗ K form an algebra under
composition.
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Theorem B. The above operators are bounded on Lp(G) for 1 < p <∞.

Given the complexity of the material, in this introductory section we provide
the reader with an outline of the main ideas that enter in the proofs of the above
theorems. Moreover, in order to simplify the presentation we will often not state
matters in the most general setting and sometimes describe the situation at hand
a little imprecisely.

1.1. Flag kernels

We start with a direct sum decomposition RN = Ra1⊕ · · · ⊕Ran , with
∑n
j=1 aj=N ,

and we write x = (x1,x2, . . . ,xn), with xm ∈ Ram . We also fix a one-parameter
family of dilations δr on RN , given by δr(x) = (rd1x1, . . . , r

dnxn), with positive
exponents d1 < d2 < · · · < dn.1 We denote by Qk = dkak the homogeneous di-

mension of Rak . We also define the partial “norms” Nk(x) = |xk|1/dke , where |xk|e
is the standard Euclidean norm on Rak .

In this setting, a flag kernel K is a distribution on RN which is given by in-
tegration against a C∞ function K(x) away from x1 = 0 and which satisfies two
types of conditions. The first are the differential inequalities for x1 �= 0:

(1.1) |∂αx K(x)| ≤ Cα

n∏
k=1

(N1(x) + N2(x) + · · · + Nk(x))−Qk−dkαk

with α = (α1, . . . , αn). The second are the cancellation conditions. These are most
easily expressed recursively. Let 〈K, ϕ〉 denote the action of the distribution K on a
test function ϕ. At the beginning of the recursion there is the following condition,
in many ways typical of the others:

(1.2) sup
R
|〈K, ϕR〉| <∞

where R = (R1, R2, . . . , Rn), ϕR(x) = ϕ(Rd11 x1, Rd22 x2, . . . , R
dn
n xn), and ϕ is

an arbitrary C∞ function which is supported in the unit ball. More generally,
one requires that the action of K on a test function in some subset of variables
{xm1 , . . . ,xmβ

} produces a flag kernel in the remaining variables {xl1 , . . . ,xlα}.
The precise formulation of these conditions is given in Section 2 and Definition 2.3
below.

1.2. Dyadic decomposition

A main tool used in studying flag kernels is their dyadic decomposition into sums
of “bump functions”. This proceeds as follows. Let I = (i1, i2, . . . , in) denote any
indexing set of integers that satisfies.

(1.3) i1 ≤ i2 ≤ · · · ≤ in−1 ≤ in .

1One can also allow non-isotropic dilations on each subspace Ral . See Section 2 below.
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Also let {ϕI} be a family of C∞ functions supported in the unit ball that are
uniformly bounded in the C(m) norm for each m. Set

[ϕI ]I(x) = 2−i1Q1 −i2Q2− ···−inQn ϕI(2−d1i1x1, . . . , 2
−dninxn) ,

so that the [ϕI ]I are L1-normalized. We say that the ϕI satisfy the “strong can-
cellation” condition if for each k with 1 ≤ k ≤ n,

(1.4)

∫
Rak

ϕI(x1, . . . ,xk, . . . ,xn) dxk ≡ 0

when all the inequalities (1.3) for I are strict. In the case that there are some
equalities in (1.3), say i�−1 < i� = i�+1 = · · · = ik < ik+1, then only cancellation
in the collection of corresponding variables is required:

(1.4′)
∫
Ra�⊕···⊕Rak

ϕI(x1, . . . ,x�, . . . ,xk, . . . ,xn) dx� · · · dxk ≡ 0.

The first result needed is that any sum

(1.5)
∑
I

[ϕI ]I

made up of such bump functions, with the cancellation conditions (1.4) and (1.4′),
converges in the sense of distributions to a flag kernel, and conversely, any flag
kernel K can be written in this way (of course, not uniquely).

There are two parts to this result (which in effect is stated but not proved
completely in [9]). The first is that the sum in (1.5) is indeed a flag kernel. To see
this, one can use the estimate in Proposition 10.1 given in Appendix II below; one
also notes from this that even without the cancellation conditions (1.4) and (1.4′),
the sum (1.5) satisfies the differential inequalities (1.1). The converse part requires
Theorem 6.1 below, and the observation that the parts of the sum (1.5) contributed
by I’s where there may be equality in (1.3) give flag distributions corresponding
to various “coarser” flags.

However, what will be key in what follows is that the strong cancellation condi-
tions (1.4) or (1.4′) can be weakened, and still lead to the same conclusion. While
these “weak” cancellation conditions are somewhat complicated to state (see Defi-
nition 5.5 below), they are easily illustrated in the special 2-step case. Here we
have the decomposition Rn = Ra1 ⊕ Ra2 , x = (x1,x2). The cancellation condi-
tion for the second variable is as before:

∫
ϕI(x1,x2)dx2 ≡ 0. For x1 the weak

cancellation condition takes the form

(1.6)

∫
Ra1

ϕI(x1,x2) dx1 = 2−ε(i2−i1)ηI(x2),

for some ε > 0, with I = (i1, i2) and ηI an L1 normalized bump in the x2 variable.
In this context, the main conclusion (Theorem 6.8) is that the sum (1.5) is

still a flag kernel if the weak-cancellation conditions are assumed instead of (1.4)
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and (1.4′), and the functions {ϕI} are allowed to belong to the Schwartz class
instead of being compactly supported. In understanding Definition 5.5, one should
keep in mind that conditions like (1.4), which involve vanishing of integrals, are
equivalent with expressions of the ϕI as the sums of appropriate derivatives. (This
is established in Lemma 5.1).

1.3. Other properties of flag kernels

Along with the results about decompositions of flag kernels, there are a number of
other properties of these distributions that are worth mentioning and are discussed
in Section 6. First, the class of flag kernels is invariant under changes of variables
compatible with the structure of the flags. We have in mind transformations
x �→ y = F (x), with yk = xk + Pk(x), and Pk a homogeneous polynomial of
x1, . . . ,xk−1, of the same homogeneity as xk. The fact that K◦F satisfies the same
differential inequalities (1.1) as K is nearly obvious, but the requisite cancellation
conditions (such as (1.2)) are subtler and involve the weak cancellation of the bump
functions. (See Theorem 6.15.)

A second fact is that the cancellations required in the definition of a flag kernel
can be relaxed. For example, assuming that the differential inequalities (1.1) hold,
then the less restrictive version of (1.2) requires that the supremum is taken only
over those R for which R1 ≥ R2 ≥ · · · ≥ Rn > 0. The formulation and proof of
the sufficiency of these restricted conditions is in Theorem 6.13.

Finally we should point out that at the basis of many of our arguments is an
earlier characterization in [9] of flag kernels in terms of their Fourier transforms:
these are bounded multipliers that satisfy the dual differential inequalities given
in Definition 6.3.

1.4. Graded groups and compositions of flag kernels

Up to this point our discussion of flag kernels has focused on their definition as
distributions on the Euclidean space RN . We now consider convolutions with flag
kernels on graded nilpotent Lie groups G whose underlying space is RN . The
choice of an appropriate coordinate system on the group G, and its multiplication
structure, induces a decomposition RN = Ra1⊕· · ·⊕Ran and allows us to find expo-
nents d1 < d2 < · · · < dn as above so that the dilations δr(x) = (rd1x1, . . . , r

dnxn),
with r > 0, are automorphisms of G.

The proof of Theorem A reduces to the statement that if K1 and K2 are a pair
of flag kernels, then K1 ∗K2 is a sum of flag kernels, where the convolution is taken
with respect to G. Note that when G is the abelian group RN , the result follows
immediately from the characterization of flag kernels in terms of their Fourier
transforms, cited earlier, and in fact the convolution of two flag kernels is a single
flag kernel. In the non-commutative case the proof is not as simple and proceeds as
follows. First write K1 =

∑
I [ϕI ]I , K2 =

∑
J [ψJ ]J in terms of decompositions

with bump functions with strong cancellation. Now, formally,

(1.7) K1 ∗ K2 =
∑
I

∑
J

[ϕI ]I ∗ [ψJ ]J .
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We look first at an individual term [ϕI ]I ∗ [ψJ ]J in the above sum. It has three
properties:

(a) [ϕI ]I ∗ [ψJ ]J = [θI,J ]K with [θI,J ]K a “bump” scaled according to K, where
K = I ∨ J ; that is K = (k1, k2, . . . , kn), and km = max(im, jm), 1 ≤ m ≤ n.
This conclusion holds even if we do not assume the cancellation conditions
on [ϕI ]I and [ψJ ]J .

(b) Next, because we do have the cancellation conditions (1.4) and (1.4′), we have
a gain: There exists ε > 0 so that [θI,J ]K can be written as a finite sum of
terms of the form∏

l∈A
2−ε|il−jl|

∏
m∈B

2−ε[(im+1−im)+(jm+1−jm)
[
θ̃I,J

]
K

where [θ̃I,J ]K is another bump function scaled according to K, and A and B
are disjoint sets with A ∪B = {1, . . . , n}, with n /∈ B.

(c) Strong cancellation fails in general for [θI,J ]K , but weak cancellation holds.

Statements (a), (b), and (c) above are contained in Lemmas 6.17 and 6.18.
With these assertions proved, one can proceed roughly2 as follows. We define

θ̃K =
∑

I∨J=K
[ϕI ]I ∗ [ϕJ ]J ,

where the sum is taken over all pairs (I, J) for which I ∨ J = K. Because of the
exponential gain given in (b) this sum converges to a K-scaled bump function.
Moreover, because of (c), θ̃K satisfies the weak cancellation property. As a result,
the sum

∑
K ψ̃K converges to a flag kernel, and hence K1 ∗ K2 is a flag kernel as

was to be shown.
We comment briefly on the arguments needed to establish (b) and (c). Here we

use the strong cancellation properties of [ϕI ]I (or [ψJ ]J). For (b) we express [ϕI ]I as
a sum of derivatives with respect to appropriate coordinates, then re-express these
in terms of left-invariant vector fields, and finally pass these differentiation to [ψJ ]J .
The reverse may be done starting with cancellation of [ψJ ]J . To obtain (c), the
weak cancellation of [ϕI ]I ∗ [ψJ ]J , we begin the same way, but express [ϕI ]I in
terms of right-invariant vector fields and then pass these differentiations onto the
resulting convolution products. The mechanism underlying this technique is set
out in the various lemmas of Section 3.

The argument is a little more complex when we are in the case of equality
for some of the indices that arise in I or J . This in effect involves convolutions
with kernels belonging to coarser flags. The guiding principle for convolutions of
such bump functions (or kernels) is that if Kj are flag kernels corresponding to the
flags Fj , j = 1, 2, then K1 ∗ K2 is a flag kernel for the coarsest flag F that is finer
than F1 and F2. The combinatorics involved are illustrated by several examples
given in Sections 7.3 and 7.5.

2There are actually additional complications. We must first make a preliminary partition of
the set of all pairs (I, J), and the result is that K1 ∗ K2 is actually a finite sum of flag kernels.
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1.5. Lp estimates via square functions

The proof of the Lp estimates (Theorem 8.14) starts with the descending chain of
subgroups G = G1 ⊃ G2 ⊃ · · · ⊃ Gn, where

Gm =
{
x = (x1,x2, . . . ,xn) : x1 = 0, x2 = 0 , . . . , xm−1 = 0}

when m ≥ 2. We observe that the dilations δr restrict to automorphisms of the Gm.
We then proceed as follows:

(i) The standard (one-parameter) maximal functions and square functions on
each group Gm, as given in [3], are then “lifted” (or “transferred”) to the
group G.

(ii) Compositions of these lifted objects lead to (n-parameter) maximal functions
and square functions on G. Among these is the “strong” maximal function

M(f)(x) = sup
1

m(Rs)

∫
Rs

|f(xy−1)| dy ,

for which one can prove vector-valued Lp inequalities. Here Rs = {x : |xk| ≤
sdkk }, with (s1, . . . , sn) restricted to s1 ≤ s2 ≤ · · · ≤ sn. There are also a pair
of square functions, S and S, with the properties:

(1.8) ‖f ‖Lp ≤ Ap ‖S(f)‖Lp and ‖S(f)‖Lp ≤ A′
p ‖f ‖Lp , for 1 < p <∞ .

(iii) The connection of these square functions with our operators T , given by
Tf = f ∗ K with K a flag kernel, comes about because of the pointwise
estimate:

(1.9) S(Tf)(x) ≤ cS(f)(x) ,

which is Lemma 8.13 below.

Now, (1.8), together with (1.9), prove the Lp boundedness of our operators.
Among the ideas used to prove (1.9) is the notion of a “truncated” flag kernel:

such a kernel is truncated at “width a”, a ≥ 0, if it satisfies the conditions such
as (1.1), but with N1 + · · · + Nk replaced by a + N1 + · · · + Nk throughout (see
Definition 6.20). A key fact that is exploited is that a convolution of a bump of
width b with a truncated kernel of width a yields a truncated kernel of width a+b.
For this, see Theorem 8.7, and its consequence, Theorem 8.9.

1.6. Final remarks

The collection of operators with flag kernels contains both the automorphic (non-
isotropic) Calderón–Zygmund operators as well as the usual isotropic Calderón–
Zygmund operators with kernels of compact support (broadly speaking, the stan-
dard pseudo-differential operators of order 0). But flag kernels, by their definition,
may have singularities away from the origin. Thus the algebra we are considering
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consists of operators that are not necessarily pseudo-local. The study of a nar-
rower algebra that arises naturally, which consists of pseudo-local operators and
yet contains both types of Calderón–Zygmund operators, will be the subject of the
second paper [10] in this series.

The authors are grateful to Brian Street for conversations and suggestions about
the decomposition of flag kernels into sums of dilates of compactly supported func-
tions. We would also like to thank the referee for a very careful reading of the paper.
We note that the topic of this paper was the subject of several lectures given by
one of us (EMS), in particular at a conference in honor of F. Treves at Rutgers,
April, 2005, and at Washington University and UCLA in April and October 2008.
During the preparation of this paper we learned of the work of G�lowacki ([4], [5],
and [6]) where overlapping results are obtained by different methods. We should
also mention a forthcoming paper of Brian Street [12] that deals with the L2-theory
in a more general context than is done in the present paper.

2. Dilations and flag kernels on RN

Throughout the paper we shall use standard multi-index notation. Z denotes the
set of integers, and N, the set of non-negative integers. If α = (α1, . . . , αN ) ∈ NN ,
then |α| = α1 + · · · + αN and α! = α1! · · ·αN !. If x = (x1, . . . , xN ) ∈ RN ,
then xα = xα1

1 · · ·xαN

N . For 1 ≤ j ≤ N , ∂xj (or more simply ∂j) denotes the

differential operator ∂
∂xj

. If α ∈ NN , then ∂α denotes the partial differential

operator ∂α1
1 · · · ∂αN

N .

The space of infinitely differentiable real-valued functions on RN with compact
support is denoted by C∞0 (RN ) and the space of Schwartz functions is denoted
by S(RN ). The basic semi-norms on these spaces are defined as follows:

if ϕ ∈ C∞0 (RN ), ||ϕ||(m) = sup
{|∂αxϕ(x)| : |α| ≤ m, x ∈ RN

}
;

if ϕ ∈ S(RN ), ||ϕ||[M ] = sup
{|(1 + |x|e)α∂βxϕ(x)| : |α|+ |β| ≤M, x ∈ RN

}
.

Here |x|e denotes the usual Euclidean length of x ∈ RN .

2.1. The basic family of dilations

Fix positive real numbers 0 < d1 ≤ d2 ≤ · · · ≤ dN , and define a one-parameter
family of dilations on RN by setting

(2.1) δr[x] = r · x =
(
rd1x1, . . . , r

dNxN
)
.

Also fix a smooth homogeneous norm |x| on RN so that |r ·x| = r |x|. The homoge-
neous ball of radius r is B(r) = {x ∈ RN : |x| < r}, and the homogeneous dimen-
sion of RN (relative to this family of dilations) is Q = d1 + · · ·+ dN . Recall that
|x|e =

√
x21 + · · ·+ x2N denotes the ordinary Euclidean length of a vector x ∈ RN .

If m(x) = cxα = cxα1
1 · · ·xαN

N is a monomial, then m(r ·x) = rα1d1+···+αNdNm(x),
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and the homogeneous degree of m is Δ(m) = α1d1+ · · ·+αNdN . In particular, the
homogeneous degree of a constant is zero. We shall agree that if the homogeneous
degree of a monomial is negative, the monomial itself must be identically zero.
With this convention, if m is any monomial, we have

(2.2) Δ(∂jm) = Δ(m)− dj .

We denote byHd the space of real-valued polynomials which are sums of monomials
of homogeneous degree d. We have the following easy result:

Proposition 2.1. If P is a polynomial, then P ∈ Hd if and only if P (x) =∑
α∈Hd

cα x
α, where Hd =

{
α = (α1, . . . , αN) ∈ Nn | ∑N

j=1 αjdj = d
}
. Moreover,

(1) if P ∈ Hd, then P (r · x) = rd P (x);

(2) if P ∈ Hd1 and Q ∈ Hd2 , then PQ ∈ Hd1+d2 ;
(3) if P ∈ Hd, then ∂k(P )(x) ≡ 0 if dk > d.

2.2. Standard flags and flag kernels in RN

If X is an N -dimensional vector space, an n-step flag in X is a collection of sub-
spaces Xj ⊆ X , 1 ≤ j ≤ n, such that (0) � X1 � X2 � · · · � Xn−1 � Xn = X.
When X = RN we single out a special class of standard flags. These are param-
eterized by partitions N = a1 + · · · + an (where each aj is a positive integer) as
follows. We write

(2.3) RN = Ra1 ⊕ · · · ⊕ Ran ,

and we write x ∈ RN as x = (x1, . . . ,xn) with xj ∈ Raj . With an abuse of
notation, we identify Rak with vectors in RN of the form (0, . . . ,0,xk,0, . . . ,0).
Then the standard flag F associated to the partition N = a1 + · · ·+ an and to the
decomposition (2.3) is given by

(2.4) (0) ⊂ Ran ⊂ Ran−1 ⊕Ran ⊂ · · · ⊂ Ra2 ⊕ · · ·⊕Ran ⊂ Ra1 ⊕ · · ·⊕Ran = RN .

In dealing with such decompositions and flags, it is important to make clear
which variables in RN appear in which factor Ral . We can write x ∈ RN ei-
ther as x = (x1, . . . , xN ) with each xj ∈ R, or as x = (x1, . . . ,xn) with xl =
(xpl , . . . , xql) ∈ Ral so that ql = pl + al − 1. Denote by Jl = {pl, pl + 1, . . . , ql} the
set of subscripts corresponding to the factor Ral so that {1, . . . , N} is the disjoint
union J1 ∪ · · · ∪ Jn. There is a mapping π : {1, . . . , N} �→ {1, . . . , n} so that
j ∈ Jπ(j) for 1 ≤ j ≤ N . Thus for example π(10) = 3 means that the variable x10
belongs to the factor Ra3 .

With the family of dilations defined in (2.1), the action on the subspace Ral is
given by

(2.5) r · xl =
(
rdplxpl , . . . , r

dqlxql
)
.
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The homogeneous dimension of Ral is

(2.6) Ql = dpl + · · ·+ dql =
∑
j∈Jl

dj .

The function

(2.7) Nl(xl) = sup
pl≤s≤ql

|xs|1/ds

is a homogeneous norm on Ral so thatNl(r·xl) = r Nl(xl). If α=(α1, . . . , αN )∈NN ,
let ᾱl = (αpl , . . . , αql), and set

(2.8) [[ᾱl]] = αpldpl + · · ·+ αqldql =
∑
j∈Jl

αjdj .

We introduce a partial order on the set of all standard flags on RN .

Definition 2.2. Let A = (a1, . . . , ar) and B = (b1, . . . , bs) be two partitions of N
so that N = a1 + · · ·+ ar = b1 + · · ·+ bs.

(1) The partition A is finer than the partition B (or B is coarser than A) if there

are integers 1 = α1 < α2 < · · · < αs+1 = r + 1 so that bk =
∑αk+1−1
j=αk

aj . We
write A � B or B � A. If A � B but A �= B we write A ≺ B or B � A.

(2) If FA and FB are the flags corresponding to the two partitions and if A � B
(or A ≺ B), we say that the flag FA is finer than FB (or FB is coarser than
FA) and we also write FA � FB and FB � FA (or FA ≺ FB and FB � FA).

We recall from [9] the concept of a flag kernel on the vector space RN associated
to the decomposition Ra1 ⊕ · · · ⊕Ran , equipped with the family of dilations given
in equation (2.1). Let F be the standard flag given in (2.4). In order to formulate
the cancellation conditions on the flag kernel, we need notation which allows us to
split the variables {x1, . . . ,xn} into two disjoint sets. Thus if L = {l1, . . . , lα} and
M = {m1, . . . ,mβ} are complementary subsets of {1, . . . , n} so that α+β = n, let
Na = al1 + · · ·+alα and Nb = am1 + · · ·+amβ

. Write x ∈ RN as x = (x′,x′′) where
x′ = (xl1 , . . . ,xlα) and x′′ = (xm1 , . . . ,xmβ

). If f is a function on RNa and g is a
function on RNb , define a function f ⊗ g on RN by setting

f ⊗ g(x1, . . . ,xn) = f(xl1 , . . . ,xlα) g(xm1 , . . . ,xmβ
).

Definition 2.3. A flag kernel adapted to the flag F is a distribution K ∈ S′(RN )
which satisfies the following differential inequalities (part (a)) and cancellation
conditions (part (b)):

(a) For test functions supported away from the subspace x1 = 0, the distribution K
is given by integration against a C∞-function K. Moreover, for every α =
(α1, . . . , αN ) ∈ ZN there is a constant Cα so that if ᾱk = (αpk , . . . , αqk), then
for x1 �= 0, ∣∣∂αK(x)

∣∣ ≤ Cα n∏
k=1

[
N1(x1) + · · ·+Nk(xk)

]−Qk−[[ᾱk]].
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(b) Let {1, . . . , n} = L ∪ M , with L = {l1, . . . , lα}, M = {m1, . . . ,mβ}, and
L ∩M = ∅ be any pair of complementary subsets. For any ψ ∈ C∞0 (RNb) and
any positive real numbers R1, . . . , Rβ , put

ψR(xm1 , . . . ,xmβ
) = ψ(R1 · xm1 , . . . , Rβ · xmβ

).

Define a distribution K#
ψ,R ∈ S ′(Ral1+···+alr ) by setting〈K#

ψ,R, ϕ
〉

=
〈K, ψR ⊗ ϕ〉

for any test function ϕ ∈ S(Ral1+···+alr ). Then the distribution K#
ψ,R satisfies

the differential inequalities of part (a) for the decomposition Ral1 ⊕· · ·⊕ Ralr .
Moreover, the corresponding constants that appear in these differential in-
equalities are independent of the parameters {R1, . . . , Rs}, and depend only
on the constants {Cα} from part (a), the semi-norms of ψ, and the support of ψ.

The constants {Cα} in part (a) and the implicit constants in part (b) are called
the flag kernel constants for the flag kernel K.

Remarks 2.4. (a) This definition proceeds by induction on the length n of the
flag. The case n = 1 corresponds to Calderón–Zygmund kernels, and the in-
ductive definition is invoked in part (b).

(b) With an abuse of notation, the distribution K#
ψ,R is often written

K#
ψ,R(xl1 , . . . ,xlr ) =

∫
· · ·
∫
R

am1 ⊕···⊕Rams

K(x)ψR(xm1 , . . . ,xms) dxm1 · · · dxms .

3. Homogeneous vector fields

In Section 6.6 below, where we consider a nilpotent Lie group G whose underlying
space is RN , we will need to consider the families of left and right invariant vector
fields on G. At this stage, before we introduce the group structure, we consider
instead two spanning sets of vector fields {X1, . . . , XN} and {Y1, . . . YN} on RN

which are homogeneous with respect to the basic family of dilations given in (2.1);
this means that if Zj is either Xj or Yj for 1 ≤ j ≤ N , then Zj can be written3

(3.1) Zj [ψ](x) = ∂j [ψ](x) +
∑
dl>dj

P lj(x)∂l[ψ](x),

with P lj ∈ Hdl−dj . It follows from part (3) of Proposition 2.1 that ∂k(P lj ) ≡ 0
if dk > dl. Thus we can commute the operators given by multiplication by the
polynomial P lj and differentiation with respect to xl and also write

(3.2) Zj [ψ](x) = ∂j [ψ](x) +

N∑
dl>dj

∂l[P
l
jψ](x).

It follows from (3.1) or (3.2) that ZN = ∂N .

3Despite some risk of confusion, we do not introduce different notations for the coefficients
of Xj and Yj .
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Proposition 3.1. If P ∈ Hd and Zj is either Xj or Yj, then Zj [P ] ∈ Hd−dj , and
if dj > d, Zj [P ] ≡ 0.

Proof. It follows from (2.2) that if P ∈ Hd, then ∂l[P ] ∈ Hd−dl , and since P lj ∈
Hdl−dj , it follows from part (2) of Proposition 2.1 that P lj ∂xl

[P ] ∈ Hd−dj . Thus
Zj [P ] ∈ Hd−dj . The last conclusion then follows from part (3) of Proposition 2.1.

�

In equations (3.1) or (3.2), the vector fields {Zj} are written in terms of the
Euclidean derivatives. Because these equations are in upper triangular form, it is
easy to solve for the Euclidean derivatives in terms of the vector fields.

Proposition 3.2. For each 1 ≤ j ≤ N , let Zj denote either Xj or Yj. Then there
are polynomials Qlk ∈ Hdl−dk such that, for ψ ∈ S(RN ),

∂k[ψ](x) = Zk[ψ](x) +

N∑
dl>dk

Qlk(x)Zl[ψ](x) = Zk[ψ](x) +

N∑
dl>dk

Zl
[
Qlkψ

]
(x).

Proof. We argue by reverse induction on the index k. When k = N it follows
from equation (3.1) that ∂N = ZN = XN = YN . To establish the induction step,
suppose that the conclusion of the proposition is true for all indices greater than k.
From equation (3.1) and the induction hypothesis, for either choice of Zk we have

∂k[ψ] = Zk[ψ]−
N∑

dm>dk

Pmk ∂m[ψ] = Zk[ψ]−
N∑

dm>dk

Pmk

[
Zm[ψ] +

N∑
dl>dm

QlmZl[ψ]
]

= Zk[ψ]−
N∑

dm>dk

Pmk Zm[ψ]−
∑
dl>dk

[ ∑
dk<dm<dl

Pmk Q
l
m

]
Zl[ψ].

But according to part (2) of Proposition 2.1, Pmk Qlm ∈ Hdl−dk , and this completes
the proof. �

For ψ ∈ S(RN ) and t > 0 set ψt(x) = ψ(t−1 · x). Then multiplication by
a polynomial P ∈ Hd is an operator homogeneous of degree d in the sense that
P (x)ψt(x) = td(Pψ)t(x), and the vector fields Xj and Yj are operators homo-
geneous of degree −dj in the sense that Xj [ϕt](x) = t−dj (Xjϕ)t(x), Yj [ϕt](x) =
t−dj (Yjϕ)t(x). In particular, the commutators [Xj, Xk] and [Yj , Yk] are vector
fields which are homogeneous of degree −(dj + dk). It follows that we can write

[Xj , Xk] =
∑

dm≥dj+dk
Qmj,k(x) ∂m =

∑
dm≥dj+dk

Rmj,k(x)Zm, with Qmj,k, R
m
j,k∈Hdm−dj−dk ,

[Yj , Yk] =
∑

dm≥dj+dk̃
Qmj,k(x) ∂m =

∑
dm≥dj+dk̃

Rmj,k(x)Zm, with Q̃mj,k, R̃
m
j,k∈Hdm−dj−dk .

If the operators {Xj} and {Yj} are bases for a Lie algebra (as in the case of left

or right invariant vector fields), the coefficients {Rmj,k} and {R̃mj,k} are constants.
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Equations (3.1) or (3.2) express the vector fields {Zk} in terms of the standard
derivatives {∂j}, and Proposition 3.2 expresses the standard derivatives in terms of
the vector fields. We shall need analogous identities for products of r vector fields
Zk1 · · ·Zkr or products of r Euclidean derivatives ∂k1 · · · ∂kr . The formulas are
somewhat complicated, since they involve products of operators of various lengths.
To help with the formulation of the results, it will be convenient to introduce the
following notation:

Definition 3.3. Let k1, . . . , kr ∈ {1, . . . , N} be a set of r integers, possibly with
repetitions.

(1) For any non-empty set U ⊂ {1, . . . , r}, put dU =
∑

�∈U dk� and

I(U) = {m ∈ {1, . . . , N} : dm ≥ dU} .

Note that if U consists of two or more elements and m ∈ I(U), then dm >
sup�∈U dk� .

(2) For each integer 1 ≤ s ≤ r, let Urs denote the set of partitions of the set
{1, . . . , r} into s non-empty disjoint subsets U = {U1, . . . , Us}.

The following proposition then shows how to write products of vector fields in
terms of products of Euclidean derivatives.

Proposition 3.4. Let k1, . . . , kr ∈ {1, . . . , N} be a set of r integers, possibly with
repetitions. For 1 ≤ � ≤ r, let Zk� denote either Xk� or Yk� . Then there are
polynomials Pm�

U�
∈ Hdm�

−dU�
such that

Zk1 · · ·Zkr [ψ] =

r∑
s=1

∑
(U1,...,Us)∈Ur

s

∑
m1∈I(U1)

· · ·
∑

ms∈I(Us)

∂m1 · · · ∂ms

[
Pm1

U1
· · ·Pms

Us
ψ
]
.

If s = r, so that Uj = {kj}, the polynomial P
kj
Uj

(x) ≡ 1.

Proof. We argue by induction on r. The case r = 1 is contained in equation (3.2),
so suppose we are given vector fields {Zk1 , . . . , Zkr+1} where each Zk� is either Xk�

or Yk� . Then, by induction,

Zk1 · · ·Zkr+1 [ψ] = Zk1 · · ·Zkr
[
Zkr+1 [ψ]

]
=

r∑
s=1

∑
(U1,...,Us)∈Ur

s

∑
m1∈I(U1)

· · ·
∑

ms∈I(Us)

∂m1 · · · ∂ms

[
Pm1

U1
· · ·Pms

Us

[
Zkr+1 [ψ]

]]
.(3.3)

Since we can write

Zkr+1 [ψ] = ∂kr+1 [ψ] +
∑

{m : dm>dkr+1
}
∂m

[
Pmkr+1

ψ
]

where Pmkr+1
∈ Hdm−dkr+1

, the derivative ∂m1 · · ·∂ms

[
Pm1

U1
· · ·Pms

Us
[Zkr+1 [ψ]]

]
in the
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last line of (3.3) can be written

∂m1 · · · ∂ms

[
Pm1

U1
· · ·Pms

Us

[
Zkr+1 [ψ]

]]
= ∂m1 · · · ∂ms

[
Pm1

U1
· · ·Pms

Us

[
∂kr+1 [ψ]

]]
+

∑
dm>dkr+1

∂m1 · · · ∂ms

[
Pm1

U1
· · ·Pms

Us

[
∂m[Pmkr+1

ψ]
]]

= ∂m1 · · · ∂ms∂kr+1

[
Pm1

U1
· · ·Pms

Us
ψ
]

− ∂m1 · · · ∂ms

[
∂kr+1

[
Pm1

U1
· · ·Pms

Us

]
ψ
]

+
∑

dm>dkr+1

∂m1 · · · ∂ms∂m
[
Pm1

U1
· · ·Pms

Us
Pmkr+1

ψ
]

−
∑

dm>dkr+1

∂m1 · · · ∂ms

[
∂m

[
Pm1

U1
· · ·Pms

Us
]Pmkr+1

ψ
]
.

The terms in the first and third lines of the last expression have the right form
for the case r + 1. Thus in the term ∂m1 · · · ∂ms∂kr+1

[
Pm1

U1
· · ·Pms

Us
ψ
]
, r has been

replaced by r + 1, and the set {1, . . . , r, r + 1} has been decomposed into s + 1

subsets {U1, . . . , Us, Us+1} where Us+1 = {kr+1}, and P
kr+1

Us+1
(x) ≡ 1. The same is

true for each term ∂m1 · · ·∂ms∂m
[
Pm1

U1
· · ·Pms

Us
Pmkr+1

ψ
]
, except that PmUs+1

= Pmkr+1
.

For the terms in the second and fourth lines, we use the product rule; we write
∂kr+1

[
Pm1

U1
· · ·Pms

Us

]
and ∂m

[
Pm1

U1
· · ·Pms

Us
] as a sum of s terms. For example,∑

dm>dkr+1

∂m1 · · · ∂ms

[
∂m

[
Pm1

U1
]Pm2

U2
· · ·Pms

Us
Pmkr+1

ψ
]

= ∂m1 · · · ∂ms

[( ∑
dm>dkr+1

∂m
[
Pm1

U1
]Pmkr+1

)
Pm2

U2
· · ·Pms

Us
ψ
]

= ∂m1 · · · ∂ms

[
P̃m1

Ũ1
Pm2

U2
· · ·Pms

Us
ψ
]

where P̃m1

Ũ1
=
∑

dm>dkr+1
∂m

[
Pm1

U1
]Pmkr+1

∈ Hdm1−dU1
−dkr+1

. These terms also have

the right form for the case r + 1, since we now let Ũ1 = U1 ∪ {kr+1}, so that

{k1, . . . , kr+1} = Ũ1 ∪ U2 ∪ · · · ∪ Us. This establishes the proposition. �

The next result shows how to write products of Euclidean derivatives in terms
of products of vector fields. Since the proof is similar to that of Proposition 3.4,
we omit it.

