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Quasicircles and bounded turning circles

modulo bi-Lipschitz maps

David A. Herron and Daniel Meyer

This paper is dedicated to the fond memory of Fred Gehring, who helped so many
of us come to love quasicircles.

Abstract. We construct a catalog, of snowflake type metric circles, that
describes all metric quasicircles up to bi-Lipschitz equivalence. This is
a metric space analog of a result due to Rohde. Our construction also
works for all bounded turning metric circles; these need not be doubling.
As a byproduct, we show that a metric quasicircle with Assouad dimension
strictly less than two is bi-Lipschitz equivalent to a planar quasicircle.

1. Introduction

By definition, ametric quasicircle is the quasisymmetric image of the unit circle S1.
(See Section 2 for definitions and basic terminology.) We exhibit a catalog that
contains a bi-Lipschitz copy of each metric quasicircle. This is a metric space analog
of recent work by Steffen Rohde [16], so we briefly describe his result. He construc-
ted a collection R of snowflake type planar curves with the intriguing property
that each planar quasicircle (the image of S1 under a global quasiconformal self-
homeomorphism of the plane) is bi-Lipschitz equivalent to some curve in R.

Rohde’s catalog is R :=
⋃Rp, where p ∈ [1/4, 1/2) is a snowflake parame-

ter. Each curve in Rp is built in a manner reminiscent of the construction of the
von Koch snowflake. Thus, each R ∈ Rp is the limit of a sequence (Rn) of poly-
gons where Rn+1 is obtained from Rn by using the replacement rule illustrated
in Figure 1: for each of the 4n edges E of Rn we have two choices, either we re-
place E with the four line segments obtained by dividing E into four arcs of equal
diameter, or we replace E by a similarity copy of the polygonal arc Ap pictured at
the top right of Figure 1. In both cases E is replaced by four new segments, each
of these with diameter (1/4) diam(E) in the first case or with diameter p diam(E)
in the second case. The second type of replacement is done so that the “tip” of

Mathematics Subject Classification (2010): Primary 30L10; Secondary 30C62,51F99.
Keywords: Quasicircle, Jordan curve, bounded turning, doubling.



604 D.A. Herron and D. Meyer

An edge E of Rn The arc Ap

p p

p p

1/4 1/4 1/4 1/4

Figure 1. Construction of a Rohde-snowflake.

the replacement arc points into the exterior of Rn. This iterative process starts
with R1 being the unit square, and the snowflake parameter, thus the polygonal
arc Ap, is fixed throughout the construction. See the discussion at the beginning
of §4.3 for more details.

The sequence (Rn) of polygons converges, in the Hausdorff metric, to a planar
quasicircle R that we call a Rohde snowflake constructed with snowflake parame-
ter p. Then Rp is the collection of all Rohde snowflakes that can be constructed
with snowflake parameter p.

Rohde proved the following (see Theorem 1.1 in [16]):

A planar Jordan curve is a quasicircle if and only if it is the image
of some Rohde snowflake under a bi-Lipschitz self-homeomorphism
of the plane.

Thanks to a celebrated theorem of Ahlfors [1], there is a simple geometric crite-
rion that characterizes planar quasicircles: a planar Jordan curve Γ is a quasicircle
if and only if it satisfies the bounded turning condition, which means that there is
a constant C ≥ 1 such that for each pair of points x, y on Γ, the smaller diameter
subarc Γ[x, y] of Γ that joins x, y satisfies

(BT) diam(Γ[x, y]) ≤ C |x− y| .

We say Γ is C-bounded turning to emphasize the constant C.

Tukia and Väisälä [20] introduced the notion of a quasisymmetry between met-
ric spaces. In this same paper they established the following metric space analog
of Ahlfors’ result:

A metric Jordan curve is a metric quasicircle if and only if it is both
bounded turning and doubling (that is, of finite Assouad dimension).

Our catalog S of metric snowflake curves is a collection of metric circles (S1, d)
where the metrics d are given in a simple way by specifying the diameter of each
dyadic subarc of S1. See (3.1) and the end of §3.2 for precise details.

Our catalog is S :=
⋃Sσ, and we also employ an auxiliary snowflake parameter

σ ∈ [1/2, 1]. Each (S1, dσ) in Sσ has a metric dσ that is obtained by the assignment
of diameters to each dyadic subarc of S1. As in Rohde’s construction, at each step
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there are two choices: the diameter (with respect to dσ) of a given dyadic subarc
is either one-half, or σ, times the diameter of its parent subarc.

Each (S1, dσ) is a bounded turning circle. Moreover, when σ < 1, (S1, dσ)
has Assouad dimension α ≤ log 2/ log(1/σ) < ∞ (so, 2−1/α ≤ σ < 1), hence
(S1, dσ) is doubling and thus a metric quasicircle; see Lemma 3.1(e). In fact, each
collection Sσ (with σ < 1) contains a bi-Lipschitz copy of every metric quasicircle
with Assouad dimension strictly less than log(2)/ log(1/σ). In addition, the sub-
catalog S1 contains a bi-Lipschitz copy of every bounded turning circle.

Here is our main result.

Theorem. Let Γ be a metric Jordan curve.

(A) If Γ is bounded turning, then Γ is bi-Lipschitz equivalent to some curve in S1.

(B) If Γ is a metric quasicircle with Assouad dimension α := dimA(Γ) and
σ ∈ (2−1/α, 1), then Γ is bi-Lipschitz equivalent to a curve in Sσ.

(C) A metric quasicircle is bi-Lipschitz equivalent to a planar quasicircle if and
only if it has Assouad dimension strictly less than two.

This result is quantitative in that the bi-Lipschitz constants depend only on the
given data. For example, if Γ is C-bounded turning, then the bi-Lipschitz constant
in (A) is

L = 8Cmax{diam(Γ), diam(Γ)−1}.
Minor modifications to our proofs reveal that the analogous results hold for bounded
turning Jordan arcs and metric quasiarcs.

In addition, we explain how to recover Rohde’s theorem from our result. This
provides an alternative proof of Rohde’s result that avoids the technical construc-
tion of a “uniform doubling measure” appearing as Theorem 1.2 in [16]. In view
of this, our argument somewhat simplifies the proof of Rohde’s theorem.

We mention that Bonk, Heinonen, and Rohde have established a result that
gives metric quasicircles as metric boundaries of certain metric disks; see Lemma 3.7
in [6].

The novel ideas in our approach include the following. We make extensive use
of the fact that every bounded turning metric space is bi-Lipschitz equivalent to its
associated diameter distance space; see Lemma 2.2. In particular, this permits us to
restrict attention to 1-bounded turning Jordan curves. In this setting, the metrics
are characterized, up to bi-Lipschitz equivalence, by knowledge of the diameters
of certain subarcs, provided we have a sufficiently plentiful collection of subarcs;
see Lemma 3.1. Finally, there is a straightforward way to build a bi-Lipschitz
homeomorphism from one of our model curves onto such a metric Jordan curve;
see Proposition 2.4 and Lemma 3.4.

This paper is organized as follows. Section 2 contains preliminary information
including background material on Assouad dimension (in §2.2) and on quasisym-
metric homeomorphisms (in §2.3). We prove a result about dividing an arc into
subarcs of equal diameter (in §2.5) and (in §2.6) give a useful tool for constructing
homeomorphisms between Jordan curves. We construct our dyadic models in §3.2
and prove our theorem in Section 4.
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2. Preliminaries

Here we set forth our (relatively standard) notation and terminology and present
fundamental definitions and basic information. First we provide some background
on quasisymmetric maps, doubling, and bounded turning. In §2.4 we show that
we can restrict attention to 1-bounded turning circles. In §2.5 we prove that one
can divide an arc into subarcs of equal diameter. In §2.6 we establish a useful
proposition for constructing homeomorphisms between Jordan arcs or curves.

2.1. Basic information

For the record, N denotes the set of natural numbers, i.e., the positive integers.
We view the unit circle S1 as the unit interval with its endpoints identified;

that is, S1 = [0, 1]/{0∼ 1} = [0, 1]/∼ where s ∼ t if and only if either s = t
or {s, t} = {0, 1}. Then λ denotes the (normalized) arc-length metric on S1:
for s, t ∈ S1 with say 0 ≤ s ≤ t ≤ 1,

λ(s, t) := min{t− s, 1− (t− s)} .
A (closed) Jordan curve is the homeomorphic image of the circle S1 and a

metric Jordan curve is a Jordan curve with a metric on it. A Jordan arc is the
homeomorphic image of the unit interval [0, 1] and a metric Jordan arc is a Jordan
arc with a metric on it. Thus Jordan curves and arcs are non-degenerate compact
spaces, where non-degenerate means not a single point.

Given distinct points x, y on a metric Jordan curve Γ, we write Γ[x, y] to denote
the closure of the smaller diameter component of Γ\{x, y}; when both components
have the same size, we randomly pick one. We often fix an orientation on Γ, and
then [x, y] stands for the subarc of Γ that joins x to y.

We note the following easy consequence of uniform continuity.

Lemma 2.1. Let Γ be a metric Jordan curve or arc. Then for each ε > 0, there
are at most finitely many non-overlapping subarcs of Γ that all have diameter at
least ε.

Proof. Suppose Γ = ϕ(S1) for some homeomorphism ϕ. Let ε > 0 be given.
Choose δ > 0 so that for each subarc I ⊂ S1 with diamλ(I) < δ we have
diam(ϕ(I)) < ε/2. Pick N ∈ N with 1/N < δ. Partition S1 into adjacent equal
length subarcs I1, . . . , IN .

