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Weighted Nash inequalities

Dominique Bakry, François Bolley, Ivan Gentil and Patrick Maheux

Abstract. Nash or Sobolev inequalities are known to be equivalent to ul-
tracontractive properties of Markov semigroups, hence to uniform bounds
on their kernel densities. In this paper, following work of F.-Y. Wang, we
present a simple and extremely general method, based on weighted Nash
inequalities, for obtaining non-uniform bounds on kernel densities. Such
bounds imply control of the trace or the Hilbert–Schmidt norm of the heat
kernels. We illustrate the method on the heat kernel on R naturally asso-
ciated with the measure with density Ca exp(−|x|a), with 1 < a < 2, for
which uniform bounds are known not to hold.

1. Introduction

The classical Nash inequality in R
n can be stated as

(1.1) ‖f‖1+n/2
2 ≤ Cn ‖f‖1 ‖∇f‖n/22

for all smooth functions f (with compact support for instance) where the norms are
computed with respect to the Lebesgue measure. This inequality was introduced
by J. Nash in 1958 (see [24]) to obtain regularity properties of the solutions to
parabolic partial differential equations. The optimal constant Cn was computed
more recently in [13].

In the more general setting of a symmetric Markov semigroup (Pt)t≥0 one has to
replace ‖∇f‖22 by the Dirichlet form E(f, f) associated with its generator. Inequal-
ity (1.1) implies smoothing properties of the Markov semigroup in the following
way: given a function f , then ϕ(t) = ‖Ptf‖22 has derivative ϕ′(t) = −2 E(Ptf, Ptf),
so, by the Nash inequality (1.1),

ϕ(t)1+n/2 ≤ C2
n ‖Ptf‖21 (−ϕ′(t)/2)n/2 ≤ C2

n ‖f‖21 (−ϕ′(t)/2)n/2.

Integrating leads first to the bound ‖Ptf‖2 ≤ C′t−n/4‖f‖1 for t > 0, and then to
‖Ptf‖∞ ≤ C′t−n/4‖f‖2, by duality and symmetry of the semigroup. This finally
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implies the classical uniform bound

(1.2) ‖Ptf‖∞ ≤ C′2 t−n/2 ‖f‖1
for t > 0 by semigroup properties. In turn this implies uniform bounds on the
kernel density of the semigroup such as

(1.3) |pt(x, y)| ≤ C′2t−n/2

for all x, y and t > 0.

Depending on whether the reference measure is finite or not, Nash inequalities
take the general form

(1.4) ‖f‖1+n/2
2 ≤ ‖f‖1

[
a E(f, f) + b ‖f‖22

]n/4
,

where n no longer needs to be an integer. These are some of the many forms of
the celebrated Sobolev inequality

(1.5) ‖f‖2n/(n−2) ≤ a E(f, f) + b ‖f‖22
for n > 2, see [6], [25]. Up to constants, these inequalities are all equivalent to the
ultracontractive bound

(1.6) ‖Ptf‖∞ ≤ C t−n/2 ‖f‖1, 0 < t ≤ 1

on the Markov semigroup associated to the Dirichlet form E , hence to uniform
bounds on the kernel density of the semigroup Pt with respect to the reference
measure. See [9], [12], [14], [15] and [26] among many articles on this topic.

The Nash inequalities (1.4) do not give the optimal constant C in (1.6). The
optimal contractive bounds ‖Ptf‖q ≤ Cp,q,n(t)‖f‖p for the classical heat equa-
tion in R

n can be obtained from the Euclidean logarithmic Sobolev inequality
(see [2], [21]), but the Nash inequality is the easiest and the most intuitive way to
get ultracontractive bounds such as (1.6).

The inequalities (1.4) have been studied by F.-Y. Wang in [27] as part of a
more general family of inequalities, called super-Poincaré inequalities, of the form

(1.7) ‖f‖22 ≤ a E(f, f) + b(a)‖f‖21
for a > a0, where b is a non-negative function. Optimising in (1.7) over the
parameter a leads to

‖f‖22
‖f‖21

≤ ψ
(E(f, f)

‖f‖21
)

where ψ(x) = inf
a
{ax+ b(a)} is an increasing concave function, or equivalently

(1.8) φ
( ‖f‖22
‖f‖21

)
≤ E(f, f)

‖f‖21
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for an increasing convex function φ. Following the argument leading to (1.2), this
implies the ultracontractive bound

(1.9) ‖Ptf‖∞ ≤ U−1(t)‖f‖1,
for all t > 0, where U(t) =

∫∞
t

1/φ(x)dx is well defined under adequate assump-
tions on φ (see [14]).

The generalized Nash inequalities (1.7) are also a powerful tool to obtain spec-
tral properties of the generator defining the Dirichlet form (see [27]); in particular
they imply that its essential spectrum is empty. When the reference measure
has finite mass, they also provide additional information about fields of concen-
tration, asymptotic behavior and isoperimetry of the measure, as in [8]. They
belong to a large family of functional inequalities such as the logarithmic Sobolev
and the Poincaré inequalities, and have been studied in many recent papers such
as [22], [30].

This article is devoted to a more general situation in which the semigroup is not
ultracontractive, so that one cannot expect uniform bounds on its kernel density,
as in (1.3). For instance, the Ornstein–Uhlenbeck semigroup on R

n (which is
probably the most studied semigroup on R

n, besides the classical heat semigroup)
is not ultracontractive; in fact, according to a famous result of E. Nelson, it is only
hypercontractive (see [1], for example). Observe that, according to the celebrated
theorem of L. Gross [17], the corresponding hypercontractive bounds are equivalent
to a logarithmic Sobolev inequality for the Gaussian measure (which is weaker than
the Sobolev inequality (1.5)). Of course the Ornstein–Uhlenbeck kernel is explicit,
so it is useless to estimate it, but, for many other examples, pointwise estimates on
the kernels are an interesting and not so easy issue. There is a very large literature
on this problem, see [15] and the references therein.

Non-uniform estimates on the density of the heat kernel can provide useful
information on the semigroup. For example, let us consider a symmetric semi-
group (Pt)t≥0 which can be represented by a density pt(x, y) with respect to an
invariant measure μ, that is, such that

Ptf(x) =

∫
E

f(y) pt(x, y) dμ(y)

for all x and t > 0. Then the operator Pt is in the trace class and therefore has a
discrete spectrum as soon as pt(x, x) ∈ L1(μ); moreover, estimates on the spectrum
can be obtained as detailed below.

In the general situation when the kernel density might not be uniformly bounded,
the classical Nash inequality (1.1) is not adapted, and the main idea in this article
is to use the generalized Nash inequality (1.8), modified with a weight depending
on the expected estimate. Depending on the generator of the heat kernel and
the reference measure considered in the Lp norms, we shall look for a positive
function V and an increasing and convex function φ such that

(1.10) φ
( ‖f‖22
‖fV ‖21

)
≤ E(f, f)

‖fV ‖21
for all f . Such an inequality will be called a weighted Nash inequality.
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We shall look for weight functions V satisfying the subharmonic condition
LV ≤ cV where L is the infinitesimal generator of the semigroup; this assumption
is very close to (but easier to satisfy) the condition on Lyapunov functions recently
used by the first author, F. Barthe, P. Cattiaux and A. Guillin in [3] and [5] to
prove functional inequalities such as the Poincaré and super-Poincaré inequalities.
Here is a key difference between our approach and theirs: the Lyapunov functions
used in the present work appear explicitly in the functional inequalities themselves,
whereas in the works mentioned above they are only a tool to get the sought after
functional inequalities, but they do not explicitly appear in the final estimates;
they are used like a catalyst to derive them. We will prove that the weighted Nash
inequality (1.10) and the subharmonic condition on the weight function V imply
the non-uniform estimate

pt(x, y) ≤ K(t, φ, c)V (x)V (y)

of the heat kernel, for a positive function K.