Proposition 3.5. Let k1, . . . , kr ∈ {1, . . . , N} be a set of r integers, possibly with
repetitions, chosen from the set {1, . . . , N}. There are polynomials Qm�

U�
∈ Hdm�

−dU�

such that

∂k1 · · · ∂kr [ψ] =
r∑
s=1

∑
(U1,...,Us)∈Ur

s

∑
m1∈I(U1)

· · ·
∑

ms∈I(Us)

Zm1 · · ·Zms [Qm1

U1
· · ·Qms

Us
ψ].

Here each Zj is either Xj or Yj. If s = r, so that U� = {k�}, the polyno-
mial Qm�

U�
(x) ≡ 1.
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4. Normalized bump functions and their dilations

4.1. Families of dilations

Fix the family of dilations on RN given in equation (2.1). We introduce an N -para-
meter family of dyadic4 dilations. For f ∈ L1(RN ) and I ∈ ZN set

(4.1)

2I · x = (2−d1i1x1, . . . , 2−dN iNxN ),

[
f
]
I
(x) = 2

−
N∑

�=1

d�i�
f(2I · x).

Then
∣∣∣∣[f ]I

∣∣∣∣
L1(RN )

= ||f ||L1(RN ). The set of monotone increasing indices is de-

noted by

(4.2) EN =
{
I = (i1, . . . , iN) ∈ ZN

∣∣ i1 ≤ i2 ≤ · · · ≤ iN} .
When we consider flag kernels corresponding to the decomposition A given by
N = a1 + · · ·+ an and RN = Ra1 ⊕ · · · ⊕Ran , we consider the n-parameter family
of dilations parameterized by n-tuples I = (i1, . . . , in) ∈ Zn:

(4.3)

2I · x = (2i1 · x1, . . . , 2
in · xn), where

2i� · x� = (2−dp� i�xp� , . . . , 2
−dq� i�xq�), and

[f ]I(x) = 2
−

n∑
�=1

Q�i�
f(2I · x).

The set of monotone increasing indices in this case is denoted by

(4.4) En =
{
I = (i1, . . . , in) ∈ Zn

∣∣ i1 ≤ i2 ≤ · · · ≤ in} .
Given the decomposition A, there is a mapping pA : En �→ EN given by

(4.5) pA(i1, . . . , in) =
( a1︷ ︸︸ ︷
i1, . . . , i1 ,

a2︷ ︸︸ ︷
i2, . . . , i2 , . . . ,

an︷ ︸︸ ︷
in, . . . , in

)
.

We shall want to write flag kernels as sums of dilates [ϕ]I of normalized bump
functions ϕ. Roughly speaking, a family of functions {ϕα} in C∞0 (RN ) or S(RN )
is normalized if one has uniform control of the supports (in the case of C∞0 (RN ))
and of the semi-norms ||ϕα||(m) or ||ϕα||[M ]. The following definition will simplify
the precise statements of our results.

Definition 4.1. (1) If ϕ, ϕ̃ ∈ C∞0 (Rn), then ϕ̃ is normalized in terms of ϕ if 5

there are constants C,Cm > 0 and integers pm ≥ 0 so that:

(a) If the support of ϕ is contained in the ball B(ρ), then the support of ϕ̃ is
contained in the ball B(Cρ).

(b) For every non-negative integer m, ||ϕ̃||(m) ≤ Cm ||ϕ||(m+pm).

4In Section 8, we shall use a continuous version of this dyadic family. If t = (t1, . . . , tN ) with

each tj > 0, we will set ft(x) = f(td11 x1, . . . , t
dN
N xN ).

5We shall sometimes use the expressions ‘normalized with respect to’ or ‘normalized relative
to’ as a variant of ‘normalized in terms of’.
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(2) If ψ, ψ̃ ∈ S(Rn), then ψ̃ is normalized in terms of ψ if there are constants

CN > 0 and integers pN ≥ 0 so that ||ψ̃||[N ] ≤ CN ||ψ||[N+pN ] for every non-
negative integer N .

(3) If P, P̃ are polynomials, then P̃ is normalized in terms of P if P̃ is obtained
from P by multiplying each coefficient by a constant of modulus less than or
equal to 1.

If ϕ ∈ C∞0 (RN ), it is sometimes convenient to write ϕ as a sum of products of
functions of a single variable. That this is possible follows from the following fact:

Proposition 4.2. Let ϕ ∈ C∞0 (RN ). Then for each α ∈ NN and 1 ≤ k ≤ N there
are functions ϕα,k ∈ C∞0 (RN ) so that

ϕ(x1, . . . , xN ) =
∑
α∈NN

cαϕα,1(x1) · · ·ϕα,n(xn),

where for any M > 0, there is a constant CM such that |cα| ≤ CM (1 + |α|)−M .

Proposition 4.2 follows easily by appropriately periodizing ϕ, expanding ϕ in a
rapidly converging Fourier series, and then multiplying by appropriate cutoff func-
tions ψ(x1) · · ·ψ(xN ).

4.2. Differentiation and multiplication of dilates of bump functions

In this section we study the action of differentiation or multiplication by a homoge-
neous polynomial on dilates of bump functions. The key results are Proposition 4.7
and Corollary 4.8 below. We begin with the following result, which follows easily
from the definitions and the chain rule:

Proposition 4.3. Let ψ ∈ S(RN ). Then

(4.6) 2+dkik ∂k[ψ]I(x) = [∂kψ]I(x) and 2−dkik xk [ψ]I(x) = [xk ψ]I(x).

More generally, if I = (i1, . . . , iN ) ∈ ZN , and α ∈ NN , then

(4.7) 2+[[α·I]] ∂α[ψ]I =
[
∂αψ

]
I

and 2−[[α·I]]xα[ψ]I =
[
xαψ

]
I
,

where [[α · I[] =
∑N

k=1 αkdkik.

We will frequently use the following generalization of the second identity in
equation (4.7):

Proposition 4.4. Let P ∈ Hd where d < dl. If I ∈ EN , there is a polynomial
PI ∈ Hd, normalized in terms of P , so that

P (x)[ψ]I(x) = 2d il
[
PIψ

]
I
(x)

for ψ ∈ S(RN ).
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Proof. Write P (x) =
∑
α∈Hd

cαx
α with

Hd = {α = (α1, . . . , αN ) ∈ NN : α1d1 + · · ·+ αNdN = d}.
Since d < dl, if α ∈ Hd we have αj = 0 for j ≥ l. According to Proposition 4.3, it
follows that P (x)[ψ]I(x) =

∑
α∈Hd

cα2[[α·I]]
[
xαψ

]
I
(x), and

[[α ·I]] =

l−1∑
m=1

αmdmim= il

l−1∑
m=1

αmdm−
l−1∑
m=1

αmdm(il−im) = d il−
l−1∑
m=1

αmdm(il−im).

Thus
P (x)

[
ψ]I(x) = 2d il

[ ∑
α∈Hd

cα2−
∑l−1

m=1 αmdm(il−im)xαψ
]
I
(x).

Since I ∈ EN , each exponent −∑l−1
m=1 αmdm(il − im) ≤ 0. The proof is complete

if we set PI(x) =
∑

α∈Hd
cα2−

∑l−1
m=1 αmdm(il−im)xα. �

Remark. Equation (4.6) shows that the operator 2dkik∂xk
, applied to the I-dilate

of a function ϕ, is the I-dilate of a function ϕ̃ normalized in terms of ϕ, and
multiplying the I-dilate of function ϕ by 2−dkikxk is the I-dilate of a function ϕ̃
normalized in terms of ϕ. Thus at ‘scale I’, the operators 2dkik∂xk

and 2−dkikxk
are ‘invariant’; they map the collection of I-dilates of normalized functions to itself.

A key observation, which is used when we consider convolution on homogeneous
nilpotent groups, is that we can replace the operator 2dkik∂xk

with the operator
2dkikZk, or conversely the operator 2dkikZk by the operator 2dkik∂xk

, at the cost
of introducing an error involving terms 2dlilZl or 2dlil∂l, where l > k, multiplied
by a ‘gain’ 2−dk(il−ik). The precise statement is given in Proposition 4.5 below.

Let P lk ∈ Hdl−dk be the homogeneous polynomials that are coefficients of a vec-
tor field Zk as in equations (3.1) or (3.2), and let Qlk ∈ Hdl−dk be the polynomials
in Proposition 3.2. Since dl − dk < dl, we can use Proposition 4.4 to write

(4.8)
P lk(x)[ψ]I(x) = 2il(dl−dk)

[
P lk,Iψ

]
I
(x),

Qlk(x)[ψ]I(x) = 2il(dl−dk)
[
Qlk,Iψ

]
I
(x),

where P lk,I , Q
l
k,I ∈ Hdl−dk are normalized relative to P lk and Qlk

Proposition 4.5. Let I ∈ EN , and let {P lk,I} and {Qlk,I} be the homogeneous

polynomials defined in equation (4.8). Let ψ ∈ C∞0 (RN ) (respectively ψ ∈ S(RN )).
Then,

(2dkikZk)[ψ]I = (2dkik∂k)[ψ]I +

N∑
dl>dk

2−dk(il−ik) (2dlil∂l)
[
P lk,Iψ

]
I
,

(2dkik∂k)[ψ]I = (2dkikZk)[ψ]I +

N∑
dl>dk

2−dk(il−ik)(2dlilZl)
[
Qlk,Iψ

]
I
.
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The functions {P lk,Iψ} and {Qlk,Iψ} are normalized with respect to ψ in C∞0 (RN )

(respectively in S(RN )).

Proof. The first identity follows immediately from equations (3.2) and (4.8). To
obtain the second, use Proposition 3.2 and equation (4.8); we have

2dkik∂xk
[ψ]I = 2dkikZk[ψ]I + 2dkik

N∑
l=k+1

ZlQ
l
k(x)[ψ]I

= 2dkikZk[ψ]I +
N∑

l=k+1

2−dk(il−ik)(2dlilZl)
[
Qlk,Iψ

]
I
,

which is the desired formula. �

Corollary 4.6. If ϕ ∈ C∞0 (RN ) (respectively ϕ ∈ S(RN )) and if I ∈ EN , then
there is a function ϕ̃ ∈ C∞0 (RN ) (respectively ϕ̃ ∈ S(RN )), normalized with respect
to ϕ, such that 2dkikZk[ϕ]I = [ϕ̃]I .

We shall need an analogue of Proposition 4.5 for r-fold products of vector fields
or Euclidean derivatives. If {Pml

Ul
} and {Qml

Ul
} are the polynomials appearing

in Propositions 3.4 and 3.5, we use Proposition 4.4 to define polynomials Pml

Ul,I

and Qml

Ul,I
by the formulas

(4.9)
Pml

Ul
(x)[ψ]I (x) = 2il(dml

−dUl
)
[
Pml

Ul,I
ψ
]
I
(x),

Qml

Ul
(x)[ψ]I (x) = 2il(dml

−dUl
)
[
Qml

Ul,I
ψ
]
I
(x).

Proposition 4.7. Let k1, . . . , kr ∈ {1, . . . , N} be a set of r integers, possibly with
repetitions, and let I ∈ EN . Let Z� denote either X� or Y�. Then

(2dk1 ik1Zk1) · · ·(2dkr ikrZkr )[ψ]I

=

r∑
s=1

∑
(U1,...,Us)∈Ur

s

∑
m1∈I(U1)

· · ·
∑

ms∈I(Us)

2

r∑
�=1

dk� ik�−
s∑

�=1

im�
dU�

· (2dm1 im1 ∂m1) · · · (2dms ims∂ms)
[
Pm1

U1,I
· · ·Pms

Us,I
ψ
]
I
,

and

(2dk1 ik1∂k1) · · ·(2dkr ikr ∂kr )[ψ]I

=

r∑
s=1

∑
(U1,...,Us)∈Ur

s

∑
m1∈I(U1)

· · ·
∑

ms∈I(Us)

2

r∑
�=1

dk� ik�−
s∑

�=1

im�
dU�

· (2dm1 im1Zm1) · · · (2dms imsZms)
[
Qm1

U1,I
· · ·Qms

Us,I
ψ
]
I
.

In either identity, if s = r so that U� = {k�}, 1 ≤ � ≤ r, the polynomials

P k�U�
(x) = Qk�U�

(x) ≡ 1.
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Proof. Using Proposition 3.4, we have

(2dk1 ik1 ∂k1) · · · (2dkr ikr ∂kr )[ψ]I

= 2

r∑
�=1

dk� ik�
r∑
s=1

∑
U∈Ur

s

s∑
j=1

∑
mj∈I(Uj)

Zm1 · · ·Zms

[
Qm1

U1
· · ·Qms

Us
[ψ]I

]
= 2

r∑
�=1

dk� ik�
r∑
s=1

∑
U∈Ur

s

s∑
j=1

∑
mj∈I(Uj)

2

s∑
�=1

im�
(dm�

−dU�
)
Zm1 · · ·Zms

[
Qm1

U1,I
· · ·Qms

Us,I
ψ
]
I

=

r∑
s=1

∑
U∈Ur

s

s∑
j=1

∑
mj∈I(Uj)

2

r∑
�=1

dk� ik�−
s∑

�=1

im�
dU�

· (2dm1 im1Zm1) · · · (2dms imsZms)
[
Qm1

U1,I
· · ·Qms

Us,I
ψ
]
I
.

This completes the proof of the first identity. The second identity is established in
the same way. �

In Proposition 4.7, we can rewrite the exponent of the power of 2 as follows.
Having chosen U = (U1, . . . , Us) ∈ Urs , there is a unique mapping σ = σU :
{1, . . . , r} → {1, . . . , s} so that � ∈ Uσ(�) for 1 ≤ � ≤ r. Then

r∑
�=1

dk�ik� −
s∑
�=1

im�
dU�

=

r∑
�=1

dk� ik� −
r∑
�=1

imσ(�)
dk� = −

r∑
�=1

dk�(imσ(�)
− ik�).

Since � ∈ Uσ(�) and mσ(�) ∈ I(Uσ(�)), it follows that dmσ(�)
≥ dUσ(�)

≥ dk� , with
equality only possible if Uσ(�) = {σ(�)}. Thus if I ∈ EN , it follows that imσ(�)

≥ ik� ,
in which case

2
∑r

�=1 dk� ik�−
∑s

�=1 im�
dU� ≤ 2

−ε∑r
�=1(imσ(�)

−ik� ),

where we can take ε = d1 > 0.

We can now recast the identities in Proposition 4.7 in a way which, although
losing some information, makes them more useful and easier to work with when
dealing with flag kernels.

Corollary 4.8. Fix a decomposition RN = Ra1 ⊕ · · · ⊕ Ran. Let k1, . . . , kr ∈
{1, . . . , N} be a set of r integers, possibly with repetitions, with k� ∈ Jπ(�).6 For
1 ≤ � ≤ r, let Zk� denote either Xk� or Yk� . Let I ∈ En, and let ψ ∈ S(RN )
or C∞0 (RN ).

(1) The function (2dk1 iπ(1)Zk1) · · · (2dkr iπ(r)Zkr )[ψ]I can be written as a finite sum
of terms of the following form. Decompose the set {1, . . . , r} into two disjoint
complementary subsets A and B with π(j) �= n for any j ∈ A and B �= ∅. Let

6Recall from page 638 that π : {1, . . . , N} → {1, . . . , n}; for any coordinate xj , 1 ≤ j ≤ N ,
then xj is a coordinate in the factor R

aπ(j) , and Jπ(j) is the set of indices of all the coordinates

in R
aπ(j) .
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B = {�1, . . . , �s}, and choose integers m̄ = {m1, . . . ,ms} so that each mt ∈ J�t .
Then a typical term in the expansion of (2dk1 iπ(1)Zk1) · · · (2dkr iπ(r)Zkr )[ψ]I is

2−ε
∑

j∈A(iπ(j)+1−iπ(j)) (2dm1 iπ(1)∂m1) · · · (2dms iπ(s)∂ms)
[
ψA,B,m̄

]
I
,

where ψA,B,m̄ is normalized relative to ψ.

(2) The function (2dk1 iπ(1)∂k1) · · · (2dkr iπ(r)∂kr )[ψ]I can be written as a finite sum
of terms of the following form. Decompose the set {1, . . . , r} into two disjoint
complementary subsets A and B with π(j) �= n for any j ∈ A and B �= ∅. Let
B = {�1, . . . , �s}, and choose integers m̄ = {m1, . . . ,ms} so that each mt ∈ J�t .
Then a typical term in the expansion of (2dk1 iπ(1)∂k1) · · · (2dkr iπ(r)∂kr )[ψ]I is

2−ε
∑

j∈A(iπ(j)+1−iπ(j)) (2dm1iπ(1)Zm1) · · · (2dms iπ(s)Zms)
[
ψA,B,m̄

]
I
,

where ψA,B,m̄ is normalized relative to ψ.

Remarks 4.9. (a) The essential point of part (1) in the corollary is that, when
replacing the operator

(2dk1 iπ(1)Zk1) · · · (2dkr iπ(r)Zkr)[ψ]I

with a sum of terms of the form

2−ε
∑

j∈A(iπ(j)+1−iπ(j)) (2dm1 iπ(1)∂m1) · · · (2dms iπ(s)∂ms)
[
ψA,B,m̄

]
I
,

either the factor (2dk� iπ(�)Zk�) is replaced by a term (2dm�
iπ(�)∂m�

), where the co-
ordinate xm�

belongs to the same subspace as xk� and hence has the same dilation
iπ(�), or it is replaced by the gain 2−ε(iπ(�)+1−iπ(�)). Part (2) is the same assertion
with the roles of the vector fields and Euclidean differentiation interchanged.

(b) One term in the expansion of (2dk1 iπ(1)Zk1) · · · (2dkr iπ(r)Zkr)[ψ]I in part (1)
arises by letting A = ∅ so that B = {1, . . . , r}, and then choosing mr = kr. We
have seen that in this case the function ψA,B,m̄ = ψ, so we get the term

(2dk1 iπ(1)∂k1) · · · (2dkr iπ(r)∂kr )[ψ]I .

Every other term in the expansion then involves either a gain 2−ε(iπ(�)+1−iπ(�)) or
the replacement of a variable xk� by a different variable xm�

with dm�
> dk� . We

shall say that any term of the form

2−ε
∑

j∈A(iπ(j)+1−iπ(j)) (2dm1 iπ(1)∂m1) · · · (2dms iπ(s)∂ms)
[
ψA,B,m̄

]
I
,

where either A �= ∅ or some dm�
> dk� is an allowable error. Thus the difference

(2dk1 iπ(1)Zk1) · · · (2dkr iπ(r)Zkr)[ψ]I − (2dk1 iπ(1)∂k1) · · · (2dkr iπ(r)∂kr )[ψ]I

is a sum of allowable errors.

(c) Since Euclidean derivatives commute, it follows that if σ is any permutation
of the set {1, . . . , r}, then the difference

(2dk1 iπ(1)Zk1) · · · (2dkr iπ(r)Zkr)[ψ]I − (2dk1 iπ(1)Zkσ(1)
) · · · (2dkr iπ(r)Zkσ(r)

)[ψ]I

is a sum of allowable errors.
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5. Cancellation

A function is often said to have cancellation if its average or integral is zero. For
our purposes, we shall need a more refined notion involving integrals in some subset
of variables. Let J = {j1, . . . , js} ⊆ {1, . . . , N}. If ψ ∈ S(RN ), write

(5.1)

∫
ψ(x) dxJ =

∫
Rs

ψ(x1, . . . , xN ) dxj1 · · · dxjs .

Note that
∫
ψ(x) dxJ is then a function of the variables xk for which k /∈ J . We say

that a function ψ has cancellation in the variables {xj1 , . . . , xjs} if
∫
Rs ψ(x) dxJ ≡ 0,

where J = {j1, . . . , js}. Later, in Section 5.2, we shall give additional definitions
of ‘strong cancellation’ and ‘weak cancellation’ for a function ψ.

5.1. Cancellation and the existence of primitives

We begin by showing that cancellation in certain collections of variables is equiv-
alent to the existence of appropriate primitives.

Lemma 5.1. Let ψ ∈ S(RN ), and let Jk ⊆ {1, . . . , n} be non-empty subsets for
1 ≤ k ≤ r. If the sets {Jk} are mutually disjoint, then the following two statements
are equivalent:

(a) For 1 ≤ k ≤ r,
∫
ψ(x) dxJk

= 0.

(b) There are functions ψj1,...,jr ∈ S(RN ), normalized with respect to ψ, such that

ψ(x) =
∑
j1∈J1

· · ·
∑
jr∈Jr

∂j1 · · · ∂jrψj1,...,jr (x).

Moreover, if the function ψ ∈ C∞0 (RN ), then we can choose the functions ψj1,...,jr ∈
C∞0 (RN ) normalized with respect to ψ.

It follows easily from the Fundamental Theorem of Calculus that (b) implies (a).
The main content of the lemma is thus the opposite implication. This will follow
by induction on r from the following assertion:

Proposition 5.2. Let ψ ∈ C∞0 (RN ). Suppose that J1, J2 ⊂ {1, . . . , N} are non-
empty and disjoint. If

∫
ψ(x) dxJ1 =

∫
ψ(x) dxJ2 = 0, then for each k ∈ J1 there

is a function ψk ∈ C∞0 (RN ), normalized relative to ψ, so that:

(i) we can write ψ =
∑
k∈J1

∂kψk ;

(ii) for each k ∈ J1 we still have
∫
ψk(x) dxJ2 = 0.

If ψ ∈ S(RN ), the same conclusions hold except that the functions ψk ∈ S(RN )
and are normalized relative to ψ.
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Proof. By relabeling the coordinates, we can assume that J1 = {1, . . . , k}, and
that J2 ⊆ {k + 1, . . . , N}. Suppose that ψ has compact support in the set B =
{x ∈ RN : |xj | < aj}. Choose χ ∈ C∞0 (R) with support in [−1,+1] such that∫
R
χ(s) ds = 1, and put χj(t) = a−1

j χ(a−1
j t) so that χj is supported in [−aj ,+aj]

and still has integral equal to 1. Put

ϕ1(x) = ψ(x) − χ1(x1)

∫
R

ψ(s, x2, . . . , xN ) ds

and for 2 ≤ j ≤ k, put

ϕj(x) =
[ j−1∏
l=1

χl(xl)
] ∫

Rj−1

ψ(s1, . . . , sj−1, xj , . . . , xN ) ds1 · · · dsj−1

−
[ j∏
l=1

χl(xl)
] ∫

Rj

ψ(s1, . . . , sj , xj+1, . . . , xN ) ds1 · · · dsj .

Then the functions {ϕj} have the following properties. First, since
∫
ψ(x) dxJ1 = 0,

the second integral in the definition of the last function ϕk is zero, and hence
ψ(x) =

∑k
j=1 ϕj(x). Next, it is clear that each ϕj is supported in the set B.

Finally, for 1 ≤ j ≤ k,∫
R

ϕj(x1, . . . , xj−1, s, xj+1, . . . , xN ) ds = 0,

so if we put

(5.2)

ψj(x) =

∫ xj

−∞
ϕj(x1, . . . , xj−1, s, xj+1, . . . , xN ) ds

= −
∫ ∞

xj

ϕj(x1, . . . , xj−1, s, xj+1, . . . , xN ) ds,

then ψj is supported on the set B, and ϕj(x) = ∂jψj(x). It is clear that one can
estimate the size of the derivatives of the functions {ψj} in terms of the derivatives
of ψ, so ψj is normalized in terms of ψ. Moreover, since

∫
ψ(x) dxJ2 = 0, it follows

from their definitions that
∫
ϕj(x) dxJ2 = 0, and hence

∫
ψj(x) dxJ2 = 0. This

completes the proof if ψ ∈ C∞0 (RN ). If ψ ∈ S(RN ), the proof goes the same way.
One only has to observe from equation (5.2) that the functions ψj ∈ S(RN ). This
completes the proof of Proposition 5.2, and hence Lemma 5.1 is also established.

�

5.2. Strong and weak cancellation

In this section we introduce two kinds of cancellation conditions that can be im-
posed on functions in S(RN ) or C∞0 (RN ). As discussed in Section 1.1, these con-
cepts are used in the context of the decomposition RN = Ra1 ⊕ · · · ⊕ Ran given
in (2.3), where a1 + · · ·+an = N and each aj ≥ 1. Recall that if x ∈ RN , we write
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x = (x1, . . . ,xn) where xl = (xpl , xpl+1, . . . , xql) ∈ Ral . We then let Jl denote the
set of integers {pl, pl + 1, . . . , ql}. If ϕ ∈ S(RN ), set

(5.3)

∫
Ral

ϕ(x1, . . . ,xn) dxl =

∫
Ral

ϕ(x1, . . . ,xn) dxpl · · · dxql .

Definition 5.3. Fix the decomposition (2.3), and let ϕ ∈ S(RN ). The function ϕ
has strong cancellation if and only if∫

Ral

ϕ(x1, . . . ,xn) dx� ≡ 0, 1 ≤ � ≤ n.

That is, ϕ has strong cancellation if and only if it has cancellation in each collection
of variables {xpl , . . . , xql} for 1 ≤ l ≤ n.

Remark 5.4. It follows from Proposition 5.2 that ϕ has strong cancellation if and
only if there are functions ϕj1,...,jn normalized with respect to ϕ so that

ϕ =
∑
j1∈J1

· · ·
∑
jn∈Jn

∂j1 · · · ∂jnϕj1,...,jn .

We now introduce a weaker cancellation condition.

Definition 5.5. Fix the decomposition (2.3) of RN . Let ϕ ∈ S(RN ) or ϕ ∈
C∞0 (RN ), and let I = (i1, . . . in) ∈ En. The function ϕ has weak cancellation with
parameter ε > 0 relative to the multi-index I if and only if

ϕ =
∑

A∪B={1,...,n}
A={α1,...,αr}

n/∈B

( ∏
s∈B

2−ε(is+1−is)
) ∑
j1∈Jα1

· · ·
∑

jr∈Jαr

(
∂j1 · · · ∂jr

)
[ϕA,B,j1,...,jr ]

where each ϕA,B,j1,...,jr is normalized relative to ϕ. Here the outer sum is taken
over all decompositions of the set {1, . . . , n} into two disjoint subsets A and B such
that n ∈ A.

According to Remark 5.4, ϕ has strong cancellation if it can be written as a
sum of functions of the form ∂j1 · · · ∂jnϕ; i.e., as nth-derivatives of functions where
there is one derivative in a variable from each of the n subspaces Ral . Definition 5.5
imposes a weaker condition; a function ϕ has weak cancellation if again it is a sum
of terms, but the term ∂j1 · · · ∂jnϕj1,...,jn is itself replaced by a new sum of terms.
If a derivative ∂jl does not appear, so that the term does not have cancellation in
the subspace Ral , there is instead a gain given by 2−ε(il+1−il).

Remarks 5.6. There will be occasions when we will use the fact that a function ϕ
has weak cancellation with respect to I ∈ En to draw inferences about existence of
primitives and smallness in only some of the subspaces {Ral}. In particular, the
following assertions follow easily from Definition 5.5:
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(1) Suppose that I ∈ En and that ϕ has weak cancellation relative to I. Let
M ⊂ {1, . . . , n}. Then

ϕ =
∑

A∪B=M
A={α1,...,αr}

n/∈B

( ∏
s∈B

2−ε(is+1−is)
) ∑
j1∈Jα1

· · ·
∑

jr∈Jαr

(
∂j1 · · · ∂js

)
[ϕ̃A,B,j1,...,jr ]

where each ϕ̃A,B,j1,...,jr is normalized relative to ϕ, and where the outer sum
is over all subsets B ⊂M , with the understanding that if n ∈M then n /∈ B.

(2) In particular, if we take M = {1}, it follows that if ϕ has weak cancellation
relative to I ∈ En, we can write

ϕ =

a1∑
r=1

∂r[ϕr] + 2−ε(i2−i1)ϕ0

where {ϕ0, ϕ1, . . . , ϕa1} are normalized relative to ϕ. Here, the derivatives are
with respect to the variables in the first subspace Ra1 .

We can also characterize weak cancellation in terms of the “smallness” of inte-
grals, to be compared with the characterization of strong cancellation in terms of
the vanishing of integrals given in Lemma 5.1. For any partition {1, . . . , n} = A∪B
with A = {j1, . . . , ja} and B = {k1, . . . , kb}, write x ∈ RN as x = (xA,xB)
where xA = (xj1 , . . . ,xja), xB = (xk1 , . . . ,xkb). Let dxA = dxj1 · · · dxja , and let
dxB = dxk1 · · · dxkb .

Proposition 5.7. Let ε > 0 and I ∈ En. A function ψ ∈ C∞0 (RN ) has weak cancel-
lation with parameter ε relative to I if and only if for every partition {1, . . . , n} =
A ∪B into disjoint subsets we have∫

⊕
k∈B Rak

ψ(xA,xB) dxB =

⎧⎨⎩ 0 if n ∈ B,[∏
k∈B 2−ε(ik+1−ik)

]
ψA(xA) if n /∈ B,

where ψA ∈ S(
⊕

j∈A Raj ) is normalized relative to ψ. If ψ ∈ C∞
0 (RN ), the func-

tions ψA ∈ C∞
0 (

⊕
j∈A Raj ).

Proof. It is clear that if ψ has weak cancellation, then it satisfies the condition of
Proposition 5.7, so the main content is the opposite implication.

Let χl ∈ C∞0 (Ral) have support in the set where |xl| ≤ 1, with
∫
Ral

χ(xl) dxl = 1.
For ψ ∈ S(RN ) and 1 ≤ l ≤ N , define

Ll[ψ](x) = ψ(x)− χl(xl)
∫
Ral

ψ(x) dxl,

Ml[ψ](x) = χl(xl)

∫
Ral

ψ(x) dxl.

It is easy to check that the operators {L1, . . . , Ln,M1, . . . ,Mn} all commute, and
that ∫

Ral

Ml[ψ](x) dxl =

∫
Ral

ψ(x) dxl and

∫
Ral

Ll[ψ](x) dxl = 0.
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Since Ll +Ml is the identity operator, if ψ ∈ S(RN ),

ψ(x) =
n∏
l=1

(Ll +Ml)[ψ](x)

=
∑

A∪B={1,...,n}

( ∏
j∈A

Ll

)( ∏
k∈B

Mk

)
[ψ](x) =

∑
A∪B={1,...,n}

ψA,B(x).

It is clear that the functions {ψA,B} are normalized relative to ψ.
Now suppose that ψ satisfies the hypotheses of Proposition 5.7. Since( ∏

k∈B
Mk

)
[ψ](x) =

( ∏
k∈B

χk(xk)
) ∫

⊕
k∈B Rak

ψ(xA,xB) dxB,

it follows that ψA,B ≡ 0 if n ∈ B. Also, for every j ∈ A we have∫
R

aj

ψA,B(x) dxj = 0.

Thus for every decomposition {1, . . . , n} = A ∪B with n ∈ A, it follows that( ∏
k∈B

Mk

)
[ψ](x) =

[ ∏
k∈B

2−ε(ik+1−ik)
]
ψA(xA)

( ∏
k∈B

χk(xk)
)

where ψA is normalized relative to ψ. But then

ψA,B(x) =
( ∏
j∈A

Ll

)( ∏
k∈B

Mk

)
[ψ](x)

=
[ ∏
k∈B

2−ε(ik+1−ik)
]( ∏

j∈A
Ll

)
[ψA](xA)

( ∏
k∈B

χk(xk)
)
.

Now the function
(∏

j∈A Ll
)
[ψA](xA)

(∏
k∈B χk(xk)

)
has cancellation in each of

the subspaces Raj for j ∈ A. If we write A = {α1, . . . αr}, it follows from
Lemma 5.1 that this function can be written as a sum of terms of the form
∂j1 · · · ∂jr [ψA,B,σ], where the variable xjk belongs to the subspace Raαk . This
then makes it clear that ψ has weak cancellation, and completes the proof. �

6. The structure of flag kernels

In this section we establish four important properties of flag kernels. The first
(Theorem 6.1) shows how to decompose a given flag kernel into a sum of dilates
of compactly supported functions with strong cancellation. The second (Theo-
rem 6.8) shows conversely that a sum of dilates of Schwartz functions with weak
cancellation converges to a flag kernel. The third (Theorem 6.13) shows that the
cancellation conditions imposed in part (b) of Definition 2.3 can be relaxed. The
fourth (Theorem 6.15) shows that the family of flag kernels is invariant under
appropriately chosen changes of variables.
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6.1. Dyadic decomposition of flag kernels

Every flag kernel is a product kernel in the sense of Definition 2.1.1 of [9]. (This
is proved in [9]). Then Corollary 2.2.2 in that reference implies that if K is a
flag kernel, then there are functions ϕI ∈ C∞0 (RN ), I ∈ Zn with strong cancel-
lation and uniformly bounded seminorms ||ϕI ||(m), supported in the set where
1
2 ≤ Nj(xj) ≤ 4 for every j, such that K =

∑
I∈Zn [ϕI ]I in the sense of distribu-

tions. Recall that En = {I = (i1, . . . , in) ∈ Zn : i1 ≤ i2 ≤ · · · ≤ in}. Since a
flag kernel satisfies better differential inequalities than a general product kernel,
one expects that it should be possible to write K as a sum of dilates of functions
ϕI ∈ C∞0 (RN ) where the dilations range only over the set En instead of over all
of Zn. Such a result is stated in Corollary 2.2.4 of [9], but the precise statement
there is not correct because one must allow additional terms involving flag kernels
adapted to coarser flags. This section provides a correct statement and proof.