Let A be a subarc of Γ with diam(A) ≥ ε. Then A must contain at least one
of the subarcs ϕ(Ii). Thus there are at most N such subarcs A.

A similar argument applies when Γ is an arc. �

Throughout this article we employ the Polish notation |x− y| for the distance
between points x, y in a metric space. The bounded turning condition (BT), also
called Ahlfors’ three point condition, makes sense in any connected metric space:
this holds whenever points can be joined by continua whose diameters are no larger
than a fixed constant times the distance between the original points. To be precise,
given a constant C ≥ 1, we say that X has the C-bounded turning property if each
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pair of points x, y ∈ X can be joined by a continuum Γ[x, y] satisfying (BT). The
bounded turning condition has a venerable position in quasiconformal analysis; see
for example [20], [7], [14], [19] and the references therein.

A metric Jordan curve that is bounded turning is called a bounded turning
circle, or a C-bounded turning circle if we wish to indicate the bounded turning
constant C.

2.2. Assouad dimension

A metric space is doubling if there is a number N such that every subset of dia-
meter D has a cover that consists of at most N subsets each having diameter at
most D/2. It follows that every set of diameter D has a cover by (at most) Nk

sets each of diameter at most D/2k.
The Assouad dimension dimA(X) of a metric space X is the infimum of all

numbers α > 0 with the property that there exists a constant C > 0 such that for
all D > 0, each subset of diameter D has a cover consisting of at most Cε−α sets
each of diameter at most εD.

An equivalent description can be given in terms of separated sets. A subset
S ⊂ X is r-separated provided it is non-degenerate, meaning card(S) > 1, and for
all distinct x, y ∈ S, |x− y| ≥ r; in particular, diam(S) ≥ r. Then dimA(X) is the
infimum of all numbers α > 0 with the property that there exists a constant C > 0
such that for all r > 0, each r-separated set S ⊂ X has card(S) ≤ C(diam(S)/r)α.

Evidently, a metric space has finite Assouad dimension if and only if it is dou-
bling. The Assouad dimension was introduced by Assouad in [3] (see also [4]).
A comprehensive overview is given in [11]. The role of doubling spaces in the
general theory of quasisymmetric maps is explained in [10]. The Assouad dimen-
sion of a space is a bi-Lipschitz invariant, and it is always at least the Hausdorff
dimension.

2.3. Quasisymmetric homeomorphisms

A homeomorphism f : X → Y of metric spaces X,Y is called a quasisymmetry if
there is a homeomorphism η : [0,∞) → [0,∞) such that for all distinct x, y, z ∈ X
and t ∈ [0,∞),

|x− y|
|x− z| ≤ t =⇒ |f(x)− f(y)|

|f(x)− f(z)| ≤ η(t).

This notion of quasisymmetry was introduced by Tukia and Väisälä in [20]
where they also studied weak-quasisymmetries. A homeomorphism f : X → Y
is a weak-quasisymmetry if there is a constant H ≥ 1 such that, for all distinct
x, y, z ∈ X ,

|x− y|
|x− z| ≤ 1 =⇒ |f(x)− f(y)|

|f(x)− f(z)| ≤ H.

Clearly every quasisymmetry is a weak-quasisymmetry. Tukia and Väisälä proved
that each weak-quasisymmetry from a pseudo-convex space to a doubling space is a
quasisymmetry; Heinonen has a similar result for maps from a connected doubling
space to a doubling space; see Theorem 2.15 in [20] and Theorem 10.19 in [10]. In
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particular, this holds for maps between Euclidean spaces. However, a weak-
quasisymmetry may fail to be quasisymmetric if the target space is not doubling,
as illustrated by an example in the paper by Tukia and Väisälä.

As discussed in the introduction, a metric quasicircle is the quasisymmetric
image of S1; thanks to work of Tukia and Väisälä, we know that these are precisely
the doubling bounded turning circles. Recently, the second author [13] established
the following characterization of bounded turning circles:

A metric Jordan curve is bounded turning if and only if it is a weak-
quasisymmetric image of the unit circle.

2.4. Diameter distance

Here we show that we can always restrict attention to 1-bounded turning circles.
More precisely, we show that any bounded turning circle is bi-Lipschitz equivalent
to a 1-bounded turning circle. The relevant tool employed is the notion of diameter
distance† dd, that is defined on any path connected metric space (X, |·|) by

dd(x, y) := inf{ diam(γ) | γ a path in X joining x, y} .
It is not hard to see that dd is a metric on X . Here are some additional properties
of dd.

Lemma 2.2. Let (Γ, |·|) be a metric Jordan curve or a metric Jordan arc and let
dd be the associated diameter distance.

(a) The dd-diameter of any subarc A of Γ equals its diameter with respect to the
original metric on X; that is, diamdd(A) = diam(A).

(b) For all points x, y ∈ Γ, diamdd(Γ[x, y]) = dd(x, y). In particular, (Γ, dd) is
1-bounded turning.

(c) (Γ, |·|) is C-bounded turning if and only if the identity map (Γ, dd)
id→ (Γ, |·|)

is C-bi-Lipschitz.

Proof. To prove (a), first observe that for all x, y ∈ Γ, |x − y| ≤ dd(x, y), so
diam(A) ≤ diamdd(A). Next, for all x, y ∈ A, dd(x, y) ≤ diam(A), so diamdd(A) ≤
diam(A).

Now (b) follows directly from (a) since

dd(x, y) = diam(Γ[x, y]) = diamdd(Γ[x, y]) .

It remains to establish (c). If (Γ, |·|) is C-bounded turning, then for all x, y ∈ Γ

dd(x, y) = diam(Γ[x, y]) ≤ C |x− y| ≤ C dd(x, y) ,

so the identity map is C-bi-Lipschitz.
Conversely, if this map is C-bi-Lipschitz, then for all x, y ∈ Γ

diam(Γ[x, y]) = diamdd(Γ[x, y]) = dd(x, y) ≤ C |x− y|
and therefore (Γ, |·|) is C-bounded turning. �

†This is also called inner diameter distance.



Quasi and BT circles modulo bi-Lipschitz maps 609

We remark that in general the identity map (X, dd)
id−→ (X, |·|) need not be a

homeomorphism. A simple example of this is the planar comb space

X := ([0, 1]× {0}) ∪ ({0} × [0, 1])

∞⋃

n=1

({1/n} × [0, 1]) ⊂ R2

equipped with Euclidean distance |·|. If zn := (1/n, 1) and a := (0, 1), then
|zn − a| → 0 as n → ∞, whereas dd(zn, a) ≥ 1 for all n. Also, (X, |·|) is compact
but (X, dd) is not.

2.5. Division of arcs

Here we prove that any metric Jordan arc can be divided into any given number
of subarcs each having exactly the same diameter.

The problem of finding points on a metric Jordan arc such that consecutive
points are at the same distance is non-trivial. In 1930, Menger gave a proof that is
short, simple and natural, but wrong; see page 487 in [12]. It was proved for arcs
in Euclidean space in [2], and for the general case (indeed in more generality) as
Theorem 3 in [17]; see also [22].

For the case at hand, i.e., for bounded turning arcs, it suffices to find adjacent
subarcs that have equal diameter. We give the following elementary proof for this
problem.

Proposition 2.3. Let A be a metric Jordan arc and N ≥ 2 an integer. Then we
can divide A into N subarcs of equal diameter.

Proof. We may assume that A is the unit interval [0, 1] equipped with some
metric d. We claim that there are points 0 = s0 < s1 < · · · < sN−1 < sN = 1
such that

diam[s0, s1] = diam[s1, s2] = · · · = diam[sN−1, sN ]

where diam denotes diameter with respect to the metric d. When N = 2 this
follows by applying the Intermediate Value Theorem to the function [0, 1] � s �→
diam[0, s]− diam[s, 1].

According to Lemma 2.2(a), we may replace d by its associated diameter dis-
tance; thus we may assume from the start that for any [s, t] ⊂ [0, 1]

(2.1) d(s, t) = diam[s, t] .

Next, we modify d to get a metric dε that is strictly increasing in the sense
that

(2.2) [s, t] � [s′, t′] ⊂ [0, 1] =⇒ dε(s, t) < dε(s
′, t′) .

The crucial point here is the strict inequality, which need not hold in general.
To this end, fix ε > 0 and for all s, t ∈ [0, 1] set

dε(s, t) := d(s, t) + ε|t− s| .
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Then from (2.1) it follows that

diamε[s, t] = diam[s, t] + ε|t− s| = dε(s, t) ,

where diamε denotes diameter with respect to dε. This immediately implies (2.2).

We now show that [0, 1] can be divided into N subintervals of equal dε-diameter.
Consider the compact set S := {s = (s1, . . . , sN−1) | 0 ≤ s1 ≤ · · · ≤ sN−1 ≤ 1}.
Set s0 := 0, sN := 1. The function ϕ : S → R defined by

ϕ(s) := max
0≤i≤N−1

diamε[si, si+1]− min
0≤j≤N−1

diamε[sj , sj+1]

assumes a minimum on S. If this minimum is zero, we are done. Otherwise, there
are adjacent intervals [si−1, si], [si, si+1] that have different dε-diameter. Using
the Intermediate Value Theorem as before, we can find s′i ∈ [si−1, si+1] such that
diamε[si−1, s

′
i] = diamε[s

′
i, si+1]. Then from (2.2) it follows that

min
0≤j<N

diamε[sj , sj+1] < diamε[si−1, s
′
i]

= diamε[s
′
i, si+1] < max

0≤i<N
diamε[si, si+1].