After completing this work, we learned from F.-Y. Wang that he made a similar
study under weighted super-Poincaré inequalities, in the framework of “intrinsic
ultracontractivity”: in particular our Theorem 3.5 and the converse Theorem 3.9
are strongly related to Theorem 3.3 in [28] (see also [31]). However, to have a
complete and simple picture, we shall state and prove them in our context.

2. Framework and outline of the work

This work is devoted to properties of symmetric Markov semigroups (Pt)t≥0. On
a given measure space (E, E , μ), a symmetric Markov semigroup is a family of
positivity preserving operators acting on bounded measurable functions, which
preserve constant functions, and are moreover symmetric in L2(μ). In the main
application of Section 5, the measure μ will be a probability measure, but it may
also be a measure with infinite mass. The operators Pt are contractions in L1(μ)
and L∞(μ), so are contractions in any Lp(μ) with 1 ≤ p ≤ ∞. The semigroup
property consists in the identity Pt◦Ps = Pt+s for any s and t in R+, together with
a continuity assumption at t = 0, for example here that for any f ∈ L2(μ), Ptf
converges to f in L2(μ) when t converges to 0. We shall assume that, for all t, Pt

has a kernel, which is the case when E is a Polish space.

Symmetric Markov semigroups appear naturally as the laws of Markov pro-
cesses (Xt)t≥0 on E which are reversible in time: for example, in the case when μ
is a probability measure, this means that for any T > 0, the law of the process
(Xt, 0 ≤ t ≤ T ), where the law of X0 is μ, is the same as the law of the process
(XT−t, 0 ≤ t ≤ T ).

They also appear naturally when solving a heat equation

∂tu = Lu, u(x, 0) = f(x)

onE×[0,∞); here L is a (unbounded) self-adjoint operator satisfying the maximum
principle and L1 = 0, for example a second order differential sub-elliptic operator
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with no 0-order term on an open set on R
n or a manifold; in this case, and under

mild hypotheses, the solution may be represented as

u(x, t) = Ptf(x).

By the Hille–Yosida theory, the operator Pt has a derivative L at t = 0 which
is defined in a domain dense in L2(μ). Moreover Pt = exp(tL) and L is self-adjoint
since Pt is symmetric, see [32] for instance. Also Pt is a contraction in L2(μ), so
that the spectrum of L lies in (−∞, 0].

Under our assumptions, for all t > 0 the operator Pt is represented by a kernel
density pt(x, y) with respect to the reference measure μ, in the sense that there
exists a non-negative symmetric function pt on E × E such that

Ptf(x) =

∫
E

f(y) pt(x, y) dμ(y)

for μ almost every x in E. Then the semigroup property Pt ◦ Ps = Pt+s may be
translated into the celebrated Chapman–Kolmogorov equation

∫
E

pt(x, y) ps(y, z) dμ(y) = pt+s(x, z)

for μ⊗ μ almost every (x, z) in E × E.

Moreover, as soon as the kernel density pt(x, y) is in L2(μ⊗μ), the operator Pt

is Hilbert–Schmidt on L2(μ) (see [19] for instance). In particular Pt has a dis-
crete spectrum (μn(t))n∈N associated to a sequence of orthonormal eigenfunctions
(en)n∈N in L2(μ). In this case,

pt(x, y) =
∑
n

μn(t) en(x) en(y)

and the series converges since

(2.1)
∑
n

μn(t)
2 =

∫
E×E

pt(x, y)
2dμ(x) dμ(y) < +∞.

Moreover, ∫
E×E

pt(x, y)
2dμ(x) dμ(y) =

∫
E

p2t(x, x) dμ(x)

so that P2t is in the trace class. Of course such estimates can be established only
for t > 0.

Since Pt = exp(tL), this just shows that L itself has a discrete spectrum
(−λn)n∈N, with λn ≥ 0 and λ0 = 0, such that μn(t) = e−λnt. We see from
the estimate (2.1) how control of pt(x, x) or pt(x, y) may lead to control of the
spectrum (μn(t))n∈N of Pt, hence of the spectrum (λn)n∈N of L.

In general, as explained above, it is not easy to show the existence of the
density pt(x, y) or to obtain such control on it. The classical situation in which Pt



884 D. Bakry, F. Bolley, I. Gentil and P. Maheux

is Hilbert–Schmidt is when μ has finite mass and pt is bounded. For example,
under the Nash inequality (1.1) or (1.8), then according to the ultracontractive
bound (1.9) the operator Pt is bounded from L1(μ) into L∞(μ) with norm Ct.
In this case Pt may be represented by a kernel density pt which is μ ⊗ μ almost
surely bounded by the same constant Ct under a mild assumption on (E, E , μ)
(for instance if E is generated by a countable family, up to zero measure sets,
see Lemma 4.3 in [2]). Spaces (E, E , μ) for which this holds will be called nice
measure spaces. They include Polish spaces on which Markov semigroups can be
represented by a kernel.

This work is devoted to the case of non-ultracontractive semigroups, that is, of
not necessarily bounded kernel densities. We shall replace the Nash inequality by
the weighted Nash inequality (1.10) with a weight V such that LV ≤ cV to obtain
the existence of a density pt which satisfies

(2.2) pt(x, y) ≤ K(t, φ, c)V (x)V (y).

See Proposition 3.1, Theorem 3.5 and Corollary 3.7.

In Section 4 we give a simple illustration of this method, see Theorem 4.1.
There we deduce the following universal bound on R

n from the classical Nash
inequality (1.1): if the invariant measure μ, not necessarily finite, has a positive
density ρ, then

||f ||2+ 4
n

2 ≤ Cn ||fV || 4
n
1

(
E(f, f) +

∫
Rn

LV

V
f2 dμ

)
,

where V = ρ−1/2. This leads to a weighted Nash inequality if moreover LV ≤ cV ,
whence to bounds such as (2.2).

A case study of symmetric semigroups on R consists in the Sturm–Liouville
operators: given a probability measure μ with smooth and positive density ρ with
respect to the Lebesgue measure, the Sturm–Liouville operator

Lf = f ′′ + log(ρ)′f ′

defined on smooth functions leads to a symmetric Markov semigroup in L2(μ).
Depending on ρ, this family shows all possible behaviours. The main example
studied in this article concerns the probability measures

dμa(x) = ρa(x)dx = Cae
−|x|adx

on R and their associated Markov semigroup (Pt)t≥0; here a > 0 and Ca is a
normalization constant.

If a > 2, the semigroup is ultracontractive and the density with respect to
the measure μa is uniformly bounded (see [18] for the proof, among more general
examples). In the limiting Gaussian case, when a = 2, the semigroup is the well
known Ornstein–Uhlenbeck semigroup (up to normalization), which is not ultra-
contractive but only hypercontractive. This means that, for t > 0, Pt maps L2(μa)



Weighted Nash inequalities 885

into some Lq(t)(μa), where 2 < q(t) <∞: this is Nelson’s Theorem. Observe that
in this case one knows explicitly the density pt(x, y) and the spectrum λn = n,
and that Pt is Hilbert–Schmidt.

If 1 < a < 2, the semigroup Pt is not hypercontractive since the measure μa

does not satisfy a logarithmic Sobolev inequality. In fact, as shown in [7], Pt with
t > 0 satisfies Orlicz hypercontractivity: it maps L2(μa) into a Orlicz space slightly
smaller than L2(μa). This functional regularity does not yield any explicit upper
bound on the kernel density pt.