Theorem 6.1. Let K be a flag kernel adapted to the standard flag F

(2.4) (0) ⊆ Ran ⊆ Ran−1 ⊕Ran ⊆ · · · ⊆ Ra3 ⊕ · · · ⊕Ran ⊆ Ra2 ⊕ · · · ⊕Ran ⊆ RN

Then there is a decomposition K = K0+K1+ · · ·+Kn with the following properties:

(1) For each I ∈ En there is a function ϕI ∈ C∞0 (RN ) so that K0 =
∑

I∈En
[ϕI ]I

with convergence in the sense of distributions. Moreover,

(a) the support of each function ϕI is contained in the unit ball B = {x ∈ RN :
|x| ≤ 1};

(b) there are constants Cm > 0 (depending on the constants for the flag ker-
nel K ) so that for each I ∈ En and all m ≥ 0, ||ϕI ||(m) ≤ Cm;

(c) each function ϕI has strong cancellation in the sense of Definition 5.3: for
1 ≤ j ≤ n, ∫

R
aj

ϕ(x1, . . . ,xj , . . . ,xn) dxj = 0;

(d) for each I ∈ En, ϕI(x1, . . . ,xn) = 0 for |x1| < 1
8 .

(2) For 1 ≤ j ≤ n, each Kj is a flag kernel adapted to a flag which is strictly
coarser than F .

Recall that in Section 1.2 we distinguished between elements I= (i1, . . . , in)∈ En
where we have strict inequality i1 < i2 < · · · < in−1 < in, and elements where
some of the entries are equal. Underlying this dichotomy is the fact that En is a
polyhedral cone in Zn, the set of elements with strict inequality form the ‘open’
n-dimensional interior, and elements with various sets of equal elements corre-
spond to lower dimensional faces. In Theorem 6.1, we may as well assume that
the dyadic sum representing K0 extends over the interior n-tuples with strictly
increasing components, leaving the “boundary n-tuples” with repeated indices to
parametrize the dyadic terms of the sums representing the other Kj ’s.
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Using induction on the number of steps in a flag, Theorem 6.1 immediately
gives us the following corollary:

Corollary 6.2. Let K be a flag kernel adapted to a standard flag F of length n.
There is a finite collection of flags {Fk,s}, 1 ≤ k ≤ n and 1 ≤ s ≤ bk, with the
following properties:

(1) For k = n, bn = 1 and Fn,1 = F .
(2) For each k < n, the flag Fk,s has length k and is strictly coarser than F .
(3) For each (k, s) there is a uniformly bounded family of functions {ϕJk,s} ⊂
C∞0 (RN ), J ∈ Ek, all supported in the unit ball and having strong cancella-
tion relative to the decomposition of RN corresponding to the flag Fk,s so that
in the sense of distributions,

(6.1) K =

n∑
k=1

bk∑
s=1

∑
J∈Ek

[
ϕJk,s

]
J
.

The proof of Theorem 6.1 relies on three preliminary results. The first, which
gives the characterization of flag kernels in terms of their Fourier transforms, was
established in [9]. We briefly recall the relevant definitions. Let (RN )∗ denote the
space of linear functionals on RN , and for a subspace W ⊆ RN , let W⊥ ⊂ (RN )∗

be the subspace of linear functions which are zero on W . If F is the flag in RN

given in (2.4), the dual flag is F∗ given by

(0)⊥ ⊇ (Ran)⊥ ⊇ (Ran−1 ⊕ Ran)⊥ ⊇ · · · ⊇ (Ra2 ⊕ · · · ⊕ Ran)⊥ = (RN )⊥.

If we identify (Rak⊕· · ·⊕Ran)⊥ with (Ra1)∗⊕· · ·⊕(Rak−1)∗, the dual flag becomes

(6.2) (0) ⊆ (Ra1)∗ ⊆ (Ra1)∗ ⊕ (Ra2)∗ ⊆ · · · ⊆ (Ra1)∗ ⊕ · · · ⊕ (Ran−1)∗ ⊆ (RN )∗.

If ξ ∈ (RN )∗, we write ξ = (ξ1, . . . , ξn) where ξj = (ξj,1, . . . , ξj,aj ) ∈ (Raj )∗. The
family of dilations on RN defined in equation (2.1) induce a family of dilations
on (RN )∗ so that 〈r · x, ξ〉 = 〈x, r · ξ〉. We let |ξ| be a smooth homogeneous norm
on (RN )∗, and if ξj ∈ (Raj )∗, we let |ξj | be the restriction of the norm to this
subspace.

Definition 6.3. A flag multiplier relative to the flag F∗ given in (6.2) is a function
m(ξ) which is infinitely differentiable away from the subspace ξn = 0, and which
satisfies the differential inequalities∣∣∂ᾱ1

ξ1
· · · ∂ᾱn

ξn
m(ξ)

∣∣ ≤ Cα n∏
j=1

(|ξj |+ · · ·+ |ξn|)−[[ᾱj ]]
.

We can now state Theorem 2.3.9 of [9] as follows:

Lemma 6.4. Let K be a flag kernel adapted to the flag F . Then the Fourier
transform of K is a flag multiplier relative to the dual flag F∗. Conversely, every
flag multiplier relative to the flag F∗ is the Fourier transform of a flag kernel
adapted to the flag F .
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The next preliminary result provides a decomposition of test functions in S(RN ).

Lemma 6.5. Let ψ ∈ S(RN ). Then there are functions {ψk} ⊂ C∞0 (RN ), k =
0, 1, 2, . . ., such that

ψ(x) =

∞∑
k=0

2−kQ ψk(2−k · x),

where Q is the homogeneous dimension of RN . Moreover these functions have the
following properties:

(a) each ψk is supported in the unit ball;

(b) for any δ > 0 and any α ∈ NN , there exists M ∈ N depending on δ and α so
that

sup
x∈RN

∣∣∂αψk(x)
∣∣ ≤ ||ψ||[M ] 2−kδ ;

(c) if ψ has strong cancellation, then each ψk has strong cancellation.

Proof. Choose η ∈ C∞0 (R) supported in [−1,− 1
8 ] ∪ [ 18 , 1] with η(t) = η(−t) such

that
+∞∑

k=−∞
η(2−kt) = 1

for all t �= 0. For any t ∈ R, including t = 0, set η0(t) = 1 −∑∞
k=1 η(2−kt). Then

η0 ∈ C∞0 (R) is supported in [−1,+1], and η0(t) +
∑∞
k=1 η(2−kt) ≡ 1 for all t ∈ R.

Recall that x→ |x| is a smooth homogeneous norm on RN . Set

ψk(x) =

{
ψ(x) η0(|x|) if k = 0,

2kQ ψ(2k · x) η(|x|) if k ≥ 1.

Then 2−kQ ψk (2−k · x) = ψ(x) η(2−k|x|) for k ≥ 1, and so ψ(x) =
∑∞

k=0 2−kQ

ψk (2−k · x). From the choice of η and the definition of η0 it follows that each ψk

is supported on the set where |x| ≤ 1, and this gives the assertion (a).
Since ψ ∈ S(RN ), it follows that for every M ∈ N and every α ∈ NN with

|α| ≤M we have

(6.3) |∂αψ(x)| ≤ ||ψ||[M ] (1 + |x|e)−M ,
where |x|e is the Euclidean length of the vector x ∈ RN . If x belongs to the
support of ψk when k ≥ 1, we have |x| ≥ 2−3, and so |2k ·x| ≥ 2k−3. Assertion (b)
then follows easily from equation (6.3) and the fact that |x|d1 � |x|e if |x|e ≥ 1.

Finally, suppose that ψ has strong cancellation, so that
∫
Rak

ψ(x1, . . . ,xn) dxk
= 0 for 1 ≤ k ≤ n. It follows from Lemma 5.1 that we can write ψ as a finite
sum of terms of the form ∂j1 · · · ∂jnψj1,...,jn where xjk is a coordinate in xk for
1 ≤ k ≤ n, and each function ψj1,...,jn ∈ S(RN ) is normalized relative to ψ. Using
assertions (a) and (b), we can write

ψj1,...,jn(x) =

∞∑
k=0

2−kQ ψkj1,...,jn(2−k · x),
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and so

∂j1 · · · ∂jnψj1,...,jn(x) =

∞∑
k=0

2−k(dj1+···+djn+Q)∂j1 · · · ∂jnψkj1,...,jn(2−k · x).

Since each term 2−k(dj1+···+djn )∂j1 · · · ∂jnψkj1,...,jn has strong cancellation, summing
over a finite number of such terms establishes (c), and completes the proof. �

Finally, we will need the following result, which provides a decomposition of
test functions in C∞0 (RN ):

Lemma 6.6. Let ϕ ∈ C∞0 (RN ) have compact support in the unit ball, and suppose
that ϕ has cancellation in x1, i.e.,

∫
Ra1

ϕ(x1,x2, . . . ,xn) dx1 = 0. Then there are
functions {ϕj} ⊆ C∞0 (RN ) such that

ϕ(x1,x2, . . . ,xn) =

0∑
j=−∞

2−kQ1 ϕj(2−j · x1,x2, . . . ,xn),

where Q1 is the homogeneous dimension of Ra1 . Moreover, these functions have
the following properties:

(a) each ϕj is supported in the unit ball;

(b) each ϕj is normalized relative to the function ϕ;

(c) for −∞ < j ≤ 0 we have ϕj(x1,x2, . . . ,xn) = 0 if |x1| ≤ 1
8 ;

(d) if ϕ has strong cancellation, then each function ϕj has strong cancellation.

Proof. Choose η ∈ C∞0 (R) such that η(t) vanishes if t ≥ 2 or t ≤ 1
4 , and such that∑

l≤0 η(2−lt) = 1 for 0 < t ≤ 1. Put A1(x2, . . . ,xn) = 0, and for j ≤ 0, put

χj(x1) = η
(
2−j|x1|

)
χ̃j(x1) = χj(x1)

[ ∫
Ra1

χj(x1) dx1

]−1

aj(x2, . . . ,xn) =

∫
Ra1

ϕ(x1,x2, . . . ,xn)χj(x1) dx1,

Aj(x2, . . . ,xn) =
∑0

s=j
as(x2, . . . ,xn).

We have
∑

j≤0 χj(x1) ≡ 1 for 0 < |x1| ≤ 1, and since ϕ is supported in the unit
ball, we can sum by parts for x1 �= 0 to get

ϕ(x) =
∑
j≤0

ϕ(x1, . . . ,xn)χj(x1)

=
∑
j≤0

[
ϕ(x1, . . . ,xn)χj(x1)− χ̃j(x1)aj(x2, . . . ,xn)

]
+
∑
j≤0

(
χ̃j(x1)− χ̃j−1(x1)

)
Aj(x2, . . . ,xn) =

∑
j≤0

ϕ̃j(x).

Let
ϕj(x1,x2, . . . ,xn) = 2jQ1 ϕ̃j(2

j · x1,x2, . . . ,xn).
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Then

(6.4)
ϕj(x) = 2jQ1

[
ϕ(2j · x1, . . . ,xn)χ0(x1)− 2−jQ1 χ̃0(x1) aj(x2, . . . ,xn)

+ 2jQ1
(
χ̃0(x1)− 2−Q1χ̃0 (2 · x1)

)
Aj(x2, . . . ,xn)

]
,

and

(6.5) ϕ(x1, . . . ,xn) =

0∑
j=−∞

2−jQ1 ϕj(2−j · x1,x2, . . . ,xn).

The functions {aj} and hence also the functions {Aj} are infinitely differen-
tiable functions supported in the unit ball of Ra2 ⊕ · · · ⊕Ran . Moreover, it follows
from the fact that χj(x1) is supported on the set |x1| ≤ 2j+1 that there is a
constant C so that for each integer m, we have

(6.6) ||aj ||(m) ≤ C 2jQ1 ||ϕ||(m).

The function
∑j

s=−∞ χs(x1) is also supported on the set |x1| ≤ 2j+1, and is
bounded independently of j. We have

Aj(x2, . . . ,xn) +

∫
Ra1

ϕ(x1)

j+1∑
s=−∞

χs(x1) dx1 =

∫
Ra1

ϕ(x1,x2, . . . ,xn) dx1 = 0,

and it thus follows that we also have

(6.7) ||Aj ||(m) ≤ C 2jQ1 ||ϕ||(m).

It is clear from our construction that each function ϕj has compact support in
the unit ball. It follows from equation (6.4) that each ϕj vanishes when |x1| ≤ 1

8 ,
and also that if ϕ has strong cancellation, then

∫
Rak

ϕj(x1,x2, . . . ,xn) dxk = 0
for 1 ≤ k ≤ n. Finally, equations (6.4), (6.6), and (6.7) show that ||ϕj ||(m) ≤
C 2−jQ1 ||ϕ||(m). This completes the proof. �

Let K be a flag kernel adapted to the flag F , and let m = K̂ be the flag
multiplier on the flag F∗ which is the Fourier transform of K. Choose a function
η ∈ C∞0 (R) supported in [ 12 , 4] such that

∑
j∈Z η(2jt) ≡ 1 for all t > 0. For each

I = (i1, . . . , in) ∈ En, set

(6.8) ηI(ξ) = η(2i1 |ξ1|) · · · η(2in |ξn|).
Note that ηI is supported where |ξj | ≈ 2−ij for 1 ≤ j ≤ n. We shall establish the
following result:

Lemma 6.7. Let m be a flag multiplier relative to the flag F∗ given in (6.2). Then

(6.9) m(ξ) =
∑
I∈En

m0(ξ) ηI(ξ) +

n∑
k=1

mk(ξ)

where m0 is the Fourier transform of a flag kernel relative to the flag F , and for
1 ≤ k ≤ n, the function mk is the Fourier transform of a flag kernel adapted to a
flag strictly coarser than F .
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Proof. Let θ be a smooth function on R supported where t ≥ 10 such that θ(t) = 1
for t ≥ 20. Write

m(ξ) = m(ξ)θ
(|ξn−1| |ξn|−1

)
+m(ξ)

[
1− θ (|ξn−1| |ξn|−1

) ]
= n1(ξ) +m1(ξ).

On the support of θ′
(|ξn−1| |ξn|−1

)
we have |ξn−1| ∼ |ξn|. Also, by homogeneity

we have∣∣∂αn−1

ξn−1
(|ξn−1|)

∣∣ ≤ C|ξn−1|1−|αn−1| and
∣∣∂αn

ξn
(|ξn|)

∣∣ ≤ C|ξn|1−|αn|.

Thus Lemma 6.4 implies that n1(ξ) and m1(ξ) are flag multipliers relative to the
flag (6.2). On the support of m1 we have |ξn−1| |ξn|−1 ≤ 20. Thus we can group
together the variables ξn and ξn−1, and it follows that m1(ξ) is a flag kernel relative
to a flag coarser than F∗. Also |ξn−1| ≥ 10|ξn| on the support of n1.

Next write

n1(ξ) = n1(ξ)θ
(|ξn−2| |ξn−1|−1

)
+ n1(ξ)

[
1− θ (|ξn−2| |ξn−1|−1

) ]
= n2(ξ) +m2(ξ).

Since θ′
(|ξn−2| |ξn−1|−1

)
is supported where |ξn−2| ∼ |ξn−1| and |ξn−1| ≥ 10|ξn|, it

again follows that n2 and m2 are Fourier transforms of flag kernels relative to the
flag F∗. On the support of m2 we have |ξn−2| |ξn−1|−1 ≤ 20 and |ξn−1| |ξn|−1 ≤ 20.
Thus we can group together the variables ξn, ξn−1 and ξn−2, and it follows that
m2(ξ) is a flag kernel relative to a flag coarser than F∗. Also |ξn−1| ≥ 10|ξn−1|,
and |ξn−1| ≥ 10|ξn| on the support of n2.

We proceed inductively to see that

m(ξ) = m0(ξ) +

n∑
k=1

mk(ξ)

where each mk(ξ) is the Fourier transform of a coarser flag kernel and m0(ξ) =
nn(ξ) is supported where |ξj | ≥ 10|ξj+1| for 1 ≤ j ≤ n− 1.

From our choice of η, it follows that

1 =
∑

J=(j1,...,jn)∈Zn

η
(
2j1 |ξ1|

) · · · η (2jn |ξn|)
=

∑
J∈En

η
(
2j1 |ξ1|

) · · · η (2jn |ξn|) +
∑

J∈Zn−En

η
(
2j1 |ξ1|

) · · · η (2jn |ξn|)
Thus if

∑
J∈En

η
(
2j1 |ξ1|

) · · · η (2jn |ξn|) �= 1, there is an n-tuple J = (j1, . . . , jn)

and integers 1 ≤ r < s ≤ n such that jr > js and η
(
2jr |ξr |

)
η
(
2js |ξs|

) �= 0. Since η
is supported on [ 12 , 4], it follows that |ξr| ≤ 4 2−jr ≤ 4 2−js ≤ 8|ξs|. However, on
the support of m0 we have |ξr | > 10|ξs|. Thus on the support of m0 we have

1 =
∑
J∈En

η
(
2j1 |ξ1|

) · · · η (2jn |ξn|) ,
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and so

m(ξ) =
∑
J∈En

m0(ξ)η
(
2j1 |ξ1|

) · · · η (2jn |ξn|) +

n∑
k=1

mk(ξ),

which completes the proof. �

We now turn to the proof of Theorem 6.1. If we write Kj as the inverse Fourier
transform of the flag multiplier mj of Lemma 6.7, we have shown that

K = K0 +
n∑
j=1

Kj ,

and for 1 ≤ j ≤ n, Kj is a flag kernel adapted to a flag which is coarser than F .
Also since m0(ξ) =

∑
J∈En

m0(ξ)ηI(ξ), we can write

(6.10) K0 =
∑
J∈En

[
ΨI

]
I

where
Ψ̂I(ξ) = m0(2−i1 · ξ1, . . . , 2−in · ξn) · η(|ξ1|) · · · η(|ξn|),

and the sum converges in the sense of distributions. The differential inequalities
for m0 imply that each function ΨI ∈ S(RN ), with Schwartz norms uniformly
bounded in I. Also since ΨI vanishes on the coordinate axes, for 1 ≤ k ≤ n we
have

(6.11)

∫
ΨI(x1, . . . ,xn) dxk = 0.

In order to complete the proof of Theorem 6.1, it remains to show that we
can replace the Schwartz functions ΨI in equation (6.10) by functions in C∞0 (RN ),
all supported in the unit ball with strong cancellation, and which vanish when
|x1| < ε. This is done in two steps, using Lemmas 6.5 and 6.6.

First, according to Lemma 6.5, for each I ∈ En there are functions ψk,I ∈
C∞0 (RN ), each supported in the unit ball and having strong cancellation, so that

ψI(x) =

∞∑
k=0

2−kQ ψk,I(2−k · x),

and for every Δ > 0 and every positive integer m there is an integer pm so that

||ψk,I ||(m) ≤ 2−kΔ ||ψI ||[m+pm].

Thus

[ψI ]I(x) =

∞∑
k=0

2−Q1(k+i1)−···−Qn(k+in) ψk,I(2−(i1+k) · x1, . . . , 2
−(in+k) · xn),
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and so formally∑
I∈En

[ψI ]I(x) =

∞∑
k=0

∑
I∈En

2−Q1(k+i1)−···−Qn(k+in)ψk,I(2−(i1+k) · x1, . . . , 2
−(in+k) · xn)

=

∞∑
k=0

∑
J∈En

2−Q1(j1)−···−Qn(jn)ψk,I(2−j1 · x1, . . . , 2
−jn · xn)

=
∑
J∈En

2−Q1(j1)−···−Qn(jn)
[ ∞∑
k=0

ψk,I
]
(2−j1 · x1, . . . , 2

−jn · xn)

=
∑
J∈En

[ ∞∑
k=0

ψk,I
]
J

(x) .

The estimates we have on the functions {ψk,I} show that the series
∑∞

k=0 ψ
k,I = ϕ̃I

converges in C∞0 (RN ) to a function supported in the unit ball which has strong
cancellation. This formal calculation is easily justified by applying it to finite sums
of dilates. Thus we have shown K0 =

∑
I∈En

[ϕ̃I ]I , with convergence in the sense of

distributions, where the functions ϕ̃I ∈ C∞0 (RN ) all have support in the unit ball,
have strong cancellation, and are uniformly bounded in each semi-norm || · ||(m).

Finally, Lemma 6.6 shows that for each I ∈ En, there exist functions ϕj,I ∈
C∞0 (RN ) with strong cancellation, each supported in the unit ball, normalized
relative to ϕ̃I , and vanishing when |x1| ≤ 1

8 so that

ϕ̃I(x1,x2, . . . ,xn) =

0∑
j=−∞

2−jQ1 ϕj,I(2−j · x1,x2, . . . ,xn) .

We then have[
ϕ̃I
]
I
(x1,x2, . . . ,xn)

=

0∑
j=−∞

2−(j+i1)Q1−i2Q2−···−inQnϕj,I(2−(j+i1) · x1, 2
−i2 · x2, . . . , 2

−in · xn),

and so, since we are summing only over non-positive indices j, we have∑
I∈En

[ϕ̃I ]I(x) =

0∑
j=−∞

∑
I∈En

2−(j+i1)Q1−i2Q2−···−inQnϕj,I(2−(j+i1) · x1, . . . , 2
−in · xn)

=

0∑
j=−∞

∑
I∈En

2−i1Q1−i2Q2−···−inQnϕj,I(2−i1 · x1, . . . , 2
−in · xn)

=
∑
I∈En

2−i1Q1−i2Q2−···−inQn

[ 0∑
j=−∞

ϕj,I
]
(2−i1 · x1, . . . , 2

−in · xn)

=
∑
I∈En

[ 0∑
j=−∞

ϕj,I
]
I
(x).
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The estimates we have on the functions {ϕj,I} show that the series
∑0

j=−∞ ϕj,I =ϕI

converges in C∞0 (RN ) to a function supported in the unit ball which has strong
cancellation, and which vanishes when |x1| ≤ 1

8 . This at last completes the proof
of Theorem 6.1.

6.2. Dyadic sums with weak cancellation

The main result of this section, Theorem 6.8, is a strengthening of the converse
to Theorem 6.1 which would assert that sums of dilates of appropriate compactly
supported bump functions with strong cancellation are flag kernels; we consider
sums of Schwartz functions instead of compactly supported functions, and more
critically, we assume only weak cancellation instead of strong cancellation relative
to the decomposition RN = Ra1 ⊕ · · · ⊕ Ran .

Theorem 6.8. For each I ∈ En, let ϕI ∈ S(RN ), and suppose

(a) there are constants CN > 0 so that ||ϕI ||[N ] ≤ CN for each I ∈ En and for
each N ≥ 0;

(b) there is a constant ε > 0 so that each ϕI has weak cancellation with respect
to I with parameter ε relative to the decomposition RN = Ra1 ⊕ · · · ⊕ Ran .

Then we have the following conclusions:

(1) For any finite set F ⊂ En, the function KF =
∑
I∈F [ϕI ]I ∈ S(RN ) defines a

flag kernel KF for the flag F with bounds which are independent of the set F .

(2) Let F1 ⊂ F2 ⊂ · · · ⊂ Fm ⊂ · · · be any increasing sequence of finite subsets
of EN with EN =

⋃∞
m=1 Fm. Then for any test function ψ ∈ S(RN ),

lim
m→∞〈KFm , ψ〉 = lim

m→∞

∑
I∈Fm

∫
RN

[ϕI ]I(x)ψ(x) dx

exists and defines a flag kernel K ∈ S ′(RN ) which is independent of the choice
of the finite subsets. We write this limit as

K = lim
F↗EN

∑
I∈F

[ϕI ]I .

Since the proof of this result is somewhat involved, let us indicate the main
steps. If F ⊂ En is any finite set, let KF =

∑
I∈F [ϕI ]I . We show (in Propo-

sition 6.9) that KF =
∑

I∈En

[
ϕI
]
I

satisfies the correct size estimates, and also
(in Proposition 6.11) that KF satisfies the cancellation conditions with constants
independent of F of Definition 2.3. This will establish part (1) of Theorem 6.8.
To establish the existence of the limit in part (2), we use the weak cancellation
of the functions {ϕI} to show that for any test function ψ, the bracket

〈KF , ψ〉
can be rewritten as the integral of ψ and its derivatives against locally integrable
functions. The existence of the limit then follows from the Lebesgue dominated
convergence theorem.

We now turn to the proofs. Note that in the next proposition we impose no
cancellation conditions on the functions {ϕI}.
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Proposition 6.9. For each I ∈ En, let ϕI ∈ S(RN ), and suppose there are con-
stants CM so that for all I ∈ En and all M , ||ϕI ||[M ] ≤ CM . Let F ⊂ En be a finite
subset, and let KF (x) =

∑
I∈F [ϕI ]I(x). For any α = (ᾱ1, . . . , ᾱn) ∈ Na1×· · ·×Nan

with |α| ≤M , there is a constant AM independent of the finite set F so that∣∣∂αxKF (x)
∣∣ ≤ AM n∏

j=1

[N1(x1) +N2(x2) + · · ·+Nj(xj)]
−(Qj+[[ᾱj]]) .

Proof. It follows from Proposition 4.3 that

|∂αxKF (x)| =
∣∣∣∑
I∈F

2−
∑n

j=1 ij(Qj+[[ᾱj]])∂ᾱx [ϕI ](2−i1 · x1, . . . , 2
−in · xn)

∣∣∣.
Since ϕI ∈ S(Rn), for any M we have the estimate

∣∣∂ᾱx [ϕI ](2−i1x1, . . . , 2
−inxn)

∣∣ ≤ CM (
1 +

N∑
k=1

2−ikNk(xk)
)−M

.

Thus ∣∣∂ᾱxKF (x)
∣∣ ≤ CM ∑

I∈F
2−

∑n
j=1 ik(Qk+[[ᾱk]])

(
1 +

N∑
k=1

2−ikNk(xk)
)−M

.

Proposition 6.9 thus follows from estimate (10.2) in Prop. 10.1 in Appendix II. �

The next result provides estimates that will be used in establishing the can-
cellation conditions (part (b) of Definition 2.3) for finite sums KF =

∑
I∈F [ϕI ]I .

Recall that these cancellation conditions involve integrals of the form∫
K(x1, . . . ,xn)ψ(R1 · xm1 , . . . , Rβ · xmβ

) dxm1 · · · dxmβ

where {m1, . . . ,mβ} is a non-empty subset of {1, . . . , n}. Let M = {m1, . . . ,mβ},
and let L = {l1, . . . , lα} = {1, . . . , n} \M . Let Nα = al1 + · · · + alα and Nβ =
am1 + · · ·+ amβ

so that Nα +Nβ = N . For x = (x1, . . . ,xn) ∈ RN , write

x = (x′,x′′) with

{
x′ = (xl1 , . . . ,xlα) ∈ RNα

x′′ = (xm1 , . . . ,xmβ
) ∈ RNβ

.

For I = (i1, . . . , in) ∈ En, write

I = (I ′, I ′′) where

{
I ′ = (il1 , . . . , ilα) ∈ Eα
I ′′ = (im1 , . . . , imβ

) ∈ Eβ
.

If R = (R1, . . . , Rβ) is a β-tuple of positive real numbers, write

R · x′′ = (R1 · xm1 , . . . , Rβ · xmβ
),

2I
′′
R · x′′ = (2im1R1 · xm1 , . . . , 2

imβRβ · xmβ
).

Finally, let P (M) denote the set of all partitions of the set M = {m1, . . . ,mβ}
into two disjoint (possibly empty) subsets A and B.
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Proposition 6.10. With the above notation, let I = (i1, . . . , in) ∈ En, and let
ϕ ∈ S(RN ). Let ψ ∈ C∞0

(
RNβ

)
so that ψ can be regarded as a function of the

variables x′′ = (xm1 , . . . ,xmβ
). Let R = (R1, . . . , Rβ) be a β-tuple of positive real

numbers. Define Φ on RNα by setting

Φ(x′) =

∫
R

Nβ

[ϕ]I(x
′,x′′)ψ(R1 · xm1 , . . . , Rβ · xmβ

) dxm1 · · · dxmβ
.

(1) There exists Θ ∈ S(RNα), normalized relative to ϕ and ψ (with constants
independent of (R1, . . . , Rβ)) such that Φ(x′) = [Θ]I′(x

′).

(2) If ϕ has weak cancellation with respect to I, there are constants C and ε inde-
pendent of R = (R1, . . . , Rβ) so that Θ =

∑
(A,B)∈P (M) ΘA,B, where for each

partition M = A ∪B and n /∈ A,

|ΘA,B(x′)| ≤ C
∏
mr∈A

2−ε(imr+1−imr )
∏
ms∈B

min
{

(Rs2
ims )+ε, (Rs2

ims )−ε
}
.

Thus for each partition M = A ∪ B of the set of variables {xm1 , . . . ,xmβ
},

|ΘA,B(x′)| is small due to two kinds of gains: there is a gain 2−ε(imr+1−imr )

for every index mr ∈ A, and there is a gain min
{

(Rr2
imr )+ε, (Rr2

imr )−ε
}
for

every index mr ∈ B.

Proof. Make the change of variables

x′′ = (xm1 , . . . ,xmβ
) �→ (2im1 · xm1 , . . . , 2

imβ · xmβ
).

Then

Φ(x′) =2
−

n∑
k=1

ikQk

∫
R

Nβ

ϕ(2−i1x1, . . . , 2
−in ·xn)ψ(R1·xm1 , . . . , Rβ ·xmβ

) dxm1 · · · dxmβ

=

∫
R

Nβ

[
ϕ
]
I′(x

′,x′′)ψ(R12im1 · xm1 , . . . , Rβ2imβ · xmβ
) dxm1 · · · dxmβ

=
[
Θ
]
I′(x

′),

where

(6.12) Θ(x′) =

∫
R

Nβ

ϕ(x′,x′′)ψ(R12im1 · xm1 , . . . , Rβ2imβ · xmβ
) dxm1 · · · dxmβ

.

Now

(1 + |x′|)M∂ᾱx′Θ(x′) =

∫
R

Nβ

(1 + |x′|)M∂ᾱx′ϕ(x′,x′′)ψ(2I
′′
R · x′′) dx′′,

and we can estimate the S(RNα)-seminorms of Θ in terms of those of ϕ and the
supremum of |ψ|, independent of the choice of R. This establishes assertion (1).



666 A. Nagel, F. Ricci, E. M. Stein and S. Wainger

To prove the decomposition and additional size estimates for Θ asserted in
part (2), assume that ϕ has weak cancellation relative to I. Since the defini-
ton (6.12) of Θ involves integration with respect to the variables {xm1 , . . . ,xmβ

},
we will only use the weak cancellation in these variables. We can use the first of
the Remarks 5.6 to write ϕ as a sum of terms of the form( ∏

s∈A
2−ε(is+1−is)

)(∏
t∈B

∂σ(t)

)
[ϕ̃A,B,σ]

where {m1, . . . ,mβ} = A ∪ B with A ∩ B = ∅ and n ∈ B if n ∈ {m1, . . . ,mβ}.
Also, σ : B → {1, . . . , N} so that σ(m�) ∈ Jm�

, and each ϕ̃A,B,σ is normalized
relative to ϕ.

If we write B = {m�1 , . . . ,m�s}, it follows that Θ(x′) is a finite sum of terms
of the form

I(A;B;σ) =
∏
s∈A

2−ε(is+1−is)
∫
R

Nβ

∂σ(m�1
) · · · ∂σ(m�s )

[ϕ̃A;B;σ]

· ψ(R12im1 · xm1 , . . . , Rβ2imβ · xmβ
) dxm1 · · · dxmβ

.

We can use integration by parts to move the differentiations ∂σ(m�1
) · · ·∂σ(m�s )

from ϕ̃A;B;σ to ψ. Differentiating the function ψ(R12im1 · · ·xm1 , . . . , Rβ2imβ ·xmβ
)

with respect to the variable xσ(m�k
) with σ(m�k) ∈ Jm�k

brings out a factor

(Rm�k
2
im�k )

dσ(m�k
) , and so we have the estimate∣∣I(j1, . . . , jβ ;A;σ)

∣∣ � ∏
s∈A

2−ε(is+1−is)
∏
r∈B

(Rr2
ir)dσ(r) .

