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An elliptic variational problem involving level
surface area on Riemannian manifolds

Eduardo V. Teixeira and Lei Zhang

Abstract. We study a variational problem involving a Dirichlet integral
and the area of a level surface on arbitrary n-dimensional Riemannian
manifolds. We prove optimal regularity results for minimizers and derive
a jump condition along the level surface. We also obtain smoothness of
the interface up to a small singular set of Hausdorff dimension less then
or equal to n− 8.

1. Introduction

Let (M, g) be an n-dimensional, smooth, complete Riemannian manifold, and let D
be a bounded subset of M with smooth boundary. Suppose h is a given smooth
function on ∂D. We denote by H1

h the set of H1 functions on D whose trace
on ∂D is h. In this article we consider the variational free boundary problem of
minimizing

(1.1) E(v) :=
∫
D

|∇gv|2dVg + Area of {v = 0} in D

over all functions v ∈ H1
h(D). The meaning of “Area of {v = 0} in D” will be

specified later.
One key feature of the functional E in (1.1) is the competition between the

Dirichlet energy and the area of the zero level surface. There are several moti-
vations for the study of this class of free boundary problems. For instance, this
problem can be obtained as the limit of a balanced scaling of the Landau–Ginzburg
functional (see for instance [2]). Also, the evolutionary version of this problem can
be used in the study of the motion of free surfaces governed by the mean curvature,
see [10], [3]. The analysis of the minimization problem (1.1) is also a starting point
for the study of optimal design problems with perimeter constraints modeled on
Riemannian manifolds.
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The Euclidean version of this problem has been studied by Athanasopoulos
et al. in [2]. It is proved in that article that the minimizer of E(v) exists. The
minimizing function u is Lipschitz continuous, with u+ and u− separated by its
0-level surface Γ, the reduced part of which (denoted by Γ∗) is analytic, and such
that Hs[Γ \ Γ∗] = 0 for each s > n − 8, where Hs represents the s dimensional
Hausdorff content. Besides, the following jump condition is satisfied on Γ∗:

|∇u+|2 − |∇u−|2 = (n− 1)κ(Γ∗),

where κ(Γ∗) is the mean curvature of Γ∗.
To explain the area of the level surface in (1.1) precisely, we recall that for

u ∈ L1(M), the variation of u is defined by

(1.2) |Du|(M) = sup
{∫

M

u divg ω dVg, ∀ω ∈ Γc(T
∗M), |ω| ≤ 1

}
,

where Γc(T
∗M) is the space of 1-forms with compact support on M , and |ω| is

the norm of ω (see [11]). A set Ω ⊂ M is called a set with finite perimeter if
|DχΩ| < ∞, where χΩ is the characteristic function on Ω. Recall that, in local
coordinates,

divgω =
1√

det(g)

∂

∂xj

(√
det(g)gij < ω,

∂

∂xi
>
)
.

We refer the reader to [11] for the definition and discussion of BV functions on
Riemannian manifolds.

We will say that a pair (v,Ω) is admissible if Ω is a set of finite perimeter in D,
i.e., Per(Ω, D) = Per(Ω) <∞, v ∈ H1(D), v − g ∈ H1

0 (D), and

v|Ω∩D ≥ 0, v|Ωc∩D ≤ 0, a.e.

The boundary of Ω is understood as its essential boundary ∂MΩ, as in [2]. Through-
out the paper we shall work on the following equivalent reformulation of pro-
blem (1.1):

E(v,Ω) :=

∫
D

|∇gv|2dVg + Per(Ω, D) → min,

where (v,Ω) is any admissible pair, and v ∈ H1
h(D).

Our main theorem, which can be seen as a precise analog of the theory develo-
ped in [2], reads as follows:

Theorem 1.1. There exists an admissible pair (u,Ω) that minimizes E. The
minimizer u is Lipschitz and the reduced part of the 0-level surface of u (denoted
by Γ∗) is smooth and satisfies Hs(Γ \ Γ∗) = 0 for each s > n− 8. Furthermore,

|∇gu
+|2 − |∇gu

−|2 = (n− 1)κ(Γ∗) on Γ∗ ,

where κ(Γ∗) denotes the mean curvature of Γ∗ in M .