Applying this procedure to all subintervals of maximal dε-diameter we obtain
a strictly smaller minimum for the function ϕ, which is impossible. Thus the
minimum must be zero, and so we can subdivide [0, 1] into N subintervals of equal
dε-diameter.

Consider now a sequence εn ↘ 0, as n → ∞. Let sn1 < · · · < snN−1 be the
points that divide [0, 1] into N subintervals of equal diameter with respect to dεn .
We can assume that for all 1 ≤ j < N , all points snj converge to sj as n → ∞. It
follows that for all 1 ≤ i, j < N ,

diam[si, si+1] = lim
n→∞ diamεn [s

n
i , s

n
i+1] = lim

n→∞ diamεn [s
n
j , s

n
j+1] = diam[sj , sj+1]

as desired. �

Proposition 2.3 is also true for metric Jordan curves Γ. In this case we are free
to choose any point in Γ to be an endpoint of one of the subarcs.

2.6. Shrinking subdivisions

Here we present a useful tool for constructing homeomorphisms between Jordan
curves; see Proposition 2.4.

We begin with some terminology. Let Γ be a metric Jordan curve or arc.
A sequence (An)∞1 is a shrinking subdivision for Γ provided:

• Each An is a finite decomposition of Γ into compact arcs. Thus each An

is a finite set of non-overlapping non-degenerate compact subarcs of Γ that
cover Γ. (Here non-overlapping means disjoint interiors and non-degenerate
means not a single point.)
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• Each An+1 is a subdivision of An; i.e., for each arc A in An+1 there is a
(unique) arc in An, called the parent of A, that contains A.

• The subdivisions shrink, meaning that maxA∈An diam(A) → 0 as n → ∞.

Assume (An)∞1 is a shrinking subdivision for Γ. We call (An)∞1 a descendant
sequence if A1 ⊃ A2 ⊃ · · · , and An ∈ An for all n ∈ N; thus each An is the
parent of An+1. Note that for any descendant sequence (An)∞1 ,

⋂∞
1 An is a single

point. Also, for each point x ∈ Γ, there exists a descendant sequence (An
x)

∞
1 with

{x} =
⋂∞

1 An
x ; such a descendant sequence need not be unique, but there can be

at most two such sequences.
Shrinking subdivisions are useful for constructing homeomorphisms between

metric Jordan curves; see §4.1, §4.2 and §4.3.
Proposition 2.4. Let A and B both be metric Jordan curves or metric Jordan
arcs. Suppose (An)∞1 and (Bn)∞1 are shrinking subdivisions for A and B respec-
tively. Assume these subdivisions are combinatorially equivalent, meaning that for
each n ∈ N there are bijective maps Φn : An → Bn such that for all A, Ã ∈ An

and A0 ∈ An+1,

A ∩ Ã = ∅ ⇐⇒ Φn(A) ∩ Φn(Ã) = ∅ ,
A0 ⊂ A ⇐⇒ Φn+1(A0) ⊂ Φn(A) .

Then the sequence (Φn)∞1 induces a homeomorphism A
ϕ→ B with the property that

for all n ∈ N and all A ∈ An , ϕ(A) = Φn(A) .

Proof. Let a ∈ A and select a descendant sequence (An)∞1 with {a} =
⋂∞

1 An.
Setting Bn := Φn(An) we obtain a descendant sequence (Bn)∞1 with, say, {b} :=⋂∞

1 Bn. Suppose (Ãn)∞1 is a second descendant sequence with {a} =
⋂∞

1 Ãn. Let

B̃n := Φn(Ãn) and {b̃} =
⋂∞

1 B̃n. Since An ∩ Ãn �= ∅, Bn ∩ B̃n �= ∅ and therefore

|b − b̃| ≤ diam(Bn) + diam(B̃n) → 0 as n → ∞ .

Thus b̃ = b and so there is a well defined map ϕ : A → B given by setting ϕ(a) := b.
Two distinct points a1, a2 ∈ A lie in disjoint arcs A1, A2 ∈ An, for sufficiently

large n ∈ N, and then ϕ(A1) ∩ ϕ(A2) = ∅, so ϕ(a1) �= ϕ(a2) verifying that ϕ is
injective.

Given b ∈ B and a descendant sequence (Bn)∞1 with {b} =
⋂∞

1 Bn, An :=
(Φn)−1(Bn) defines a descendant sequence (An)∞1 with, say, {a} :=

⋂∞
1 An, and

then ϕ(a) = b. Thus ϕ is surjective.
Let ε > 0 be arbitrary. Fix an n ∈ N such that max{diam(B) | B ∈ Bn} < ε/2.

Let δ := min{dist(A1, A2) | A1, A2 ∈ An ; A1 ∩ A2 = ∅}. Suppose a1, a2 ∈ A
with |a1 − a2| < δ. Pick Ak ∈ An with ak ∈ Ak. The definition of δ ensures that
A1 ∩ A2 �= ∅. Therefore,

|ϕ(a1)− ϕ(a2)| ≤ diam(ϕ(A1)) + diam(ϕ(A2)) ≤ ε

and so ϕ is (uniformly) continuous and hence a homeomorphism. �
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3. Dyadic subarcs and diameter functions

Here we give precise definitions of our model curves, i.e., our model circles. These
are given by defining metrics on S1. Since we can restrict attention to 1-bounded
turning circles (thanks to Lemma 2.2(b,c)), it suffices to only know the diameters
of certain subarcs, provided we have a sufficiently plentiful collection of subarcs;
for this purpose we use the dyadic subarcs described in §3.1. We introduce the
notion of a dyadic diameter function in §3.2; these provide a simple method for
constructing metrics on S1. Then in §3.4 we establish a convenient way to detect
when two such metrics are bi-Lipschitz equivalent, and also when a given metric
Jordan curve is bi-Lipschitz equivalent to S1 with such a metric.

3.1. Dyadic subarcs

With our convention that S1 = [0, 1]/{0∼ 1}, the nth-generation dyadic sub-
arcs of S1 (obtained by dividing S1 into 2n subarcs of equal diameter) are the
subarcs of the form

Ink := [k/2n, (k + 1)/2n], where k ∈ {0, 1, . . . , 2n − 1}.
Noting that I0 := I00 := S1, we define

In := {Ink | k ∈ {0, 1, . . . , 2n − 1}} and then I :=

∞⋃

n=0

In.

Each dyadic subarc In ∈ In contains exactly two In+1, Ĩn+1 ∈ In+1 that we call
the children of In, and then In is the parent of each of In+1, Ĩn+1.

It is convenient to introduce some terminology. Often, we denote the children
or sibling or parent of a generic I ∈ I by

I0 , I1 or Ĩ or Î

respectively; implicit in the use of the latter two notations is the requirement
that I �= S1.

Clearly, (In)∞1 is a shrinking subdivision for S1 in the sense of §2.6. Recall
too that a sequence (In)∞n=0 of dyadic subarcs In ∈ In is a descendant sequence
provided I0 ⊃ I1 ⊃ I2 ⊃ · · · ; that is, for each n, In+1 is a child of In. We note
that for each x ∈ S1 there is a descendant sequence (Inx )

∞
n=0 with {x} =

⋂∞
n=0 I

n
x ;

such a sequence is unique unless x is a dyadic endpoint in which case there are
exactly two such sequences.

By connecting each arc to its parent, we can view I as the vertex set of a rooted
binary tree. In this connection, we use the following elementary fact on various
subtrees:

Kőnig’s Lemma. A rooted tree with infinitely many vertices, each of finite degree,
contains an infinite simple path.

In our setting this means that each infinite subtree contains a descendant se-
quence.
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In the proof of part (B) of our Theorem it will be convenient to “do m steps at
once”. This means that instead of dividing an arc into two subarcs, we will divide
it into 2m subarcs. With this in mind, we also consider the family J of all 2m-adic
subarcs; thus

J :=
∞⋃

n=0

J n, where J n = Imn.

Each J n contains the 2mn subarcs of the form Jn
k := [k/2mn, (k + 1)/2mn]

in Imn with k ∈ {0, 1, . . . , 2mn − 1}. Each such arc Jn has 2m children, i.e., arcs
Jn+1 ∈ Im(n+1), all of which are contained in Jn.

3.2. Dyadic diameter functions

A dyadic diameter function Δ assigns a diameter Δ(I) to each dyadic subarc I ∈ I.
More precisely, we call Δ : I → (0, 1] a dyadic diameter function constructed using
the snowflake parameter σ ∈ [1/2, 1] provided Δ(S1) = 1 and

∀ I ∈ I , either Δ(I0) = Δ(I1) :=
1

2
Δ(I) or Δ(I0) = Δ(I1) := σΔ(I),

where I0, I1 are the two children of I. When σ = 1, we also require

lim
n→∞max {Δ(I) | I ∈ In} = 0 .

If σ < 1, this latter condition is automatically true. The snowflake parameter σ is
kept fixed throughout the construction.

Each dyadic diameter function Δ produces a distance function d = dΔ on S1

defined by

(3.1) d(x, y) = dΔ(x, y) := inf

N∑

k=1

Δ(Ik)

where the infimum is taken over all xy-chains I1, . . . , IN in I; thus x and y lie in
I1 ∪ · · · ∪ IN , each Ik belongs to I, and for all 2 ≤ k ≤ N , Ik−1 ∩ Ik �= ∅.