On the other hand, without integrating by parts, since ψ has compact support,
the integral in the variables {xmr

∣∣ r ∈ B} is taken over the set where |xmr | �
(Rr2

imr )Qmr for r ∈ B, and this set has volume bounded by a constant times∏
r∈B(Rr2

imr )−Qmr . It follows that there exists ε > 0 so that∣∣I(j1, . . . , jβ ;A;σ)
∣∣ � ∏

s∈A
2−ε(is+1−is)

∏
r∈B

min
{

(Rr2
imr )+ε, (Rr2

imr )−ε
}
.(6.13)

This completes the proof. �

We now show that if the functions {ϕI} have weak cancellation, then the sum
KF (x) satisfies the cancellation condition (condition (b)) of Definition 2.3. We
use the same notation as in Proposition 6.10. Thus L = {l1, . . . , lα} and M =
{m1, . . . ,mβ} are complementary subsets of {1, 2, . . . , n}, and we set Nα = al1 +
· · ·+alα andNβ = am1 +· · ·+amβ

. If x = (x1, . . . ,xn) ∈ RN , we write x = (x′,x′′),
with x′ = (xl1 , . . . ,xlα) and x′′ = (xm1 , . . . ,xmβ

). If I = (i1, . . . , in) ∈ En, write
I ′ = (il1 , . . . , ilα) ∈ Eα and I ′′ = (im1 , . . . , imβ

) ∈ Eβ
Proposition 6.11. For each I ∈ En let ϕI ∈ S(RN ), and suppose there are
constants CM so that that for all I ∈ En and all M , ||ϕI ||[M ] ≤ CM . Let F ⊂ En
be a finite subset, and let KF (x) =

∑
I∈F [ϕI ]I(x). Let ψ ∈ C∞0

(
RNβ

)
be a bump

function in the variables x′′ = (xm1 , . . . ,xmβ
). Let R = (R1, . . . , Rβ) be a β-tuple
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of positive real numbers, and let γ̄ = (γl1 , . . . , γlα) ∈ Nal1 ⊕· · ·⊕Nalα . There exists
a constant Cγ̄ , independent of R so that∣∣∣∂γl1xl1

· · ·∂γlαxlα

∫
R

Nβ

KF (x′,x′′)ψ(R · x′′) dx′′
∣∣∣

≤ Cγ̄
α∏
p=1

[
Nl1(xl1) + · · ·Nlp(xlp)

]−Qlp−[[γlp ]] .

Proof. Recall the definitions of I ′ and I ′′ from just before the statement of the pro-
position. Using Proposition 6.10 to write

∫
[ϕI ]I′(x

′,x′′)ψ(R ·x′′) dx′′ = [ΘI ]I′(x
′),

we have∫
KF (x′,x′′)ψ(R · x′′) dx′′ =

∑
I∈F⊂En

∫
[ϕI ]I′(x

′,x′′)ψ(R · x′′) dx′′ =
∑

I∈F⊂En

[ΘI ]I′(x
′).

Each ΘI is normalized relative to ϕ. We write the sum over I ∈ F as an iterated
sum as follows. Let

E1 =
{
I ′ = (il1 , . . . , ilα) ∈ Zα

∣∣ (i1, . . . , in) ∈ F} ,
and for I ′ ∈ E1, let

E2(I ′) =
{
I ′′ = (im1 , . . . , imβ

)} ∈ Zβ
∣∣ (i1, . . . in) ∈ F ⊂ En

}
.

If I ∈ F , we write I = (I ′, I ′′) with I ′ ∈ E1 and I ′′ ∈ E2(I ′). Then∫
KF (x′,x′′)ψ(R · x′′) dx =

∑
I′∈E1

[ ∑
I′′∈E2(I′)

Θ(I′,I′′)
]
I′

(x′).

We must show that this sum satisfies the differential inequalities for flags on the
space Ral1 ⊕ · · · ⊕ Ralα , with constants independent of the finite set F . This will
follow from Proposition 6.9 provided we can show that for each I ′ ∈ E1, the sum∑

I′′∈E2(I′) Θ(I′,I′′) converges to a normalized Schwartz function. However, this

follows from the estimates in part (2) of Proposition 6.10. �

We now turn to the proof of Theorem 6.8. As already indicated on page 663,
just before the statement of Proposition 6.9, part (1) is an immediate consequence
of Proposition 6.9 and Proposition 6.11, so we only need to establish part (2). Let
ψ ∈ S(Rn), and for each I ∈ En, let ϕI ∈ S(RN ) have weak cancellation relative
to I. According to the second of the two Remarks 5.6, we can write

ϕI =

a1∑
�=1

∂�[ϕ
I
� ] + 2−ε(i2−i1)ϕI0,

and so [
ϕI
]
I

=

a1∑
�=1

(2i1d�∂�)[ϕ
I
� ]I + 2−ε(i2−i1)

[
ϕI0
]
I
.
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Then integrating by parts, we have∫
RN

[ϕI(x)]Iψ(x) dx =−
a1∑
�=1

∫
RN

2i1d� [ϕI� ]I(x)
∂ψ

∂x�
(x) dx+

∫
RN

2−ε(i2−i1)[ϕI0]Iψ(x) dx.

Thus if F ⊂ En is a finite subset, and KF (x) =
∑

I∈F [ϕI ]I(x), we have∫
RN

KF (x)ψ(x) dx

= −
a1∑
�=1

∫
RN

[∑
I∈F

2i1d� [ϕI� ]I(x)
]∂ψ
∂x�

(x) dx +

∫
RN

[∑
I∈F

2−ε(i2−i1)[ϕI0]I

]
ψ(x) dx

= −
a1∑
�=1

∫
RN

K�
F (x)

∂ψ

∂x�
(x) dx +

∫
RN

K0
F (x)ψ(x) dx ,

where

K�
F (x) =

∑
I∈F

2i1d� [ϕI� ]I(x), 1 ≤ � ≤ a1,

K0
F (x) =

∑
I∈F

2−ε(i2−i1)[ϕI0]I .

If α = (α1, . . . , αN ) ∈ NN , we have

∂αK�
F (x) =

∑
I∈F

2i1d� 2−
∑n

j=1 ij(Qj+[[αj]]) ∂α[ϕI� ](2
−I · x),

∂αK0
F (x) =

∑
I∈F

2−ε(i2−i1) 2−
∑n

j=1 ij(Qj+[[αj]]) ∂α[ϕI0](2−I · x).

It follows from Proposition 10.1 in Appendix II that (at least if d� < Q1 + [[α1]])∣∣∂αK�
F (x)

∣∣ ≤ C N1(x1)d�
n∏
j=1

[N1(x1) + · · ·+Nj(xj)]
−(Qj+[[αj]]), and

∣∣∂αK0
F (x)

∣∣ ≤ C N1(x1)ε(N1(x1)+N2(x2))−ε
n∏
j=1

[N1(x1)+ · · ·+Nj(xj)]−(Qj+[[αj]]).

The functions on the right hand side of the last two inequalities are integrable
on RN . The proof of (2) then follows from the dominated convergence theorem:

lim
F↗En

〈
KF , ψ

〉
= −

a1∑
�=1

∫
RN

K�(x)
∂ψ

∂x�
(x) dx +

∫
RN

K0(x)ψ(x) dx ,

where

K�(x) =
∑
I∈En

2i1d� [ϕI� ]I(x), 1 ≤ � ≤ a1,

K0(x) =
∑
I∈En

2−ε(i2−i1)[ϕI0]I .
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6.3. Rewriting sums of bump functions with weak cancellation

It follows from Theorem 6.8 that a sum of dilates of normalized bump functions
with weak cancellation converges to a flag kernel, and it follows from Theorem 6.1
that a flag kernel can be written as a sum of dilates of normalized bump functions
with strong cancellation plus a sum of flag kernels adapted to strictly coarser flags.
It follows that a sum of dilates of functions with weak cancellation can be rewritten
as sums of dilates of functions with strong cancellation relative to coarser flags. In
this section we give a direct proof of this fact. The basic idea is to use telescoping
series to replace a function with weak cancellation by a sum of functions with strong
cancellation plus an error term which belongs to a flag which is coarser than the
original flag. Aside from its intrinsic interest, we shall need this observation in the
forthcoming paper [10].

Thus consider the standard flag FA on RN of step n associated to the decom-
position

(A) RN = Ra1 ⊕ · · · ⊕ Ran .

Any strictly coarser flag FB � FA then arises from a decomposition

(B) RN = Rb1 ⊕ · · · ⊕ Rbm

where m < n and each Rbj = Rarj ⊕ · · · ⊕ Rasj where 1 = r1, n = sm, rj ≤ sj
for 1 ≤ j ≤ m, and rj+1 = sj + 1 for 1 ≤ j ≤ m − 1. As usual we let En denote
the set of n-tuples of integers I = (i1, . . . , in) with i1 ≤ · · · ≤ in. For any strictly
coarser flag FB of step m < n as above, we let EB denote the set of m-tuples of
integers J = (j1, . . . , jm) with j1 ≤ · · · ≤ jm. Given the argument for part (2) of
Theorem 6.8, we shall only concern ourselves with finite sums, and thus will not
need to worry about convergence questions.

Proposition 6.12. Let FA denote the standard flag associated to the decomposi-
tion RN = Ra1 ⊕ · · · ⊕ Ran . Suppose that

(6.14) K(x) =
∑
I∈En

[ϕI ]I(x)

is a finite sum, where each ϕI is a normalized bump function for the flag FA, with
weak cancellation relative to I ∈ En with parameter ε. Then we can write

(6.15) K(x) =
∑
B�A

∑
J∈EB

[
ηJB
]
J

(x) ,

where the outer sum is taken over decompositions equal to or coarser than A, and
each ηJB is a normalized bump function which has strong cancellation relative to
the flag FB associated to the decomposition B.

Proof. We argue by induction on the number of steps n in the original flag A. For
n = 1 there is nothing to prove, because then there is no distinction between weak
and strong cancellation.
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Thus suppose the proposition has been established for all flags of step less than
or equal to n − 1, and consider the flag of step n corresponding to the decom-
position A. The inductive step itself requires an induction. Let the function K
be given by (6.14). Since each ϕI has weak cancellation with respect to I with
parameter ε, we can write

ϕI =
∑

S⊂{1,2,...,n−1}
2−ε

∑
l∈B(jl+1−jl) ηIS

where the sum is over all subsets S of {1, . . . , n− 1} and each ηIS is a normalized
bump function which has integral zero in each multi-variable xr with r �∈ S. Thus
we have

(6.16) K =
∑
I∈En

∑
S⊂{1,2,...,n−1}

2−ε
∑

l∈S(jl+1−jl) [ηIS]I .
We will prove by induction on k, for 1 ≤ k ≤ n, that K can be written

(6.17) K =
∑
I∈En

∑
S⊆{1,2,...,n−k}

2−ε
∑

l∈S(jl+1−jl) [ηIS]I +
∑
B�A

KB,

where the functions {ηIS} and {KB} have the following properties:

(i) Each normalized bump function ηIS has integral zero with respect to each
variable xr with r �∈ S.

(ii) For each B � A, (i.e., for each decomposition B strictly coarser than A and
hence whose corresponding flag has step strictly less than n), the function KB

can be written as a finite sum

KB =
∑

J∈E(B)

[θJB]J ,

where each θJB is a normalized bump function with weak cancellation with
some parameter ε′ > 0 relative to the flag arising from the decomposition B.
(It follows from the induction hypothesis that each such function can be
rewritten as a sum of dilates of normalized bump functions with strong can-
cellation.)

(iii) The bump functions {ηIS} and the {θJB} are uniformly normalized relative to
the normalized bump functions {ϕI} defined in (6.14).

Clearly equation (6.16) gives the desired conclusion in (6.17) for k = 1. Moreover,
when k = n the set S must be empty and thus we will have written K as an
appropriate sum of dilates of normalized bump functions with strong cancellation.

Thus we turn to the induction step. Suppose that equation (6.17) holds for
a given k < n. We must show that (6.17) also holds with k replaced by k + 1.
We split the first sum into two parts depending on whether or not the subset S
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contains the element n− k:

K =
∑
J∈En

S⊆{1,2,...,n−k}
n−k∈S

2−ε
∑

l∈S(jl+1−jl)[ηJS ]J +
∑
I∈En

S⊆{1,2,...,n−(k+1)}

2−ε
∑

l∈S(jl+1−jl)[ηIS ]I +
∑
B�A

KB

= K1 +K2 +K3.(6.18)

Now K2 +K3 is already of the form in (6.17) with k replaced by k+ 1, so we only
need to deal with K1.

Thus let n − k ∈ S ⊂ {1, 2, . . . , n − k}, and consider the corresponding term
η = ηJS in K1. Let Qn−k denote the homogeneous dimension of the space Ran−k .
Then the function

(ηJS)′(x1, . . . ,xn) = 2Qn−kηJS
(
x1, . . . , 2 · xn−k, . . . ,xn

)− ηJS(x1, . . . ,xn−k, . . . ,xn
)

has cancellation in the variables xr for all r �∈ S′ = S \ {n− k}. Note that
S′ ⊂ {1, 2, . . . , n − (k + 1)}. Let J = (j1, . . . , jn). Using a telescoping series we
have

ηJS(x) =

jn−k+1−jn−k∑
i=1

2−iQn−k(ηJS)′
(
x1, . . . , 2

−i · xn−k, . . . ,xn
)

+ 2−(jn−k+1−jn−k)Qn−kηJS
(
x1, . . . , 2

−(jn−k+1−jn−k) · xn−k, . . . ,xn
)
,

and hence
(6.19)

[ηJS ]J =

jn−k+1∑
i=jn−k+1

[
(ηJS)′

]
(j1,...,jn−k−1,i,jn−k+1,...,js)

+
[
ηJS
]
(j1,...,jn−k−1,jn−k+1,jn−k+1,...,js)

.

We regard the last term as associated to the coarser flag of step (n− 1) associated
to the decomposition

(B) Ra1 ⊕ Ran−k−1 ⊕ [
Ran−k ⊕ Ran−k+1

]⊕ Ran−k+2 ⊕ · · · ⊕ Ran

where Ran−k ⊕ Ran−k+1 is now considered one factor. If we set

J
(n−k)
i =(j1, . . . , jn−k−1, i, jn−k+1, . . . , jn) , J n̂−k=(j1, . . . , jn−k−1, jn−k+1, . . . , jn),

then J
(n−k)
i ∈ En for jn−k + 1 ≤ i ≤ jn−k+1 and J n̂−k ∈ EB. Moreover, ηJS has

weak cancellation with respect to the flag (B) with parameter ε. Formula (6.19)
then becomes

(6.20) [ηJS ]J =

jn−k+1∑
i=jn−k+1

[
(ηJS)′

]
J

(n−k)
i

+
[
ηJS
]
Ĵn−k .
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Applying the identity (6.20), we obtain

K1 =
∑
J∈En

∑
S⊆{1,2,...,n−k}

n−k∈S

2−ε
∑

l∈S(jl+1−jl)[ηJS]J
=

∑
J∈En

∑
S⊆{1,2,...,n−k−1}

2−ε
∑

l∈S∪{n−k}(jl+1−jl)[ηJS∪{n−k}
]
J

=
∑
J∈En

∑
S⊆{1,2,...,n−k−1}

2−ε
∑

l∈S∪{n−k}(jl+1−jl)
jn−k−1∑
i=jn−k+1

[
(η
J

(n−k)
i

S )′
]
J

(n−k)
i

+
∑
J∈En

∑
S⊆{1,2,...,n−k−1}

2−ε
∑

l∈S∪{n−k}(jl+1−jl)[ηĴn−k

S

]
Ĵn−k

= Σ1 + Σ2.

In Σ1 we change the order of summation, grouping together all the terms for

which J
(n−k)
i is a given J ′ = (j′1, . . . , j

′
n) ∈ En. Clearly, this condition forces J to

differ from J ′ only in its component jn−k, and we have j′n−k−1 ≤ jn−k < j′n−k.

In order to express the factor 2−ε∑l∈S∪{n−k}(jl+1−jl) in terms of J ′, we split the
summation over the subsets S into two parts; the first consists of subsets S not
containing n−k−1 and the second consists of the subsets which do contain n−k−1.
We then have

Σ1 =
∑
J′∈En

∑
S⊆{1,2,...,n−k−2}

2−ε
∑

l∈S(j′l+1−j′l)
( j′n−k−1∑
i=j′n−k−1

2−ε(j
′
n−k+1−i)[(ηJ′

S )′
]
J′

)

+
∑
J′∈En

∑
S⊆{1,2,...,n−k−2}

2−ε
∑

l∈S(j′l+1−j′l)2−ε(j
′
n−k+1−j′n−k−1)

( j′n−k−1∑
i=j′n−k−1

[
(ηJ

′
S∪{n−k−1})′

]
J′

)
= Σ1,1 + Σ1,2 .

Each function appearing in Σ1,1 has integral zero in each variable xr with r �∈
B ⊂ {1, . . . , n − k − 2}, and each function appearing in Σ1,2 has integral zero in
each variable xr with r �∈ B ∪ {n− k − 1} ⊂ {1, . . . , n− k − 1}. All the η′ in the
above formula are normalized relative to the initial data. Hence, the term in Σ1,1

indexed by (J ′, S) contains a function η̃J
′

S normalized relative to the initial data,
and multiplied by a factor

2−ε
∑

l∈S(j′l+1−j′l)
j′n−k−1∑
j′n−k−1

2−ε(j
′
n−k+1−i) � 2−ε

∑
l∈S(j′l+1−j′l) ,

whereas the corresponding term in Σ1,2 is a bump function η̃J
′

S∪{n−k−1} normalized
relative to the initial data and multiplied by

2−ε
∑

l∈S(j′l+1−j′l)2−ε(j
′
n−k−j′n−k−1)(j′n−k − j′n−k−1) � 2−ε

′ ∑
l∈S∪{n−k−1}(j

′
l+1−j′l) ,
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with ε′ < ε. Hence,

Σ1 =
∑
J′∈En

∑
S⊆{1,2,...,n−k−1}

2−ε
∑

l∈S(j′l+1−j′l)[η̃J′
S

]
J′ ,

and Σ1 together with K2 gives the first sum in (6.17) with k replaced by k + 1.

It remains to prove that Σ2 can be absorbed in the remainder term (second
sum) of (6.17). We group together the terms at the same scale and separate the
sets S containing n − k − 1 from the others. Indexing the elements J ′ of EB as
J ′ = (j′1, . . . , j′n−k−1, j

′
n−k, . . . , j

′
n−1) ∈ En−1, we have

Σ2 =
∑
J∈En

∑
S⊆{1,2,...,n−k−1}

2−ε
∑

l∈S∪{n−k}(jl+1−jl) [ηĴn−k

S

]
Ĵn−k

=
∑

J′∈En−1

∑
S⊆{1,2,...,n−k−2}

( ∑
J∈En:J

̂n−k=J′

2−ε
∑

l∈S∪{n−k}(jl+1−jl)[ηĴn−k

S

]
Ĵn−k

)
+

∑
J′∈En−1

∑
S⊆{1,2,...,n−k−2}

(∑
J∈En:J

̂n−k=J′

2−ε
∑

l∈S∪{n−k−1,n−k}(jl+1−jl)[ηĴn−k

S

]
Ĵn−k

)
= Σ2,1 + Σ2,2 .

As in the previous discussion, each term in parentheses is a function normalized
relative to the initial data, multiplied by a factor controlled by

2−ε
∑

l∈S(jl+1−jl)
j′n−k∑

i=j′n−k−1

2−ε(j
′
n−k−i) � 2−ε

∑
l∈S(j′l+1−j′l) ,

for the terms in Σ2,1 and by

2−ε
∑

l∈S(jl+1−jl)2−ε(j
′
n−k−j′n−k−1)(j′n−k − j′n−k−1) � 2−ε

′ ∑
l∈S∪{n−k−1}(j

′
l+1−j′l) ,

with ε′ < ε, for the terms in Σ2,2. It follows that

Σ3 =
∑

J′∈En−1

∑
S⊆{1,2,...,n−k−1}

2−ε
∑

l∈S(j′l+1−j′l)[η̃J′
S

]
J′ ,

and this concludes the proof. �

6.4. Restricted cancellation conditions

Our next result shows that the cancellation conditions in the definition of a flag
kernel can be relaxed. As usual, let F denote the standard flag

(0) ⊂ Ran ⊂ Ran−1 ⊕ Ran ⊂ · · · ⊂ Ra2 ⊕ · · · ⊕ Ran ⊂ RN .

Theorem 6.13. Let K be a distribution in S(RN ) which satisfies the conditions
of Definition 2.3 for the flag F , except that in condition (b), the values of the
parameters R1, . . . , Rs are restricted to R1 ≥ R2 ≥ · · · ≥ Rs. Then K is a flag
kernel.
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Before giving the formal proof, let us explain what needs to be done. We
are asserting that if the cancellation conditions in part (b) of Definition 2.3 are
satisfied when R1 ≥ R2 ≥ · · · ≥ Rs, then they are satisfied for all values of the
scaling parameters. To do this we fix a non-empty subset I ⊆ {1, . . . , n}, and a
constant ρi > 0 for every i ∈ I. For each i ∈ I we choose ψi ∈ C∞

0 (Rai) equal to
1 on the Ni-ball of radius 1 and supported on the Ni-ball of radius 2, and with
bounds on the norms {||ψi||(m)}. We set xI = (xi)i∈I and x′

I = (xi)i�∈I , and put

Ψρ(xI) =
∏
i∈I

ψi(ρi · xi) .

Let
K#

Ψ,ρ = K#
Ψ,ρ(x

′
I) = 〈K,Ψρ〉

denote the distribution in the variables x′
I such that

〈K#
Ψ,ρ, ϕ〉 = 〈K,Ψρ ⊗ ϕ〉

for every test function ϕ in the variables x′
I . We must then prove the following:

Suppose that K satisfies the hypotheses of Theorem 6.13. Then

(a) If I = {1, . . . , n}, then |〈K,Ψρ〉| ≤ C where C is independent of the choice of
{ρi} and {ψi}.

(b) If I is a proper, non-empty subset of {1, . . . , n}, let i0 = min{j ∣∣ j /∈ I}. Then

K#
Ψ,ρ coincides with a smooth function for xi0 �= 0, and for every multi-index ᾱ,

(6.21)
∣∣∂ᾱx′

I
K#

Ψ,ρ(x
′
I)| ≤ Cα

∏
i�∈I

(∑
l �∈I
l≤i

Nl(xl)
)−Qi−[[ᾱi]]

where {Cα} are independent of the choice of {ρi} and {ψi}.
In proving (a) or (b), we may assume that K has compact support, and look

for non-restricted cancellation estimates that only depend on the constants in
Definition 4.1, and not on the size of the support. For general K, the conclusion
will then follow by a limiting argument, based on the following construction. We fix
a C∞

0 -function ϕ on the real line, equal to 1 on a neighborhood of the origin, and set
Φ = ϕ⊗ · · ·⊗ϕ ∈ C∞

0 (RN ), Φr = Φ ◦ δr−1. Then Kr = ΦrK has compact support,
satisfies the hypotheses of Theorem 6.13 uniformly in r, and limr→∞Kr = K in
the sense of distributions.

Proof. For i ∈ I, define Ri as

(6.22) Ri = max
l∈I
l≥i

ρ� .

Then R1 ≥ R2 ≥ · · · , and so by hypothesis K#
Ψ,R satisfies the estimates in (6.21).

Thus it suffices to prove that the difference K#
Ψ,ρ − K#

Ψ,R does as well.



Singular integrals with flag kernels on homogeneous groups I 675

Denote by I0 (respectively I+) the set of i ∈ I such that Ri = ρi (respectively
Ri > ρi). Setting

ηi(xi) = ψi(ρi · xi)− ψi(Ri · xi),
we have

Ψρ(x) −ΨR(x) =
( ∏
i∈I0

ψi(Ri · xi)
)( ∏

i∈I+
ψi(ρi · xi)−

∏
i∈I+

ψi(Ri · xi)
)

=
( ∏
i∈I0

ψi(Ri · xi)
)( ∏

i∈I+

(
ψi(Ri · xi) + ηi(xi)

)− ∏
i∈I+

ψi(Ri · xi)
)

=
( ∏
i∈I0

ψi(Ri · xi)
) ∑

∅�=J⊆I+

(∏
i∈J

ηi(xi)
)( ∏

i∈I+\J
ψi(Ri · xi)

)
=

∑
∅�=J⊆I+

(∏
i∈J

ηi(xi)
)( ∏

i∈I\J
ψi(Ri · xi)

)
.

Fix J ⊆ I+, J �= ∅. By definition of I0 and I+, for each i ∈ J , Ri = ρl for
some l ∈ I0, l > i. Set ī = min{l ∈ I0 : l > i and Ri = ρl} and J̄ = {ī : i ∈ J}.
By the cancellation of K in the variables xi for i ∈ I \ (J ∪ J̄),

K#
Ψ,ρ(x

′
I)−K#

Ψ,R(x′
I) =

∑
∅�=J⊆I+

〈
K#
J ,

(∏
i∈J

ηi

)(∏
i∈J̄

(ψi ◦ δRi)
)〉

J∪J̄
,

where each K#
J is a distribution in the variables xi with i ∈ cI ∪ J ∪ J̄ , satisfying

condition (a) of Definition 2.3.

Notice that this pairing can be expressed as an integral because the right-hand
side f in the pairing above is supported where K#

J is smooth. To see this, denote

by i0 the smallest element of cI ∪ J ∪ J̄ . Then K#
J is smooth for xi0 �= 0. On

the other hand, if x = (xi)i∈cI∪J∪J̄ ∈ supp f , all coordinates xi are bounded away
from zero except for those in J̄ . But every element of J̄ is strictly larger than some
element of J , therefore i0 �∈ J̄ .

We estimate the ᾱ-derivative of each K#
J by

|∂ᾱx′
I
K#
J (x′

I ,xJ ,xJ̄ )|

≤ Cα
(∏
i∈J

Ni(xi)
−Qi

)(∏
l∈J̄

(∑
i∈Jl

Ni(xi)
)−Ql

)∏
i�∈I

(∑
l �∈I
l≤i

Nl(xl)
)−Qi−[[ᾱi]]

,(6.23)

where Jl = {i ∈ J : ī = l} = {i ∈ J : Ri = Rl}. Since the Jl form a partition of J ,
we have

∣∣K#
Ψ,ρ(x

′
I)−K#

Ψ,R(x′
I)
∣∣ ≤ C(∏

i�∈I

(∑
l �∈I
l≤i

Nl(xl)
)−Qi−[[ᾱi]]) ∑

∅�=J⊆I+

∏
l∈J̄

Vl .
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With ml denoting the cardinality of Jl,

Vl =

∫
{Ni(xi)>R

−1
l
, ∀i∈Jl}

∫
Nl(xl)<R

−1
l

( ∏
i∈Jl

Ni(xi)
−Qi

)(∑
i∈Jl

Ni(xi)
)−Ql

dxl
∏
i∈Jl

dxi

= R−Ql

l

∫
{Ni(xi)>R

−1
l , ∀i∈Jl}

( ∏
i∈Jl

Ni(xi)
−Qi

)(∑
i∈Jl

Ni(xi)
)−Ql ∏

i∈Jl

dxi

≤ CR−Ql

l

∏
i∈Jl

∫
Ni(xi)>R

−1
l

Ni(xi)
−Qi−Ql/ml dxi ≤ C .

This concludes the proof. �

6.5. Invariance of flag kernels under changes of variables

We study the effect of a change of variables on the class of flag distributions. If
K ∈ S ′(RN ), then formally 〈K, ψ〉 =

∫
RN K(x)ψ(x) dx, where K is the ‘kernel’

associated to K. Let F : RN → RN be a diffeomorphism with inverse G. We want
to define a new distribution K# which is the composition of K with the change of
variables F . Now formally〈K ◦ F, ψ〉 =

∫
RN

K(F (x))ψ(x) dx =

∫
RN

K(y)ψ(G(y)) det(JG)(y) dy

where JG is the Jacobian matrix of G. Thus if ψ#(y) = ψ(G(y)) det(JG)(y), and
if the change of variables has the property that ψ ∈ S(RN ) implies ψ# ∈ S(RN ),
we can define K# = K ◦ F by setting

〈K#, ψ
〉

=
〈K, ψ#

〉
for all ψ ∈ S(RN ).

We are primarily interested in changes of variables of the form

F (x1, . . . , xN ) = (x1 + P1(x), . . . , xN + PN (x))

where P1, . . . , PN are polynomials of the form Pk(x1, . . . , xN ) =
∑
cαk x

α1
1 · · · xαk−1

k−1

with coefficients cαk ∈ R. Thus Pk depends only on the variables {x1, . . . , xk−1},
and this guarantees that F is a diffeomorphism with inverse G of the same form. In
particular, det(JG)(x) is a polynomial. Thus if ψ ∈ S(RN ), then det(JG)ψ ◦G ∈
S(RN ), so K# is well-defined. We want to show that if K is a flag distribution
adapted to the decomposition RN = Ra1 ⊕ · · · ⊕ Ran , then K# has the same
property. In order to show this, we need to make additional assumptions on the
coefficients {cαk}.
Definition 6.14. A change of variables y = F (x) of the form yk = xk + Pk(x)
where Pk(x) =

∑
α∈Bk

cαkx
α1
1 · · ·xαk−1

k−1 is allowable if

Bk =
{

(α1, . . . , αk−1) ∈ Nk−1
∣∣ k−1∑
j=1

αjdj = dk

}
.

Theorem 6.15. Let K ∈ S ′(RN ) be a flag kernel adapted to the standard flag F
coming from the decomposition RN = Ra1 ⊕ · · · ⊕ Ran . If y = F (x) is an allow-
able change of variables, then K# = K ◦ F is a flag distribution for the same
decomposition.
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Proof. We can assume that K =
∑

I∈En
[ϕI ]I where each ϕI is a normalized bump

function having strong cancellation. Let I ∈ EN . We consider the dilate [ϕI ]I
composed with an allowable change of variables. We have

[ϕI ]I(F (x)) = [ϕI ]I
(
. . . , xl + Pl(x1, . . . , xl−1), . . .

)
= 2−

∑N
k=1 dkikϕI

(
. . . , 2−dlil [xl + Pl(x1, . . . , xl−1)], . . .

)
Put

θI(x) = ϕI
(
. . . , xl + 2−dlilPl(2d1i1x1, . . . , 2dl−1il−1xl−1), . . .

)
so that [θI ]I(x) = [ϕI ]I(F (x)). Put

P Il (x) = 2−dlilPl(2I · x) =
∑
Bl

2−dlil+
∑l−1

k=1
djαjij cαkx

α1
1 · · ·xαk−1

k−1 .

Then θI(x) = ϕI
(
x1 + P I1 (x), . . . , xN + P IN (x)

)
. Since the change of variables is

allowable and I ∈ En, we have

−dlil +

l−1∑
k=1

dkαkik = −
l−1∑
k=1

αkdk(il − ik) ≤ 0.

It follows that each P Il is normalized relative to Pl, and this shows that [ϕI ]I(F (x))
= [θI ]I(x), where θI ∈ C∞0 (RN ) is normalized relative to ϕI .

Next we study the cancellation properties of θI . If we can show that each θI has
weak cancellation relative to the multi-index I ∈ En, it follows from Theorem 6.8
that

K ◦ F =
∑
I

[ϕI ]I ◦ F =
∑
I

[θI ]I

is a flag kernel, which is what we want to show.
To do this we use Proposition 5.7. Let {1, . . . , n} = A∪B with A∩B = ∅. We

study∫
⊕

k∈B Rak

θI(xA,xB) dxB

=

∫
⊕

k∈B Rak

ϕI
(
. . . , xl + 2−dlilPl(2d1i1x1, . . . , 2dl−1il−1xl−1), . . .

)
dxB .

Since ϕI has strong cancellation, we can write it as a sum of terms of the form
∂j1 · · · ∂jn ϕ̃I , where each index jl ∈ Jl. It suffices to consider the integrals∫
⊕

k∈B Rak

∂j1 · · · ∂jn ϕ̃I
(
. . . , xl+2−dlilPl(2d1i1x1, . . . , 2djr ijr xjr , . . . , 2

dl−1il−1xl−1), . . .
)
dxB .
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Let r ∈ B. In this last integral, replace the term

2−dlilPl(2d1i1x1, . . . , 2djr ijrxjr , . . . , 2
dl−1il−1xl−1)

for l > jr by the term 2−dlilPl(2d1i1x1, . . . , 0, . . . , 2dl−1il−1xl−1); i.e., we set xjr = 0
everywhere in the integrand except where it appears by itself in the jthr entry of
∂j1 · · · ∂jn ϕ̃I . Now∫
⊕

k∈B Rak

∂j1 · · · ∂jn ϕ̃I
(
. . . , xl + 2−dlilPl(2d1i1x1, . . . , 0, . . . , 2dl−1il−1xl−1), . . .