The proof of Theorem 1.1 is inspired by the seminal work of Athanasopoulos
et al. [2]. There are two main tools used in [2]. One is the celebrated monotonicity
formula of Alt–Caffarelli–Friedman [4]. The other is a perturbation technique rela-
ted to minimality. We will show that these techniques can be adapted to the setting
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of Riemannian geometry. In particular, instead of using the original monotonic-
ity formula of Alt–Caffarelli–Friedman, we will use a variant of it, [15]. As far
as the perturbation technique is concerned, several methods will be employed to
handle the technical difficulties that come from the difference between a generic
Riemannian metric and the flat Euclidean one.

Acknowledgement. Part of the paper was finished when the second author was
visiting Universidade Federal do Ceará in March 2010, and Beijing International
Center for Mathematical Research in June 2010. He is very grateful to both insti-
tutes for the warm hospitality.

2. The proof of Theorem 1.1

As in the introduction, we say that a pair (v,Ω) is admissible if Ω is set of finite
perimeter in D, i.e., Per(Ω, D) = Per(Ω) <∞, v ∈ H1(D), v − h ∈ H1

0 (D), and

v|Ω∩D ≥ 0, v|Ωc∩D ≤ 0, a.e.

Recall that the boundary of Ω is understood as its essential boundary ∂MΩ.

Proposition 2.1. There exists a pair (u,Ω) that minimizes E.

Proof. Even with the different definitions, the proof is still the same as that of
Proposition 2.1 in [2]. Namely, let {(uk,Ωk)} be a minimizing sequence. Then, by
passing to a subsequence, there is a pair (u,Ω) such that

χ|Ωk
→ χ|Ω strongly in L1(D) and weakly in BV (D)

uk ⇀ u weakly in H1(D),

ukχ|Ωk∩D → uχ|Ω∩D a.e. in D,

ukχ|Ωc
k∩D → uχ|Ωc∩D a.e. in D.

Note that it is established in [11] that the mapping u → |Du|(M) is L1-lower
semi-continuous, and for each u ∈ BV (M), there exists (fj)

∞
j=1 ∈ C∞

c (M) such

that fj → u in L1(M) and

|Du|(M) = lim
j→∞

∫
M

|∇gfj|dVg .

Moreover (see [8]), for any bounded set Ω̃ with smooth boundary, the set of func-
tions uniformly bounded in BV norm is relatively compact in L1(Ω̃). �

In [2] there is a notion of harmonic replacement. We use essentially the same
notion: Consider a measurable subset K of D and a function f ∈ H1(D). If f = 0
a.e. in D \K, f is said to be supported in K. The following set S is closed and
convex in H1(D):

S = {f ∈ H1(D) | f is supported in K}.
For f ∈ S, its harmonic replacement is defined as:
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Definition 2.2. Let f ∈ S. The function f0 is the harmonic replacement of f
in D if

1) f0 ∈ S,

2) f0 − f ∈ H1
0 (D), and

3) f0 minimizes the Dirichlet integral
∫
D |∇gu|2dVg for u in S ∩ {f +H1

0 (D)}.
It is worthwhile to note that the definition of the harmonic replacement avoids

the assumption on the regularity of ∂K. The next lemma is similar to Lemma 2.3
in [2].

Lemma 2.3. The following holds:

1) f0 is unique.

2) If f is nonnegative, then f0 is nonnegative and subharmonic (Δgf0 ≤ 0). In
particular, f0 can be defined everywhere by solid averages. Also,

(2.1) Δg(f0)
2 = 2|∇gf0|2

in the sense of measures.

Here we use the following definition of Δg in local coordinates:

Δg =
1√

det(g)

∂

∂xi

(√
det(g)gij

∂

∂xj

)
.

The proof of Lemma 2.3 is similar to that of Lemma 2.3 in [2] and it is therefore
omitted.