As a simple illustration of our general method, we shall prove that, for all
real β, there exists θ > 0 such that the density pt(x, y) satisfies the explicit upper
bound

pt(x, y) ≤ C(a, β)
ect

tθ
ρ
−1/2
a (x)ρ

−1/2
a (y)

(1 + |x|2)β(1 + |y|2)β .

For β > 1/2, this estimate is in L2(μa), so that the operator Pt is Hilbert–Schmidt.
To our knowledge, this is a new result. In the other limiting case, when a = 1,
such an estimate cannot hold anymore. Indeed, the spectrum of −L has not only
a discrete part but lies in {0} ∪ (λ0,∞), with λ0 > 0 (see [29]). Let us note that
studying the measures μa for a ∈ (1, 2) is currently an active area in functional
analysis. These measures represent a large class of log-concave measures: they are
not log-concave enough to satisfy a logarithmic Sobolev inequality, but some of
their properties, such as, for instance, concentration, are similar to those of the
standard Gaussian measure. See, for example, [7], [8], [16], and [20].

The method used here to obtain the weighted Nash inequalities on the real
line will be quite close to the method introduced by B. Muckenhoupt in [23] and
generalized later by S. Bobkov and F. Götze in [11] to characterize measures which
satisfy Poincaré or logarithmic Sobolev inequalities on the real line. We shall not
try here to get the same kind of if and only if results, since there are too many
parameters to control (the weight function V , the rate function Φ, and so on).

We shall also not try to extend our results to the most general setting, for
example Riemannian manifolds, as this would require a more precise analysis of
the Laplacian of the distance function, and therefore lower bounds on the Ricci
curvature. Instead we prefer to concentrate on some key one-dimensional models to
show the ease and the efficiency of the methods presented here. Moreover, as it is
typical when using Lyapunov functions, the constants obtained in these estimates
are far from optimal, and that is why we only focus on the overall behavior of the
estimates but do not try to get the best constants.

The plan of the article is the following. In the next section we explain the
abstract result: how a weighted Nash inequality coupled to a Lyapunov function
implies a non-uniform estimate of the kernel density. In Section 4 we prove a
universal weighted Nash inequality. In Section 5 we finally apply the method of
Section 3 to the measures μa defined above for a ∈ (1, 2).

Notation. In the whole article, ‖ · ‖p stands for the Lp norm with respect to the
measure μ. The measure μ could change, depending on the context, but it should
be always clear.
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3. The abstract result

In this section we present a simple method to obtain the existence of and explicit
and non-uniform bounds on Markov semigroup kernel densities.

In the classical ultracontractive case the upper bound on the kernel density q2

of Q ◦Q follows from

‖Qf‖2 ≤ ‖f‖1 ⇐⇒ ‖Q ◦Qf‖∞ ≤ ‖f‖1 ⇐⇒ |q2(x, y)| ≤ 1.

We extend this property to non-uniform estimates.

Proposition 3.1. Let (E, E , μ) be a nice measure space, Q a symmetric bounded
operator on L2(μ) and V a positive measurable function on E. Then the two
following assertions are equivalent:

(i) The operator Q satisfies

‖Qf‖2 ≤ ‖fV ‖1
for all f ∈ L2(μ).

(ii) The operator Q2 = Q◦Q may be represented by a kernel density q2(x, y) with
respect to μ which satisfies

|q2(x, y)| ≤ V (x)V (y)

for μ⊗ μ almost every (x, y) in E × E.

If moreover the function V is in L2(μ), then Q is Hilbert–Schmidt, and therefore
has a discrete spectrum (μn)n∈N such that

∑
n

μ2
n ≤

∫
V 2dμ.

Proof. Let us assume (i) and let us consider the operator Q1 = 1
V QV , that is,

defined by

Q1f =
1

V
Q(fV ).

By hypothesis, Q1 is a contraction from L1(ν) into L2(ν) where dν = V 2dμ.
Moreover, it is symmetric with respect to the measure ν, since Q also is with
respect to μ. So, by duality, it is also a contraction from L2(ν) into L∞(ν), and
by composition the operator Q2

1 = Q1◦Q1 is a contraction from L1(ν) into L∞(ν).
This implies that Q2

1 may be represented by a kernel density q21(x, y) in the
space L2(ν) which satisfies |q21(x, y)| ≤ 1 for ν ⊗ ν almost every (x, y) in E × E
(see Lemme 4.3 in [2], for instance). On the other hand,

q21(x, y)V (x)V (y) = q2(x, y)

for μ⊗ μ every (x, y), noting that V is positive. This implies (ii).



Weighted Nash inequalities 887

Conversely, if f ∈ L2(μ), then, by symmetry of Q,

‖Qf‖22 =
∫
fQ2fdμ =

∫
q2(x, y) f(x) f(y) d(μ⊗ μ)(x, y) ≤

(∫
|f |V dμ

)2

,

which proves (i).

If now V ∈ L2(μ), then the kernel q2(x, x) is integrable on E with respect to μ,
which just means that Q is Hilbert–Schmidt. �

Example 3.1. The first explicit example is the classical Ornstein–Uhlenbeck semi-
group in R

n, with generator L = Δ− x · ∇. In a probabilistic form, it is given by
the Mehler formula

Ptf(x) = E
(
f(e−tx+

√
1− e−2tY )

)
,

where Y is a standard Gaussian variable with law γ. It admits a kernel density
with respect to the Gaussian measure, given by

pt(x, y) = (1− e−2t)−n/2 exp
(
− 1

2(1− e−2t)

(|y|2e−2t − 2 x · ye−t + |x|2e−2t
))

for all x, y ∈ R
n and t > 0. In particular,

p2t(x, y) ≤ p2t(x, x)
1/2p2t(y, y)

1/2(3.1)

= (1− e−4t)−n/2 exp
( |x|2
1 + e2t

)
exp

( |y|2
1 + e2t

)

by the Cauchy–Schwarz inequality, with equality if x = y. Hence, by Proposi-
tion 3.1,

‖Ptf‖L2(dγ) ≤ ‖fVt‖L1(dγ)

where

Vt(y) = (1− e−4t)−n/4 exp
( |y|2
2(1 + e2t)

)
.

This bound has been obtained in a more general context in [4], where it is shown
to be optimal, being an equality for square-exponential functions f .

Proposition 3.1 leads us to prove bounds such as (i).

When the operator Q is a Markov semigroup Pt with a kernel pt, evaluated at
time t, then one may obtain such bounds through functional inequalities that we
describe here. We shall mainly be concerned with the case when μ is a probability
measure, although much of what follows could be extended to the case where μ
has infinite mass.

Let (Pt)t≥0 be a symmetric Markov semigroup on E with generator L and
associated Dirichlet form

Eμ(f, f) = −
∫
fLfdμ.

This quadratic form can be defined on a larger subspace than the domain of L,
which is called the domain of the Dirichlet form.
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Bounds such as ‖Ptf‖2 ≤ K(t)‖fV ‖1 will be obtained by means of weighted
Nash inequalities and Lyapunov functions, that we now define.

Definition 3.2. Let V be a positive function on E, let M be a non-negative
real number and let φ be a positive function defined on (M,∞) with φ(x)/x non
decreasing.

The Dirichlet form Eμ satisfies a weighted Nash inequality with weight V and
rate function φ if

(3.2) φ
( ‖f‖22
‖fV ‖21

)
≤ Eμ(f, f)

‖fV ‖21
for all functions f in the domain of the Dirichlet form such that

‖f‖22 > M ‖fV ‖21.

As recalled in the introduction, the two fundamental examples are the classical
Nash inequality (1.1) for the Lebesgue measure, with

φ(x) = Cx1+2/n and M = 0,

(M > bn/2 for the generalized inequality (1.4)), and those (1.8) given by super-
Poincaré inequalities, with φ the inverse of infa {ax+ b(a)} and M = 0. They
all have weights V = 1, and in the following we shall be concerned with Nash
inequalities with a general positive weight V.