Now we present various properties of this metric. Our ‘diameter function’
terminology is motivated by item (d) below.

Lemma 3.1. Let I Δ→ (0,∞) be a dyadic diameter function and define d := dΔ
as in (3.1). Then:

(a) d is a metric on S1.

(b) The identity map id : (S1, d) → (S1, λ) is a 1-Lipschitz homeomorphism;
recall that λ is the normalized length metric on S1; see §2.1.

(c) (S1, d) is 1-bounded turning (so d is its own diameter distance).

(d) The diameter (with respect to d ) of each dyadic subarc is given by Δ; i.e.,
for all n ∈ N and all I ∈ In, diamd(I) = Δ(I).
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(e) If Δ is constructed using a snowflake parameter σ ∈ [1/2, 1), then the As-
souad dimension of (S1, d) is at most log 2/ log(1/σ). Equality holds for the
“extremal model” where we take Δ(I0) = Δ(I1) = σΔ(I) for both children
I0, I1 of each I ∈ I.

Proof. (a) It is clear that d is non-negative, symmetric, and satisfies the triangle
inequality. Given x ∈ S1 and n ∈ N, let Inx ∈ In be a dyadic subarc containing x.
Since (Inx )

∞
1 is an xx-chain, d(x, x) ≤ Δ(Inx ) → 0 (as n → ∞), so d(x, x) = 0. Since

Δ(In) ≥ 2−n = diamλ(I
n), it follows that d(x, y) ≥ λ(x, y). Thus d(x, y) = 0 if

and only if x = y.

(b) This follows from Proposition 2.4 and the penultimate sentence in the proof
of (a).

(d) Fix I ∈ In with n ≥ 1. For all points x, y ∈ I, I is an xy-chain, so
d(x, y) ≤ Δ(I) and thus diamd(I) ≤ Δ(I). The opposite inequality follows from
the observation that any chain joining the endpoints of I must cover either I or
its sibling Ĩ.

(c) To prove that (S1, d) is 1-bounded turning, fix distinct points x, y ∈ S1. Let
[x, y] and [y, x] be the two closed arcs on S1 between x, y (i.e., the closures of the
components of S1 \ {x, y}). Assume that diamd([x, y]) ≤ diamd([y, x]). Next let
I1, . . . , IN be any xy-chain. Then I1 ∪ · · · ∪ IN ⊃ A, where either A = [x, y] or
A = [y, x], so diamd([x, y]) ≤ diamd(A).

For any a, b ∈ A, I1, . . . , IN is an ab-chain; therefore

d(a, b) ≤
N∑

n=1

Δ(In) , and thus diamd([x, y]) ≤ diamd(A) ≤
N∑

n=1

Δ(In) .

Taking the infimum over all such xy-chains I1, . . . , IN yields

diamd([x, y]) ≤ d(x, y) .

(e) First, suppose Δ is constructed using a snowflake parameter σ ∈ [1/2, 1).
Let α := log 2/ log(1/σ), so σ−α = 2. Fix an arbitrary ε ∈ (0, 1]. Choose n ∈ N

so that σn < ε ≤ σn−1. Consider a dyadic subarc In ∈ In. Then diamd(I
n) =

Δ(In) ≤ σn < ε.
Now let A be any ε-separated set in (S1, d). Then A contains at most one point

in each dyadic subarc In ∈ In. Thus

card(A) ≤ 2n =
(
σ−α

)n
= σ−α

(
σn−1

)−α ≤ 2 ε−α .

It follows that the Assouad dimension of (S1, d) is at most α; see §2.2.
Finally, consider the dyadic diameter function given by setting Δ(In+1) :=

σΔ(In) (for each child In+1 ∈ In+1 of every In ∈ In) and its corresponding metric
d = dΔ. Then for each n ∈ N, the set An := {k/2n | 0 ≤ k < 2n} of nth-generation
endpoints is σn-separated in (S1, d). Assume constants C > 0, α > 0 are given so
that the number of ε-separated points is at most Cε−α. Taking ε := σn we obtain

Cε−α = C(σn)−α = C(σ−α)n ≥ card(An) = 2n , so α ≥ log 2

log(1/σ)
.

�
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Given σ ∈ [1/2, 1], we let Sσ be the collection of all metric circles (S1, d), where
the metric d = dΔ is defined as in (3.1) and Δ : I → (0, 1] is any dyadic diameter
function constructed using the snowflake parameter σ. Then

S :=
⋃

σ∈[1/2,1]

Sσ

is our catalog of snowflake type metric circles. Thanks to the Tukia–Väisälä charac-
terization, Lemma 3.1(c, e) imply that for σ ∈ [1/2, 1), each curve in Sσ is a metric
quasicircle.

The curves in S1 are bounded turning circles, but need not be metric quasicircles
since they may fail to be doubling. There is a simple test for doubling that we give
below in Lemma 3.7.

3.3. 2m-adic diameter functions

We also require 2m-adic diameter functions; recall (see the end of §3.1) that J
denotes the family of 2m-adic subarcs of S1. We call Δ : J → (0, 1] a 2m-adic dia-
meter function constructed using the snowflake parameter τ ∈ [1/2m, 1] provided
Δ(S1) = 1 and

∀ J ∈ J , either Δ(J0) = Δ(J1) = · · · = Δ(J2m−1) :=
1

2m
Δ(J)

or Δ(J0) = Δ(J1) = · · · = Δ(J2m−1) := τ Δ(J),

where J0, . . . , J2m−1 are the children of J . The snowflake parameter τ is fixed
throughout the construction. If τ = 1, we also require

lim
n→∞max {Δ(J) | J ∈ J n} = 0 .

When τ < 1 this latter condition is automatically true.

Just as for dyadic diameter functions, each 2m-adic diameter function Δ has an
associated distance function dΔ defined as in (3.1) but now we only consider xy-
chains chosen from J . Lemma 3.1 remains valid for 2m-adic diameter functions;
however, in part (e) we must take σ = τ1/m, where the 2m-adic diameter function
is constructed using the snowflake parameter τ ∈ [1/2m, 1].

We note the following useful fact. For each dyadic arc I ∈ I, there exist 2m-adic
arcs Jn ∈ J n and Jn+1 ∈ J n+1 such that

(3.2) Jn+1 ⊂ I ⊂ Jn .

Each 2m-adic diameter function Δ : J → (0, 1], with snowflake parameter τ ,
has a natural extension to a dyadic diameter function Δ : I → (0, 1], with snowflake
parameter σ := τ1/m, that is defined as follows. Fix a subarc Jn ∈ J and let
Jn+1 ⊂ Jn be any child of Jn. Let Jn =: Imn ⊃ Imn+1 ⊃ · · · ⊃ Im(n+1) := Jn+1

be the finite descendant sequence from I determined by Jn+1 and Jn. Set

ρ := [Δ(Jn+1)/Δ(Jn)]1/m (so, ρ ∈ {1/2, τ1/m})
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and for each i ∈ {0, 1, . . . ,m} define

Δ(Imn+i) := ρiΔ(Jn) .

In view of (3.2), this procedure defines Δ(I) for each I ∈ I. Note that Δ(Imn+0) =
Δ(Jn) and Δ(Imn+m) = Δ(Jn+1), so Δ : I → (0, 1] is an extension of Δ: J →
(0, 1]. Clearly this extension is a dyadic diameter function constructed with the
snowflake parameter σ = τ1/m.

Lemma 3.2. Let Δ: J → (0, 1] be a 2m-dyadic diameter function that has been
extended to all dyadic intervals, i.e., to a dyadic diameter function Δ: I → (0, 1],
as described above. Let dI and dJ be the metrics defined via Δ|I and Δ|J respec-
tively, meaning by (3.1) and using chains from I and J respectively. Then, for
all x, y ∈ S1,

1

2m
dJ (x, y) ≤ dI(x, y) ≤ dJ (x, y) .

Proof. The righthand inequality holds because there are more xy-chains available
when we use subarcs from I. To prove the lefthand inequality, let I1, . . . , IN be an
xy-chain from I. Now use (3.2) to get a corresponding xy-chain J1, . . . , JN from J
and with J ′

k ⊂ Ik ⊂ Jk where J ′
k is some child of Jk. Then for each k

Δ(Ik) ≥ Δ(J ′
k) ≥ 2−mΔ(Jk) , so dJ (x, y) ≤

N∑

k=1

Δ(Jk) ≤ 2m
N∑

k=1

Δ(Ik) .

Taking an infimum gives dJ (x, y) ≤ 2m dI(x, y). �

The previous lemma and prior discussion reveal that in order to prove that a
given metric circle (Γ, |·|) is bi-Lipschitz equivalent to a curve in Sσ, it is sufficient
to construct a 2m-adic model circle (with snowflake parameter τ = σm) that is bi-
Lipschitz equivalent to (Γ, |·|); this will yield a dyadic model circle (with snowflake
parameter σ) bi-Lipschitz equivalent to (Γ, |·|).

Remark 3.3. Rohde’s construction is based on 4-adic arcs rather than dyadic
arcs. Results similar to the above also hold in this case. Namely each 4m-adic

diameter function
⋃

k I4mk → (0, 1], with snowflake parameter τ in [1/4m, 1], has
an extension to a 4-adic diameter function with snowflake parameter σ := τ1/m ∈
[1/4, 1]. The analog of Lemma 3.2 holds: the metrics constructed from these two
diameter functions are bi-Lipschitz equivalent.