An important tool is the following monotonicity formula proved in [15]. Let
B1(p) be a ball in (M, g), and let Rm be the curvature tensor. Suppose that
|Rm|+ |∇gRm| ≤ Λ on B1(p). Then,

Theorem A. Let n ≥ 2 and u1, u2 ∈ H1(B1(p)) be nonnegative functions that
satisfy

Δgui ≥ −1, in B1(p), i = 1, 2

in distributional sense. Suppose, in addition, that u1 · u2 = 0. Then u1, u2 ∈
H1

loc(B1(p)) and there exist C(n,Λ) and δ(n,Λ) such that for 0 < r < δ,

φ(r) ≤ C(n,Λ)

(
1 +

∫
Bδ(p)

|∇gu1|2
d(x, p)n−2

dVg +

∫
Bδ(p)

|∇gu2|2
d(x, p)n−2

dVg

)2

,

where

φ(r) =
1

r4

∫
Br(p)

|∇gu1|2
d(x, p)n−2

dVg

∫
Br(p)

|∇gu2|2
d(x, p)n−2

dVg .

Moreover,

(2.2) φ(r) ≤ c(n,Λ)(1 + ‖u1‖L∞(Br) + ‖u2‖L∞(Br))
4.

The following two estimates correspond to Lemmas 2.5 and 2.6 in [2].
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Lemma 2.4. Let f0 be the harmonic replacement of f ≥ 0 in D. Assume Bδ ⊂⊂ D
(with δ less than the injectivity radius at 0) and

0 = f2
0 (0) = lim

r→0

1

Vol(Br)

∫
Br

(f0)
2dVg.

There exists a positive constant C(n,Λ) such that

(2.3) sup
B(1−h)r

(f2
0 ) ≤

C

hn

∫
Br

|∇gf0|2
d(x, 0)n−2

dVg

for any 0 < h < 1 and 0 < r < δ.

Proof. First we claim that

(2.4) sup
B(1−h)r

(f0)
2 ≤ C

hnrn

∫
Br

(f0)
2dVg .

Let x0 ∈ B(1−h)r be such that f2
0 (x0) = supB(1−h)r

f2
0 . We use the following

Green’s function representation formula (see Theorem 4.17 in [5]):

f2
0 (x0) = −

∫
Bt

Gt(x0, q)Δg(f
2
0 ) dVg(q)−

∫
∂Bt

νi∇g,iqGt(x0, q)f
2
0 (q) ds(q)

for any (1 − h
2 )r ≤ t ≤ r. Here ν is the unit outwards oriented normal vector

and ds is the volume element on ∂Bt corresponding to the Riemannian metric i∗g
(i : ∂Bt → B̄t is the canonical imbedding). Gt is the Green’s function with respect
to the Dirichlet boundary condition.

|∇g,qGt(x0, q)| ≤ C(hr)n−1, ∀q ∈ Br \B(1−h
2 )r.

Since f2
0 is subharmonic, we have

sup
B(1−h)r

f2
0 ≤ C

(hr)n−1

∫
∂Bt

f2
0 (q) ds(q), ∀t ∈

((
1− h

2

)
r, r

)
.

For both sides of the above integrate t from (1−h)r to r. Then (2.4) is established.

Next we prove (2.3) using (2.4). We will divide our analysis in two cases.

Case 1: n ≥ 3.

Given δ1 ∈ (0, δ/2), we define ψ̂δ1 by{
Δgψ̂δ1 = 1

Volg(Bδ)
χBδ

− N
Vol(Bδ1

)χBδ1
, in Bδ

ψ̂δ1 = 0 on ∂Bδ.

where χBδ
is the characteristic function on Bδ, and χBδ1

is understood similarly.

With N chosen sufficiently large (independently of δ1), we can arrange ∂νg ψ̂δ1 < 0
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on ∂Bδ. This fact can be easily verified by the Green’s representation of ψ̂δ1 and
is therefore omitted. Similarly we define ψ̃δ1 by{

Δgψ̃δ1 = 1
Volg(Bδ)

χBδ
− 1

NVol(Bδ1
)χBδ1

, in Bδ

ψ̃δ1 = 0 on ∂Bδ.

For ψ̃δ1 we have ∂νg ψ̃δ1 > 0 on ∂Bδ. Therefore there exists a smooth function
βδ1 ∈ ( 1

N , N) such that ∂νgψδ1 = 0 on ∂Bδ where ψδ1 is defined by{
Δgψδ1 = 1

Volg(Bδ)
χBδ

− βδ1

Vol(Bδ1
)χBδ1

, in Bδ

ψδ1 = 0 on ∂Bδ.