)
dxB = 0

since one of the variables we integrate is xjr , and we are integrating the derivative
of a Schwartz function. Thus it suffices to estimate the integral of the difference:∫
⊕

k∈B Rak

[
∂j1 · · · ∂jn ϕ̃I

(
. . . , xl + 2−dlilPl(2d1i1x1, . . . , 2djr ijr xjr , . . . , 2

dl−1il−1xl−1), . . .
)

− ∂j1 · · · ∂jn ϕ̃I
(
. . . , xl + 2−dlilPl(2d1i1x1, . . . , 0, . . . , 2dl−1il−1xl−1), . . .

)]
dxB.

A typical term in the polynomial Pl has the form cαx
α1
1 · · ·xαl−1

l−1 where α1d1 +
· · ·+αl−1dl−1 = dl. Thus we get a ‘gain’ whose size can be estimated by a sum of
terms of the form

|cα| 2−dlil+α1d1i1+···+αl−1dl−1il−1 |x1|α1 · · · |xl−1|αl−1

where αjr > 0. However,

−dlil +
l−1∑
t=1

αtdtit =
[− d1 +

l−1∑
t=1

αtdt
]
il +

l−1∑
t=1

αtdt(it − il)

=
l−1∑
t=1

αtdt(it − il) ≤ −αrdr(il − ir) ≤ −ε(ir+1 − ir).

Thus for every r ∈ B we have shown that∣∣∣ ∫⊕
k∈B Rak

θI(xA,xB) dxB

∣∣∣ � 2−ε(ir+1−ir).

Thus with a smaller ε we have∣∣∣ ∫⊕
k∈B Rak

θI(xA,xB) dxB

∣∣∣ � ∏
r∈B

2−ε(ir+1−ir),

and it follows from Proposition 5.7 that θI has weak cancellation. This completes
the proof. �
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6.6. Homogeneous nilpotent Lie groups

We now begin the study of operators f → f ∗ K where K is a flag kernel, and
the convolution is on a homogeneous nilpotent Lie group G with Lie algebra g.
To say that a Lie group G is homogeneous means that there is a one-parameter
group of automorphisms δr : G → G for r > 0, with δ1 = Id. As a manifold,
G is an N -dimension real vector space, and we assume that with an appropriate
choice of coordinates, G = RN and the automorphisms are given by δr[x] = r ·x =
(rd1x1, . . . , r

dNxN ) with 1 ≤ d1 ≤ d2 ≤ · · · ≤ dN . We begin by summarizing the
facts about group multiplication, invariant vector fields, and group convolution
that we need in this context. Additional background information, and in particular
the proofs of formulas (6.24) and (6.25) below, can be found in the Chapter 1 of [3].

The product on G = RN is given by a polynomial mapping; if x = (x1, . . . , xN )
and y = (y1, . . . , yN), the kth component of the product xy is given by

(6.24) (xy)k = xk+yk+Mk(x,y) = xk+yk+
∑

α,β∈Mk

cα,βk xα1
1 · · ·xαk−1

k−1 y
β1

1 · · · yβk−1

k−1

where {cα,βk } are real constants, and

Mk =
{

(α;β) = (α1, . . . , αk−1;β1, . . . , βk−1)
∣∣∣ k−1∑
l=1

dl(αl + βl) = dk

}
.

Note that
Mk(r · x, r · y) = rdkMk(x,y).

Next, let {X1, . . . , XN} and {Y1, . . . , YN} be the left- and right-invariant vector
fields on G such that, at the origin, Xk = Yk = ∂xk

. Then

Xk =
∂

∂xk
+

N∑
l=k+1
dl>dk

Pkl(x)
∂

∂xl
=

∂

∂xk
+

N∑
l=k+1
dl>dk

∑
α∈Hdl−dk

aαkl x
α1
1 · · ·xαl−1

l−1

∂

∂xl
,

Yk =
∂

∂xk
+

N∑
l=k+1
dl>dk

P̃kl(x)
∂

∂xl
=

∂

∂xk
+

N∑
l=k+1
dl>dk

∑
α∈Hdl−dk

ãαkl x
α1
1 · · ·xαl−1

l−1

∂

∂xl
,

(6.25)

where {aαkl} and {ãαkl} are real constants, and the index set Hd is defined in Propo-

sition 2.1. It follows that Pkl , P̃kl ∈ Hdl−dk .
The bi-invariant Haar measure on G is Lebesgue measure dy = dy1 · · · dyN .

The convolution of functions f, g ∈ L1(G) is given by

f ∗ g(x) =

∫
G

f(xy−1)g(y) dy =

∫
G

f(y)g(y−1x) dy,

and the integral converges absolutely for almost all x ∈ G. The following result
can be found on page 22 of [3].
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Proposition 6.16. Let f, g ∈ C1(G) ∩ L1(G).

(1) If X is a left-invariant vector field and Y is a right invariant vector field, then
X [f ∗ g] = f ∗X [g] and Y [f ∗ g] = Y [f ] ∗ g.

(2) If X is a left-invariant vector field and Y = X̃ is the unique right-invariant
vector field agreeing with X at the origin, then X [f ] ∗ g = f ∗ Y [g].

(3) If δ = δ0 denotes the Dirac delta-function at the origin, then ϕ(x) = ϕ∗δ(x) =
δ ∗ ϕ(x) for ϕ ∈ C∞0 (G). In particular, if X is a left-invariant vector field and
Y is a right invariant vector field, X [ϕ] = ϕ ∗X [δ] and Y [ϕ] = Y [δ] ∗ ϕ.

Using the formulas in (6.24), we can write the convolution of integrable func-
tions f and g as

f ∗ g(x) =

∫
RN

f(. . . , xm − ym − Pm(x,y), . . .) g(. . . , ym, . . .) dy1 · · · dyN(6.26)

where each Pm is a polynomial in the 2m−2 variables {x1, . . . , xm−1, y1, . . . , ym−1}
satisfying Pm(2K ·x, 2K ·y) = 2kmdmPm(x,y). In the formula (6.26), the variables
in x appear in the argument of f . However by a change of variables we can move
some or all of them to the argument of g. Thus if S is any subset of {1, . . . , N},
we can write

(6.27) f ∗g(x) =

∫
RN

f
(
u1(x,y), . . . , uN(x,y)

)
g
(
v1(x,y), . . . , vN (x,y)

)
dy1 · · · dyN

where

um(x,y) =

{
xm − ym −Qm(x,y) if m ∈ S,

ym if m /∈ S,

vm(x,y) =

{
ym if m ∈ S,

xm − ym −Qm(x,y) if m /∈ S.

(6.28)

Here each Qm = QSm is a polynomial in the variables {x1, . . . , xm−1, y1, . . . , ym−1}
with the same homogeneity as Pm; that is Qm(2K · x, 2K · y) = 2kmdmQm(x,y).

6.7. Support properties of convolutions [ϕ]I ∗ [ψ]J

In this section we study the support properties of the convolution of dilates of
normalized bump functions with compact support. Given integers i, j ∈ Z, we set
i ∨ j = max{i, j}. Given N -tuples I = (i1, . . . , iN), J = (j1, . . . , jN ) ∈ ZN , we set

(6.29) I ∨ J = (i1 ∨ j1, . . . , iN ∨ jN ).

We want to show that the convolution [ϕ]I ∗ [ψ]J is the I ∨J-dilate of a normalized
function.
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Lemma 6.17. Let ϕ, ψ ∈ C∞0 (RN ) have support in the ball B(ρ). Then for any
I, J ∈ EN there exists θ ∈ C∞0 (RN ) supported in the ball B(Cρ) such that [ϕ]I ∗
[ψ]J = [θ]I∨J , and ||θ||(m) ≤ Cm||ϕ||(m)||ψ||(m). The constants C and {CM} can
depend on the radius ρ, but are independent of the functions ϕ and ψ.

Proof. Let K = I ∨ J and put

θ =
[
[ϕ]I ∗ [ψ]J

]
−K .

It suffices to show that θ is supported in the set {x ∈ RN : |xk| ≤ Cρ, 1 ≤ k ≤ N}
and that ||θ||(m) ≤ Cm ||ϕ||(m)||ψ||(m) for some absolute constants C and {Cm}.

Making the change of variables ym → 2kmdmym and using the homogeneity of
the functions {um} and {vm}, we have[

[ϕ]I ∗ [ψJ ]
]
−K(x)

= 2
∑

m dmkm([ϕ]I ∗ [ψ]J)(2d1k1x1, . . . , 2
dNkNxN )

= 2
∑

m 2dmkm

∫
RN

[ϕ]I
(
. . . , um(2d1k1x1, . . . , 2

dNkNxN ,y), . . .
)

· [ψ]J
(
. . . , vm(2d1k1x1, . . . , 2

dNkNxN ,y), . . .
)
dy1 · · · dyN

= 2
∑

m dm(2km−im−jm)

∫
RN

ϕ
(
. . . , 2dm(km−im)um(x,y), . . .

)
· ψ( . . . , 2dm(km−jm)vm(x,y), . . .

)
dy1 · · · dyN .

Note that 2dm(km−im)≥1 and 2dm(km−jm)≥1. It follows that if [ϕI ∗ ψJ ]−K(x) �=0,
there exists y = (y1, . . . , yN ) ∈ RN so that for 1 ≤ m ≤ N ,

|um(x,y)| ≤ 2dm(km−im)|um(x,y)| ≤ ρ,
|vm(x,y)| ≤ 2dm(km−jm)|vm(x,y)| ≤ ρ.

(6.30)

We show by induction onm that these inequalities imply that |xm|+|ym| ≤ Amρ
for an appropriate choice of constants A1 < A2 < · · · < AN . When m = 1, we
have |x1− y1| ≤ ρ and |y1| ≤ ρ, so |x1|+ |y1| ≤ 3ρ, and we can take A1 = 3. Next,
assume by induction that |xs|+ |ys| ≤ Asρ for 1 ≤ s < m. Since Qm(x,y) depends
only on the variables {x1, . . . , xm−1, y1, . . . , ym−1}, it follows that |Qm(x,y)| ≤
Bmρ, where Bm is a constant that depends on the coefficients of the polyno-
mial Qm, on the constants {As} for s < m, and on ρ. We have |ym| ≤ ρ and
|xm − ym −Qm(x,y)| ≤ ρ, so |xm|+ |ym| ≤ (Bm + 2)ρ. This completes the proof
of the statement about the support of θ.

To establish the estimate ||θ||(m)≤Cm||ϕ||(m)||ψ||(m), we again use (6.27), but

this time with the set S = {m ∈ {1, . . . , N} ∣∣ jm ≤ im = km}. Of the two factors{
2dm(km−im), 2dm(km−jm)

}
, the one which equals 1 multiplies the expression xm −

ym−Qm(x,y), while the term ym is multiplied by the larger factor 2dm(km−(im∧jm)).
Thus with this representation of the convolution ϕI ∗ψJ , the integration takes place
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over the set E = {y ∈ RN : |ym| ≤ 2−dm(km−(im∧jm))}. Thus we can estimate the
size of

[
[ϕ]I ∗ [ψ]J

]
−K(x) by

∣∣[ϕI ∗ ψJ]−K(x)
∣∣ ≤ 2

∑
m dm(2km−im−jm) ||ϕ||0 ||ψ||0

∫
E

dy ≤ C0 ||ϕ||0 ||ψ||0

since 2km − im − jm − km + (im ∧ jm) = 0. When we take derivatives of
[
[ϕ]I ∗

[ψ]J
]
−K(x), the terms involving the variables x are multiplied by the factor 1, and

so we obtain in the same way the estimate∣∣∣∣ [ϕI ∗ ψJ]−K∣∣∣∣(m)
≤ Cm ||ϕ||(m) ||ψ||(m).

This completes the proof. �

6.8. Decay and cancellation properties of convolutions [ϕ]I ∗ [ψ]J

We want to study the decay and cancellation properties of the convolution [ϕ]I ∗
[ψ]J under the assumption that ϕ has cancellation in the variables {xl1 , . . . , xla}
and ψ has cancellation in the variables {xm1 , . . . , xmb

}. Here decay means that
the size of [ϕ]I ∗ [ψ]J is small due to the difference between the N -tuples I and J ;
cancellation means that the integral of [ϕ]I ∗ [ψ]J with respect to some variables
is zero. (See Section 5.2 and Definition 5.3 for the precise definition of strong and
weak cancellation). Before stating our results, let us see what we should expect
by considering the much simpler case in which the convolution [ϕ]I ∗e [ψ]J is taken
with respect to the Abelian (Euclidean) vector space structure of RN rather than
the general homogeneous nilpotent Lie group structure G.

Let I = (i1, . . . , iN) and J = (j1, . . . , jN ), and put

A0 =
{
s ∈ {1, . . . , a} ∣∣ ils ≤ jls},

A1 =
{
s ∈ {1, . . . , a} ∣∣ ils > jls

}
= {1, . . . , a} \A0,

B0 =
{
t ∈ {1, . . . , b} ∣∣ jmt ≤ imt

}
,

B1 =
{
t ∈ {1, . . . , b} ∣∣ jmt > imt

}
= {m1, . . . ,mb} \B0.

Because of the hypothesis on cancellation, we can write

ϕ = ∂l1 · · · ∂la ϕ̃,
ψ = ∂m1 · · · ∂mb

ψ̃.

For each s ∈ A0 we can integrate by parts in the variable xls in the integral

[ϕ]I ∗e [ψ]J , moving the derivative ∂ls from ϕ̃ to ψ̃. Since the width of the dilate
[ϕ]I is narrower in this variable than the dilate [ψ]J , this integration by parts gives
a gain of 2−ε(jls−ils ), and we get such a gain for each s ∈ A0. A similar argument
shows that we get a gain of 2−ε(imt−jmt ) for each t ∈ B0. Thus the total gain from
integration by parts is

∏
s∈A0

2−ε(jls−ils )
∏
t∈B0

2−ε(imt−jmt ). In addition to this
gain, we observe that in the convolution [ϕ]I ∗e [ψ]J , the derivatives ∂ls for s ∈ A1
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and ∂mt for t ∈ B1 can be pulled outside the integral. The final result is that there
is a compactly supported function θ, normalized relative to ϕ and ψ, so that

[ϕ]I ∗e [ψ]J =
∏
s∈A0

2−ε(jls−ils )
∏
t∈B0

2−ε(imt−jmt )
∏
s′∈A1

∏
t′∈B1

∂ls′∂mt′ [θ]I∨J .

In other words, we get exponential gains from variables where there is cancellation
for the function with ‘narrower’ dilation, and the resulting convolution still has
cancellation in the remaining variables.

When dealing with convolution on a homogeneous nilpotent Lie group, we
cannot move Euclidean derivatives from one factor to the other. However, we can
write Euclidean derivatives in terms of left- or right-invariant vector fields which
can be moved across the convolution. But this process introduces error terms
involving derivatives with respect to ‘higher’ variables, and these come with a gain
involving the differences between entries of I or J . Thus in the case of nilpotent
Lie groups, we might hope that convolution results in three kinds of terms: gains
of the form 2−ε|i�−j�| coming from integration by parts in narrow variables with
cancellation, residual cancellation of the convolution in some variables which are
not used in the integration by parts, and finally gains of the type 2−ε(i�+1−i�)

and 2−ε(j�+1−j�). This is in fact the case, and is made precise in the next lemma.
Suppose we are given two decompositions

(A) : RN = Ra1 ⊕ · · · ⊕ Ran ,

(B) : RN = Rb1 ⊕ · · · ⊕ Rbm .

Let {JA
1 , . . . , J

A
n } be the indices corresponding to (A) and let {JB

1 , . . . , J
B
m} be the

indices corresponding to (B). Define

σ : {1, . . . , N} → {1, . . . , n} such that � ∈ JA
σ(�),

τ : {1, . . . , N} → {1, . . . ,m} such that l ∈ JB
τ(l).

In what follows, πA and πB denote mappings from the set {1, . . . , N} to itself with
the properties that πA(�) ∈ JA

σ(�), and πB(l) ∈ JB
τ(l). Also recall from equation (4.5)

in Section 4.1 that we can introduce mappings pA : En → EN and pB : Em → EN
so that

pA(i1, . . . , in) =
( a1︷ ︸︸ ︷
i1, . . . , i1 ,

a2︷ ︸︸ ︷
i2, . . . , i2 , . . . ,

an︷ ︸︸ ︷
in, . . . , in

)
,

pB(j1, . . . , jm) =
( b1︷ ︸︸ ︷
j1, . . . , j1 ,

b2︷ ︸︸ ︷
j2, . . . , j2 , . . . ,

bm︷ ︸︸ ︷
jm, . . . , jm

)
.

Lemma 6.18. Suppose that ϕ ∈ C∞0 (RN ) has cancellation in the variables x� for
� ∈ A ⊂ {1, . . . , N}, and that ψ ∈ C∞0 (RN ) has cancellation in the variables xl for
l ∈ B ⊂ {1, . . . , N}. Let I = (i1, . . . , in) ∈ En and J = (j1, . . . , jm) ∈ Em. Set

A0 =
{
� ∈ A ∣∣ iσ(�) ≤ jτ(�)},

B0 =
{
l ∈ B ∣∣ jτ(l) ≤ iσ(l)}.
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Then [ϕ]I ∗ [ψ]J can be written as a sum of terms of the form∏
�∈A1

2−ε(iσ(�)+1−iσ(�))
∏
l∈B1

2−ε(iτ(l)+1−iτ(l))
∏
�∈A2

2−ε(jτ(�)−iσ(�))
∏
l∈B2

2−ε(iσ(l)−jτ(l))

[ ∏
�∈A3

∂πA(�)

∏
l∈B3

∂πB(l)θ
]
pA(I)∨pB(J)

where θ is normalized relative to ϕ and ψ, A = A1∪A2∪A3 and B = B1∪B2∪B3

are disjoint unions, and we have A2 ⊂ A0 ⊂ A1 ∪ A2 and B2 ⊂ B0 ⊂ B1 ∪ B2.
(We will have σ(�) �= n and τ(l) �= n.)

Proof. Using the cancellation hypotheses, it follows from Lemma 5.1 that we can
write

ϕ =
(∏
�∈A

∂x�

)
[ϕA], [ϕ]I =

(∏
�∈A

(
2d�iσ(�)∂x�

))
[ϕA]I ,

ψ =
( ∏
�∈B

∂x�

)
[ψB], [ψ]J =

( ∏
�∈B

(
2d�jτ(�)∂x�

))
[ψB ]J ,

where ϕA is normalized relative to ϕ, and ψB is normalized relative to ψ. We can
use Corollary 4.8 to write [ϕ]I as finite sums of terms of the form( ∏

�∈Ã1

2−ε(iσ(�)+1−iσ(�))
) ∏
�∈A1

(2dπA(�)iσ(�)ZπA(�))[ϕA1 ]I

where A1 ⊂ A is a possibly empty subset, Ã1 = A \ A1, each ZπA(�) is either the
corresponding left- or right-invariant vector field, and ϕA1 is normalized relative
to ϕ. Moreover, according to the Remarks 4.9 following Corollary 4.8, the operators
{ZπA(�)} can be put in any desired order. Similarly [ψ]J is a finite sum of terms
of the form ( ∏

l∈B̃1

2−ε(jτ(l)+1−jτ(l))
) ∏
l∈B1

(2dπB(l)jτ(l)ZπB(l))
[
ϕB1

]
J
.

It follows that [ϕ]I ∗ [ψ]J is a finite sum of terms of the form∏
�∈Ã1

2−ε(iσ(�)+1−iσ(�))
∏
l∈B̃1

2−ε(jτ(l)+1−jτ(l))

( ∏
�∈A1

(2dπA(�)iσ(�)ZπA(�))[ϕA1 ]I ∗
∏
l∈B1

(2dπB(l)jτ(l)ZπB(l))[ϕB1 ]J

)
.

Now let

A2 = {� ∈ A1

∣∣ iσ(�) ≤ jτ(�)} = A1 ∩ A0, Ã2 = {� ∈ A1

∣∣ iσ(�) > jτ(�)} = A1 \A2,

B2 = {� ∈ B1

∣∣ jτ(l) ≤ iσ(l)} = B1 ∩B0, B̃′
2 = {� ∈ B1

∣∣ jτ(l) > iσ(l)} = B1 \B2.
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We choose Z� and Zl as follows:

Z� =

{
L� if � ∈ A2,

R� if � ∈ Ã2,
Zl =

{
Ll if l ∈ B2,

Rl if l ∈ B̃2.

Then since left-invariant vector fields commute with right invariant vector fields,
we can use Proposition 6.16, part (1) and then Proposition 6.16, part (2) to write( ∏

�∈A1

(2dπA(�)iσ(�)ZπA(�))[ϕA1 ]I ∗
∏
l∈B1

(2dπB(l)jτ(l)ZπB(l))[ϕB1 ]J

)
=

∏
�∈Ã2

(2dπA(�)iσ(�)RπA(�))
∏
l∈B̃2

(2dπB(l)jτ(l)LπB(l))( ∏
�∈A2

(2dπA(�)iσ(�)LπA(�))[ϕA1 ]I ∗
∏
l∈B2

(2dπB(l)jτ(l)Rl)[ψB1 ]J

)
=

∏
�∈Ã2

(2dπA(�)iσ(�)R�)
∏
l∈B̃2

(2dπB(l)jτ(l)LπB(l))(
[ϕA1 ]I ∗

∏
�∈A2

(2dπA(�)iσ(�)LπA(�))
∏
l∈B2

(2dπB(l)jτ(l)RπB(l))[ψB1 ]J

)
,

where ϕA1 and ψB1 are normalized7 relative to ϕ and ψ. (Here
∏
�∈A′

1
is actually

the product of the operators in the reverse order). Now we want to commute the
operators ∏

�∈A2

(2dπA(�)iσ(�)L�) and
∏
l∈B2

(2dπB(l)jτ(l)Rl)

before applying them to [ϕB1 ]J . According to the third of the Remarks 4.9, the
result is a sum of terms of the form∏
�∈Ã3

2−ε(iσ(�)+1−iσ(�))
∏
l∈B̃3

2−ε(jτ(l)+1−jτ(l))
∏
l∈B3

(2dπB(l)jτ(l)Rl)
∏
�∈A3

(2dπA(�)iσ(�)R�)[ψB3 ]

where

A3 ⊂ A′
2,

B3 ⊂ B′
2,

Ã3 = A′
2 \A3,

B̃3 = B′
2 \B3.

Thus

[ϕA1 ]I ∗
∏
�∈A2

(2dπA(�)iσ(�)L�)
∏
l∈B2

(2dπB(l)jτ(l)Rl)[ψB1 ]J

7The function ϕA1
also depends on A and ψB1

also depends on B. With minimal risk of con-
fusion, we shall omit such notation.
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is a sum of terms of the form∏
�∈Ã3

2−ε(iσ(�)+1−iσ(�))
∏
l∈B̃3

2−ε(jτ(l)+1−jτ(l))

(
[ϕA1 ]I ∗

∏
l∈B3

(2dπB(l)jτ(l)Rl)
∏
�∈A3

(2dπA(�)iσ(�)R�)[ψB3 ]
)

=
∏
�∈Ã3

2−ε(iσ(�)+1−iσ(�))
∏
l∈B̃′′

1

2−ε(jτ(l)+1−jτ(l))

( ∏
l∈B3

(2dπB(l)jτ(l)Rl)[ϕA1 ]I ∗
∏
�∈A3

(2dπA(�)iσ(�)R�)[ψB3 ]
)

=
∏
�∈Ã3

2−ε(iσ(�)+1−iσ(�))
∏
l∈B̃3

2−ε(jτ(l)+1−jτ(l))
∏
l∈B3

2−dπB(l)(iτ(l)−jτ(l))

∏
�∈A3

2−dπA(�)(jσ(�)−iσ(�))
(∏
B̃3

(2dπB(l)iτ(l)Rl)[ϕA1 ]I ∗
∏
�∈A3

(2dπA(�)jσ(�)R�)[ψB3 ]
)

=
∏
�∈Ã3

2−ε(iσ(�)+1−iσ(�))
∏
l∈B̃3

2−ε(jτ(l)+1−jτ(l))
∏
l∈B3

2−dπB(l)(iτ(l)−jτ(l))

∏
�∈A3

2−dπA(�)(jσ(�)−iσ(�))
([ ∏

l∈B3

RlϕA1

]
I
∗ [ ∏

�∈A3

R�ψB3

])
.

Now according to Lemma 6.17, we can write[∏
B̃3

RlϕA1

]
I
∗
[ ∏
�∈A′′

1

R�ψB3

]
= [θA1,B3 ]K

where θA1,B3 is normalized relative to ϕ and ψ and K = I ∨ J . Thus it follows
that [ϕ]I ∗ [ψ]J is a finite sum of terms of the form∏
�∈Ã1∪Ã3

2−ε(iσ(�)+1−iσ(�))
∏

l∈B̃1∪B̃3

2−ε(jτ(l)+1−jτ(l))
∏
�∈A3

2−dπA(�)(jσ(�)−iσ(�))

∏
l∈B3

2−dπB(l)(iτ(l)−jτ(l))
∏
�∈Ã2

(2dπA(�)iσ(�)RπA(�))
∏
l∈B̃2

(2dπB(l)jτ(l)LπB(l))[θA1,B3 ]I∨J .

However, it follows from part (1) of Corollary 4.8 that we can write the product
of vector fields

∏
�∈Ã2

(2dπA(�)iσ(�)R�)
∏
l∈B̃2

(2dπB(l)jτ(l)Ll)[θA1,B3 ]I∨J as a sum of
terms of the form∏
�∈Ã4

2−ε(iσ(�)+1−iσ(�))
∏
l∈B̃4

2−ε(jτ(l)+1−jτ(l))

∏
�∈A4

(2dπA(�)iσ(�)∂πA(�))
∏
l∈B4

(2dπB(l)jτ(l)∂πB(l))[θA4,B4 ]I∨J .
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Thus we have shown that [ϕ]I ∗ [ψ]J is a sum of terms of the form∏
l∈B̃1∪B̃3∪B4

2−ε(jτ(l)+1−jτ(l))
∏
�∈A3

2−dπA(�)(jσ(�)−iσ(�))
∏
l∈B3

2−dπB(l)(iτ(l)−jτ(l))

∏
�∈A4

(2dπA(�)iσ(�)RπA(�))
∏
l∈B4

(2dπB(l)jτ(l)LπB(l))[θA4,B4 ]I∨J .

This has the form asserted by the lemma, and so completes the proof. �

Corollary 6.19. Let ϕ, ψ ∈ C∞0 (RN ) have strong cancellation relative to the same
decomposition RN = Ra1 ⊕ · · · ⊕ Ran . There exists ε > 0 so that if I, J ∈ En, it
follows that [ϕ]I ∗ [ψ]J is a finite sum of terms of the form∏

�∈A
2−ε(i�+1−i�)

∏
�∈Ã

2−ε|i�−j�|
∏
l∈B

2−ε(jl+1−jl)
∏
l∈B̃

2−ε|il−jl| [θA,B]I∨J ,

where,

(a) the set {1, . . . , n} is the disjoint union of the sets A and Ã, and of the sets B

and B̃, with n /∈ A and n /∈ B;

(b) each function θA,B is normalized relative to ϕ and ψ.

Proof. Let J� denote the set of subscripts � such that x� ∈ Ra� , and let

σ : {1, . . . , N} → {1, . . . , n}

be the mapping such that σ(�) ∈ J� for all �. Since ϕ and ψ both have strong
cancellation relative to the decomposition RN = Ra1 ⊕ · · ·⊕Ran , if A0 and B0 are
the sets defined in Lemma 6.18, it follows that {σ(�)

∣∣ � ∈ A0 ∪ B0} = {1, . . . , n}.
This means that the sets A3 and B3 of that Lemma must be empty, and the result
follows. �

6.9. Truncated flag kernels

Definition 6.20. A flag distribution K adapted to the decomposition RN = Ra1⊕
· · · ⊕ Ran is a truncated kernel of width a > 0 if the differential inequalities given
in part (a) of Definition 2.3 are replaced by

∣∣∂ᾱxK(x)
∣∣ ≤ Cᾱ n∏

k=1

[
a+N1(x1) + · · ·+Nk(xk)

]−Qk−[[ᾱk]].

K is an improved truncated kernel if it is a truncated kernel, and in addition satisfies

∣∣∂ᾱxK(x)
∣∣ ≤ Cᾱ a

a+N1(x1)

n∏
k=1

[
a+N1(x1) + · · ·+Nk(xk)

]−Qk−[[ᾱk]].

Our objective is to establish the following:
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Proposition 6.21. Let K be a flag distribution.

(1) If ψ ∈ C∞0 (RN ) has support in the unit ball, then K∗ψ and ψ∗K are truncated
flag kernels of width 1.

(2) If ψ ∈ C∞0 (RN ) has support in the unit ball, and if
∫
RN ψ(x) dx = 0, then K∗ψ

and ψ ∗ K are improved truncated flag kernels of width 1.

Proof. We can write K =
∑

I∈En
[ϕI ]I +

∑r
j=1Kj , where {ϕI} are normalized unit

bump functions with strong cancellation, and {K1, . . . ,Kr} are flag distributions
adapted to coarser flags. If K0 =

∑
I∈En

[ϕI ]I , it suffices to show that the propo-
sition is true for K0. We consider ψ ∗ K0. The case of K0 ∗ ψ is handled similarly.
We have

ψ ∗ K0 =
∑
I∈En

ψ ∗ [ϕI ]I =
∑
I∈E−

n

ψ ∗ [ϕI ]I +
n−1∑
k=1

∑
I∈Ek

n

ψ ∗ [ϕI ]I +
∑
I∈E+

n

ψ ∗ [ϕI ]I

= I +

n−1∑
k=1

IIk + III

where

E−n = {I = (i1, . . . , in) ∈ En
∣∣ in ≤ 0},

E kn = {I = (i1, . . . , in) ∈ En
∣∣ ik ≤ 0 < ik+1},

E+n = {I = (i1, . . . , in) ∈ En
∣∣ 0 < i1}.

Denote the element (0, . . . , 0) ∈ En by 0. If I = (i1, . . . , in) ∈ Ekn , then i1 ≤ i2 ≤
· · · ≤ ik ≤ 0, and we put Ĩk = (0, . . . , 0, ik+1, . . . , in). Then

I ∨ 0 =

⎧⎪⎨⎪⎩
0 if I ∈ E−n ,

Ĩk if I ∈ Ekn ,

I if I ∈ E+n .

Let
Ẽkn = {I ∈ En

∣∣ i1 = · · · = ik = 0}.
Note that if I ∈ Ekn then Ĩk ∈ Ẽkn . According to Lemmas 6.17 and 6.18, each
term ψ ∗ [ϕI ]I has weak cancellation. Moreover, for each I ∈ En there exists
θI ∈ C∞0 (RN ), normalized with respect to ψ and ϕI , so that

(6.31)

I ∈ E−n =⇒ ψ ∗ [ϕI ]I = 2−ε(|i1|+···+|in|)[θI ]0̄ ,

I ∈ Ekn =⇒ ψ ∗ [ϕI ]I = 2−ε(|i1|+···+|ik|)[θI ]Ĩk ,

I ∈ E+n =⇒ ψ ∗ [ϕI ]I = [θI ]I .

We have

I(x) =
∑
I∈E−

n

2−ε(|i1|+···+|in|)[θI ]0(x) =
∑
I∈E−

n

2−ε(|i1|+···+|in|)θI(x) = θ̃ 0(x) ,
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where the series converges to a normalized unit bump function θ̃ 0. Next, we can
write

IIk(x) =
∑
I∈Ek

n

ψ ∗ [ϕI ]I(x) =
∑
J∈Ẽk

n

[ ∑
I∈Ek

n

Ĩk=J

ψ ∗ [ϕI ]I

]
(x)

=
∑
J∈Ẽk

n

[ ∑
I∈Ek

n

Ĩk=J

2−ε(|i1|+···+|ik|)[θI ]Ĩk

]
(x)

=
∑
J∈Ẽk

n

[ ∑
I∈Ek

n

Ĩk=J

2−ε(|i1|+···+|ik|)θI
]
J

(x) =
∑
J∈Ẽk

n

[
θ̃J
]
J

(x),

where ∑
I∈Ek

n

Ĩk=J

2−ε(|i1|+···+|ik|)θI = θ̃J

converges to a normalized unit bump function. Thus each IIk is a flag kernel with
a decomposition into dilates of normalized bump functions where all of the dilation
parameters are non-negative. This is also true of the term III.

Thus we have shown that

ψ ∗ K0 =
∑
I∈E+

n

[θ̃I ]I

where
E+n = {I = (i1, . . . , in) ∈ Zn

∣∣ 0 ≤ i1 ≤ i2 ≤ · · · ≤ in}.
But then it follows from the second inequality in Proposition 10.1, as in the proof
of Proposition 6.9 that ψ ∗ K0 satisfies the differential inequalities of a truncated
kernel of width one.

If we assume in addition that
∫
RN ψ(x) dx = 0, then we can write ψ =

∑N
l=1 ψl,

with ∫
R

ψl(x1, . . . , xl−1, t, xl+1, . . . , xN ) dt = 0.