3.4. Bi-Lipschitz equivalence

Let (Γ, |·|) be a bounded turning circle and (S1, dΔ) be a model circle where Δ is
some dyadic diameter function. In the following we show that to prove bi-Lipschitz
equivalence of (Γ, |·|) and (S1, dΔ), it is enough to show bi-Lipschitz equivalence
for dyadic subarcs. More precisely, we establish the following result:
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Lemma 3.4. Let (Γ, |·|) be a C-bounded turning circle and d = dΔ a metric on S1

defined via a 2m-adic diameter function Δ. Let ϕ : S1 → Γ be a homeomorphism.
Suppose there exists a constant K ≥ 1 such that, for all J ∈ J ,

K−1 diam(ϕ(J)) ≤ Δ(J) ≤ K diam(ϕ(J)) .

Then (S1, d)
ϕ→ (Γ, |·|) is L-bi-Lipschitz, where L := 2m+1C K.

Before proving this lemma (see Paragraph 3.6), we first give a simple way to
estimate the diameter of an arc in terms of the diameters of dyadic subarcs.

Lemma 3.5. Let J Δ→ (0, 1] be a 2m-adic diameter function with associated metric
d = dΔ. For each arc A ⊂ S1, define

δ(A) = δΔ(A) := max{Δ(I) | I ⊂ A, I ∈ J }.
Then for all arcs A ⊂ S1,

δ(A) ≤ diamd(A) ≤ 2m+1 δ(A).

In fact, there are 2m-adic arcs I, J ∈ J such that I ∪J ⊂ A ⊂ Î ∪ Ĵ , Δ(I) = δ(A),
and either I = J or Î , Ĵ are adjacent. Here Î , Ĵ ∈ J are the parents of I, J relative
to J .

Proof. Let A be a subarc of S1. Suppose we have verified the existence of the
described 2m-adic arcs I, J ∈ J . Then

δ(A) = Δ(I) = diamd(I) ≤ diamd(A) ≤ diamd(Î ∪ Ĵ)

≤ diamd(Î) + diamd(Ĵ) = Δ(Î) + Δ(Ĵ)

≤ 2m[Δ(I) + Δ(J)] ≤ 2m+1Δ(I) = 2m+1 δ(A) .

Thus it suffices to exhibit such I and J .

Suppose F ⊂ J is some family of 2m-adic arcs (e.g., defined by certain proper-
ties). We say that an arc In ∈ J n is maximal with respect to F provided In ∈ F
and for all J l ∈ J l with J l ∈ F , either Δ(J l) < Δ(In) or

Δ(J l) = Δ(In) and l ≥ n .

Thus In is the “largest” arc in F , and when there are several such large arcs,
“seniority wins”. Note that the parent of such a maximal In will not belong to F .

Now assume A is the oriented arc [a, b] ⊂ S1 = [0, 1]/∼ with 0 < a < b < 1.
Pick I = In ∈ J so that I ⊂ A, Δ(I) = δ(A), and such that I is maximal among
all such arcs. Let Î ⊃ I be the J -parent of I. If A ⊂ Î, then upon setting J := I
we are done.

Assume that A �⊂ Î. The maximality of I ensures that one endpoint of Î,
without loss of generality the left endpoint, is not contained in A. Let y be the
right endpoint of Î. Then [a, y] ⊂ Î.
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Now consider subarcs J ∈ J that lie in A and to the right of y, and select
the largest of these. More precisely, let J = J l ∈ J be the maximal 2m-adic
subarc that contains y as its left endpoint and is contained in [y, b]. Note that the
maximality of I implies that

(3.3) either l ≥ n or Δ(J) < Δ(I) .

Consider the parent Ĵ of J . We claim that Ĵ contains a point to the right of b,
and then since A = [a, y]∪ [y, b] ⊂ Î ∪ Ĵ , we are done. If Ĵ did not contain a point
to the right of b, then it would have to contain a point to the left of y, but as we
now show this would lead to a contradiction.

So, suppose Ĵ contains a point to the left of y. Then in particular, y is an
interior point of Ĵ . Since y is an endpoint of Î, we cannot have Î ⊃ Ĵ or Î = Ĵ ,
and therefore Î � Ĵ . This implies that n > l. However, it also implies that some
2m-adic sibling J̃ of J satisfies J̃ ⊃ Î, and therefore Δ(I) ≤ Δ(Î) ≤ Δ(J̃) = Δ(J).
In view of (3.3), one of these last two implications does not hold, so Ĵ cannot
contain a point to the left of y. �

3.6. Proof of Lemma 3.4. An appeal to Lemma 2.2(b,c) permits us to assume
that (Γ, |·|) is 1-bounded turning. Write Γ[x, y] for the smaller diameter subarc
joining points x, y on Γ; so |x − y| = diam(Γ[x, y]). Fix points s, t on S1 and put
x := ϕ(s), y := ϕ(t). Let [s, t], [t, s] be the two arcs in S1 joining s, t and assume
that diamd([t, s]) ≥ diamd([s, t]) = d(s, t).

First we show that |x−y| ≤ 2m+1K d(s, t). Using Lemma 3.5 we select 2m-adic
subarcs I, J ∈ J with I ∪ J ⊂ [s, t] ⊂ Î ∪ Ĵ , Î ∩ Ĵ �= ∅, and

Δ(J) ≤ Δ(I) = δ([s, t]) ≤ diamd([s, t]) = d(s, t) .

Here Î , Ĵ ∈ J are the parents of I, J relative to J . Then

|x− y| = diam(Γ[x, y]) = min{diam(ϕ[s, t]), diam(ϕ[t, s])} ≤ diam(ϕ[s, t])

≤ diam(ϕ(Î ∪ Ĵ)) ≤ K[Δ(Î) + Δ(Ĵ)] ≤ 2mK[Δ(I) + Δ(J)]

≤ 2m+1KΔ(I) ≤ 2m+1K d(s, t) .

Next we show that d(s, t) ≤ 2m+1K |x − y|. Let A be the subarc of S1(either
A = [s, t] or A = [t, s]) with ϕ(A) = Γ[x, y]. Again we use Lemma 3.5 to pick a
subarc I ∈ J with I ⊂ A and Δ(I) = δ(A). Then ϕ(I) ⊂ ϕ(A) = Γ[x, y], so

d(s, t) ≤ diamd(A) ≤ 2m+1 δ(A) = 2m+1Δ(I) ≤ 2m+1K diam(ϕ(I))

≤ 2m+1K diam(Γ[x, y]) = 2m+1K |x− y| .

�

We end this subsection with a criterion that describes when a metric circle
in S1 is doubling. Roughly speaking, we get doubling if and only if diameters are
always at least halved after a fixed number of steps.
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Lemma 3.7. Let I Δ→ (0, 1] be a dyadic diameter function with snowflake param-
eter σ = 1 and define d := dΔ as in (3.1). Then (S1, d) is doubling if and only if
there exists an n0 ∈ N such that

∀ n ∈ N , ∀ In , ∀ In+n0 ⊂ In , Δ(In+n0) ≤ 1

2
Δ(In) .

Proof. Suppose (S1, d) is doubling. Then there are constants C ≥ 1 and α ≥ 1
such that for each r-separated set E in (S1, d),

card(E) ≤ C (diamd(E)/r)
α
.

Let I := In ∈ In be given. Suppose (Im)n+k
m=n is a descendant sequence with

Δ(Im) ≥ r := 1
2Δ(I) for all m ∈ {n, n + 1, . . . , n + k}. Let E be the set of

endpoints of all the subarcs In, . . . , In+k. To see that E is r-separated, let e1, e2
be two distinct points in E. We can assume that e1 is an endpoint of some Ii

and e2 ∈ Ij ⊂ Ii, where n ≤ i < j ≤ n + k, and that Ij does not contain e1
but Ij−1 does. Then the sibling Ĩj of Ij separates e1 and e2. Thus d(e1, e2) ≥
Δ(Ĩj) = Δ(Ij) ≥ r.

Now diamd(E) = diamd(I) = Δ(I) = 2 r, so by doubling,

k ≤ card(E) ≤ C (diamd(E)/r)α = 2αC .

Therefore n0 := �2αC�+ 1 is the desired number.

Conversely, suppose there is such an n0 ∈ N. Let A ⊂ S1 be any arc. Let I ∈ In,
J ∈ Im be dyadic subarcs with parents Î ∈ In−1, Ĵ ∈ Im−1 as in Lemma 3.5;
thus I ∪ J ⊂ A ⊂ Î ∪ Ĵ . Let I1, . . . , I2n0+1 ∈ In+n0 , J1, . . . , J2n0+1 ∈ Im+n0 be the
dyadic subarcs contained in Î and Ĵ respectively. Then for all 1 ≤ k ≤ 2n0+1

diamd(Ik) = Δ(Ik) ≤ 1

2
diamd(I) ≤ diamd(A)

and similarly diamd(Jk) ≤ (1/2) diamd(A). Thus we obtain the doubling condition
with N := 2n0+2. �

4. Proof of the Main Theorem

Here we establish parts (A), (B), (C) of the theorem stated in the introduction;
see §4.1, §4.2 and §4.3, respectively. In addition, in §4.3 we explain how to recover
Rohde’s Theorem.