From the definition of ψδ1 , we see that ψδ1 ∈ W 2,p
0 (Bδ) for any p > 1. Therefore,

(2.5)

∫
Bδ

f2
0Δgψδ1dVg =

1

Volg(Bδ)

∫
Bδ

f2
0dVg −

βδ1
Volg(Bδ1)

∫
Bδ1

f2
0 dVg.

The second term tends to 0 as δ1 → 0 (recall that βδ1 ∈ ( 1
N , N)). Finally, elemen-

tary estimation gives

(2.6) |ψδ1(x)| ≤ C|x|2−n, x ∈ Bδ

with C independent of δ1. Therefore∫
Bδ

|∇gf0|2ψδ1 dVg ≤ C

∫
Bδ

|∇gf0|2
d(x, 0)n−2

dVg

Lemma 2.4 is established for n ≥ 3.

Case 2: n = 2.

First, for r = δ (recall that δ depends on Λ only), we claim that there exists
C(Λ) > 0 such that

(2.7)
1

δ2

∫
Bδ

f2
0 dVg ≤ C(Λ)

∫
Bδ

|∇gf0|2dVg .

If no such C can be found, there exists a sequence fk ∈ H1(Bδ) such that

Δg(f
2
k ) = 2|∇gfk|2 weakly in Bδ,(2.8)

f2
k (0) := lim

δ1→0

1

Vol(Bδ1)

∫
Bδ1

f2
0 dVg = 0, and(2.9)

1

δ2

∫
Bδ

f2
k dVg > k

∫
Bδ

|∇gfk|2 dVg .(2.10)

Let

f̄k =
fk

(
∫
Bδ
f2
k dVg)

1
2

.
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Clearly

(2.11)

∫
Bδ

f̄ 2
k dVg = 1.

Diving both sides of (2.10) by
∫
Bδ
f2
kdVg, we have

1

δ2k
>

∫
Bδ

|∇g f̄k|2 dVg.

Consequently, along a subsequence f̄k converges weakly to a constant in H1(Bδ),
and then strongly to this constant in L2 norm. By (2.9) this constant is 0, a con-
tradiction to (2.11).

In general, for r < δ, we define

f1(y) = f0

(r
δ
y
)
, g̃ij(y) = gij

(r
δ
y
)
, |y| < δ.

Then f1 has the same properties as f0. In particular,

Δg̃f
2
1 (y) = 2|∇g̃f1(y)|2

in the weak sense. Thus the previous argument can be applied. Lemma 2.4 is
established in all cases. �

Lemma 2.5. Let f0 be as in Lemma 2.4. There exists a positive constant C(n,Λ)
such that, for 0 < r < 1

2δ,

(2.12)

∫
Br

|∇gf0|2
d(x, 0)n−2

dVg ≤ Cr−n

∫
B2r\Br

f2
0 dVg.

Proof. For n = 2, this is a standard argument using a cut-off function. Thus
we only prove the case n ≥ 3. The idea of the proof is similar to the proof of
Lemma 2.6 in [2]. We mainly address the difference. Let G satisfy{ −ΔgG(y) = δ0 in Bδ,

G(y) ≥ 1 in Bδ.

Standard estimates show that

(2.13) |DjG(y)| ≤ C|y|2−n−j, j = 0, 1, 2, y ∈ Bδ.

Now, for ε > 0 small, we define Gε(y) ∈ C2(Bδ) as

(2.14) Gε(y) =

⎧⎪⎪⎨
⎪⎪⎩

G(y), ε ≤ |y| ≤ δ,

|ΔgGε(y)| ≤ Cεn in Bε,

Gε ∈ C2(Bδ).

Note that the estimate of ΔgGε in Bε can be obtained using (2.13). For a nonneg-
ative L1 function φ, (2.14) implies

(2.15)

∫
Bδ

ΔgGεφdVg ≤ C(n,Λ)

εn

∫
Bε

φdVg.
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From (2.15) we see that if the average of ψ tends to 0 at 0 we have

(2.16) lim
ε→0

∫
Bδ

ΔgGεψ dVg = 0.

The remaining part of the proof is similar to that of Lemma 2.6 in [2]. We include
it for the reader’s convenience. Let φ ≡ 1 in Br, φ ≡ 0 in B2r \Br. For φ we have

Dφ = O
(1
r

)
, D2φ = O

( 1

r2

)
in B2r \Br.