Definition 3.3. A Lyapunov function is a positive function V on E in the domain
of the generator L such that

(3.3) LV ≤ cV

for a real constant c, called the Lyapunov constant.

It is not really necessary for V to be in the L2-domain of L, but for simplicity
we restrict to this situation, which will be the situation in our examples below.

Remark 3.4. In our context, the Lyapunov constant c will be non-negative. Nega-
tive Lyapunov constants can also be considered, but by adding an extra term. For
instance, in [3] and [5], the authors consider Lyapunov functions V such that

LV ≤ −γV + 1K

where γ > 0, V ≥ 1 and K is a compact set. These Lyapunov functions are a
powerful tool for obtaining rates on the long time behavior of the Markov semi-
group, for example, through obtaining Poincaré or more generally weak Poincaré
inequalities.

As mentioned in the introduction, Lyapunov functions defined as in our Defi-
nition 3.3 with c ≥ 0 are introduced to obtain smoothing properties of the Markov
semigroup for a fixed time t > 0.

When μ has finite mass, one can also observe that the restriction V ≥ 0 in (3.3)
could be replaced by V ≥ 1 when c ≥ 0, since one may always change V into V +1.
This will be the case in the main application given in Section 5.
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Then, one has the following.

Theorem 3.5 (Wang). Let (Pt)t≥0 be a Markov semigroup on E with generator L
symmetric in L2(μ).

Assume that there exists a Lyapunov function V in L2(μ) with Lyapunov con-
stant c ≥ 0, and that the Dirichlet form associated to L satisfies a weighted Nash
inequality with weight V and rate function φ on (M,+∞) such that

(3.4)

∫ ∞ 1

φ(x)
dx <∞.

Then
‖Ptf‖2 ≤ K(2t) ect‖fV ‖1

for all t > 0 and all functions f ∈ L2(μ). Here, the function K is defined by

K(x) =

{ √
U−1(x) if 0 < x < U(M),√
M if x ≥ U(M)

where U denotes the (decreasing) function defined on (M,+∞) by

U(x) =

∫ ∞

x

1

φ(u)
du.

We state and prove it in our context to show that our method is simple and
self contained.

Here the measure μ need not be a probability measure and may have infinite
mass and, in the case when U(M) = +∞, then K is just defined by the first line.

Observe also that if M = 0 then we can take any real parameter c, as one can
see from the proof.

Remark 3.6. As mentioned in Remark 3.4, we are not mainly concerned with the
long time behaviour of the Markov semigroup, though in some cases a weighted
Nash inequality may reveal adapted. For instance, in the case when c = 0,M = 0
and U(M) = 0, then Theorem 3.5 ensures that Ptf converges to 0 in L2(μ) for all
f ∈ L2(μ) with finite ‖fV ‖1. Observe that in this case μ has necessarily infinite
mass. If μ is a probability measure, then we expect Ptf to converge to

∫
fdμ,

which is a priori nonzero, so the rate K(2t)ect cannot converge to 0.
On the contrary, weighted Nash inequalities are adapted to get estimates on

the small time behavior: Theorem 3.5 gives a bound on ‖Ptf‖2 for t > 0 which
depends on f only in terms of a weighted L1 norm, which is an illustration of the
gain of integrability induced by the semigroup. Observe that the coefficient K(2t)
tends to +∞ as t goes to 0.

By Proposition 3.1 this leads to the following bounds on the kernels:

Corollary 3.7. If the Markov semigroup (Pt)t≥0 satisfies the assumptions of The-
orem 3.5 above, then Pt has a density pt with respect to μ which satisfies

p2t(x, y) ≤ K(2t)2e2ctV (x)V (y),

for all t > 0 and μ⊗ μ almost every (x, y) ∈ E × E.
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Moreover, Pt is Hilbert–Schmidt for all t > 0, and therefore has a discrete
spectrum (μn(t))n∈N such that

∑
n

μn(t)
2 ≤ K(2t)2e2ct

∫
V 2dμ.

Proof of Theorem 3.5. Let f in L2(μ) be given. With no loss of generality we can
assume that f > 0 by writing the argument for |f |+ ε, and letting ε go to 0 and
using the bound |Ptf | ≤ Pt|f |.

First notice that the map G(t) =
∫
V Ptfdμ has derivative

G′(t) =
∫
V LPtfdμ =

∫
LV Ptfdμ ≤ cG(t),

so that

(3.5)

∫
V Ptfdμ ≤ ect

∫
V fdμ.

Then, given 0 ≤ t ≤ T fixed, consider the function

R(s) =
‖Psf‖22(

ect
∫
fV dμ

)2
on [0, t]. Then

(3.6)
−R′(s)

2
=

Eμ(Psf, Psf)(
ect

∫
fV dμ

)2 =
Eμ(Psf, Psf)(∫
PsfV dμ

)2
( ∫

PsfV dμ

ect
∫
fV dμ

)2

.

In particularR is decreasing. Moreover, if there exists s∈ [0, t] such thatR(s) ≤M ,
then R(t) ≤ R(s) ≤ M , which yields the result. Hence we now assume that
R(s) ≥M on [0, t]. Then, by (3.5),

‖Psf‖22(∫
PsfV dμ

)2 =
‖Psf‖22(

ect
∫
fV dμ

)2
(
ect

∫
fV dμ

)2
(∫
PsfV dμ

)2 = R(s)e2c(t−s)

(
ecs

∫
fV dμ

)2
(∫
PsfV dμ

)2 ≥M

for c ≥ 0.
Hence, by applying the weighted Nash inequality to Psf , (3.6) gives

−R′(s)
2

≥ φ

( ‖Psf‖22(∫
PsfV dμ

)2
)( ∫

PsfV dμ

ect
∫
fV dμ

)2

.

Moreover,

φ

( ‖Psf‖22(∫
PsfV dμ

)2
)

≥ φ

( ‖Psf‖22(
ect

∫
fV dμ

)2
)( ∫

PsfV dμ

ect
∫
fV dμ

)2
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from the inequality (3.5) and the fact that φ(x)/x is non decreasing, so that

−R′(s)
2

≥ φ(R(s)).

In turn this may be seen as

U(R(s))′ ≥ 2

which integrates to

U(R(t)) ≥ U(R(0)) + 2t ≥ 2t.

Since U−1 is defined on (0, U(M)] and is decreasing, we obtain the upper bound

R(t) ≤ U−1(2t)

for all t ≤ U(M)/2. For t ≥ U(M)/2, we have R(t) ≤ M . Combining all these
estimates gives the result. �

Remark 3.8. In the main application of the weighted Nash inequality given in
Section 5, the weight function V is in L2(μ). However, formally one does not
need V to be in L2(μ) to get the result. This restriction is made here not only in
view of Proposition 3.1. It is also made to ensure the integration by parts formula

∫
LPsfV dμ =

∫
PsfLV dμ ,

which leads to (3.5), and automatically holds when V is in L2(μ) and in the domain
of L. For those V which increase too rapidly at infinity, this may be false in general;
it requires a more precise analysis of the semigroup (Pt)t≥0 and restricting to a
large subclass of functions in L2(μ).