Recall from §3.2 that Sσ is the collection of all metric circles (S1, dσ) where the
metrics dσ = dΔ are defined as in (3.1) and Δ : I → (0, 1] is any dyadic diameter
function constructed using the snowflake parameter σ ∈ [1/2, 1]. Recall too that
for σ ∈ [1/2, 1) each curve in Sσ is a metric quasicircle that has Assouad dimension
at most log 2/ log(1/σ); see Lemma 3.1(c, e).
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For the remainder of this section, (Γ, |·|) is a bounded turning circle. Our three
proofs share the following common theme: We define an appropriate shrinking
subdivision for Γ and then appeal to Proposition 2.4 and Lemma 3.4 to obtain the
necessary bi-Lipschitz homeomorphisms. In each case this involves constructing a
dyadic diameter function Δ using some snowflake parameter.

To start, we fix an orientation on Γ. All subarcs inherit this orientation,
and [a, b] denotes the oriented subarc of Γ with endpoints a, b. Next, an ap-
peal to Lemma 2.2(b, c) permits us to replace |·| with its associated diameter
distance thereby obtaining a bi-Lipschitz equivalent 1-bounded turning circle; the
bi-Lipschitz constant for this change of metric equals the original bounded turning
constant. Thus we may, and do, assume that (Γ, |·|) is 1-bounded turning. This
means that

diam([a, b]) = |a− b| whenever diam([a, b]) ≤ diam(Γ \ [a, b]) .
We also assume that diam(Γ) = 1; this involves another bi-Lipschitz change of
metric with bi-Lipschitz constant max{diam(Γ), diam(Γ)−1}.

4.1. Proof of (A)

We assume (Γ, |·|) is 1-bounded turning with diam(Γ) = 1; it need not be doubling.
We construct a dyadic diameter function Δ on I, using the snowflake parameter
σ = 1, so that (Γ, |·|) is bi-Lipschitz equivalent to (S, dΔ).

First, we divide Γ into two arcs A1
0, A

1
1 that both have diameter one. Then

we inductively divide each arc into two subarcs of equal diameter. Appealing to
Proposition 2.3, we divide each An

i into two subarcs An+1
2i , An+1

2i+1 of equal diameter.
This defines subarcs An

k for each k ∈ {0, 1, . . . , 2n − 1} and all n ∈ N. Here we
label so that the An

k are ordered successively along Γ with the initial point of An
0

the same for all n ∈ N.
We claim that limn→∞ maxk diam(An

k ) = 0. Suppose this does not hold. Then
there is an ε > 0 such that the set Γε := {An

k | diam(An
k ) ≥ ε} is infinite. Noting

that each parent of an arc in Γε also belongs to Γε, we may appeal to Kőnig’s
Lemma to obtain a descendent sequence S1 =: A0 ⊃ A1 ⊃ A2 ⊃ · · · (where
An = An

kn
is some arc in Γε). By construction An is divided into two subarcs

An+1 and Bn+1 of equal diameter, so diam(Bn+1) ≥ ε. Then {B1, B2, . . . } is an
infinite collection of non-overlapping subarcs of Γ each with diameter at least ε.
This contradiction to Lemma 2.1 implies that our claim must hold

By setting An := {An
k | k ∈ {0, 1, . . . , 2n − 1}} (for each n ∈ N) we obtain

a shrinking subdivision (An)∞1 for Γ; see §2.6. In fact, (In)∞1 and (An)∞1 are
combinatorially equivalent shrinking subdivisions, and thus by Proposition 2.4
there is an induced homeomorphism ϕ : S1 → Γ with ϕ(Ink ) = An

k for all n ∈ N

and all k ∈ {0, 1, . . . , 2n − 1}.
It remains to construct a dyadic diameter function Δ using the snowflake pa-

rameter σ = 1 and so that Δ also satisfies the following: for all n ∈ N,

(4.1) for all k ∈ {0, 1, . . . , 2n − 1} ,
1

2
Δ(Ink ) ≤ diam(An

k ) ≤ 2Δ(Ink ) .
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Having accomplished this task, we can appeal to Lemma 3.4 (with C = 1, m = 1,
and K = 2) to assert that ϕ : (S1, dΔ) → (Γ, |·|) is 8-bi-Lipschitz.

We start by setting Δ(S1) = Δ(I10 ) = Δ(I11 ) := 1 and note that (4.1) holds for
n = 1. Now assume that for some n ∈ N and all k ∈ {0, 1, . . . , 2n − 1}, Δ(Ink ) has
been defined so that (4.1) holds. Consider a dyadic subarc In = Ink , its two children

In+1, Ĩn+1 ⊂ In, and its corresponding arc An = An
k = ϕ(Ink ) ⊂ Γ. We note that

by construction each child An+1 of An satisfies

1

2
diam(An) ≤ diam(An+1) ≤ diam(An) .

We examine two cases. If Δ(In) ≤ diam(An), then we define

Δ(In+1) = Δ(Ĩn+1) := Δ(In) .

We see that (4.1) holds (for n+ 1), since

1

2
Δ(In+1) =

1

2
Δ(In) ≤ 1

2
diam(An) ≤ diam(An+1)

≤ diam(An) ≤ 2Δ(In) = 2Δ(In+1) .

Here (4.1) was used for n in the last inequality.

If Δ(In) > diam(An), then we define

Δ(In+1) = Δ(Ĩn+1) :=
1

2
Δ(In) .

Again one checks that (4.1) holds (for n+ 1), since

1

2
Δ(In+1) =

1

4
Δ(In) ≤ 1

2
diam(An) ≤ diam(An+1)

≤ diam(An) < Δ(In) = 2Δ(In+1) .

Here (4.1) was used for n in the first inequality. �

4.2. Proof of (B)

We assume (Γ, |·|) is 1-bounded turning with diam(Γ) = 1 and doubling with finite
Assouad dimension α. Fix any σ ∈ (2−1/α, 1) (equivalently, α < log 2/ log(1/σ)).
We construct a dyadic diameter function Δ on I, using the snowflake parameter σ,
so that (Γ, |·|) is bi-Lipschitz equivalent to (S, dΔ). In contrast to our above proof
of (A), here we do “m steps at the same time”; i.e., each arc will be divided into 2m

subarcs of the same diameter. That is, we will in fact construct a 2m-adic diameter
function; see §3.3.

Put β := log 2/ log(1/σ), so σ = 2−1/β. Then since β > α = dimA(Γ), there
exists an ε0 ∈ (0, 1] such that for all ε ∈ (0, ε0), the cardinality of any εD-separated
set S ⊂ Γ with D = diam(S) satisfies

card(S) < ε−β .
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Since σ = 2−1/β < 1, we may select an m ∈ N so that

(4.2) τ := σm =
(
2−1/β

)m
= (2m)−1/β < ε0 .

In particular, if S is a τD-separated subset of Γ, withD = diam(S), then card(S) <
τ−β = 2m := M .

It now follows that whenever we divide an arc A of Γ into M subarcs Ak all
with equal diameters, then

(4.3) M−1 diam(A) ≤ diamAk ≤ τ diam(A) .

The lefthand inequality follows directly from the triangle inequality whereas the
righthand inequality holds because there are at least M distinct endpoints of the
subarcs Ak (which are separated by diamAk) and so, by the above, these endpoints
cannot be τD-separated with D := diam(A)

We use Proposition 2.3 to divide Γ into M arcs A1
0, A

1
1, . . . , A

1
M−1, all of equal

diameter. We iterate this procedure: assuming that arcsAn
k (k∈{0, 1, . . . ,Mn−1})

have been so constructed, each arc An
k is subdivided into M subarcs An+1

kM+j (with

j ∈ {0, 1, . . . ,M −1}) all of equal diameter; the subarcs An+1
kM+j are labeled succes-

sively along An
k . To avoid possible confusion, we note that all subarcs of the same

arc An
k have the same diameters, however, subarcs of different arcs An

i , A
n
j do not

necessarily have the same diameters.

Let J =
⋃∞

n=0 J n be the family of all M -adic subarcs of S1; here M = 2m

and J n = Imn consists of the Mn = 2mn subarcs of the form Jn
k := [k/2mn,

(k + 1)/2mn] ∈ Imn with k ∈ {0, 1, . . . , 2mn − 1}. See the last paragraph of §3.1.
Setting An := {An

k | k ∈ {0, 1, . . . ,Mn − 1}} (for each n ∈ N) we obtain
a shrinking subdivision (An)∞1 for Γ; see §2.6. In fact, (J n)∞1 and (An)∞1 are
combinatorially equivalent shrinking subdivisions, and thus by Proposition 2.4
there is an induced homeomorphism ϕ : S1 → Γ with ϕ(Jn

k ) = An
k for all n ∈ N

and all k ∈ {0, 1, . . . ,Mn − 1}.
Now we construct an M -adic diameter function J Δ→ (0, 1] using the snowflake

parameter τ and so that Δ also satisfies the following: for all n ∈ N and for all
k ∈ {0, 1, . . . ,Mn − 1},
(4.4) K−1Δ(Jn

k ) ≤ diam(An
k ) ≤ KΔ(Jn

k ) ,

where K := τ M . Once this task is completed, we can appeal to Lemma 3.4 (with
C = 1 and 2m = M) to assert that ϕ : (S1, dΔ) → (Γ, |·|) is L-bi-Lipschitz with
L = 2MK = 2 τM2.

To start, we set Δ(S1) := 1 and then for each k ∈ {0, 1, . . . ,M − 1}, we put
Δ(J1

k ) := τ . To check (4.4) for n = 1 we use (4.3) and the fact that diam(Γ) = 1
to see that

1

K
Δ(J1

k ) =
τ

K
=

1

M
≤ diam(A1

k) ≤ τ = Δ(J1
k ) .