Using the equation for f0 and integration by parts we have

2

∫
Bδ

φ|∇gf0|2Gε dVg =

∫
Bδ

Δg(φGε)f
2
0 dVg

=

∫
Bδ

(ΔgφGε + 2∇gφ∇gGε + φΔgGε)f
2
0 dVg.

The first two terms of the right hand side are less than

C

rn

∫
B2r\Br

f2
0 dVg.

The third term tends to 0 as ε→ 0, in consequence of (2.16) and f2
0 (0) = 0 (in the

sense of averages). Finally, by (2.13), (2.12) follows. Lemma 2.5 is established. �

3. Hölder continuity and uniform density

Let x0 be a point on the free boundary Γ and let us consider B(x0, δ), where
δ < min{injx0

, 1}. We also assume that B(x0, δ) ⊂ D. If (v,Ω) is an admissible
pair, we set

Ω+ = Ω ∩B(x0, δ), Ω− = B(x0, δ) \ Ω̄+, Γx0 = ∂Ω+ ∩B(x0, δ).

The new functional will be

E(v,Ω+) =

∫
B(x0,δ)

|∇gv|2dVg + Per(Ω+, B(x0, δ)).

Then the following proposition holds:

Proposition 3.1. Let (u,Ω+) be a minimizer in B(x0, δ). If u is bounded, then u

is C
1
2 Hölder continuous in B(x0, δ/2),

‖u‖
C

1
2 (B(x0,δ/2))

≤ C(n,Λ, ‖u‖L∞(B(x0,δ))),

and for each x ∈ Γx0 ∩B(x0, δ/2), if r ≤ δ/8,

|Br(x) ∩ Ω+
0 | ≥ c0(n,Λ)r

n.

Moreover, u± are harmonic in their positivity sets.
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The following proposition allows us to use the isoperimetric inequality on Rie-
mannian manifolds.

Proposition 3.2 (Croke’s inequality, [8]). Let M̃ be an arbitrary Riemannian
manifold. Given any o ∈ M̃ , ρ > 0, such that expo is defined on B(o, ρ), then for

r <
1

2
min

{
inf

x∈B(o,ρ)
injx, ρ

}

we have
Area of ∂Ω ≥ C(n)Vol(Ω)

n
n−1

for all Ω ⊂ B(o, r), which implies that

V (B(o, r)) ≥ C(n)rn ∀r < 1

2
min

{
inf

x∈B(o,ρ)
injx, ρ

}
.

Proof. The proof of Proposition 3.1 is similar to that of Theorem 3.1 in [2]. In the
proof of Theorem 3.1 in [2], the authors mainly use the monotonicity formula of
Alt–Caffarelli–Friedman, and Lemmas 2.5 and 2.6 in [2]. In the context of Rie-
mannian geometry, Theorem A plays the role of the monotonicity formula of Alt–
Caffarelli–Friedman, and Lemmas 2.4 and 2.5 are the analogues of Lemmas 2.5
and 2.6 in [2], respectively. Besides these main tools, Proposition 3.2 guarantees
that the isoperimetric inequality can be used as in R

n. Also, in the neighbor-
hood of x0 we can consider Δg as a uniformly elliptic operator in divergence form.
Therefore, Harnack and Poincaré inequalities ([9]) both hold. Finally it is also
possible to convert a minimizer of E in Br to one in B1 by rescaling: If (u,Ω)
is a minimizer of E in Br(p) for r < δ and p on the free boundary, take local
coordinates at p and let

ur(y) =
1√
r
u(ry), Ω+

r = {y ∣∣ ry = x, x ∈ Ω+}, g̃ij(y) = gij(ry).

Then (ur,Ω
+
r ) is a minimizer of

∫
B1

|∇g̃v|2dVg̃ + Perg̃(Ω
+
r , B1). With these prop-

erties, Proposition 3.1 can be proved in a similar manner as Theorem 3.1 in [2],
and we will omit the details. �

4. Lipschitz continuity

The main idea of the proof of Lipschitz continuity is the same as in [2], therefore
we mainly address the differences.