We can repeat the argument given above with ψ replaced by ψl. It then follows
from Lemma 6.18 that instead of the formulas given in equation (6.31), we get

(6.32)

I ∈ E−n =⇒ ψl ∗ [ϕI ]I = 2−ε(|i1|+···+|in|)[θI ]0̄ ,

I ∈ Ekn =⇒ ψl ∗ [ϕI ]I = 2−ε(|i1|+···+|ik|)[θI ]Ĩk if k < l,

I ∈ Ekn =⇒ ψl ∗ [ϕI ]I = 2−dlil 2−ε(|i1|+···+|ik|)[θI ]Ĩk if k ≥ l,
I ∈ E+n =⇒ ψl ∗ [ϕI ]I = 2−dlil [θI ]I .

Again using the second inequality in Proposition 10.1, and observing that the
case l = 1 gives the worst estimate, we see that ψl ∗ K0 satisfies the differential
inequalities of an improved truncated kernel of width one. �
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Remark 6.22. We point out that we can relax the C∞ requirement on the func-
tion ψ in Proposition 6.21 in the following way. An examination of the arguments
in Sections 6.6 and 6.8 and the proof just given shows that for any integer m there
exists an integer M , so that K ∗ ψ and ψ ∗ K satisfy the required differential in-
equalities and cancellation properties for orders of differentiation not exceeding m,
if ψ is supposed to be of class CM .

7. Convolution of flag kernels

Let K ∈ S ′(RN ) be a flag distribution on the homogeneous nilpotent Lie group
G = RN , adapted to the standard flag associated with the decomposition RN =
Ra1⊕· · ·⊕Ran . Define a left-invariant operator TK : S(RN )→ C∞(RN ) by setting

TK[φ](x) = φ ∗ K(x) = 〈K, φ#x 〉
where, if φ ∈ S(RN ), we set φ#x (y) = φ(xy−1). If K1 and K2 are two flag kernels
onG, we want to make sense of the composition TK2◦TK1, and show that the result-
ing operator is of the form TK3 where K3 is a third flag kernel on G. Now formally

TK2 ◦ TK1[φ] = (TK1 [φ]) ∗ K2 = (φ ∗ K1) ∗ K2 = φ ∗ (K1 ∗ K2),

so the operator TK2 ◦ TK1 should be given by convolution with the distribution
K1 ∗ K2. However we cannot directly define the composition TK2 ◦ TK1[φ] =
TK2

(
TK1 [φ]

)
, even if φ ∈ C∞0 (RN ), since TK1 [φ] need not belong to S(RN ). Also, in

general one cannot convolve an arbitrary pair of distributions unless one of them
has compact support.

We will define the convolution K1 ∗ K2 somewhat indirectly. In Section 7.1 we
show that if φ ∈ S(RN ), then TK[φ] ∈ L2(RN ) and the mapping TK : S(RN ) →
L2(RN ) has a (unique) continuous extension to a mapping of L2(RN ) to itself. This
allows us to define TK2 ◦ TK1 as the composition of two mappings from L2(RN ) to
itself. Then in Section 7.2, we show that this composition is given by convolution
with a distribution which is given as a sum of convolutions of dilates of bump func-
tions. The key is then to recognize this sum as a flag kernel. The combinatorics
are rather complicated, so in Section 7.3 we work out an explicit example. In Sec-
tion 7.4 we prove the main result, Theorem 7.4, which shows that the convolution
of two flag kernels is a sum of flag kernels. Finally in Section 7.5 we work out some
additional examples.

7.1. Boundedness on L2

In this section we show that convolution with a flag kernel extends to a bounded
operator on L2(RN ). Later in Section 8 we will see more: such operators are
bounded on Lp(RN ) for 1 < p <∞.

Lemma 7.1. Let K be a flag kernel on RN . Then there is a constant C so
that if TK[φ] = φ ∗ K for φ ∈ S(RN ) then ||TK[φ]||L2(RN ) ≤ C ||φ||L2(RN ). As a

consequence, there is a unique extension of TK to a bounded operator from L2(RN )
to itself.
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Proof. Using Corollary 6.2, we can assume that K is a flag kernel adapted to a
standard flag F of length n as given in equation (2.4), and that there is a uniformly
bounded family of functions {ϕI} ⊂ C∞0 (RN ), each having strong cancellation
relative to the decomposition RN = Ra1 ⊕ · · · ⊕ Ran such that K =

∑
I∈En

[ϕI ]I
with convergence in the sense of distributions.

For any I ∈ En, let TI [f ] = TϕI [f ] = f∗[ϕI ]I . Then ||TI [f ]||L2 ≤ ||ϕI ||L1 ||f ||L2 .

If (f, g) =
∫
RN f(x)g(x) dx is the standard inner product in L2(RN ), it follows

from Fubini’s theorem that
(
TI [f ], g

)
=

(
f, T̃I [g]

)
where TĨ [g] = g ∗ [ϕ̃I ]I and

ϕ̃I(x) = ϕI(x−1). Thus the Hilbert space adjoint of the operator TϕI is the
operator T ∗

ϕ = Tϕ̃I . Fubini’s theorem also shows that TI ◦ T ∗
J = Tϕ̃I∗ϕJ and

T ∗
J ◦ TI = TϕI∗ϕ̃J . Thus if I, J ∈ En, the L2-norm of the operators TI ◦ T ∗

J and
T ∗
J ◦ TI are bounded by the L1 norms of [ϕ̃J ]J ∗ [ϕI ]I and [ϕI ]I ∗ [ϕ̃J ]J . It follows

from Corollary 6.19 that

(7.1)

||[ϕ̃]J∗ [ϕ]I ||L1(RN ) + ||[ϕ]I ∗ [ϕ̃]J ||L1(RN )

≤ C 2−ε|in−jn|
n−1∏
�=1

[
2−ε|i�−j�| + min

{
2−ε(i�+1−i�), 2−ε(j�+1−j�)}].

For any finite subset F ⊂ En, set KF (x) =
∑

I∈F [ϕI ]I(x). Then for any

φ ∈ S(RN ),
〈K, φ〉 = limF↗En

〈KF , φ〉, and in particular, if φ#x (y) = φ(xy−1),

TK[φ](x)=
〈K, φ#x 〉 = lim

F↗En

〈KF , φ#x 〉 = lim
F↗En

∑
I∈F

φ∗ [ϕI ]I(x) = lim
F↗En

∑
I∈F

TI [φ](x).

It follows from the almost orthogonality estimate in (7.1) and the Cotlar–Stein
Theorem (see for example [11], page 280) that there is a constant C independent
of the finite set F such that∣∣∣∣∣∣∑

I∈F
T[ϕI ]I [φ]

∣∣∣∣∣∣
L2
≤ C ||φ||L2 .

But then Fatou’s lemma implies that ||TK[φ]||L2 ≤ C ||φ||L2 for all φ ∈ S(RN ).
This completes the proof. �

Corollary 7.2. Supposet that K is a flag kernel, and that K =
∑

I∈En
[ϕI ]I . Then

for all f ∈ L2(RN ),

lim
F↗En

∣∣∣∣∣∣∑
I∈F

T[ϕ]I [f ]− TK[f ]
∣∣∣∣∣∣
L2

= 0.

Proof. Since S(RN ) is dense in L2(RN ), and since TK is bounded on L2(RN ), it suf-
fices to show that limK↗En ||

∑
I∈F T[ϕI ]I [ψ]−TK[ψ]||L2 = 0 for ψ ∈ S(RN ). (Both

TK and
∑

I∈F T[ϕI ]I are bounded on L2(RN ) with norm independent of F ). But

for ψ ∈ S(RN ), the result follows from Theorem 6.8 and the discussion following
it on page 663. This completes the proof. �
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7.2. Composition of convolution operators

Let Kj , j = 1, 2, be two flag kernels on RN , and let TKj [φ] = φ ∗ Kj be the corre-
sponding convolution operators. According to Lemma 7.1, each of these operators
is bounded on L2(RN ), and hence the composition TK2 ◦ TK1 is well-defined as a
bounded operator on L2(RN ). Our main result is the following.

Theorem 7.3. Let F1,F2 be two standard flags on RN , and let F0 be the coarsest
flag on RN which is finer than both F1 and F2. For j = 1, 2, let Kj be a flag kernel
adapted to the flag Fj. Then TK2 ◦ TK1 is a flag kernel adapted to the flag F0.

In order to study the composition TK2 ◦TK1, we want to relate it to the decom-
positions of K1 and K2 as sums of dilates of normalized bump functions. According
to Corollary 6.2, we can assume that the flags F1 and F2 are given by

F1 : (0) ⊆ Ran ⊆ Ran−1 ⊕ Ran ⊆ · · · ⊆ Ra2 ⊕ · · · ⊕ Ran ⊆ RN ,

F2 : (0) ⊆ Rbm ⊆ Rbm−1 ⊕ Rbm ⊆ · · · ⊆ Rb2 ⊕ · · · ⊕ Rbm ⊆ RN ,

and the flag kernels are given by K1 =
∑

I∈En
[ϕI ]I and K2 =

∑
J∈Em

[ψJ ]J , where

{ϕI | I ∈ En} is a uniformly bounded family of compactly supported functions
with with common support and strong cancellation relative to the flag F1, and
{ψJ | J ∈ Em} is a uniformly bounded family of compactly supported functions
with with common support and strong cancellation relative to the flag F2.

If φ, θ ∈ S(RN ), then

TK1 [φ] = lim
F↗En

∑
I∈F

φ ∗ [ϕI ]I and TK2 [θ] = lim
G↗Em

∑
J∈G

θ ∗ [ψJ ]J ,

where the limits are in L2(RN ) and are taken over finite subsets F ⊂ En and
G ⊂ Em. For every fixed finite set F ⊂ En, the function

∑
I∈F φ ∗ [ϕI ]I ∈ S(RN ).

Since TK2 is a continuous mapping from L2(RN ) to itself, it follows that

TK2

(
TK1 [φ]

)
= lim

F↗En

TK2

(∑
I∈F

φ ∗ [ϕI ]I

)
= lim

F↗En

lim
G↗Em

∑
I∈F

∑
J∈G

φ ∗ [ϕI ]I ∗ [ψJ ]J

= lim
F↗En

lim
G↗Em

φ ∗
[∑
I∈F

∑
J∈G

[ϕI ]I ∗ [ψJ ]J

]
.

So in order to prove Theorem 7.3, we must study the finite sums
∑
I∈F

∑
J∈G[ϕI ]I

∗[ψJ ]J , and show that these converge in the sense of distributions to a finite sum
of flag kernels, each adapted to a flag which is equal to or coarser than F0.

Since the general situation is rather complicated, we first present an example
which may help understand the difficulties.

7.3. An example

Suppose that we are working in R5 with the family of dilations given by

(7.2) δ · x = δ · (x1, x2, x3, x4, x5) = (δd1x1, δ
d2x2, δ

d3x3, δ
d4x4, δ

d5x5)

with d1 ≤ · · · ≤ d5. The standard flags on R5 correspond to partitions of N = 5.
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Consider two flags F1 and F2 corresponding to the partitions A = (2, 3), where
we write R5 = R2⊕R3, and B = (1, 2, 2), where we write R5 = R⊕R2⊕R2. Thus

F1 is the flag (0) ⊂ {x1 = x2 = 0} ∼= R3 ⊂ R5,

F2 is the flag (0) ⊂ {x1 = x2 = x3 = 0} ∼= R2 ⊂ {x1 = 0} ∼= R2 ⊕ R2 ⊂ R5.

We are given flag kernels

K1 =
∑
I∈E2

[ϕI ]I and K2 =
∑
J∈E3

[ψJ ]J

adapted to these two flags. We then want to study the infinite sum

(7.3)
∑
I∈E2

∑
J∈E3

[ϕI ]I ∗ [ψJ ]J

arising from the composition of the operators TK1 ◦ TK2 .

Suppose I = (i1, i2) ∈ E2 and J = (j1, j2, j3) ∈ E3, so that i1 ≤ i2, and
j1 ≤ j2 ≤ j3. If ϕI , ψJ ∈ C∞0 (RN ), we have

[ϕI ]I(x) = 2−i1(d1+d2)−i2(d3+d4+d5)

· ϕI(2−d1i1x1, 2−d2i1x2, 2−d3i2x3, 2−d4i2x4, 2−d5i2x5) ,

[ψJ ]J(x) = 2−j1d1−j2(d2+d3)−j3(d4+d5)

· ψJ(2−d1j1x1, 2−d2j2x2, 2−d3j2x3, 2−d4j3x4, 2−d5j3x5).

Note that dilation by I = (i1, i2) on R2⊕R3 is the same as dilation by the 5-tuple
Ĩ = (i1, i1, i2, i2, i2) on R5, and dilation by J = (j1, j2, j3) on R⊕R2⊕R2 is the same
as dilation by the 5-tuple J̃ = (j1, j2, j2, j3, j3) on R5. Also note that we can recon-
struct I and J from Ĩ and J̃ by consolidating repeated indices. By Lemma 6.17,
the convolution [ϕI ]I ∗ [ψJ ]J is equal to [θI,J ]K where θI,J ∈ C∞0 (R5), and where

(7.4)
K = (k1, k2, k3, k4, k5) = Ĩ ∨ J̃ = (i1, i1, i2, i2, i2) ∨ (j1, j2, j2, j3, j3)

= (max{i1, j1},max{i1, j2},max{i2, j2},max{i2, j3},max{i2, j3}).
We must consider the sum in (7.3) of the convolutions [ϕI ]I ∗ [ψJ ]J , taken over

all I ∈ E2 and J ∈ E3. Each pair (I, J) ∈ E2 × E3 gives rise to a 5-tuple K ∈ E5.
However, not all elements of E5 actually arise in this sum. (For example, it is clear
from (7.4) that we must have k4 = k5, so the 5-tuple (1, 2, 3, 4, 5) does not arise).
Let E(A,B) denote the set of all 5-tuples K = (k1, k2, k3, k4, k5) that do arise as
in (7.4). (The notation reflects the fact that this set of 5-tuples is determined by
the partitions A = (2, 3) and B = (1, 2, 2) of N = 5). Then for each K ∈ E(A,B),
let E(K) denote the set of pairs (I, J) ∈ E2 × E3 which give rise to the 5-tuple K.
Once K ∈ E(A,B) is fixed, each of the terms in the inner infinite sum on the
right-hand side of (7.3) is the K dilate of a normalized bump function θI,J . Then
we can write the sum in (7.3) as

(7.5)
∑
I∈E2

∑
J∈E3

[ϕI ]I∗[ψJ ]J =
∑

K∈E(A,B)

∑
I,J∈E(K)

[ϕI ]I∗[ψJ ]J =
∑

K∈E(A,B)

∑
I,J∈E(K)

[θI,J ]K .
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We will need to show that the infinite inner sum
∑

I,J∈E(K)[θ
I,J ]K actually

converges and is the K dilate of a normalized bump function. However, this is
not enough to give the right description of the sum in (7.3) as a flag kernel. In
the outer sum on the right-hand side of (7.5), the 5-tuple K runs over E(A,B)
and not over all of E5. We still need to partition E(A,B) into a finite number of
subsets based on which indices in K are repeated. To make this clear, we further
analyze E(A,B).

As one sees from (7.4), the 5-tuple K = Ĩ ∨ J̃ depends not only on the tuples
I = {i1, i2} and J = {j1, j2, j3}, but also on the ordering of the larger set consist-
ing of {i1, i2, j1, j2, j3}. We know that i1 ≤ i2 and j1 ≤ j2 ≤ j3, but this does not
determine the ordering of the larger set. Such orderings are in one-to-one corre-
spondence with decompositions of the set {1, 2, 3, 4, 5} into two disjoint subsets of
sizes 2 and 3, where elements of the first set are indices from I, and elements of
the second set are indices from J . Thus there are

(
5
2

)
=
(
5
3

)
= 10 such orderings.

A description of these is given in the following Table 1:

Decomposition Ordering K New decomposition Free

E(A,B)1 = {1, 2} ∪ {3, 4, 5} i1 ≤ i2 ≤ j1 ≤ j2 ≤ j3 {j1, j2, j2, j3, j3} R ⊕ R2 ⊕ R2 i1, i2

E(A,B)2 = {1, 3} ∪ {2, 4, 5} i1 ≤ j1 < i2 ≤ j2 ≤ j3 {j1, j2, j2, j3, j3} R ⊕ R2 ⊕ R2 i1, i2

E(A,B)3 = {1, 4} ∪ {2, 3, 5} i1 ≤ j1 ≤ j2 < i2 ≤ j3 {j1, j2, i2, j3, j3} R ⊕ R ⊕ R ⊕ R2 i1

E(A,B)4 = {1, 5} ∪ {2, 3, 4} i1 ≤ j1 ≤ j2 ≤ j3 < i2 {j1, j2, i2, i2, i2} R ⊕ R ⊕ R3 i1, j3

E(A,B)5 = {2, 3} ∪ {1, 4, 5} j1 < i1 ≤ i2 ≤ j2 ≤ j3 {i1, j2, j2, j3, j3} R ⊕ R2 ⊕ R2 i2, j1

E(A,B)6 = {2, 4} ∪ {1, 3, 5} j1 < i1 ≤ j2 < i2 ≤ j3 {i1, j2, i2, j3, j3} R ⊕ R ⊕ R ⊕ R2 j1

E(A,B)7 = {2, 5} ∪ {1, 3, 4} j1 < i1 ≤ j2 ≤ j3 < i2 {i1, j2, i2, i2, i2} R ⊕ R ⊕ R3 j1, j3

E(A,B)8 = {3, 4} ∪ {1, 2, 5} j1 ≤ j2 < i1 ≤ i2 ≤ j3 {i1, i1, i2, j3, j3} R2 ⊕ R ⊕ R2 j1, j2

E(A,B)9 = {3, 5} ∪ {1, 2, 4} j1 ≤ j2 < i1 ≤ j3 < i2 {i1, i1, i2, i2, i2} R2 ⊕ R3 j1, j2, j3

E(A,B)10 = {4, 5} ∪ {1, 2, 3} j1 ≤ j2 ≤ j3 < i1 ≤ i2 {i1, i1, i2, i2, i2} R2 ⊕ R3 j1, j2, j3

Table 1. Decomposition of E(A,B).

In the first column, we have given the decomposition of {1, 2, 3, 4, 5} into two
subsets, the first with two elements and the second with three. This then gives
an ordering of the elements in the set {i1, i2, i3, i4, i5} which is given in the second
column. The third column gives the value of the 5-tuple K = Ĩ ∨ J̃ . In this tuple,
certain entries can be repeated, and this corresponds to a new decomposition of R5.
The fourth column gives this new decomposition of R5 dictated by the repeated
indices of K. Finally, in each of the decompositions, certain of the indices from I
or J appear in the 5-tuple K. In the sixth column of Table 1, we list the ‘free’-
variables which do not appear in K are listed. It is precisely these free variables
which appear in the inner sum on the right-hand side of equation (7.5).
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Table 1 shows that if K ∈ E(A,B), then K takes one of five forms:

(7.6)

(k1, k1, k2, k2, k2) (decomp. 9 and 10) leading to the flag R2 ⊕ R3,

(k1, k2, k2, k3, k3) (decomp. 1, 2 and 5) leading to the flag R⊕ R2 ⊕ R2,

(k1, k2, k3, k3, k3) (decomp. 4 and 7) leading to the flag R⊕ R⊕ R3,

(k1, k1, k2, k3, k3) (decomp. 8) leading to the flag R2 ⊕ R⊕ R2,

(k1, k2, k3, k4, k4) (decomp. 3 and 6) leading to the flag R⊕ R⊕ R⊕ R2.

The outer sum on the right-hand side of (7.5) thus splits into five separate sums:∑
I∈E2

∑
J∈E3

[ϕI ]I ∗ [ψJ ]J

=
∑

K∈E9∪E10

∑
I,J∈Ẽ(K)

[ϕI ]I ∗ [ψJ ]J +
∑

K∈E1∪E2∪E5

∑
I,J∈Ẽ(K)

[ϕI ]I ∗ [ψJ ]J

+
∑

K∈E4∪E7

∑
I,J∈Ẽ(K)

[ϕI ]I ∗ [ψJ ]J +
∑
K∈E8

∑
I,J∈Ẽ(K)

[ϕI ]I ∗ [ψJ ]J

+
∑

K∈E3∪E6

∑
I,J∈Ẽ(K)

[ϕI ]I ∗ [ψJ ]J .

Our object is to show that these five sums are flag kernels, each adapted to one of
the five flags listed on the right-hand side of (7.6). To see this, we must show that
in each case, the inner infinite sum converges, and has weak cancellation. Let us
see why this happens in one case.

Case 1: K ∈ E9 ∪ E10.

In this case, K = {i1, i1, i2, i2, i2} is fixed, and the inner sum
∑

I,J∈Ẽ(K)[ϕ
I ]I ∗

[ψJ ]J is over the free variables {j1, j2, j3} which satisfy the inequalities

j1 ≤ j2 < i1 ≤ j3 < i2 or j1 ≤ j2 ≤ j3 < i1 ≤ i2.
In order to apply Theorem 6.8, we need to check that the sum converges to the
K-dilate of a normalized bump function θI,J , and moreover that θI,J has weak
cancellation relative to the decomposition R2 ⊕ R3.

To show that the sum over the free variables {j1, j2, j3} converges, we want
to show that each term in the sum can be bounded by 2−ε[(l1−j1)+(l2−j2)+(l3−j3)]

where l1, l2, l3 ∈ {i2, i2}, and j1 ≤ l1, j2 ≤ l2, and j3 ≤ l3. This will follow
because, by hypothesis, ψJ has strong cancellation relative to the decomposition
R ⊕ R2 ⊕ R2. Thus ψJ has cancellation in x1, in either x2 or x3, and in either
x4 or x5. In the variable x1, j1 < i1, and so by Lemma 6.18, we get a gain of
2−ε|i1−j1| ≤ 2−ε|i1−j2|. If there is cancellation in x2, we have j2 < i1, so we get a
gain of 2−ε|i1−j2|, while if there is cancellation in x3, we have j3 ≤ i2 and so we get
a gain of 2−ε|i2−j3|. Finally, if there is cancellation in x4 or x5, we have j3 < i2,
and so we get a gain of 2−ε|i2−j3|. Taking the best of these estimates, we see that
the size of [ϕI ]I ∗ [ψJ ]J is dominated by a constant times 2−ε[|i1−j1|+|i1−j2|+|i2−j3|].
Thus in this case we can take l1 = i1, l2 = i1, and l3 = i2.
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The key points in this convergence argument are the following:

(a) If fs is a free variable, it does not appear in K. Since the entries ks ∈ K are
the maxima of the corresponding entries of is ∈ Ĩ and js ∈ J̃ , the free variable
must satisfy fs ≤ ks.

(b) Since we will sum over the free variable fs, but the variable ks ∈ K is fixed, it
suffices to show that there is a gain 2−ε(ks−fs).

(c) The function ϕI or ψJ with the free variable fs may not necessarily have can-
cellation in the variable xs. (For example, the free variable j2 comes from the
function ψ(j1,j2,j2,j3,j3), and we only know that this function has cancellation in
the variable x2 or the variable x3). However, if there is no cancellation in the
free variable, there is a smaller free variable where there is cancellation, and
where the corresponding element of K is the same. (In our example, ψ(j2,j2,j3)

has cancellation in x1, and k1 = k2).

To see that the sum of the terms [ϕI ]I ∗ [ψJ ]J has weak cancellation relative to
the decomposition R2 ⊕ R3, we again use Lemma 6.18. We only need to observe
that either ϕI or ψJ has cancellation in one of the variables {x1, x2}, and also that
either ϕI or ψJ has cancellation in one of the variables {x3, x4, x5}. But this is
clear: for example, ψJ has strong cancellation relative to the decomposition R ⊕
R2⊕R2, and so has cancellation in x1, and ϕI has strong cancellation relative to the
decomposition R2⊕R3, and so has cancellation in one of the variables {x3, x4, x5}.

7.4. The general decomposition

Now let us return to the general situation. Suppose F1 and F2 are standard flags
arising from two (in general different) decompositions we label as (A) and (B):

(A) : RN = Ra1 ⊕ · · · ⊕ Ran ,

(B) : RN = Rb1 ⊕ · · · ⊕ Rbm .

Let K1 and K2 be flag kernels adapted to the flags F1 and F2. We only need to
consider the parts of these kernels given by sums of dilates of normalized bump
functions with strong cancellation. (That is, for each kernel we focus on the part
called K0 in Theorem 6.1 and disregard the other terms since they correspond to
coarser flags). Thus we can write

(7.7) K1 =
∑
I∈En

[ϕI ]I , K2 =
∑
J∈Em

[ψJ ]J ,

where each ϕI has strong cancellation relative to the decomposition A and each ψJ

has strong cancellation relative to the decomposition B. Let

KF1 =
∑

I∈F⊂En

[ϕI ]I , KG2 =
∑

J∈G⊂Em

[ψJ ]J ,

where F ⊂ En and G ⊂ Em are finite subsets. We study the double sum

(7.8) KF1 ∗ KG2 =
∑

I∈F⊂En

∑
J∈G⊂∈Em

[ϕI ]I ∗ [ψJ ]J .
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Let F0 be the coarsest flag which is finer than both F1 and F2.

Theorem 7.4. Let K1 and K2 be the flag kernels given in (7.7). Then

lim
F↗En

G↗Em

KF1 ∗ KG2 = K1 ∗ K2

converges in the sense of distributions to a finite sum of flag kernels
∑Kμ, each

of which is adapted to a flag Fμ which is equal to or coarser than the flag F0.

Before outlining the proof, we review our notation. If x ∈ RN , we can write
x = (x′

1, . . . ,x
′
n) with x′

j = (xp′j , . . . , xq′j ) ∈ Raj , or x = (x′′
1 , . . . ,x

′′
m) with x′′

k =

(xp′′k , . . . , xq′′k ) ∈ Rbk . We let J ′
j = {p′j , . . . , q′j} and J ′′

k = {p′′k, . . . , q′′k} so that

{1, . . . , N} =
⋃n
j=1 J

′
j =

⋃m
k=1 J

′′
k . Define

σA : {1, . . . , N} → {1, . . . , n} so that l ∈ J ′
σA(l) for 1 ≤ l ≤ N ;

τB : {1, . . . , N} → {1, . . . ,m} so that l ∈ J ′′
σB(l) for 1 ≤ l ≤ N.

If Q′
j is the homogeneous dimension of Raj and Q′′

k is the homogeneous dimension

of Rbk , then

Q′
j = dp′j + · · ·+ dq′j =

∑
l∈J′

j

dl, Q′′
k = dp′′k + · · ·+ dq′′k =

∑
l∈J′′

k

dl.

If I ∈ En and J ∈ Em, the notation [ϕI ]I and [ψJ ]J refers to the families of dilations

[ϕI ](x) = 2−[Q′
1i1+···+Q′

nin] ϕ(2−i1 · x′
1, . . . , 2

−in · x′
n),

[ψJ ](x) = 2−[Q′′
1 j1+···+Q′′

mjm] ϕ(2−j1 · x′′
1 , . . . , 2

−jm · x′′
m).

In order to compare multi-indices I = (i1, . . . , in) ∈ En and J = (j1, . . . , jm) ∈
Em which parameterize different families of dilations, we identify them with multi-
indices of length N with repeated entries. Thus we define pA : En → EN and
pB : Em → EN so that pA(I) is the N -tuple with i1 repeated a1 times, i2 repeated
a2 times, etc. We define pB analogously. Thus

pA(I) = I = (I1, . . . , IN ) =
( a1︷ ︸︸ ︷
i1, . . . . . . . . . , i1 , . . . ,

ar︷ ︸︸ ︷
ir, . . . , ir , . . . . . . . . . ,

an︷ ︸︸ ︷
in, . . . , in

)
,

pB(J) = J = (J1, . . . , JN ) =
( b1︷ ︸︸ ︷
j1, . . . , j1 , . . . . . . ,

bs︷ ︸︸ ︷
js, . . . . . . , js , . . . ,

bm︷ ︸︸ ︷
jm, . . . . . . , jm

)
.

Explicitly, pA(I) = (I1, . . . , IN ) and pB(J) = (J1, . . . , JN ) where Il = iσ(l) and
Jl = jτ(l). Next set K = (K1, . . . ,KN) = pA(I) ∨ pB(J) = (k1, . . . , kN ). This
means that for 1 ≤ l ≤ N

Kl = iσ(l) ∨ jτ(l) = max
{
iσ(l), jτ(l)

}
=

{
jτ(l) if iσ(l) ≤ jτ(l)
iσ(l) if jτ(l) < iσ(l)

.(7.9)
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Note that we can then define a map πI,J : {1, . . . , N} → {1, . . . , n, n+1, . . . , n+m}
so that

πI,J (l) =

{
� ∈ {1, . . . n} if Kl = iσ(�);

n+ � ∈ {n+ 1, . . . , n+m} if Kl = jτ(�).
(7.10)

Now let us outline the proof of Theorem 7.4. For each I ∈ En and J ∈ Em
it follows from Lemma 6.17 that there is a function θI,J ∈ C∞0 (RN ), normalized
relative to ϕI and ψJ , so that

(7.11) [ϕI ]I ∗ [ψJ ]J = [θI,J ]pA(I)∨pB(J),

and hence equation (7.8) can be written

(7.12) KF1 ∗ KG2 =
∑

(I,J)∈F×G⊂En×Em

[θI,J ]pA(I)∨pB(J).

We analyze this sum by decomposing the set En × Em into disjoint subsets. Let
P(n,m) denote the set of permutations μ : {1, . . . , n, n+1, . . . , n+m} → {1, . . . , n,
n+ 1, . . . , n+m} which preserve the order of the first n elements {1, . . . , n} and of
the last m elements {n+1, . . . , n+m}. (Explicitly, this means that if μ ∈ P(n,m),
then 1 ≤ s < t ≤ n implies μ(s) < μ(t) and n+ 1 ≤ s < t ≤ n+m implies μ(s) <
μ(t)). This corresponds to the ten cases in the example studied in Section 7.3.
The cardinality of P(n,m) is

(
n+m
n

)
. Let I ∈ En and J ∈ Em, and let us write

I = (α1, . . . , αn) and J = (αn+1, . . . , αn+m), so that

α1 ≤ α2 ≤ · · · ≤ αn and αn+1 ≤ αn+2 ≤ · · · ≤ αn+m.
Then let L(I, J) be the (weakly) increasing rearrangement of the set I ∪ J =
{α1, . . . , αn+m} so that
(7.13)
if 1 ≤ r < s ≤ n then αr comes to the left of αs ,
if n+ 1 ≤ r < s ≤ n+m then αr comes to the left of αs ,
if 1 ≤ r ≤ n, n+ 1 ≤ s ≤ n+m and αr < αs then αr comes to the left of αs ,
if 1 ≤ r ≤ n, n+ 1 ≤ s ≤ n+m and αs ≤ αr then αs comes to the left of αr .

This rearrangement of {α1, . . . , αn+m} is given by L(I, J) = {αμ(1), . . . , αμ(n+m)}
where μ is a permutation of the set of subscripts {1, . . . , n, n + 1, . . . , n + m},
and it follows from (7.13) that μ ∈ P(n,m). In this way we associate to each pair
(I, J) ∈ En×Em a unique μ = μ(I, J) ∈ P(n,m). Conversely, for each μ ∈ P(n,m),
let

(7.14) En,m(μ) =
{

(I, J) ∈ En × Em
∣∣L(I, J) = {αμ(1), . . . , αμ(n+m)}

}
.

It follows that we have a disjoint decomposition En × Em =
⋃
μ∈P(m,n) En,m(μ),

and we can write equation (7.8) as

(7.15) KF1 ∗ KG2 =
∑

μ∈P(m,n)

( ∑
(I,J)∈En,m(μ)∩(F×G)

[θI,J ]pA(I)∨pB(J)

)
.
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Now let

EN (μ) =
{
K ∈ EN

∣∣K = pA(I) ∨ pB(J) where (I, J) ∈ En,m(μ)
}
.(7.16)

Note that in general EN (μ) is a proper subset of EN , and an element K ∈ EN (μ)
can be represented in many ways as pA(I) ∨ pB(J) with (I, J) ∈ En,m(μ). We can
then rewrite (7.15) as

(7.17)

KF1 ∗ KG2 =
∑

μ∈P(m,n)

( ∑
K∈EN(μ)

( ∑
(I,J)∈En,m(μ)∩(F×G)
pA(I)∨pB(J)=K

[θI,J ]K

))

=
∑

μ∈P(m,n)

( ∑
K∈EN(μ)

[ ∑
(I,J)∈En,m(μ)∩(F×G)

pA(I)∨pB(J)=K

θI,J
]
K

)

We will prove in Lemma 7.8 below that because the functions {ϕI} and {ψJ} have
strong cancellation, the innermost sum

(7.18)
∑

(I,J)∈En,m(μ)
pA(I)∨pB(J)=K

θI,J = lim
F↗En

G↗Em

∑
(I,J)∈En,m(μ)∩(F×G)
pA(I)∨pB(J)=K

θI,J

converges to a function ΘK ∈ C∞0 (RN ) which is normalized relative to the families
{ϕI} and {ψj}. From this it follows from (7.17) that

(7.19) K1 ∗ K2 = lim
F↗En

G↗Em

KF1 ∗ KG2 =
∑

μ∈P(n,m)

( ∑
K∈EN (μ)

[ΘK ]K

)
.