Assume that for some n ∈ N and all k ∈ {0, 1, . . . ,Mn−1}, Δ(Jn
k ) has been defined

so that (4.4) holds. Fix any M -adic subarc Jn = Jn
k and let An = An

k = ϕ(Jn
k ) be

the corresponding subarc of Γ. We consider two cases.
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First, suppose that Δ(Jn) ≤ diam(An). Then we define the diameter of each
child Jn+1 of Jn by

Δ(Jn+1) := τ Δ(Jn) .

To confirm that (4.4) is still satisfied for all these children, we observe that

1

K
Δ(Jn+1) =

1

M
Δ(Jn) ≤ 1

M
diam(An) ≤ diam(An+1)

≤ τ diam(An) ≤ τ KΔ(Jn) = KΔ(Jn+1) .

Here the initial inequality holds by supposition, the next two inequalities follow
from (4.3), and the induction hypothesis gives the last inequality.

Next, suppose that Δ(Jn) > diam(An). Now we define the diameter of each
child Jn+1 of Jn by

Δ(Jn+1) :=
1

M
Δ(Jn) =

1

2m
Δ(Jn) .

To check that (4.4) holds for all these children, we again observe that

1

K
Δ(Jn+1) =

1

KM
Δ(Jn) ≤ 1

M
diam(An) ≤ diam(An+1)

≤ τ diam(An) ≤ τ Δ(Jn) = KΔ(Jn+1) .

Here the initial inequality holds by the induction hypothesis, the next two inequal-
ities follow from (4.3), and our supposition gives the last inequality.

This finishes the construction of an M -adic diameter function Δ for which (4.4)
holds for all n ∈ N and all k ∈ {0, 1, . . . ,Mn − 1}.

Having defined an appropriate M -adic diameter function Δ on J , we use
Lemma 3.4 to deduce that ϕ : (S1, dτ ) → (Γ, |·|) is L-bi-Lipschitz, where dτ := dΔ.
The M -adic diameter function Δ, constructed using the snowflake parameter τ ,
can be extended to a dyadic diameter function Δ that is constructed with the
snowflake parameter σ = τ1/m. See the discussion in §3.3. Let dσ be the metric
associated with the dyadic diameter function Δ. According to Lemma 3.2, the
identity map id : (S1, dσ) → (S1, dτ ) is M -bi-Lipschitz. It now follows that (Γ, |·|)
is (ML)-bi-Lipschitz equivalent to the metric quasicircle (S1, dσ) ∈ Sσ. �

Remark 4.1. We can easily adjust the previous proof to obtain a model circle
constructed from a 4-adic diameter function. To do so, we choose m in (4.2) to
be even; say, m = 2k, so M = 4k. Then we extend the M -adic diameter function
J → (0, 1] to a 4-adic diameter function with snowflake parameter p := τ1/k =
σ2 ∈ (4−1/α, 1) as described in Remark 3.3. This yields a metric d, constructed
via the 4-adic diameter function, such that the original metric quasicircle (Γ, |·|) is
bi-Lipschitz equivalent to (S1, d). Thus the following variant of (B) holds.

Corollary 4.2 ((B′)). Let (Γ, |·|) be a metric quasicircle with finite Assouad di-
mension α. Then for each p ∈ (4−1/α, 1) there is a 4-adic diameter function Δ,
constructed with snowflake parameter p, and an associated metric d = dΔ, such
that (S1, d) is bi-Lipschitz equivalent to (Γ, |·|).
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Note that 1 ≤ α < 2 is equivalent to 1/4 ≤ 4−1/α < 1/2, so in this case we can
choose p ∈ (4−1/α, 1/2) ⊂ (1/4, 1/2).

4.3. Planar quasicircles

In Paragraph 4.3 below we prove part (C) of our theorem. Then we explain how to
recover Rohde’s theorem. We begin with a precise description for the construction
of Rohde snowflakes that includes some useful geometric estimates.

Everywhere throughout this subsection J denotes the family of 4-adic subarcs
of the circle S1.

Each Rohde snowflake R, constructed using a parameter p ∈ [1/4, 1/2), is the
Hausdorff limit of a sequence (Rn)∞1 of polygons where Rn+1 is obtained from Rn

by using the replacement choices illustrated in Figure 1. Both the snowflake pa-
rameter p and the polygonal arc Ap are kept fixed throughout the construction.

We start with the unit square R1 = E1
0 ∪ E1

1 ∪ E1
2 ∪ E1

3 , so each E1
k is a

Euclidean line segment of diameter one and these are labeled successively along R1.
Suppose we have constructed Rn as a union of 4n Euclidean line segments En

k ,
k ∈ {0, 1, . . . , 4n−1} (labeled successively alongRn). Then for each of the edges En

k

of Rn we have two choices: either we replace En
k with the four line segments

obtained by dividing En
k into four segments of equal diameter, or we replaceEn

k by a
similarity copy of the polygonal arcAp pictured at the top right of Figure 1. In both
cases En

k is replaced by four new line segments En+1
4k+j (with j ∈ {0, 1, 2, 3}) that we

call the children of En
k , so En

k is the parent of each of En+1
4k , En+1

4k+1, E
n+1
4k+2, E

n+1
4k+3.

Each of these children has Euclidean diameter equal to either (1/4) diam(En
k ) in

the first case or p diam(En
k ) in the second case. The second type of replacement

is done so that the “tip” of the replacement arc points into the exterior of Rn.
Then Rn+1 is the union of the 4n+1 arcs En+1

i (with i ∈ {0, 1, . . . , 4n+1 − 1}).
We call the line segments En

k the 4-adic edges of Rn. We note that differ-
ent replacement rules can be used for different edges En

i , E
n
j of Rn. Thus, for

example, one edge could have diameter 1/4n while an adjacent edge might have
diameter pn (which could be much larger). In any event, for each n ∈ N there
is a natural homeomorphism ϕn : S1 → Rn that is given by mapping each 4-adic
subarc Jn

k ⊂ S1 to the 4-adic edge En
k ⊂ Rn. We say that the edge En

k corresponds
to the subarc Jn

k .

Set θ = θ(p) := 2 arcsin((2p)−1 − 1); this is the interior angle at the “tip” of
the arc Ap in Figure 1, but see also the left-most picture in Figure 2. Also, notice
that if Ap is normalized to have diameter one, then its height is (p− 1/4)1/2.

Let E be one of the 4-adic edges of some Rn. We write T (E) = Tp(E) for
the closed isosceles triangle with base E and height diam(E)(p − 1/4)1/2; we
orient T (E) so that it “points” into the exterior of the polygon Rn. Thus if E
were to be replaced by a similarity copy of the arc Ap, then T (E) would be the
closed convex hull of this affine copy of Ap (see the left-most picture in Figure 2)
and the third vertex of T (E) would correspond to the “tip” of this image of Ap.
We call this third vertex the “tip” of T (E).
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T (E)

E

θ

T (E0)

T (E1) T (E2)

T (E3)θ

θ

θ

T (E0)
T (E1) T (E2) T (E3)

Figure 2. Triangles enclosing an arc.

Next, let E0, E1, E2, E3 be the four children of E. Not only are these chil-
dren contained in T (E), but elementary geometric considerations reveal that the
associated triangles T (E0), T (E1), T (E2), T (E3) are also contained in T (E). See
the two right-most pictures in Figure 2. A standard argument now reveals that
the sequence (ϕn)

∞
1 is uniformly Cauchy, and hence it converges to a continu-

ous surjection ϕ : S1 → R and the planar curve R is the Hausdorff limit of the
sequence (Rn)∞1 .

Consider a subcurve A := ϕ(J) of R where J is some 4-adic subarc of S1. Let E
be the 4-adic edge that corresponds to J . We see that A is “built on top of E” in
the sense that the replacement choices used to construct R, applied to the edge E,
produce A. We write A := R(E) and call A the 4-adic subarc of R corresponding
to E (and to J). (This abuse of notation will be justified below – see (4.7), where
we prove that ϕ is injective, hence a homeomorphism, so R is a Jordan curve and A
is an arc.) By induction, we deduce that A also lies in T (E) and has the same
endpoints as E, therefore

diam(A) = diam(T (E)) = diam(E) .

Looking again at the right-most pictures in Figure 2, and appealing to elemen-
tary geometric considerations, we see that the angle between any pair of consecutive
triangles T (E0), . . . , T (E3) is at least θ. It is also elementary to check that

dist(T (E0), T (E3)) ≥ dist(T (E1), T (E3))

= dist(T (E0), T (E2)) ≥ c(p) diam(E),
(4.5)

where c(p) := 1
2 − p.

As final preparation for our proof of part (C), suppose Î , Ĵ are two adjacent
4-adic subarcs of S1, say with Î ∩ Ĵ = {ξ}. (These arcs might be from different
generations; i.e., possibly Î = Jn

k and Ĵ = Jm

 where n �= m.) Let Ê, F̂ be the

corresponding 4-adic edges, so Ê ∩ F̂ = {a} where a := ϕ(ξ).

It follows from the above remarks that the angle between the two triangles
T (Ê) and T (F̂ ), at their common vertex a, is at least θ. See Figure 3. More
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θ

θ

S

∂S

∂S

T (Ê)

T (F̂ )

E0

T (E)

��b

�

a

Figure 3. Separating points.

precisely, let S be the closed sector, with vertex at a, that contains T (Ê) and is
such that θ is the angle between each edge of ∂S and the nearest edge of T (Ê).
Then T (F̂ ) lies in the closure of R2 \ S.