Here are two fundamental examples in the two cases when μ has finite or infinite
mass:

• The Lebesgue measure on R
n satisfies the classical Nash inequality (1.1),

hence a weighted Nash inequality with weight V = 1 and rate function φ(x) =
Cx1+2/n, for instance on the set (0,+∞). Then, by Theorem 3.5 applied with
V = 1 and c = 0, one recovers the well known contraction property of the
classical heat kernel on R

n,

‖Ptf‖2 ≤
(C
t

)n/4

‖f‖1,

for all t > 0 and for the non-optimal constant C = n/4 instead of 1/(8π)
(see [21], for instance). In this case, we only have to consider functions
f ∈ L1(μ) and in the domain of the Dirichlet form

∫ |∇f |2dμ. The main
tool to get optimal bounds in Lp(μ) for any p ≥ 1 for the classical heat
kernel on R

n is the Euclidean logarithmic Sobolev inequality, as explained
for instance in [2] or [21].
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• The second example concerns the Sturm–Liouville operator Lf = f ′′ +
(log ρ)′f ′ on R, associated with the measure dμ = ρ(x)dx. Here it would be
enough to know that (log ρ)′′ is bounded from above and that V ρ′ and V ′ρ go
to 0 at infinity. Indeed, in this situation, it is enough for smooth functions f
and g that f ′gρ and fg′ρ go to 0 at infinity to ensure, through integration
by parts, that ∫

Lfgdμ = −
∫
f ′g′dμ =

∫
fLgdμ.

When (log ρ)′′ is bounded from above, the semigroup satisfies a CD(a,∞)
inequality. Hence, when f is bounded, then so is (Ptf)

′ when t > 0 (see Re-
mark 5.4.2 in [1]). Hence in this case we may work with the space of bounded
functions to get the result.

Examples will be studied in Sections 4 and 5.

Theorem 3.5 has the following converse:

Theorem 3.9. Let μ be a measure on E and let (Pt)t≥0 be a Markov semigroup
on E with generator L symmetric in L2(μ).

If there exists a positive function V and a positive function K defined on (0,∞)
such that

‖Ptf‖2 ≤ K(t)‖fV ‖1
for all t > 0, then the weighted Nash inequality (3.2) holds with the same func-
tion V , M = 0 and the function

φ(x) = sup
t>0

x

2t
log

x

K(t)2
, x ≥ 0.

Here, again, μ need not be a probability measure.

Remark 3.10. For instance, by Theorem 3.5, if we assume a Nash inequality with
φ(x) = Cxr for large x, with r > 1, then we obtain a bound such as ‖Ptf‖2 ≤
K(t)‖fV ‖1 with K(t) = C′t1/2(1−r) for small t.

Conversely, if we assume such a bound with such a K, then, by the converse
Theorem 3.9, we obtain a Nash inequality with function φ(x) = C′′xr for large x.
Therefore, in this case and up to the values of the constants, we have a true
quantitative equivalence between the Nash inequality and the bound on ‖Ptf‖2.

Proof of Theorem 3.9. It is based on the observation that the function

t �→ log(‖Ptf‖22)

is convex for any symmetric semigroup. Indeed, if h(t) = ‖Ptf‖2, then h′(t) =
2
∫
PtfL(Ptf)dμ and h′′(t) = 4

∫
(LPtf)

2dμ; hence h′2 ≤ hh′′, or equivalently
(log h)′′ ≥ 0.

Therefore,

log h(u)− log h(0) ≤ u

t

[
log h(t)− log h(0)

]
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for all 0 < u ≤ t, so that

(3.7) h′(0) ≤ h(0)

t
log

h(t)

h(0)

by letting u go to 0.

Now, if moreover
h(t) ≤ K(t)2‖fV ‖21,

then (3.7) gives

−2
E(f, f)
‖fV ‖21

≤ ‖f‖22
‖fV ‖21

1

t
log

(K(t)2‖fV ‖21
‖f‖22

)
.

This gives the claimed weighted Nash inequality. �

4. A universal weighted Nash inequality on R
n

Let ρ be a positive smooth function on R
n. We prove a weighted Nash inequality

for the operator Lf = Δf + ∇ log ρ · ∇f with the universal weight V = ρ−1/2

and the measure dμ(x) = ρ(x) dx. As usual, ‖ · ‖p stands for the Lp(μ) norm and
(Pt)t≥0 is the semigroup with generator L.

Theorem 4.1. In the above notation, the classical Nash inequality (1.1) is equiv-
alent to

(4.1) ||f ||2+ 4
n

2 ≤ C
4
n
n ||fV || 4

n
1

(
E(f, f) +

∫
Rn

LV

V
f2 dμ

)

for all smooth functions f on R
n with compact support. If moreover LV ≤ cV

for c ∈ R, then

||f ||2+ 4
n

2 ≤ C
4
n
n ||f V || 4

n
1

(
E(f, f) + c

∫
Rn

f2 dμ
)

Proof. Let g be a smooth function with compact support and let f = g
√
ρ. Then

∫
Rn

|f |2 dx = ||g||22,∫
Rn

|f | dx =

∫
Rn

|g|√ρ dx = ||gV ||1,

and ∫
Rn

|∇f |2 dx =

∫
Rn

|∇g|2 dμ+

∫
Rn

2
g

V
∇g · ∇ 1

V
dx+

∫
Rn

g2
∣∣∣∇( 1

V

)∣∣∣2 dx.
By integration by part, the middle term is
∫
Rn

∇(g2) ·
( 1

V
∇ 1

V

)
dx = −

∫
Rn

g2∇
( 1

V
∇ 1

V

)
dx =

∫
Rn

g2
(ΔV
V

− 3
|∇V |2
V 2

)
dμ,
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so that ∫
Rn

|∇f |2 dx =

∫
Rn

|∇g|2 dμ+

∫
Rn

g2
(ΔV
V

− 2
|∇V |2
V 2

)
dμ.

Moreover
LV

V
=

1

V
(ΔV − 2∇ logV · ∇V ) =

ΔV

V
− 2

|∇V |2
V 2

,

so ∫
Rn

|∇f |2 dx = E(g, g) +
∫
Rn

LV

V
g2 dμ.

Hence the classical Nash inequality (1.1) for f is equivalent to (4.1) for g, which
concludes the proof. �

This type of transformation has been made by F.-Y. Wang in [28] at the level
of the super-Poincaré inequality (1.7). From this, the author estimates the kernel
densities of semigroups with infinite invariant measures. Using Theorem 4.1 we
now give estimates in the case of invariant probability measures.

Corollary 4.2. With the above notation, assume that μ is a probability measure
and that V ∈ L1(μ) satisfies LV ∈ L1(μ) and LV ≤ cV with c ≥ 0. Assume
moreover that the Hessian of log ρ is uniformly bounded from above on R

n and
that

sup
|x|=r

ρ(x)1/2 rn−1 → 0 and sup
|x|=r

|∇ρ(x)|ρ−1/2 rn−1 → 0

as r tends to infinity. Then Pt has a density pt which satisfies

(4.2) p2t(x, y) ≤ d

tn/2
e2ct V (x)V (y)

for some d > 0 and for all x, y ∈ R
n, t > 0.

Proof. We cannot apply Theorem 3.5 directly since V = ρ−1/2 is never in L2(μ).
The argument is exactly the same, but we have to justify the inequality G′(t) ≤
cG(t) where G(t) =

∫
V Ptf dμ for any smooth function f with compact support.

First of all G′(t) =
∫
V LPtf dμ since V ∈ L1(μ) and Lf is bounded.

Then we prove the integration by parts

∫
Rn

V LPtf dμ =

∫
Rn

LV Ptf dμ.