We will also see in Lemma 7.8 below that for each fixed μ, the functions {ΘK} for
K ∈ EN (μ) have weak cancellation relative to a decomposition of RN depending
on μ, RN = Rc1 ⊕ · · · ⊕ Rcr , and hence the inner sum on the right hand side
of (7.19) is a flag kernel relative to the corresponding standard flag Fμ. Once this
is done, we will have established Theorem 7.4.

We now turn to the details of the proof. We begin by studying the N -tuple
K = (K1, . . . ,KN) = pA(I) ∨ pB(J) if (I, J) ∈ En,m(μ). Partition K into disjoint
subsets of consecutive entries where two successive elements Kl and Kl+1 belong
to the same subset if and only if either

(i) Kl = iσ(l) ≥ jτ(l), Kl+1 = iσ(l+1) ≥ jτ(l+1), and σ(l) = σ(l + 1); or

(ii) Kl = jτ(l) ≥ iσ(l), Kl+1 = jτ(l+1) ≥ iσ(l+1), and τ(l) = τ(l + 1).

In particular, if two successive elements Kl and Kl+1 belong to the same subset,
they must be equal. Thus we write

K = (K1, . . . ,KN ) =
({Kα1, . . . ,Kβ1}, {Kα2 , . . . ,Kβ2}, . . . , {Kαr , . . . ,Kβr}

)
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where

Kα1 = Kα1+1 = · · · = Kβ1 ,

Kα2 = Kα2+1 = · · · = Kβ2 ,
...

Kαr = Kαr+1 = · · · = Kβr .

We can also write

K = (K1, . . . ,KN ) =
( c1︷ ︸︸ ︷
k1, . . . , k1 ;

c2︷ ︸︸ ︷
k2, . . . , k2 ; . . . ;

cr︷ ︸︸ ︷
kr, . . . , kr

)
,(7.20)

so that c1 + c2 + · · ·+ cr = N . Note that 1 ≤ r < m+ n since either i1 or j1 does
not appear in K. We have the following properties of this decomposition:

Proposition 7.5. The integers {α1, β1, . . . , αr, βr} depend only on the permuta-

tion μ and are independent of the choice of (I, J) ∈ En,m(μ). In fact, let K̃l =
{Kαl

, . . . ,Kβl
} be one of the subsets of consecutive indices in K = pA(I)∨pB(J) ∈

En,m(μ). Then:

(1) The starting position αl coincides either with the starting position of one of
the subsets of pA(I) or with the position of one of the subsets of pB(J). More
precisely, for l ≥ 2,

(1a) If Kαl
= iσ(αl), then σ(αl) > σ(αl − 1), so the start of K̃l coincides with

the start of the index iσ(αl) in pA(I).

(1b) If Kαl
= jτ(αl), then τ(αl) > τ(αl − 1), so the start of K̃l coincides with

the start of the index jτ(αl) in pB(J).

(2) If the ending position of K̃l does not coincide with the end of the corresponding
segment of pA(I) or pB(J), the entries of the segment which do not appear

in K̃l are bounded above by the corresponding entries of K. More precisely,
for γ ≤ N ,

(2a) Suppose that Kαl
= iσ(αl), so that Kt = iσ(αl) for αl ≤ t ≤ βl. Suppose

that It = Iαl
for αl ≤ t ≤ γ and that γ > βl. Then It ≤ Jt = Kt for

βl + 1 ≤ t ≤ γ.
(2b) Suppose that Kαl

= jτ(αl), so that Kt = jτ(αl) for αl ≤ t ≤ βl. Suppose
that Jt = Jαl

for αl ≤ t ≤ γ and that γ > βl. Then Jt ≤ It = Kt for
βl + 1 ≤ t ≤ γ.

Proof. We begin by establishing part (1a). If it were not true, then since jτ(αl−1) ≤
jτ(αl), we would have

jτ(αl−1) ≤ jτ(αl) ≤ iσ(αl) = iσ(αl−1),

and by condition (i) in the definition of K̃l it would follow that Kαl
and Kαl−1 be-

long to the same subset. Part (1b) follows in the same way. To establish part (2a),
observe that since Jβl+1 ≤ Jt, it suffices to show this for t = βl + 1. However,
if Jβl+1 < Iβl+1, it would follow from (i) that Kβl+1 belongs to the same subset
as Kαl

. Part (2b) follows in the same way.
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Now parts (1) and (2) show that the positions where we decompose K depend
on the ordering of the entries of pA(I) and pB(J), and not on the entries themselves.
This shows that the decomposition depends only on μ, completing the proof. �

Definition 7.6. Let μ ∈ P(n,m).

(1) It follows from Proposition 7.5 that the permutation μ determines r and the
integers {c1, . . . , cr}. Thus μ determines the decomposition RN = Rc1 ⊕ · · · ⊕
Rcr . We let Fμ denote the corresponding standard flag (0) ⊆ Rcr ⊆ Rcr−1 ⊕
Rcr ⊆ · · · ⊆ Rc2 ⊕ · · · ⊕ Rcn ⊆ Rc1 ⊕ · · · ⊕ Rcr = RN . For x ∈ RN , we
write x = (x̃1, . . . , x̃r), and we let {J̃1, . . . , J̃r} denote the corresponding sets

of subscripts so that xl is a coordinate in Rck if and only if l ∈ J̃k.

(2) Let I = (i1, . . . , in), J = (j1, . . . , jm) ∈ En,m(μ). An index il is free if It ≤ Jt
for all t such that σ(t) = l. An index jl is free if Jt < It for all t such
that σ(t) = l. In particular, a free index does not appear in the set K =
pA(I) ∨ pB(J) ∈ EN (μ).

Note that whether or not an index is free depends only on the choice of μ, and
not on the choice of (I, J) ∈ En,m(μ). The number of free elements is equal to
m+ n− r, and 1 ≤ m+ n− r < m+ r.

Proposition 7.7. Fix μ ∈ P(n,m), and let (I, J) ∈ En,m(μ) with I = (i1, . . . , in)
and J = (j1, . . . , jm). Let ϕI , ψJ ∈ C∞0 (RN ), and suppose that ϕI has strong
cancellation relative to the decomposition RN = Ra1 ⊕ · · · ⊕ Ran , and that ψJ has
strong cancellation relative to the decomposition RN = Rb1 ⊕ · · · ⊕ Rbm .

(1) Suppose that an index il is free, and that il = Ir = Ir+1 = · · · = Is is the
corresponding group of indices in pA(I), so that Ir−1 = il−1 and Is+1 = il+1.
Then the function ϕI has cancellation in the variables {xIr , . . . , xIs}, and It ≤
Jt for r ≤ t ≤ s.8

(2) Suppose that an index jl is free, and that {jl = Jr = Jr+1 = · · · = Js} is the
corresponding group of indices in pB(J), so that Jr−1 = jl−1 and Js+1 = jl+1.
Then the function ψJ has cancellation with respect to one of the variables
{xJr , . . . , xJs}, and Jt ≤ It for r ≤ t ≤ s.9

(3) Let RN = Rc1 ⊕ · · · ⊕ Rcr be the decomposition corresponding to μ, and let

{J̃1, . . . , J̃r} be the corresponding sets of subscripts. Let 1 ≤ l ≤ r.
(a) Suppose that Kαl

= · · · = Kβl
= i� so that σ(αl) = · · · = σ(βl) = �. Then

either ϕI has cancellation in a variable xt with t ∈ J̃l, or ϕI has cancella-
tion in a coordinate xt with t > βl, in which case Kt = Jt ≥ It = i�.

(b) Suppose that Kαl
= · · · = Kβl

= j� so that τ(αl) = · · · = τ(βl) = �. Then

either ψJ has cancellation in a variable xt with t ∈ J̃l, or ψJ has cancel-
lation in a coordinate xt with t > βl, in which case Kt = It ≥ Jt = j�.

8It follows from Lemma 5.1 that ϕI can be written as a sum of functions each of which has
cancellation in one of the variables {xIr , . . . , xIs}.

9It follows from Lemma 5.1 that ψJ can be written as a sum of functions each of which has
cancellation in one of the variables {xJr , . . . , xJs}.
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Proof. To prove assertion (1), note that since il is free, it does not appear in K.
Hence for any r ≤ t ≤ s, il �= max{It, Jt} = max{il, Jt}, and so J� ≥ i� = It.
Since ϕI is assumed to have strong cancellation and {xIr , . . . , xIs} are precisely
the variables corresponding to the index ir, this establishes (1). The proof of
assertion (2) proceeds in the same way.

To prove assertion (3a), note that by Proposition 7.5, part (1a), the only way

in which it is possible for ϕI not to have cancellation in a variable xt with t ∈ J̃l
is if It = Iαl

for αl ≤ t ≤ γ and that γ > βl. But then the conclusion follows from
Proposition 7.5, part (2a). The proof of assertion (3b) follows in the same way. �

Lemma 7.8. Fix μ ∈ P(n,m).

(1) Let K ∈ EN (μ). Then there exists ΘK ∈ C∞0 (RN ), normalized relative to the
families {ϕI} and {ψJ} so that the sum∑

(I,J)∈En,m(μ)
pA(I)∨pB(J)=K

[ϕI ]I ∗ [ψJ ]J

converges (uniformly) to [ΘK ]K .

(2) The function ΘK has weak cancellation relative to the decomposition of RN

corresponding to μ.

Proof. Let (I, J) ∈ En,m(μ). Suppose that ϕI has cancellation in the variables
{xr1 , . . . , xrn}, with rl ∈ J ′

l , and that ψJ has cancellation in the variables {xs1 , . . . ,
xsm} with sl ∈ J ′′

l . Let

A0 =
{
l ∈ {1, . . . , n} ∣∣ irl < jrl

}
, B0 =

{
l ∈ {1, . . . ,m} ∣∣ jsl < isl

}
.

Then it follows from Proposition 7.7 that if il is a free index, l ∈ A0 and if jl is
a free index, then l ∈ B0. On the other hand, according to Lemma 6.18, we can
write each [ϕI ]I ∗ [ψJ ]J as a finite sum of terms of the form∏

s∈A′
2−ε|jls−ils |

∏
t∈B′

2−ε|imt−jmt |
∏
s∈A′′

2−ε|ils+1−ils |

∏
t∈B′′

2−ε|jmt+1−jmt |
∏
s∈A′′′

∂ls
∏
t∈B′′′

∂mt [θ̃](7.21)

where

1. A′, A′′, A′′′ are disjoint subsets of {1, . . . , n} with A′∪A′′∪A′′′ = {1, . . . , n};
2. B′, B′′, B′′′ are disjoint subsets of {1, . . . ,m} with B′∪B′′∪B′′′ = {1, . . . ,m};
3. A′ ⊂ A0 ⊂ A′ ∪ A′′ and B′ ⊂ B0 ⊂ B′ ∪B′′, and n /∈ A′′ and n /∈ B′′;
4. each function θ̃ depends on {A′, A′′, A′′′, B′, B′′, B′′′} and is normalized rel-

ative to ϕ and ψ.

Since K is fixed, the sum for pA(I) ∨ pB(J) = K is precisely the sum over the set
of free indices in {i1, . . . , in, j1, . . . , jm}, and these are contained in the indices in
A′ ∪ A′′ ∪ B′ ∪ B′′. The exponential decay in the powers of 2 in equation (7.21)
show that the sum over all the free indices converges, and what remains satisfies the
requirements for weak cancellation in Definition 5.5. This completes the proof. �
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7.5. Further examples

It may help to consider two additional examples.

Example 2: Suppose that N = 5, and that the two partitions of {1, 2, 3, 4, 5} are
A = {2, 3} and B = {2, 3}. Thus A and B come from the same decomposition
R5 = R2 ⊕ R3. There are

(
4
2

)
= 6 different decompositions of {1, 2, 3, 4} into two

disjoint subsets of cardinalities 2 and 2. The six decompositions, the 5-tuples Ĩ, J̃ ,
and Ĩ ∨ J̃ , and the resulting new decomposition C of {1, 2, 3, 4, 5} are listed in
Table 2 below. This example is typical of the convolution of two kernels coming
from the same flag (in this case coming from the decomposition {2, 3}). Note that
all decompositions lead to the same decomposition {2, 3}. Thus the convolution
will be a flag of the same type.

New
Decomposition Ordering K decom-

position
C Free variables

{1, 2} ∪ {3, 4} i1 ≤ i2 ≤ j1 ≤ j2 {j1, j1, j2, j2, j2} R2 ⊕ R3 {2, 3} i1, i2

{1, 3} ∪ {2, 4} i1 ≤ j1 < i2 ≤ j2 {j1, j1, j2, j2, j2} R2 ⊕ R3 {2, 3} i1, i2

{1, 4} ∪ {2, 3} i1 ≤ j1 ≤ j2 < i2 {j1, j1, i2, i2, i2} R2 ⊕ R3 {2, 3} i1, j2

{2, 3} ∪ {1, 4} j1 < i1 ≤ i2 ≤ j2 {i1, i1, j2, j2, j2} R2 ⊕ R3 {2, 3} i2, j1

{2, 4} ∪ {1, 3} j1 < i1 ≤ j2 < i2 {i1, i1, i2, i2, i2} R2 ⊕ R3 {2, 3} j1, j2

{3, 4} ∪ {1, 2} j1 ≤ j2 < i1 ≤ i2 {i1, i1, i2, i2, i2} R2 ⊕ R3 {2, 3} j1, j2

Table 2.

Example 3: Suppose that N = 5, and that the two partitions of {1, 2, 3, 4, 5}
are A = {5} and B = {1, 2, 3, 4, 5}. Thus m = 1 and n = 5. There are then(
6
5

)
= 6 different decompositions of {1, 2, 3, 4, 5, 6} into two disjoint subsets of

cardinalities 1 and 5. The six decompositions, the 5-tuples I, J , and I ∨ J , and
the resulting new decomposition C of {1, 2, 3, 4, 5} are listed in Table 3 below.

This example is typical of the convolution of a Calderón–Zygmund kernel with
a kernel that is as fine as possible. In this case, the flag A is coarser than flag B.
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New
Decomposition Ordering K decomposition C Free variables

{1}∪{2,3,4,5,6} i1≤j1≤j2≤j3≤j4≤j5 {j1,j2,j3,j4,j5} R⊕R⊕R⊕R⊕R {1,1,1,1,1} i1

{2}∪{1,3,4,5,6} j1<i1≤j2≤j3≤j4≤j5 {i1,j2,j3,j4,j5} R⊕R⊕R⊕R⊕R {1,1,1,1,1} j1

{3}∪{1,2,4,5,6} j1≤j2<i1≤j3≤j4≤j5 {i1,i1,j3,j4,j5} R2⊕R⊕R⊕R {2,1,1,1} j1,j2

{4}∪{1,2,3,5,6} j1≤j2≤j3<i1≤j4≤j5 {i1,i1,i1,j4,j5} R3⊕R⊕R {3,1,1} j1,j2,j3

{5}∪{1,2,3,4,6} j1≤j2≤j3≤j4<i1≤j5 {i1,i1,i1,i1,j5} R4⊕R {4,1} j1,j2,j3,j5

{6}∪{1,2,3,4,5} j1≤j2≤j3≤j4≤j5<i1 {i1,i1,i1,i1,i1} R
5 {5} j1,j2,j3,j4,j5

Table 3.

8. Lp-estimates for flag convolutions

In this section we establish the boundedness in Lp(G) for 1 < p < ∞ of the
operator f → K ∗ f given by convolution on G with a flag kernel. To simplify the
notation, we limit ourselves to the special situation where the exponents of the
dilations d1, d2, . . . , dn in equation (2.1) are positive integers. The results proved
below will go over to the more general context with essentially no change in the
proofs. We will also find it convenient to consider a continuous parameter sk for
the dilation of the xk variable, in place of the dyadic version 2ik appearing in the
previous sections. Again, the various results above stated for the dyadic dilations
have simple modifications valid for their continuous analogues.

8.1. Maximal functions

As usual, G is a homogeneous nilpotent Lie group that we identify with RN as in
Section 6.6. We also let

Gk =
{
x = (x1, . . . ,xn) ∈ RN

∣∣x1 = · · · = xk−1 = 0
}

=
{

(0, . . . ,0,xk, . . . ,xn) ∈ RN
∣∣xj ∈ Raj , k ≤ j ≤ n} .

We can identify Gk with Rak ⊕ · · · ⊕ Ran , and it follows from the formula (6.24)
for group multiplication that Gk is a subgroup of G. We let m(E) denote the
Lebesgue measure of a set E ⊆ G = G1, and mk(E) denote the Lebesgue measure
on Gk of a subset E ⊆ Gk. For s = (sk, . . . , sn), let

Rs = R(k)
s = {(xk, . . . ,xn) ∈ Gk : |xk| ≤ skk, . . . , |xn| ≤ snn}.

We say that the size of the rectangle Rs is acceptable if sk ≤ sk+1 ≤ · · · ≤ sn.
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Definition 8.1. The maximal function M , defined on G = G1, is given by

M(f)(x) = sup
1

m(Rs)

∫
Rs

|f(x · y−1)|dy

where the supremum is taken over all acceptable rectangles Rs = R
(1)
s ⊆ G = G1.

Theorem 8.2.

(a) M is a bounded map of Lp(G) to itself, for 1 < p <∞.

(b) For 1 < p < ∞ there are constants Ap so that if {fj} are scalar-valued func-
tions on G then∥∥∥(∑

j

M(fj)
2
)1/2∥∥∥

Lp(G)
≤ Ap

∥∥∥(∑
j

|fj |2
)1/2∥∥∥

Lp(G)
.

To prove this theorem, we consider the standard maximal function Mk on the
subgroup Gk defined by

Mk(f)(x) = sup
ρ>0

1

m(Bρ)

∫
Bρ

|f(xy−1)| dy

where Bρ = B
(k)
ρ is the automorphic one-parameter ball given by

B(k)
ρ =

{
(xk, . . . ,xn) ∈ Gk : |xk| ≤ ρk, |xk+1| ≤ ρk+1, . . . , |xn| ≤ ρn

}
.

Let M̃k be the maximal function in G obtained by lifting Mk in Gk to G. (Facts
about lifting are reviewed in the Appendix, Section 9). The key lemma is

Lemma 8.3. There is a constant C so that

M ≤ C M̃n ◦ M̃n−1 ◦ · · · ◦ M̃1 .

Proof. Let s = (sk, sk+1, . . . , sn) and s̄ = (sk+1, . . . , sn). Let

χ
R

(k)
s

= the characteristic function of the rectangle R(k)
s in the subgroup Gk,

χ
R

(k+1)
s̄

= the characteristic function of R
(k+1)
s̄ in the subgroup Gk+1,

χ
B

(k)
sk

= the characteristic function of the ball B(k)
sk

in Gk.

Let η
R

(k)
s

, η
R

(k+1)
s̄

, η
B

(k)
sk

be the normalized versions of these functions, so that,

for example, η
R

(k)
s

= mk(R
(k)
s )−1 χ

R
(k)
s
, with a similar definition for η

B
(k)
sk

. The

first observation to make is that if sk ≤ sk+1 ≤ · · · ≤ sn, there is an estimate
η
R

(k)
s

� η
B

(k)
sk

∗ η
R

(k+1)
s̄

, in the sense there are constants c, C, so that

(8.1) η
R

(k)
cs
≤ Cη

B
(k)
sk

∗ (δxk
⊗ η

R
(k+1)
s̄

)

where the convolution is now on the group Gk, and δxk
denotes the delta function

of the xk variables.10

10Inequality (8.1) is essentially contained in Subsection 6.7.
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In fact,

χ
B

(k)
sk

∗ (δxk
⊗ χ

R
(k+1)
s̄

) =

∫
Gk

χ
B

(k)
sk

(x · y−1)χ
R

(k+1)
s̄

(y) dy.

We introduce a new coordinate system in Gk, so that if x ∈ Gk, then

x = (xk,xk+1, . . . ,xn) = (xk, 0, . . . , 0) · (0,x′
k+1, . . . ,x

′
n) = (xk) · x′,

with x′ ∈ Gk+1. In this new coordinate system the integral can be written as

(8.2)

∫
Gk+1

χ
B

(k)
sk

(xk · y′)χ
R

(k+1)
s̄

(y′−1 · x′) dy′.

Now if x ∈ R(k)
cs , and c > 0 is small, then |xk| ≤ ckskk and x′ ∈ R(k+1)

c′ s̄ , with c′ small
with c. (This is because x′

j = qj(x), with qj homogeneous polynomials of degree j,

k + 1 ≤ j ≤ n.) So if y′ ∈ B(k+1)
csk+1 then y′−1 · x′ ∈ R(k+1)

s̄ . Thus for x ∈ R(k)
cs , the

integrand above is 1, whenever y′ ∈ B(k+1)
csk+1 . The result is that the last integral

exceeds mk+1

(
B

(k+1)
csk+1

)
for x ∈ R(k)

cs . Dividing through by the normalizing factors
and observing that

1

mk(B
(k)
sk )

· 1

mk+1(R
(k+1)
s̄ )

· mk+1(B(k+1)
csk+1

) = c′′
1

mk(R
(k)
s )

proves the claim (8.1). Proceeding this way by downward induction, starting with
the trivial case k = n, gives

(8.3) η
R

(1)
cs
≤ Cη

B
(1)
s1

∗ (δx1 ⊗ ηB(2)
s2

) ∗ · · · ∗ (δx1···xn−1 ⊗ ηB(n)
sn

)

whenever s1 ≤ s2 ≤ · · · ≤ sn. The inequality (8.3) then implies Lemma 8.3. �

We now turn to the proof of Theorem 8.2. For each k, the maximal functions Mk

satisfy the usual weak-type and Lp estimates on Lp(Gk) (because the balls B
(k)
sk

satisfy the required properties for the Vitali covering argument). Moreover, the
vector-valued version

(8.4)
∥∥∥(∑

j

(Mk(fj))
2
)1/2∥∥∥

Lp(Gk)
≤ Ap

∥∥∥(∑ |fj |2
)1/2∥∥∥

Lp(Gk)

also holds. This can be shown by following the main steps in the case of Rn

(see, e.g., Chapter 2 of [11]). In fact, one proves first a weak-type inequality for
the vector-valued case, using a Calderón–Zygmund decomposition, which estab-
lishes (8.4) for 1 < p ≤ 2. An additional argument is needed for p > 2, and is
based on the fact that∫

Gk

Mk(f)2(x)ω(x) dx ≤ A
∫
Gk

|f(x)|2 (Mkω)(x) dx
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for all positive functions ω. Next a lifting argument (see the Appendix) allows one
to lift (8.4) on Gk to G to get

(8.4′)
∥∥∥(∑

j

|M̃k(fj)|2
)1/2∥∥∥

Lp(G)
≤ Ap

∥∥∥(∑
j

|fj |2
)1/2∥∥∥

Lp(G)
.

As a result we obtain a similar inequality for M̃n ◦M̃n−1 ◦ · · ·◦M̃1, and an applica-
tion of Lemma 8.3 then proves Theorem 8.2.

Our actual application of the estimate in equation (8.4′) is contained in the
following:

Corollary 8.4. Suppose Ft(x) is a measurable function of (t,x) ∈ (R+)n × RN .
Then∥∥∥(∫

(R+)n
(M(Ft))(x))2dt

)1/2∥∥∥
Lp(RM )

≤ Ap

∥∥∥( ∫
(R+)n

|Ft(x)|2dt
)1/2∥∥∥

Lp(RN )
.

Proof. Assume first that Ft(x) is jointly continuous and has compact support. For
each ε > 0, apply the conclusion (8.4′) to the case where {fj(x)} are an enumer-
ation of the εn/2Fεi1,εi2,...,εin(x), for (i1, i2, . . . , in) ranging over (Z+)n, and then
let ε → 0, obtaining the desired result in this case. For the general Ft, assuming

that ‖(∫
(R+)n

|Ft(x)|2dt)1/2‖Lp(G) is finite, find a sequence F
(n)
t (x) of continuous

functions of compact support, with F
(n)
t (x)→ Ft(x) almost everywhere, so that∥∥∥(∫

(R+)n
|F (n)

t |2dt
)1/2∥∥∥

Lp
→

∥∥∥(∫
(R+)n

|Ft|2dt
)1/2∥∥∥

Lp

and apply the previous case, via Fatou’s lemma. �

It will also be useful to observe that effectively the estimate (8.3) can be reversed
in the following way.

Lemma 8.5. We have

(8.5) η
B

(1)
s1

∗ (δx1 ⊗ ηB(2)
s2

) ∗ · · · ∗ (δx1,...,xn−1 ⊗ ηB(n)
sn

) ≤ Cη
R

(1)

cs∗

for an appropriate C > 0. Here s∗ = (s∗1, . . . , s
∗
n), with s∗k = max{sj , 1 ≤ j ≤ k}.

Note that we do not require that s1 ≤ s2 ≤ · · · ≤ sn.
The proof is based on the observation that η

B
(k)
sk

∗ (δxk
⊗ η

R
(k+1)
s̄

) ≤ c η
R

(k)
cs̃

,

where s̃ = (s̃k, . . . , s̃n) and

s̃j =

{
max{sk, sj} if j > k,

sk if j = k.

In fact if x /∈ R
(k)
Cs̃ (for some large C) then either |xk| ≥ C′ skk or x′ /∈ R

(k+1)

c˜̄s .
Looking back at the integral in equation (8.2) we see that the integral vanishes,
because χ

B
(k)
sk

(xk · y′) = 0 in the first case, or χ
R

(k+1)
˜̄s

(y′−1 · x′) = 0 in the second

case. Moreover as above, this integral is majorized by Cm
(
B

(k+1)
csk+1

)
. Altogether

then, we have η
B

(k)
sk

∗ (δxk
⊗η

R
(k+1)
s̄

) ≤ c η
R

(k)

s̃

, and an induction proves Lemma 8.5.
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Now let As denote the function appearing on the left-side of (8.5). Then as a
consequence we have

(8.6) |(f ∗As)(x)| ≤ CM(f)(x),

for all s = (s1, . . . , sn), not necessarily in increasing order. Similarly if A∗
s =

(δx1,...,xn−1 ⊗ η
B

(n)
sn

) ∗ · · · ∗ (η
B

(1)
s1

) we also have A∗
s(x) ≤ c η

R
(1)

s∗
. This follows

from (8.5) if we observe that A∗
s(x) = As(x

−1). As a result, in analogy to (8.6),
we have for all s

(8.6′) |(f ∗A∗
s)(x)| ≤ cM(f)(x) .

Indeed, one has R−1
s∗ = Rs∗ if, in defining Rs, a coordinate system is used where

the inverse of x = (x1, . . . ,xn) is given by x−1 = (−x1, . . . ,−xn). Alternatively,
if we use canonical coordinates of the second kind, as above, then one has Rc1s∗ ⊂
R−1

s∗ ⊂ Rc2s∗ , for two appropriate constants c1 and c2; this also leads to (8.6′).

8.2. Comparisons

The basic comparison function is

Γt(x) = t1 · t2 · · · tn ·
n∏
k=1

(t1 + t2 + · · ·+ tk +N1(x) + · · ·+Nk(x))−Qk−1

for t = (t1, . . . , tn), tj > 0. Recall that Nk(x) = |xk|1/k and Qk = kak with ak the
dimension of the xk space.

Theorem 8.6.

(8.7) sup
t

∣∣(f ∗ Γt)(x)
∣∣ ≤ CM(f)(x),

where the supreme is taken over all t, with tj > 0.

Proof. Note that it suffices to restrict attention to t’s that are of acceptable size.
Indeed, let sj = t1 + t2 · · ·+ tj , 1 ≤ j ≤ k. Then sj ≤ sj+1 but k(t1 + · · ·+ tk) ≥
s1 + s2 + · · ·+ sk. Hence,

(t1 + · · ·+ tk +N1 + · · ·+Nk)−Qk−1 ≤ ck(s1 + s2 · · ·+ sk +N1 + · · ·+Nk)−Qk−1,

with ck = kQk+1. Therefore Γt(x) ≤ cΓs(x), which shows that it suffices to con-
sider t’s that are increasing.

We next fix t = (t1, . . . , tn) and decompose the spaceG = RN into a preliminary
dyadic partition as follows. For each J = (j1, . . . , jn) ∈ Zn+ we let

RJ =
{
x ∈ RN

∣∣ 2jk−1 <
N1(x) + · · ·+Nk(x)

t1 + t2 + · · ·+ tk
≤ 2jk , for k = 1, 2, . . . , n

}
,

with the understanding that if jk = 0 the inequality should be taken to be

N1(x) + · · ·+Nk(x)

t1 + t2 + · · ·+ tk
≤ 1.
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Notice that
⋃
J∈Zn

+
RJ = G gives a partition of the space G. However, in

general each RJ is not comparable to an acceptable rectangle. We remedy this as
follows. For a suitable constant c, define sJ = (sJ1 , . . . , s

J
n) by

(8.8) sJ1 = ct12j1 , sJ2 = c2t22j2 , . . . , sJn = cntn2jn .

Now if RJ is non-empty, then since t1 ≤ t2 ≤ · · · ≤ tn, we have

N1(x) ≈ t12J1 , N1(x)+N2(x) ≈ t22j2 , . . . , N1(x)+N2(x)+ · · ·+Nn(x) ≈ tn2jn .

As a result, for sufficiently large c, it follows that sJ1 ≤ sJ2 ≤ · · · ≤ sJn.

Now define R∗
J = {x : Nk(x) ≤ sJk , k = 1, . . . , n} for those J where RJ is not

empty. Then clearly RJ ⊂ R∗
J and each R∗

J is a rectangle of acceptable size (in
fact, essentially the smallest rectangle of acceptable size containing RJ ). However,
for f ≥ 0, ∫

G

f(x · y−1) Γt(y) dy =
∑
J∈Zn

+

∫
RJ

f(xy−1) Γt(y) dy.

Recall that by (8.8), tk ≈ sJk2−jk , and on RJ we have N1 + · · ·+Nk ≈ (t1 + t2 +

· · ·+ tk)2jk ≈ sJk . Thus, on RJ we have Γt(y) �
n

Π
k=1

(sJk )−Qk · (2−Qkjk). So∫
G

f(xy−1)Γt(y)dy �
∑
J

n

Π
k=1

2−Qkjk(sJk )−Qk ·
∫
R∗

J

f(xy−1)dy.

However, each R∗
J is a rectangle of acceptable size and

n

Π
k=1

(sJk )Qk = cm(R∗
J). Thus

by the definition of M , the last sum is majorized by

c
∑
J

n∏
k=1

2−QkjkM(f) = c′M(f),

and (8.7) is proved. �

8.3. Truncated kernels

Recall that we defined truncated kernels and improved truncated kernels in Defi-
nition 6.20 (Section 6.9). Suppose that ψ ∈ C∞0 (RN ) with support in the unit ball.
For b > 0 write

ψb(x) = b−Q1−Q2−···−Qn ψ(b−1x1, b
−2x2, . . . , b

−nxn),

the automorphically dilated ψ. We also say that ψb has width b.

Theorem 8.7. Suppose K is a truncated flag kernel of width a, and ψb is as above
of width b. Then

(1) K ∗ ψb and ψb ∗ K are truncated kernels of width a+ b.

(2) If in addition
∫
G
ψ(x) dx = 0, then K ∗ ψb and ψb ∗K are improved truncated

kernels of width a+b. Moreover, then K ∗ψb and ψb ∗K are actually improved
truncated kernels of width a+ b, multiplied by the further factor b

a+b .
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Note that the statements of the hypotheses and conclusions have an automor-
phic-dilation invariance, so in proving Theorem 8.7, it suffices to consider two
cases: b = 1, a ≤ 1; and a = 1, b ≤ 1. In the first case we use Proposition 6.21,
since any truncated kernel is actually an un-truncated kernel. Thus we get that
K ∗ ψ1 and ψ1 ∗ K have width 1, which is essentially the same as having width
1 + a, since a ≤ 1.

The second case would be easy if every truncated kernel of width 1 were of the
form K ∗ ψ1. Its proof is a little more involved and requires the following lemma.

Lemma 8.8. Given any M , there exist η0 and η1 both of class C(M), supported
in the unit ball, and a (non-communicative) polynomial P (X1, . . . , XN) = P (X)
in the right-invariant vector fields of G, so that

(8.9) P (X)η0 = δ0 + η1.

with δ0 the Dirac delta at the origin.