Now suppose there is a child E of Ê that does not contain a. Then T (E) is
compactly contained in the sector S and in fact

(4.6) dist(T (E), T (F̂ )) ≥ dist(T (E), ∂S) ≥ c(p) diam(E),

where again c(p) := 1
2 − p. This follows from the estimates

dist(T (E), ∂S) ≥ dist(b, ∂S) ≥ c(p) diam(E),

where b is the “tip” of the appropriate T (E0) as pictured in Figure 3.

Finally, fix points s, t ∈ Î ∪ Ĵ . Suppose there is a child I of Î whose interior,
int(I), separates s, t in Î ∪ Ĵ (meaning that s, t lie in different components of
(Î ∪ Ĵ) \ int(I)). We claim that

(4.7) |ϕ(s)− ϕ(t)| ≥ c(p) diam(ϕ(I)) .

This follows from (4.5) if both ϕ(s), ϕ(t) lie in T (Ê); otherwise it follows from (4.6).
Also, see Figure 3.

Notice that injectivity of ϕ follows from (4.7).

Having established the above terminology and geometric estimates, we now
turn to the following:

4.3. Proof of (C). We use the notation and terminology introduced above.

It is well-known that planar quasicircles have Assouad dimension strictly less
than two; see Lemma 4.1 in [16] or Theorem 5.2 in [11]. Furthermore, Assouad
dimension is unchanged by bi-Lipschitz maps. Thus every metric quasicircle that
is bi-Lipschitz equivalent to a planar quasicircle has Assouad dimension strictly
less than two.
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Let (Γ, |·|) be a metric quasicircle with Assouad dimension α ∈ [1, 2). We prove
that (Γ, |·|) is bi-Lipschitz equivalent to a planar quasicircle. In fact, we show that
it is bi-Lipschitz equivalent to a Rohde snowflake.

Fix p ∈ (4−1/α, 1/2) ⊂ (1/4, 1/2). According to part (B) of our Theorem
(more precisely, the version (B′) stated as Corollary 4.2), there is a 4-adic diameter
function Δ with snowflake parameter p and associated metric dp such that (Γ, |·|)
is bi-Lipschitz equivalent to (S1, dp).

We use the 4-adic diameter function Δ to construct a Rohde snowflake R with
snowflake parameter p, and we prove that (S1, dp) is bi-Lipschitz equivalent to R.
Hence (Γ, |·|) is bi-Lipschitz equivalent to a planar quasicircle.

Recall that J is the set of all 4-adic subarcs of S1; similarly, J n := I4n.

It is convenient to scale the metric dp – so also the diameter function Δ– by the
factor 1/p. This bi-Lipschitz change in our metric means that for each J1

k ∈ J 1,
Δ(J1

k ) = 1. See the paragraph immediately following (4.4).

The desired Rohde snowflake R is the limit of a sequence (Rn)∞1 of polygons,
and we must describe how to replace each edge of Rn to obtain Rn+1. Of course, we
start with the unit squareR1 := E1

0∪E1
1∪E1

2∪E1
3 , so each edgeE1

k satisfies Δ(J1
k ) =

1 = diam(E1
k). Now suppose that we have constructed polygons R1, R2, . . . , Rn :=

En
0 ∪ · · · ∪ En

4n−1 so that

for each k ∈ {0, 1, . . . , 4n − 1} , Δ(Jn
k ) = diam(En

k ) .

Fix any J = Jn
k and consider its four children J0, J1, J2, J3. Since Δ is a 4-adic

diameter function (constructed with the snowflake parameter p),

either Δ(J0) = Δ(J1) = Δ(J2) = Δ(J3) :=
1

4
Δ(J)

or Δ(J0) = Δ(J1) = Δ(J2) = Δ(J3) := pΔ(J) .

In the first case, we replace the edge En
k with the four segments En+1

4k , En+1
4k+1,

En+1
4k+2, E

n+1
4k+3 obtained by dividing En

k into four line segments of equal diameter.

Thus here diam(En+1
j ) = (1/4) diam(En

k ). In the second case, we replace En
k by

a similarity copy of the polygonal arc Ap pictured at the top right of Figure 1;
again En

k is replaced by four new segments En+1
j , but now each of these has

diameter diam(En+1
j ) = p diam(En

k ). The second type of replacement is done so
that the “tip” of the replacement arc points into the exterior of Rn.

It is now straightforward to check that

for each k ∈ {0, 1, . . . , 4n+1 − 1} , Δ(Jn+1
k ) = diam(En+1

k ) .

In particular, we can iterate this construction and thus obtain a sequence (Rn)∞1
of planar polygons. As explained above, the sequence (Rn)∞1 converges, in the
Hausdorff metric, to a Rohde snowflake R that has been constructed using the
snowflake parameter p.

Let S1
ϕ→ R be the natural homeomorphism induced by the correspondences

between the 4-adic subarcs of S1, all 4-adic edges, and the 4-adic subarcs of R (see
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the paragraphs just before (4.5)). Thus each 4-adic edge En
k (of Rn) corresponds

to a 4-adic subarc An
k = R(En

k ) = ϕ(Jn
k ) of R and

diam(An
k ) = diam(T (En

k )) = diam(En
k ) = Δ(Jn

k ) .

We claim that (S1, dp)
ϕ→ (R, |·|) is bi-Lipschitz with

(4.8) [c(p)/8] dp(s, t) ≤ |ϕ(s)− ϕ(t)| ≤ 8 dp(s, t) for all s, t ∈ S1

where c(p) := 1
2 − p.

To verify this claim, let s, t be two points in S1 and write [s, t] for the smaller
diameter subarc of S1 joining s, t. Appealing to Lemma 3.5, we get 4-adic sub-
arcs I, J of S1 such that:

I ∪ J ⊂ [s, t] ⊂ Î ∪ Ĵ ,

Δ(I) ≤ diamdp([s, t]) = dp(s, t) ≤ 8Δ(I) ,

Δ(I) is maximal among all 4-adic subarcs in [s, t] ,

either I = J or Î , Ĵ are adjacent subarcs .

Here Î , Ĵ are the 4-adic parents of I, J . Put x := ϕ(s), y := ϕ(t). Let A :=
ϕ(I), B := ϕ(J) and E,F be the 4-adic subarcs ofR and 4-adic edges (respectively)
that correspond to I, J ; also, Â = ϕ(Î), B̂ = ϕ(Ĵ) are the parents of A,B.

Since x, y ∈ Â ∪ B̂,

|x− y| ≤ diam(Â ∪ B̂) ≤ diam(Â) + diam(B̂) = Δ(Î) + Δ(Ĵ)

≤ 4 [Δ(I) + Δ(J)] ≤ 8Δ(I) ≤ 8 dp(s, t)

which establishes the upper estimate in (4.8). To prove the lower estimate in (4.8),
we observe that int(I) separates s, t in Î ∪ Ĵ and thus (4.7) yields

|x− y| ≥ c(p) diam(ϕ(I)) = c(p)Δ(I) ≥ [c(p)/8] dp(s, t) . �

It is worthwhile to observe that the above provides an independent proof that
each Rohde snowflake is a quasicircle; in fact, each R in Rp is C-bounded turning
with C = C(p) := 8/c(p) = 16/(1− 2p).

We close this paper by explaining how Rohde’s theorem follows from our the-
orem. From the proof of part (C) of our theorem, each planar quasicircle is bi-
Lipschitz equivalent to a Rohde snowflake. Therefore, Rohde’s theorem follows
from the fact that a bi-Lipschitz homeomorphism between planar quasicircles has
a bi-Lipschitz extension to the entire plane. Below we state this extension the-
orem, due to Gehring, as Theorem 4.4; see Theorem 7 and Corollary 2 in [8].
The construction of the extension essentially follows from the Beurling–Ahlfors
extension [5]. See also Lemma 3 in [18] and Theorems 2.12 and 2.19 in [21].

Interestingly, the property of there being such a bi-Lipschitz extension, for every
bi-Lipschitz self-homeomorphism, is a characteristic property of quasicircles among
all closed (that is, bounded, so compact) planar Jordan curves. See Theorem 5.1
in [9].
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Theorem 4.4 ([8]). Each bi-Lipschitz homeomorphism between planar quasicircles
extends to a bi-Lipschitz self-homeomorphism of the plane. The bi-Lipschitz con-
stant for the extension depends only on the original bi-Lipschitz constant and the
two original bounded turning constants.

We end by remarking that the previous theorem is false for Jordan curves.
Namely a bi-Lipschitz map between planar Jordan curves Γ1,Γ2 need not have
a bi-Lipschitz extension to the plane. For example let Γ1 be a circle with two
outward pointing cusps and let Γ2 be a circle with one outward and one inward
pointing cusp. It is elementary that Γ1 and Γ2 are bi-Lipschitz equivalent, but
any such map cannot be extended to a bi-Lipschitz map of the whole plane. This
example appears already on page 388 in [15].

Acknowledgements. Saara Lehto and David Freeman helped the authors to
understand Steffen Rohde’s paper. Jussi Väisälä provided many helpful suggestions
and references.
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Paris XI, Orsay, 1977.

[4] Assouad, P.: Étude d’une dimension métrique liée à la possibilité de plongements
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tiques Supérieures, 84. Les Presses de l’Université de Montréal, Montréal, Quebec,
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