Let r > 0, let Br be the centered ball of Rn with radius r and let �v be its outward
unit normal vector. Then, by two integrations by parts on Br,∫

Br

V LPtfdμ =

∫
Br

LV Ptfdμ−
∫
Sn−1

Ptf(rω)∇V (rω) · �v ρ(rω)rn−1 dω

+

∫
Sn−1

V (rω)∇Ptf(rω) · �v ρ(rω)rn−1 dω.
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However,the Hessian of log ρ is uniformly bounded from above on R
n, say by

the real number λ, so L satisfies a CD(−λ,∞) curvature-dimension criterion. In
particular (see [2] for instance), this implies the uniform bound

|∇Ptf | ≤ eλt Pt|∇f | ≤ eλt ‖∇f‖∞.
Then our assumptions on ρ ensure that the last two terms tend to 0 as r tends to
infinity, which justifies the integration by parts. �

Remark 4.3. The key point here is that V = ρ−1/2 is never in L2(μ), so this does
not resolve whether Pt is Hilbert–Schmidt or not.

We illustrate Corollary 4.2 on the examples of measures of Cauchy and exponen-
tial type. We have in mind the measure exp(−|x|a)dx in R

n, but for convenience
we will study exp(−(1 + |x|2)a/2)dx instead of exp(−|x|a)dx, as it has the same
behavior at infinity and has no singularity at x = 0.

Corollary 4.4. Let ρ(x)= (1 + |x|2)−β with β > n or ρ(x)=exp(−(1 + |x|2)a/2)
with a > 0. Then there exists a constant C such that for all t > 0 and x, y ∈ R

n

the kernel density pt satisfies

pt(x, y) ≤ C

tn/2
eCtρ−1/2(x) ρ−1/2(y).

In the next section we shall improve the bound on the kernel density in the
case of the measure with density ρ(x) = exp(−(1 + |x|2)a/2) with a > 1. For that
purpose we shall use a Lyapunov function V which will be now in L2(μ).

5. The measures on R between exponential and Gaussian

In this section we shall prove that the weighted Nash inequality (3.2) holds with
power functions φ and L2 weights V for the semigroups on R with the invariant
measure exp(−|x|a)dx. Again for convenience we will study exp(−(1 + x2)a/2)dx
instead of exp(−|x|a)dx.

For the analysis made here, it would make no difference if one were to work
on R

n, except for the values of the involved constants. We shall let

T (x) = (1 + x2)1/2,

and for a > 0 define the probability measure

dμa = Cae
−Ta

dx,

where Ca is the normalizing constant.
We are dealing with the Sturm–Liouville operator

Lf = f ′′ − aT a−1T ′f ′,

which is symmetric (and even self adjoint) with respect to the probability mea-
sure μa.
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We let ρa denote the density function of the measure μa with respect to the
Lebesgue measure, that is

ρa = exp(−T a).

In this case, f is in the domain of the Dirichlet form as soon as f ′ ∈ L2(μa) and

Eμa(f, f) =

∫
f ′2dμa = −

∫
fLfdμa.

We shall not pay too much attention to the values of the constants, which may
be far from optimal.

Lemma 5.1. For all a > 0 and β ∈ R the function

(5.1) V = ρ−1/2
a T−β = exp

(T a

2

)
T−β

is a Lyapunov function; moreover V ∈ L2(μa) as soon as β > 1/2.

Proof. First observe that V is positive, and that it is a Lyapunov function with
constant c if and only if

L(logV ) + (logV )′2 ≤ c.

However, with T = T (x),

L(logV ) + (logV )′2

=
a

2
(a− 1)T a−2 T ′2 − a2

4
T 2a−2 T ′2 + β(β + 1)

T ′2

T 2
+
a

2
T a−1 T ′′ − β

T ′′

T

=
a

4
T a−4

(
2(a− 1)x2 − a T a x2 + 2

)
+ β(β + 1)x2 T−4 − β T−4

since T ′(x) = xT (x)−1 and T ′′ = T (x)−3. Now for all a > 0 the bracket is non-
negative at infinity and for all β the last two terms go to 0, so the continuous map
L(logV ) + (logV )′2 is bounded from above on R. �

The first basic result is the following:

Lemma 5.2. For all a ≥ 1 and β > 0 there exists a constant C = C(a, β) such
that, for all smooth and compactly supported functions f such that f(0) = 0,

i)

∫
f2dμa ≤ C Eμa(f, f),

ii)

∫
f2dμa ≤ C Eμa(f, f)

γ
( ∫

|f |V dμa

)2(1−γ)

where V is the weight given by (5.1) and γ = 1− 2
a− 1

3(a− 1) + 2β
∈ (

1
3 , 1

]
.
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Proof. We shall let C denote diverse constants depending only on a in the proof
of (i), and only on a and β in the proof of (ii).

For x > 0 we let q(x) =
∫∞
x dμa(y). The argument will be based on the

following classical estimate (see for instance Corollaire 6.4.2 in [1]):

(5.2) q(x) ≤ C
ρa(x)

T (x)a−1
.

To prove (i), and for f satisfying f(0) = 0, we write∫ ∞

0

f2dμa = 2

∫ ∫ x

t=0

f(t)f ′(t)dμa(x)dt = 2

∫ ∞

0

f(t)f ′(t)q(t)dt.

However, by (5.2), we have the upper bound q(t) ≤ Cρa(t) since a, T ≥ 1, so that∫ ∞

0

f2dμa ≤ C ‖f‖2 Eμa(f, f)
1/2

by the Cauchy–Schwarz inequality. A similar result holds for the integral on
(−∞, 0], which gives (i).

Let us now prove (ii) for a > 1, since for a = 1 it amounts to (i). Without loss
of generality, we assume that f is non-negative. Then∫ ∞

0

f2dμa =

∫ ∞

0

f21{
f

‖f‖ 2
≤V Z−1/2

}dμa +

∫ ∞

0

f21{
f

‖f‖ 2
>V Z−1/2

}dμa

where Z is a positive constant to be chosen later on. The first term is bounded
from above by ‖f‖2Z−1/2

∫
fV dμa. Then we write the second one as

(5.3)

∫ ∞

0

f2 1{
f

‖f‖2 >V Z−1/2
}dμa

= 2

∫ ∞

0

f(t) f ′(t) [
∫ ∞

t

1{
f(x)
‖f‖2 >V (x)Z−1/2

}dμa(x)] dt

by writing f2(x) = 2
∫ x

0 f(t)f
′(t)dt. We bound the inner integral in the following

two ways.
On the one hand, by (5.2),

(5.4)

∫ ∞

t

1{
f(x)
‖f‖2 >V (x)Z−1/2

}dμa(x) ≤
∫ ∞

t

dμa(x) = q(t) ≤ Cρa(t)T (t)
1−a

On the other hand the map y �→ ey/2y−β is decreasing on (0, 2β] and then
increasing, and T ≥ 1. Hence, V is increasing on (0,+∞) if 2β ≤ 1, and it is

decreasing on (0,
√
4β2 − 1] and then increasing otherwise. In any case, there

exists C such that V (x) ≥ CV (t) for all x ≥ t > 0. Hence,∫ ∞

t

1{
f(x)
‖f‖2 >V (x)Z−1/2

}dμa(x) ≤
∫ ∞

t

1{
f(x)
‖f‖2 >CV (t)Z−1/2

}dμa(x)

≤ Z

C2 V 2(t)
=

Z

C2
ρa(t)T (t)

2β(5.5)

by the Markov inequality.
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Therefore,

∫ ∞

t

1{
f(x)
‖f‖2 >V (x)Z−1/2

}dμa(x) ≤ Cρa(t) min
{
T (t)1−a, T 2β(t)Z

}
.