Proof. Consider the elliptic operator of order 2r, P (X) =
(∑N

j=1X
2
j

)r
, with r

a positive integer. Then by the standard theory of pseudo-differential operators
there is a locally integrable function F which is C∞ away from the origin, so
that P (X)F = δ0 + η′, with η′ a C∞ function. Moreover, F satisfies the estimate
| ( ∂
∂x

)α
F (x)| ≤ Aα, whenever |x| ≤ 1 and 2r > N+ |α| (these estimates also follow

from Theorem 1 in [8]). Thus we only need to take 2r > M +N and set η0 = μ ·F ,
where μ is a C∞ function supported in the unit ball, and μ(x) = 1 in the ball of
radius 1/2. Then since η0 is supported in the unit ball, so is η1 = P (X)η0−δ0; and
since F is C∞ away from the origin it follows that η1 is in fact C∞ everywhere.
This completes the proof of Lemma 8.8. �

We now return to the proof of Theorem 8.7. We consider K ∗ ψb when K has
width 1, and b ≤ 1. Now by the lemma K ∗ ψb = K ∗ δ0 ∗ ψb = K ∗ P (X) ∗ η0 ∗
ψb +K ∗ η1 ∗ψb, since P (X) is a right-invariant differential operator. Now since K
has width 1, K ∗ P (X) is also a truncated kernel of width one, and in particular
an un-truncated kernel. However, η0 ∗ ψb has width 1 + b, which is essentially
one. Also, it is of class C(M) (uniformly in b), since η0 is of class C(M). Thus
K ∗ P (X) ∗ η0 ∗ ψb satisfies the differential inequalities for a truncated kernel of
width one for all orders ≤ m. However, the term K ∗ η1 ∗ψb clearly does the same,
for all orders. Notice we can make m as large as we wish by making M sufficiently
large. (See Remark 6.22 on page 690.) A similar argument works for ψb ∗K and
thus part (1) of Theorem 8.7 is proved.

Part (2) is proved in the same way, using conclusion (2) of Proposition 6.21.
The further improvement given by the factor b(a + b)−1 comes about as follows.
As before, we may take a = 1, and b ≤ 1. Since

∫
ψ(x) dx = 0, both η0 ∗ ψb and

η1 ∗ ψb give an improvement of b. In fact, since
∫
ψ(x) dx = 0, it follows from

Lemma 5.1 and Proposition 4.5 that we can write

(8.10) ψb =
∑

bkXk(ψ
(k)
b )
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for suitable C∞ functions ψ(k) supported in the unit ball, with {Xk} ranging over

right-invariant vector fields of degree k , k ≥ 1. Thus η0 ∗ψb =
∑
bk(η0 ∗Xk)∗ψ(k)

b

and this gives a gain b, b ≤ 1. Similarly for the term η1 ∗ ψb.

8.4. Key estimates: kernels

Suppose ϕ(k) ∈ C∞0 is supported on the unit ball of the group Gk, with∫
Gk

ϕ(k)(x) dx = 0.

We set ϕ
(k)
t (x) = t−Qk−···−Qnϕ(δt−1 (x)), with Qk = kak and let ϕ̃(k) to be the

corresponding distributions lifted to the full group G; i.e., ϕ̃
(k)
t = δx1,x2···xk−1

⊗
ϕ
(k)
t . We let Φt = ϕ̃

(1)
t1 ∗ ϕ̃(2)

t2 ∗ · · · ∗ ϕ̃(n)
tn for t = (t1, . . . , tn), and write

Φ∗
t = ϕ̃

(n)
tn ∗ ϕ̃(n−1)

tn−1
∗ · · · ∗ ϕ̃(1)

t1 .

Recall the comparison function Γt discussed in Section 8.2. Note that here we will
allow the functions ϕ and Φ to take their values in finite-dimensional vector spaces.

Theorem 8.9. Suppose K is a flag kernel. Then

(1) |K ∗ Φt(x)| and |Φ∗
t ∗K(x)| are both majorized by cΓt(x) for all t.

(2) If XR
k is any right-invariant vector field of degree k, then

|XR
k (K ∗ Φt)| ≤ c (t1 + · · ·+ tk)−k Γt(x).

(3) If XL
k is any left-invariant vector field of degree k, then

|XL
k (K ∗ Φt)| ≤ c (t1 + · · ·+ tk)−k Γt(x).

For the proof we need to do our calculations in a particular coordinate system,
already used in the proof Lemma 8.3. Here we represent a point x = (x1, . . . ,xn) ∈
G via adapted canonical coordinates of the second kind; i.e., we take x = exp(x′

1 ·
X1) exp(x′

2 ·X2) · · · exp(x′
n ·Xn), where x′ = (x′k,1, . . . , x

′
k,ak

), {Xk,1, . . . , Xk,ak} is
a basis of the subspace of vector fields of degree k, and x′

k ·Xk =
∑
jx

′
k,jXk,j . The

passage from the initial (x1, . . . ,xn) coordinates to the (x′
1, . . . ,x

′
n) coordinates

is of the form treated in Section 6.5, so that the basic comparison function Γt is
essentially unchanged when passing from x to x′. We therefore freely use instead
the new coordinate system x′, and now relabel x′ by x. The advantage of this
coordinate system is that, firstly y = (y1, . . . ,yk,yk+1, . . . ,yn) ∈ Gk if and only
if y1 = 0, . . . ,yk−1 = 0, but more importantly, if x ∈ G, and y ∈ Gk, then
x·y = (x1, . . . ,xk−1, x̄k, . . . , x̄n), with x̄� (for � ≥ k), depending only on xk, . . . ,xn,
and yk, . . . ,yn, and not on x1, . . . ,xk−1.

Now set K(k) = K ∗ ϕ̃(1)
t1 ∗ · · · ∗ ϕ̃(k)

tk
. Consider first K(1) = K ∗ϕ(1)

t1 . According

to Proposition 6.21, part (2), since
∫
G ϕ

(1)(x) dx = 0, then for each x1, the kernel
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K(1)(x1,x2, . . . ,xn), as a function of (x2, . . . ,xn) on G2, is a truncated kernel of

width t1+N1(x1), multiplied by the “constant” factor t1
[
t1+N1(x1)

]−Q1−1
. Also

we have a similar conclusion for ∂β1
x1
K(1)(x), except now the improving factor is

t1
[
t1 +N1(x1)

]−Q1−1−β1
.

Consider next the inductive hypothesis: for a given k,

(a) for each x1, . . . ,xk, K(k)(x1, . . . ,xn), thought of as a function of (xk+1, . . . ,xn)
on Gk+1, is a truncated kernel of width t1 + · · ·+ tk +N1(x1) + · · ·+Nk(xk),

multiplied by the improving factor
∏k
j=1 tj

[
t1+ · · ·+ tj+N1 + · · ·+Nj

]−Qj−1
;

(b) for each r ≤ k, a similar statement holds for ∂βr
xr
K(k)(x), except that now

the rth part of the improving factor is tr
[
t1+· · ·+tr+N1+· · ·+Nr

]−Qr−1−rβr
.

Notice that if the inductive hypothesis holds for k, that is for K(k), then since

K(k+1)(x1 · · ·xn) = K(k) ∗ ϕ(k+1)
tk+1

, where since the convolution is taken on the
group Gk+1, it therefore does not involve the variables x1, . . . ,xk because of the
nature of our coordinate system. As a result, we get the conclusion for k+ 1, that
is for K(k+1). To see this, we merely apply Proposition 6.21, part (2), for the case
of the group Gk+1.

More precisely, we are convolving a truncated kernel of width a = t1+ · · ·+tk+

N1+ · · ·+Nk (on Gk+1) with a function ϕ (which equals ϕ
(k+1)
tk+1

) of width b = tk+1.
The result is a truncated kernel of width a+ b = t1 + · · ·+ tk+1 + N1 + · · ·+ Nk
on Gk+1, together with a further factor b

a+b . That is, for K(k+1) as a function of
xk+2, . . . ,xn, we have a truncated kernel of width t1 + · · ·+ tk+1 +N1+ · · ·+Nk+1,
times a factor of the form b(a+ b)−1. So the full improvement is

b

a+ b
· a+ b

(a+ b+Nk+1)Qk+1+1
=

tk+1

(t1 + · · ·+ tk+1 +N1 + · · ·+Nk+1)Qk+1+1
,

as was needed. The same kind of improvement holds for the estimates of
∂β�
xl
K(k+1)(x), for � ≤ k + 1.

Thus, the inductive hypothesis (now the conclusion of the induction) holds for
k = n. As a result, it is clear that |K ∗ Φt(x)| ≤ cΓt(x) and

|∂xk
(K ∗ Φt(x))| ≤ c[t1 + · · ·+ tk +N1 + · · ·+Nk

]−k
Γt(x),

for every k, 1 ≤ k ≤ n. Since XR
k = ∂xk

+
∑

�>kh
k
� ∂x�

where hk� is a homogeneous
polynomial of degree �− k, it follows, in particular, that

XR
k (K ∗ Φt)(x) ≤ c [t1 + · · ·+ tk

]−k
Γt(x).

The results for Φ∗
t ∗ K and XL

k (Φ∗
t ∗ K) follow in the same way, but require

a canonical coordinate system in the reverse order. Alternatively we can deduce
them from the previous case by using the inversion x→ x−1.
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8.5. Key estimates: operators

We define Pt(f) = f ∗ Φt, and P ∗
t = f ∗ Φ∗

t , with t = (t1, t2, . . . , tn) and tj > 0,
1 ≤ j ≤ n, with Φt and Φ∗

t defined at the beginning of the previous section. We
suppose K is a flag kernel and Tf = f ∗K when f is a Schwartz function. We recall
the maximal operator M and let M = M ◦M , i.e., M(f) = M(M(f)).

Theorem 8.10.

(a) |PtT (f)(x)| ≤ cM(f)(x), all t.

(a′) Similarly, |(TP ∗
t )(f)(x)| ≤ cM(f)(x), all t.

(b) |PtTP
∗
s (f)(x)| ≤ γ(s, t)M(f)(x), where, for some δ > 0,

γ(s, t) ≤ c
( n

Π
k=1

min
(sk
tk
,
tk
sk

))δ
.

Note: the conclusion will be seen to hold for δ = 1/n2.

Proof. The function PtT (f) is given by (f ∗K) ∗ Φt = f ∗ (K ∗ Φt). Hence con-
clusion (a) is a direct consequence of Theorem 8.6 and Theorem 8.9, part (1). The
same is true for conclusion (a′).

Turning to (b), we first fix k, and consider the situation when tk/sk = ρ ≥ 1.
With this ρ given, we next divide our consideration in two cases.

Case I: With σ a positive constant, to be specified below, sj−1/sj > ρσ for at
least one j, with 2 ≤ j ≤ k.

Case II: sj−1/sj ≤ ρσ for all j, with 2 ≤ j ≤ k.

To handle Case I we need the following observation, that will give us the needed

gain. Recall the notation η
B

(k)
ρ

= mk(B
(k)
ρ )−1χ

B
(k)
ρ

used above in Section 8.1.

Lemma 8.11. If sj−1/sj ≥ ρσ, ρ ≥ 1, then∣∣∣ϕ̃(j)
sj ∗ ϕ(j−1)

sj−1

∣∣∣ ≤ c ρ−σj(η̃(j)
B

(j)
sj

)
∗
(
η
(j−1)

B
(j−1)
sj−1

)
.

Proof. In analogy with equation (8.10) in Section 8.3, we have that on Gj

(8.11) ϕ(j)
sj =

∑
r≥j

(sj)
rXL

r (ψ(r)
sj )

where XL
r are left-invariant vector fields on Gj , with ψ(r) C∞ functions supported

in the unit ball. Now(
δxj−1 ⊗XL

r (ψ(r)
sj )

) ∗ ϕ(j−1)
sj−1

=
(
δxj−1 ⊗ ψ(r)

sj

) ∗XR
r

(
ϕ(j−1)
sj−1

)
,

and XR
r

(
ϕ
(j−1)
sj−1

)
is of the form s−rj−1 ψ

′(r)
sj−1 . Combining these gives a sum∑

r≥j(sj/sj−1)r ψ̃(r)
sj ∗ ψ′(r)

sj−1

and since sj/sj−1 ≤ ρ−σ, the lemma is proved. �
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Consider the operator P ∗
s given by P ∗

s (f) = f∗Φ∗
s , with Φ∗

s = ϕ̃
(n)
sn ∗ϕ̃(n−1)

sn−1 ∗ · · ·∗
ϕ̃
(1)
s1 . Because of Lemma 8.11 and since j ≥ 2, we have |Φ∗

s | ≤ cρ−2σ η̃
B

(k)
sn
∗ · · · ∗

η̃
B

(1)
s1

= c ρ−σj = cρ−2σA∗
s , in the notation of Section 8.1. So by equation (8.6′)

there, it follows that |P ∗
s (f)(x)| ≤ cρ−2σM(f)(x). Combining this with the first

conclusion already proved that |PtT (F )(x)| ≤ cM(F )(x), with F = P ∗
t (f), yields

(8.12) |PtTP
∗
s (f)(x)| ≤ cρ−2σM(f)(x)

since M = M ·M .

We now turn to Case II. Here sj−1/sj ≤ ρσ, for all j, 2 ≤ j ≤ k. Thus
sj ≤ skρ

σ(k−j) for 1 ≤ j ≤ k. If we set s∗ = sup1≤j≤k sj , then s∗ ≤ skρ
σ(k−1).

Next we recall the following fact:

If XR
� is a right-invariant vector field of degree � ≥ j on Gj , then one can write

XR
� (ψa) =

∑
r≥�

ar−�XL
r (ψa) ,

where XL
r are left-invariant vector fields of degree r. This follows by writing

XR
� =

∑
h�,r(x)XL

r , with h�,r(x) a homogeneous polynomial of degree r − �, and
arguing as in Proposition 3.2.

With this in hand, consider ϕ̃
(k)
sk ∗ϕ̃(k−1)

sk−1 ∗· · · ∗ ϕ̃(1)
s1 . First use that

∫
Gk
ϕ(k)(x)dx

= 0, which by the analogue of assertion (8.10) (for left-invariant vector fields on
the group Gk) gives an expression involving the action of left-invariant vector fields

(of degrees ≥ k). Next pass from the left-invariant vector-fields acting on ψ
(r)
sj to

the corresponding right-invariant vector fields acting on ϕ̃k−1
sk−1

, via the rule

(8.13) (XL
r ψ) ∗ ϕ = ψ ∗XR

r ϕ.

At this point utilize the remark on page 714 to pass to left-invariant vector fields,
and then use the rule (8.13) above to pass to ϕ̃k−2

sk−2
, etc.

Putting this all together leads quickly to the following conclusion: the convo-
lution

ϕ̃(k)
sk
∗ ϕ̃(k−1)

sk−1
∗ · · · ∗ ϕ̃(1)

s1

is a finite sum of expression of the form

(8.14) (s∗)rψ̃(k)
sk
∗ ψ̃(k−1)

sk−1
∗ · · · ∗XL

r (ψ̃(1)
s1 )

for r ≥ k. Here we use the fact that s∗ ≥ sj , j ≤ k. Now consider

(8.15) ϕ̃(k)
sk ∗ ϕ̃(k−1)

sk−1
∗ · · · ∗ ϕ̃(1)

s1 ∗K ∗ Φt.

By applying the rule (8.3) we can pass the left-invariant vector field XL
r as a right-

invariant vector field acting on K ∗Φt. We keep in mind that r ≥ k, and use Theo-

rem 8.9, part (2). Therefore Φ∗
s∗K∗Φt = ϕ̃

(n)
sn ∗ϕ̃(k−1)

sk−1 ∗· · ·∗ϕ̃(1)
s1 ∗K∗Φt is majorized

by a constant multiple of sr∗ · t−rk A∗
s ∗ Γt, where A∗

s = η̃
B

(n)
sn
∗ η̃

B
(n−1)
sn−1

∗ · · · ∗ η̃
B

(1)
s1

.
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In view of Theorem 8.6 and inequality (8.6′) in Section 8.1, we get that

(8.16) |PtTP
∗
s (f)(x)| ≤ c sup

r≥k
(sr∗t

−r
k )M(M(f))(x).

We now pick σ = 1/2k. Since s∗ ≤ skρσ(k−1), and sk/tk = ρ−1, ρ ≥ 1, we get

|PtTP
∗
s (f)(x)| ≤ c ρ−1/2M(M(f))(x) .

Combining this with the previous case given by (8.12) yields

|PtTP
∗
s (f)(x)| ≤ c

(sk
tk

)1/n

M(f)(x), if tk/sk ≥ 1.

By a parallel argument the analogous result holds for sk/tk ≥ 1. Hence

|PtTP
∗
s (f)(x)| ≤ c min

(sk
tk
,
tk
sk

) 1
nM(f)(x) .

Since this holds for all k, 1 ≤ k ≤ n, we can take the geometric mean of these
inequalities. The result is conclusion (b) of Theorem 8.10, with δ = 1/n2. �

8.6. Square functions and Lp-boundedness

We will construct the square functions for G as products of the (one-parameter)
square functions of the subgroups Gk, 1 ≤ k ≤ n. Each Gk is a homogeneous
group with family of dilations δr, and so there exists a finite-dimensional in-
ner product space Vk and a pair ϕ(k), ψ(k) of Vk-valued functions, with ϕ(k) ∈
C∞0 (Gk) supported in the unit ball, and ψ(k) ∈ S(Gk) a Schwartz function, so that∫
Gk
ϕ(k)(x) dx =

∫
Gk
ψ(k)(x) dx = 0, and

(8.17)

∫ ∞

0

ψ(k)
a (xy−1) · ϕ(k)

a (y)
da

a
= δ0.

Here ϕ
(k)
a (x)=a−Qk−Qk+1−···−Qnϕ(k)(δa−1(x)), with a similar definition for ψ

(k)
a (x).

Also · denotes the inner product in Vk. See Theorem 1.61 in [3].

We define operators P
(k)
a and Q

(k)
a , acting on functions on Gk, by setting

P
(k)
a (f) = f ∗ ϕ(k)

a and Q
(k)
a (f) = f ∗ ψ(k)

a . Note that (8.17) shows that

(8.18)

∫ ∞

0

P (k)
a ·Q(k)

a

da

a
= Id.

Next, define the square functions Sk and S#
k by setting

Sk(f)(x) =
(∫ ∞

0

|P (k)
a (f)(x)|2 da

a

)1/2

, S#
k (f)(x) =

(∫ ∞

0

|Q(k)
a (f)(x)|2 da

a

)1/2

.

The usual theory of singular integrals in [11] and [3], together with (8.18), then
gives the inequalities

(8.19) ‖ f ‖Lp ≈‖ Sk(f) ‖Lp ≈‖ S#
k (f) ‖Lp

for 1 < p <∞ on Gk. The result is valid not only for scalar-valued f , but also for f
that take their values in a Hilbert space.
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Having recalled the known results for Gk we transfer them to the whole groupG
by writing

P̃ (k)
a (f) = f ∗ (δx1···xk−1

⊗ ϕ(k)
a ) , Q̃(k)

a (f) = f ∗ (δx1···xk−1
⊗ ψ(k)

a ) ,

S̃k(f) =
(∫ ∞

0

|P̃ (k)
a (f)|2 da

a

)1/2

, S̃#
k (f) =

(∫ ∞

0

|Q̃(k)
a (f)|2 da

a

)1/2

.

We get as a consequence ∫ ∞

0

P̃ (k)
a · Q̃(k)

a

da

a
= Id(8.18′)

on G, and

‖ f ‖Lp(G) ≈‖ S̃k(f) ‖Lp(G)≈‖ S̃#(f) ‖Lp(G) .(8.19′)

With the above one-parameter theory arising from each Gk we come to the
square functions on G that are relevant for us. For each t = (t1, . . . tn) ∈ (R+)n,

we set Pt = P̃
(n)
tn · P̃ (n−1)

tn−1
· · · P̃ (1)

t1 . That is, Pt(f) = f ∗Φt, where Φt = ϕ̃
(1)
t1 ∗ ϕ̃(2)

t2 ∗
· · · ∗ ϕ̃(n)

tn and ϕ̃
(k)
tk = δx1···xk−1

⊗ ϕ(k)
tk . Note also that Φt is a V -valued function,

where V = V1 ⊗ V2 ⊗ · · · ⊗ Vn. Similarly, we define P ∗
t = P̃

(1)
t1 · P̃ (2)

t2 · · · P̃ (n)
tn , Qt =

Q̃
(n)
tn · · · Q̃(1)

t1 , and Q∗
t = Q̃

(1)
t1 · · · Q̃(n)

tn . Also Qt(f) = f ∗ψ̄t, with ψ̄t = ψ̃
(1)
t1 ∗· · ·∗ψ̃(n)

tn
and ψ̄t is also V -valued. Finally, we set

S(f)(x) =
(∫

(R+)n
|Pt(f)|2 dt

[t]

)1/2

, S(f)(x) =
(∫

(R+)n
|MQtf |2 dt

[t]

)1/2

.

Here we use the abbreviation that [t] = t1 · t2 · · · · tn.

Lemma 8.12. We have

(a)

∫
(R+)n

P ∗
t Qt

dt

[t]
= Id;

(b) ‖ f ‖Lp≤ Ap ‖ S(f) ‖Lp, 1 < p <∞;

(c) ‖ S(f) ‖Lp≤ Ap ‖ f ‖Lp, 1 < p <∞.

To prove (a), we take first the identity (8.18) when k = 1, and a = t1. Next we

multiply on the left of both sides by P
(2)
t2 and on the right of both sides by Q̃

(2)
t2

and integrate in t2, using (8.18′) for k = 2. Continuing this way yields (a). Inequa-
lity (b) follows from repeated comparisons of the corresponding inequalities (8.19′)
for S̃k. Also (c) follows by applying (8.19′) for S̃#

k and a two-fold application of
the vector-valued maximal function in Corollary 8.4, for Ft(x) = Qt(f)(x) · [t]−1/2.

The final lemma needed is as follows:

Lemma 8.13. Suppose K is a flag kernel and T (f) = f ∗ K. Then,

(8.20) S(T (f))(x) ≤ cS(f)(x).
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Proof. Now PtT (f)(x) =
∫
(R+)n Pt · TP ∗

sQs(f)(x) ds[s] by part (a) of the previous

lemma. Hence Theorem 8.10, part (b) shows that

|PtT (f)(x)| ≤
∫
(R+)n

γ(s, t)M(Qs(f))(x)
ds

[s]
,

where γ(s, t) = c
(∏n

k=1 min
(
sk
tk
, tksk

))δ
. Thus,

|PtT (f)(x)|2 ≤
∫
(R+)n

γ(s, t)(MQs(f)(x))2
ds

[s]
· I(t)

with I(t) =
∫
(R+)n

γ(s, t) ds[s] , by Schwarz’s inequality. But supt I(t) = A < ∞,
since ∫ ∞

0

min
(sk
tk
,
tk
sk

)δ dsk
sk

= t−δk

∫ tk

0

s−1+δ
k dsk + tδk

∫ ∞

tk

s−1−δ
k dsk =

2

δ
.

A further integration in t (noting that also
∫
(R+)n γ(s, t) dt[t] ≤ A) then gives the

desired result. �

Theorem 8.14. With Tf = f ∗K as above, we have ‖ Tf ‖Lp(G)≤ Ap ‖ f ‖Lp(G),
for 1 < p <∞.

This now follows directly from (8.20), once we apply Lemma 8.12, part (b),
for Tf in place of f , and then part (c) of that Lemma.

9. Appendix I: Lifting

Suppose that T (f) = f ∗ K is a convolution operator on Gk with f ∈ S(Gk)
and K ∈ S ′(Gk), a tempered distribution. Then Tf can be written T (f)(x) =∫
Gk
K(y) f(xy−1) dy = 〈K, Fx〉, where Fx is the element of S(Gk) given by

Fx(y) = f(xy−1) for y ∈ Gk. We can lift T to a convolution operator on G, de-
noted by T̃ , given by T̃ (f)(x) =

∫
Gk
K(y)f(xy−1) dy =

〈K, Fx

〉
, where f ∈ S(G),

and Fx(y) = f(xy−1) for y ∈ Gk.

We describe this lifting in terms of the coordinate system used in the proof
of Theorem 8.9. We can write each x ∈ G as a product x = x′ · x̄, with x′ =
(x1, . . . ,xk−1, 0, . . . , 0) and x̄ ∈ Gk, where x̄ = (0, . . . , 0,xk, . . . ,xn). With this
coordinate system, we define K̃ ∈ S ′(G) as δx′ ⊗K, where x = x′ · x̄, and we set
T̃ (f)(x) = (f ∗ K̃)(x) for f ∈ S(G) and x ∈ G. Then T̃ (f)(x) = T̃ (f)(x′ · x̄).
However observe that T̃ (f)(x′ · x̄) = T (fx′

)(x̄), where fx′
is the element of S(Gk)

given by fx′
(y) = f(x′ · y), y ∈ Gk. Therefore

(9.1) T̃ (f)(x′ · x̄) = T (fx′
)(x̄)

Next, suppose that T satisfies the bound

(9.2) ‖ T (f) ‖Lp(Gk)≤ A ‖ f ‖Lp(Gk)



718 A. Nagel, F. Ricci, E. M. Stein and S. Wainger

for each f ∈ S(G). Then, applying this to f = fx′
via (9.1) (and assuming p <∞),

gives ∫
Gk

|T̃ (f)(x′x̄)|p dx̄ ≤ Ap
∫
Gk

|fx′
(x̄)|p dx̄ ,

for each x′, and an integration in x′ yields

(9.3) ‖ T (f) ‖Lp(G)≤ A ‖ f ‖Lp(G) .

Suppose next that K depends on a parameter t, K = Kt and set Tt(f) = f ∗Kt.
Then the same argument shows that∥∥ sup

t
|T̃t(f)| ∥∥

Lp(G)
≤ A ‖ f ‖Lp(G) , for all f ∈ S(G)

whenever ∥∥ sup
t
|Tt(f)| ∥∥

Lp(Gk)
≤ A ‖ f ‖Lp(Gk) , for all f ∈ S(Gk) .

This proves that the lifted maximal inequality ‖ M̃k(f) ‖Lp(G)≤ Ap ‖ f ‖Lp(G)

follows from the corresponding inequality on Gk, by considering first the case

when f is non-negative (and Kt = η
(k)
Bt

), and then by replacing f by |f |.
In the same way the vector-valued maximal inequality (8.4) on Gk can be lifted

to the corresponding inequality (8.4′) on G. In fact, it suffices to prove (8.4′) when
there are only m non-zero fj ’s, 1 ≤ j ≤ m, with bounds independent of m. With
this understanding, set

f = (f1, . . . , fm), t = (t1, . . . , tm),

and
Tt(f) = (T 1

t1(f1), . . . , Tmtm(fm)), T jtj(f) = f ∗Kj
tj ,

with

|f | =
( m∑
j=1

|fj |2
)1/2

, |Tt(f)| =
( m∑
j=1

|T jtj (fj)|2
)1/2

.

Note that ( m∑
j=1

sup
tj

|T jtj (f)|2
)1/2

= sup
t
|Tt|(f)|.

Then as before the inequality∥∥ sup
t
|Tt(f)| ∥∥

Lp(Gn)
≤ A ‖ |f | ‖Lp(Gk) , f ∈ S(Gn)

implies the corresponding inequality for Tt lifted to G, that is for T̃t, and this then
yields the desired result.

We should remark that the lifting procedure used here can be viewed in terms
of the more abstract “transference” method presented in [1].
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10. Appendix II: An estimate for a geometric sum

Recall that En = {I = (i1, . . . , in) ∈ Zn
∣∣ i1 ≤ i2 ≤ · · · ≤ in}. More generally, if

0 ≤ B1 ≤ B2 ≤ · · · ≤ Bn, let

(10.1) Λ(B) =
{
I = (i1, . . . , in) ∈ En

∣∣Bj ≤ 2ij for 1 ≤ j ≤ n} .
We establish the following estimate for geometric sums which we shall use several
times.

Proposition 10.1. Let αj > 0 for 1 ≤ j ≤ n, and let M >
∑n

k=1 αk. There is
a constant C depending on n, on M , and on the numbers {αj} so that for any
A1, . . . , An ∈ (0,∞) and any 0 ≤ B1 ≤ B2 ≤ · · · ≤ Bn,∑

I∈En

∏n
k=1(2−ik)αk(

1 +
∑n

k=1 2−ikAk
)M ≤ C n∏

j=1

(A1 +A2 + · · ·+Aj)
−αj ,(10.2)

∑
I∈Λ(B)

∏n
k=1(2−ik)αk(

1 +
∑n

k=1 2−ikAk
)M ≤ C n∏

j=1

(A1 +A2 + · · ·+Aj +Bj)
−αj .(10.3)

Proof. Note that if we take B1 = · · · = Bn = 0, then the inequality (10.3) gives
the inequality (10.2). If for x1, . . . , xn ≥ 0 we put

ϕ(x1, . . . , xn) =
( n∏
k=1

xαk

k

)(
1 +

n∑
k=1

xkAk

)−M
,

then, if 1 ≤ sj ≤ 2 for 1 ≤ j ≤ n, we have

ϕ(s1x1, . . . , snxn) ≤ 2|α|
n∏
k=1

xαk

k

(
1 +

n∑
k=1

xkAk

)−M
≤ 2|α|ϕ(x1, . . . , xn)

For each I = (i1, . . . , in) ∈ Zn, let QI = {x ∈ Rn
∣∣ 1
22−ik ≤ xk < 2−ik}. It follows

that there is a constant C = C(n, α) depending only on n and α such that

C−1

∫
QI

ϕ(x)
dx1 · · · dxn
x1 · · ·xn ≤

∏n
k=1

(
2−ik

)αk(
1 +

∑n
k=1 2−ikAk

)M ≤ C ∫
QI

ϕ(x)
dx1 · · · dxn
x1 · · ·xn .

Thus ∑
I∈Λ(B)

∏n
k=1(2−ik)αk(

1 +
∑n

k=1 2−ikAk
)M ≤ C ∫

⋃
I∈Λ(B) QI

ϕ(x)
dx1 · · · dxn
x1 · · ·xn .

On the other hand, it is easy to check that if I ∈ Λ(B) and x ∈ QI , then 0 <
xk+1 ≤ 2xk for 1 ≤ k ≤ n− 1 and xk ≤ B−1

k for 1 ≤ k ≤ n. Thus if we put

Ω(B) =

{
x ∈ Rn+ :

{ 1
2xk+1 ≤ xk ≤ B−1

k for 1 ≤ k ≤ n− 1

0 ≤ xn ≤ B−1
n

}
,
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then
⋃
I∈Λ(B)QI ⊆ Ω(B). Thus to prove the proposition, it suffices to show that

∫
Ω(B)

∏n
k=1 x

αk

k(
1 +

∑n
k=1 xkAk

)M dx1 · · · dxn
x1 · · ·xn ≤ C

n∏
j=1

(A1 +A2 + · · ·+Aj +Bj)
−αj .

However,∫
Ω(B)

n∏
k=1

xαk

k

(
1 +

n∑
k=1

xkAk

)−M dx1 · · · dxn
x1 · · ·xn

=

∫ ∞

0

tMe−t
[ ∫

Ω(B)

n∏
k=1

xαk

k e−xkAkt
dx1 · · · dxn
x1 · · ·xn

] dt
t
.

We will show that we can estimate the inner integral on the right hand side by

(10.4)

∫
Ω(B)

n∏
k=1

xαk

k e−xkAkt
dx1 · · · dxn
x1 · · ·xn

≤ C(n, α)

n∏
j=1

(1 + t−αj )(A1 +A2 + · · ·+Aj +Bj)
−αj ,

and since M >
∑n

k=1 αk, this will complete the proof.

To establish (10.4), we first establish an estimate for
∫ B−1

x
2

sαe−sAt dss . On the

one hand, we have

∫ B−1

x
2

sαe−sAt
ds

s
≤ e− 1

2xAt

∫ B−1

0

sα−1 ds = α−1e−
1
2xAtB−α.

On the other hand we have∫ B−1

x
2

sαe−sAt
ds

s
≤ (At)−α

∫ ∞

1
2xAt

sα−1e−sds ≤ Cα(At)−αe−
1
4xAt.

Putting the two together, we have the estimate

(10.5)

∫ B−1

x
2

sαe−sAt
ds

s
≤ Cαe− 1

4xAt(At+B)−α ≤ Cα e− 1
4xAt(A+B)−α(1 + t−α).

We now establish (10.4) by induction on n. When n = 1, we use (10.5) with
x = 0 to get

∫ B−1
1

0

xα1

1 e−α1A1t
dx1
x1
≤ Cα(A1 +B1)−α1(1 + t−α1).
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For the induction step, we have∫
Ω(B)

n∏
k=1

xαk

k e−xkAkt
dx1 · · · dxn
x1 · · ·xn

=

∫
Ω′(B)

n∏
k=2

xαk

k e−xkAkt
[ ∫ B−1

1

x2
2

xα1
1 e−α1A1t

dx1
x1

]dx2 · · · dxn
x2 · · ·xn

≤ Cα(A1 +B1)−α1(1 + t−α1)

∫
Ω′(B)

n∏
k=2

xαk

k e−xkAkte−
1
4x2A1t dx2 · · · dxn

x2 · · ·xn .

Here,

Ω′(B) =

{
x ∈ Rn+ :

{ 1
2xk+1 ≤ xk ≤ B−1

k for 2 ≤ k ≤ n− 1

0 ≤ xn ≤ B−1
n

}
,

and we have used the estimate in (10.5). The last integral on the right-hand side
is thus of the same form as the original integral, except that n has been replaced
by n− 1, and A2 has been replaced by A2 + 1

4A1. We can thus use our inductive
hypothesis on this integral, and we obtain the desired estimate. This completes
the proof. �
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