Now, since a+2β− 1 > 0 and T is increasing, for any Z ∈ (0, 1] there exists t0
such that T (t0)

a+2β−1 = 1/Z, that is, T (t0)
1−a = T (t0)

2βZ. We split the integral
in (5.3) into two parts, according to wether t ≥ t0 or not, and obtain

∫ ∞

0

f2 1{
f

‖f‖2 >V Z−1/2
}dμa ≤ CZ

∫ t0

0

|ff ′|T 2β dμa + C

∫ ∞

t0

|ff ′|T 1−a dμa

≤ CZT 2β(t0)

∫ t0

0

|ff ′| dμa + CT 1−a(t0)

∫ ∞

t0

|ff ′| dμa

since β > 0 and 1− a < 0. Moreover ZT 2β(t0) = T (t0)
1−a, so

∫ ∞

0

f21{
f

‖f‖2 >V Z−1/2
}dμa ≤ CT (t0)

1−a‖f‖2Eμa(f, f)
1/2

by the Cauchy–Schwarz inequality.

In the end we have obtained the bound

‖f‖2 ≤ C
(
Z−1/2

∫
fV dμa + Z

1−a
1−a−2β Eμa(f, f)

1/2
)

for all 0 < Z ≤ 1.

If
∫
fV dμa ≤ Eμa(f, f)

1/2, we choose

Z =

( ∫
fV dμa

Eμa(f, f)
1/2

) 2(1−a−2β)
3(1−a)−2β

∈ (0, 1]

to get the inequality

∫ ∞

0

f2dμa ≤ CEμa(f, f)
γ
(∫

fV dμa

)2(1−γ)

,

where γ = (a− 1 + 2β)/(3(a− 1) + 2β). The same estimate holds on (−∞, 0],
which gives (ii).

If now Eμa(f, f)
1/2 ≤ ∫

fV dμa, then, by (i),

∫
f2dμa ≤ C Eμa(f, f) = C Eμa(f, f)

γEμa(f, f)
1−γ

≤ C Eμa(f, f)
γ
( ∫

fV dμa

)2(1−γ)

for all 0 ≤ γ ≤ 1, which gives (ii). �
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Remark 5.3. The first inequality of Lemma 5.2 is only based on the tail estimate
q(t) ≤ Cρa(t), so holds for all measures dμ = ρ dx such that q(x) ≤ Cρ(x), where
q(x) = μ([x,+∞)). In particular such probability measures μ satisfy a spectral gap
inequality

‖f‖22 ≤
(∫

fdμ
)2

+ CEμ(f, f)
by applying (i) to f − f(0), since

Varμ(f) :=

∫
f2dμ−

( ∫
fdμ

)2

≤
∫
(f − c)2dμ

for all constants c, and in particular for c = f(0).
In fact the probability measure μa is log-concave on R and, according to the

Bobkov Theorem (see [10]), all log-concave measures on R
n satisfy a Poincaré

inequality. Note that a proof of this result is given in [3] by using the Lyapunov
function W = eγT

a

for a γ > 0.

Remark 5.4. The condition a ≥ 1 is crucial in this proof of Lemma 5.2. The sec-
ond inequality is obtained for all β > 0. For β ≤ 0 we may use the bound (5.5) with
T (t)2β≤1, but not the bound (5.4); then we choose Z=(

∫
fV dμaEμa(f, f)

−1/2)2/3

to obtain (ii) with γ = 1/3. Observe that the best bound is obtained for β = 0,
for which we have the following general bound.

Remark 5.5. Let μ be a probability measure on R, with a density ρ(x) increasing
on (−∞, 0) and decreasing on (0,∞) and let V = ρ−1/2. Then

‖f‖2 ≤
(27
2

)1/3 (∫
|f |V dμ

)1/3

Eμ(f, f)1/3

for all smooth functions such that f(0) = 0. The proof follows the argument of
Lemma 5.2, by using the bound (5.5) but not (5.4). This gives a Nash inequality
with φ(x) = 2x3/2/27 on (0,+∞), so that 1/φ is integrable at infinity. However,
besides the restriction f(0) = 0 which will be removed below only for a > 3 (with
β = 0), it does not give an upper bound on the density, as in Corollary 3.7, since V
is not in L2(μ).

The restriction f(0) = 0 is removed by the following:

Lemma 5.6. Given the measure dμa = Ca exp(−T a)dx with a > 0 and the weight
function

V = exp(T a/2)T−β with β >
3− a

2
,

then there exist θ ∈ (0, 1) and constant C such that∫
|f − f(0)|V dμa ≤ C

[ ∫
|f |V dμa +

( ∫
|f |V dμa

)1−θ

Eμa(f, f)
θ/2

]

for all non-negative smooth compactly supported f on R.

Remark 5.7. For β > 3/2 then all θ ∈ (2/3, 1) are admissible.
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Proof. In the proof we shall let C denote diverse constants which depend only
on a, β and a parameter α to be introduced later. We start by writing

(5.6)

∫
|f − f(0)|V dμa ≤

∫
|f |V dμa + |f(0)|

∫
V dμa.

For convenience we let

U =

∫
|f |V dμ.

For any α > 0, and any x ∈ R, write

|fα(x)− fα(0)| = α
∣∣∣
∫ x

0

fα−1f ′dx
∣∣∣ ≤ C

∣∣∣
∫ x

0

|fV |α−1|f ′| 1

ρaV α−1
dμa

∣∣∣.
By the Hölder inequality, for any p, q, r > 1 such that 1/p+ 1/q + 1/r = 1, then

∣∣∣
∫
fghdμa

∣∣∣ ≤ ‖f‖p ‖g‖q ‖h‖r.

For q = 2, p = 1/(α− 1) and r = 2/(3− 2α) with α ∈ (1, 3/2) this gives

|fα(x) − fα(0)| ≤ C Uα−1Eμa(f, f)
1/2Kα(x),

where

K(x) =
∣∣∣
∫ x

0

ρa(t)
1−r

V (t)r(α−1)
dt
∣∣∣

1
rα

.

Then
|f(0)| ≤ |f(x)|+ |fα(0)− fα(x)|1/α

for all x, since α ≥ 1, so

|f(0)| ≤ C
[
|f(x)|+ U1−1/αEμa(f, f)

1/(2α)K(x)
]
,

and then

(5.7) |f(0)|
∫
V dμa ≤ C

(
U + U1−1/αEμa(f, f)

1/(2α)

∫
KV dμa

)
.

Let us prove that
∫
KV dμa is finite. By the definition (5.1) of V and Corol-

laire 6.4.2 in [1] for instance, one has

(5.8) K(x) =
∣∣∣
∫ x

0

e
Ta

2 ( 3
2 r−1)T βr(α−1)dt

∣∣∣
1
rα ≤ C exp

(T a(x)

2

)
T d(x),

with

d = β
(
1− 1

α

)
− a− 1

rα
.

In fact the two quantities in (5.8) are equivalent when |x| is large.
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Hence KV ρa ≤ CT d−β, so the integral
∫
KV dμa is convergent as soon as

d− β < −1, that is,

α < 1 +
1

a

(
β − 3− a

2

)
.

Hence, if β > (3 − a)/2, then any 1 < α < min
{
3
2 , 1 + 1

a

(
β − 3−a

2

)}
satisfies all

conditions, so that
∫
KV dμa <∞. Then

∫
|f − f(0)|V dμa ≤ C

[
U + U1−1/αEμa(f, f)

1/(2α)
]

by (5.6) and (5.7). This proves Lemma 5.6 with θ = 1/α. �

Remark 5.8. The argument is only based on the fact that the function

K(x) =
∣∣∣
∫ x

0

ρ1−r
a

V r(α−1)
dt
∣∣∣

1
rα

satisfies ∫
KρaV dx <∞.

In particular, in the limiting case when β = 0 and V (x) = ρ
−1/2
a , this amounts to

∫ ∞

0

[ ∫ x

0

ρa(t)
−α/(3−2α)dt

](3−2α)/2α

ρ1/2a (x)dx <∞,

that is, a > 3
3−2α (see again Corollaire 6.4.2 in [1] for instance). In turn this holds

for an α ∈ (1, 3/2) if and only if a > 3.

Remark 5.9. The two fundamental lemmas are based on the two estimates (5.2)
and (5.8). These estimates are basic when proving that a probability measure on R

satisfies a Poincaré or a logarithmic Sobolev inequalities, as explained in Section 6.4
of [1].

Collecting lemmas 5.2 and 5.6, we get the following main result:

Theorem 5.10. On R, let us consider the measure

dμa(x) = Ca exp(−T a)dx

with T (x) = (1 + |x|2)1/2, and the weight function

V = exp
(T a

2

)
T−β

with a > 1 and β ∈ R. Then there exist C and λ ∈ (0, 1) such that

(5.9) ‖f‖22 ≤ C

[(∫
|f |V dμa

)2

+
( ∫

|f |V dμa

)2(1−λ)

Eμa(f, f)
λ

]

for all functions f .
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Proof. The space of smooth functions with compact support is dense in the do-
main of L, so it is enough to consider the case when f is smooth and compactly
supported. Also, without loss of generality, we may assume that f is non-negative.
Here again C will denote diverse constants depending on the parameters a and β
and a parameter θ to be introduced later.

One has,

‖f‖22 ≤
(∫

fdμa

)2

+

∫
|f − f(0)|2dμa.

The weight V is bounded from below by a positive constant, so

(5.10) ‖f‖22 ≤ C
(∫

fV dμa

)2

+

∫
|f − f(0)|2dμa.

Let now U =
∫
fV dμa and U0 =

∫ |f − f(0)|V dμa and assume β > 0. By
Lemma 5.2, applied to the function f − f(0), one has

(5.11)

∫
|f − f(0)|2dμa ≤ C Eμa(f, f)

γU
2(1−γ)
0 ,

where

γ = 1− 2
a− 1

3(a− 1) + 2β
.

If, moreover, β > (3− a)/2, by Lemma 5.6 there exists θ ∈ (0, 1) such that

U0 ≤ C
[
U + U1−θEμa(f, f)

θ/2
]
,

so that∫
|f − f(0)|2dμa ≤ C Eμa(f, f)

γ
[
U2(1−γ) + U2(1−θ)(1−γ)Eμa(f, f)

θ(1−γ)
]

by (5.11). Hence, by (5.10),

‖f‖22 ≤ C U2

[
1 +

(Eμa(f, f)

U2

)γ

+
(Eμa(f, f)

U2

)γ+θ(1−γ)
]

≤ C
(
U2 + Eμa(f, f)

λU
2(1−λ)

)

if λ = γ + θ(1 − γ) ∈ (0, 1). This concludes the argument for β > max(0, 3−a
2 ).

Then, since V is decreasing in β, then (5.9) holds for all real β. �

Remark 5.11. We are restricted to a > 1, since for a = 1 then only λ = 1 is
admissible; this gives an inequality useless for our purpose, which is even weaker
than the Poincaré inequality.

According to Lemma 5.6 and Remark 5.7 the larger β is, the smaller the
weight V is, and the larger the exponent λ of the Dirichlet form has to be in (5.9);
on the contrary, the smaller β is (> 3/2), the smaller we can take the exponent λ.
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We can now illustrate the abstract method of Section 3 by obtaining the follow-
ing pointwise bounds on the Markov semigroup associated to L, which give new
information on this semigroup for small time:

Corollary 5.12. Let a > 1 and let (Pt)t≥0 be the Markov generator on R with
generator

Lf = f ′′ − aT a−1T ′f ′,

and reversible measure dμa(x) = ρa(x)dx = Ca exp(−(1 + |x|2)a/2)dx.
Then for all real β there exists δ > 0 and a constant C such that, for all t, Pt

has a density pt with respect to the measure μa, which satisfies

pt(x, y) ≤ CeCt

tδ
ρ
−1/2
a (x) ρ

−1/2
a (y)

(1 + |x|2)β/2(1 + |y|2)β/2

for almost every x, y ∈ R.
Moreover, the spectrum of −L is discrete and its eigenvalues (λn)n∈N satisfy

the inequality ∑
n

e−λnt ≤ CeCt

tδ

for all t > 0.

Proof. Letting C and λ ∈ (0, 1) be defined as in Theorem 5.10, by the inequal-
ity (5.9) the Dirichlet form Eμa satisfies a weighted Nash inequality with weight
V = exp(T a/2)T−β and rate function

φ(x) = C−1/λ(x − C)1/λ

on (C,+∞). Moreover the weight V is a Lyapunov function with constant c > 0
by Lemma 5.1, it is in L2(μa) if β > 1/2 and hypothesis (3.4) of Theorem 3.5 holds
since λ < 1. Hence, by Corollary 3.7 and for diverse constants C = C(a, β, λ), for
all t > 0 the operator P2t has a density p2t with respect to μa, which satisfies

p2t(x, y) ≤ C(1 + t
−2λ
1−λ )e2ct

ρ
−1/2
a (x) ρ

−1/2
a (y)

(1 + |x|2)β/2(1 + |y|2)β/2

≤ Ct
−2λ
1−λ e2ct

ρ
−1/2
a (x) ρ

−1/2
a (y)

(1 + |x|2)β/2(1 + |y|2)β/2 .

This proves the first statement for β > 1/2, with δ = 2λ/(1− λ) > 0, and then for
any β.

The second statement on the trace of Pt is obtained by taking any β > 1/2 in
the upper bound on pt(x, x) and integrating. �

For β > 1/2, the non-uniform bound implies that Pt is Hilbert–Schmidt but
we do not recover the Orlicz hypercontractivity result of [7]. This is not surprising
since in fact no bound such as K(t)V (x)V (y) can imply hypercontractivity or more
generally Orlicz hypercontractivity.
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Remark 5.13. The same method, with V = 1, leads to a (non-weighted) Nash
inequality for μa with a > 1 and with rate function

φ(x) = C x (log x)2(1−1/a)

on an interval (M,∞). By Theorem 3.5 this implies that the semigroup is ul-
tracontractive as soon as 1/φ is integrable at infinity, that is, for a > 2, hence
recovering a partial result of [18].

Remark 5.14. Observe in Corollary 5.12 that there is no optimal β, that is, no
optimal bound on pt(x, x) of the form C(t)ρ(x)−1/2T (x)−β . So one could look
for an optimal bound on pt(x, x) such as C(t) ρ−λ(x) for a λ ∈ (0, 1/2). This is
not the case in the Gaussian case when a = 2. In this case the optimal bound is
C(t) exp

(|x|2/(1 + e2t)
)
, hence of the form C(t) ρ(x)−λ(t) with λ(t) < 1/2; it is

even an equality, see (3.1).
Also for 1 < a < 2 it seems that pt(x, x) cannot be bounded by C(t)ρ−λ(x) for

λ < 1/2. Indeed, for the weight V = exp(λT a) with λ < 1/2, our method leads to
a weighted Nash inequality with rate function

φ(x) = C(a, λ)x (log x)2(1−1/a)

on an interval (M,∞), where λ appears only in the value of the constant C(a, λ).
Apart from the values of the constants, this is not better than the inequality
obtained in Remark 5.13 with V = 1, and again this is not enough to obtain any
bound on the density pt(x, y), by the lack of integrability of 1/φ. Now we do not
know whether a bound such as C(t) ρ(x)−λ(t) with λ(t) < 1/2 could be optimal,
but we strongly doubt it.

Again from this point of view the Gaussian case appears as a particular case,
being a critical case as regards the two points of view of ultracontractivity and
non-uniform bounds. In this case, and in this case only, one may do better, and
Gaussian Nash inequalities are under study in a work in progress.

Acknowledgements. We would like to thank F.-Y. Wang for pointing out his
work [28] to us, and the referee for pointing out reference [31].
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