Let p0 ∈ Γ and let B(p0, δ0) be a small neighborhood of p0. For ε > 0 small,
we consider the function

w = (u− ε)+

and the maximum of the function wφ
d(x) in B(p0, δ0/2). Here φ ≥ 0 is a smooth

function which is equal to 1 in B(p0, δ0/4), and equal to 0 outside B(p0, δ0/2).
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Such a function can be chosen so that it also satisfies

(4.1)
|∇φ(x)|2
φ(x)

≤ C where φ(x) �= 0.

Note that the constant C in (4.1) does not change as x tends to the boundary of
the support of φ because φ is a variant of the following function:

γ(x) =

{
0 |x| ≥ 1

Ce1/(|x|
2−1) |x| < 1.

Let M be the maximum of wφ(x)
d(x) on B(p0, δ0/2) and suppose that M is attained

at p1, that is

Md(p1) = w(p1)φ(p1) and Md(x) ≥ w(x)φ(x), x ∈ B(p0, δ0).

We use d0 to denote the distance from p1 to the free boundary and the correspond-
ing point on Γ will be labeled q1. Take local coordinates at p1 (denote p1 as 0)
and assume that q1 = expp1

(−d0e1). In the neighborhood of the origin we have

Md(x) ≥ Md0 + w(x)φ(x) − w(0)φ(0)

= Md0 +

n∑
i=1

∂i(wφ)(0)x
i +Q(x) +O(|x|3)

or

(4.2) d(x) ≥ d0 +

n∑
i=1

∂i(wφ)(0)x
i

M +
Q(x)

M +O
( |x|3
M

)
,

where Q satisfies ΔQ = Δ(wφ)(0). Since

w(x)φ(x)

M ≤ d(x) ≤ |x− y1|, y1 = −d0e1,

and these three functions “punch” at the origin, we have

∂i(wφ)(0) = 0, i = 2, . . . , n, and ∂11Q ≤ 0.

At 0, M is attained, therefore

(4.3) M∂id(0) = φ(0)∂iw(0) + w(0)∂iφ(0), i = 1, . . . , n.

For Q we have

n∑
i=1

∂iiQ(0) = φ(0)
∑
i

∂iiw(0) + 2
∑
i

∂iw(0)∂iφ(0) + w(0)
∑
i

∂iiφ(0).

From Δgw = 0, using the expression of Δg we have Δgw(0) =
∑

i ∂iiw(0). There-
fore

n∑
i=1

∂iiQ(0) = 2
∑
i

∂iw(0)∂iφ(0) + w(0)
∑
i

∂iiφ(0).
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Thus (4.3) yields

∑
i

∂iw(0)∂iφ(0) =
M∑

i ∂id(0)∂iφ(0)

φ(0)
− w(0)

∑
i(∂iφ(0))

2

φ(0)
.

For w and φ we have

w(0) =
Md0
φ(0)

, |Diφ(0)| ≤ C (i = 1, 2),
|∇φ(0)|2
φ(0)

≤ C.

Using the above information about ∂iiQ, we have

ΔQ(0) ≥ −CM
φ(0)

.

If we put Q̄(x′) = Q(0, x′), then near the origin

Δx′Q̄(x′) ≥ −CM
φ(0)

because ∂11Q ≤ 0. Since ∇(wφ)(0) is parallel to e1, from (4.2) we have

(4.4) d(x) ≥ d0 +
Q̄(x′)
M +O

( |x′|3
M

)
.

on x1 = 0 and near the origin.
Now we give an estimate of ∂νgu

+(−d0e1), where νg is the inner normal unit
vector to ∂B(0, d0) at −d0e1. Note that u > 0 on B(0, d0). First, by the Harnack
inequality we have

u(x) > C(n,Λ)Md0/φ(0), x ∈ B(0, d0/2).

Next we shall define a harmonic function H on the ring B(0, d0) \B(0, d0/2) such
that

H = 0 on ∂B(0, d0) and H = C
Md0
φ(0)

< u on ∂B(0, d0/2).

For H we claim

(4.5) ∂νgH(−d0e1) > CM/φ(0).

This is a simple fact following from scaling and the Hopf Lemma. Let g̃ij(y) =
gij(d0y) be the rescaled metric and let f satisfy Δg̃f = 0 in B(0, 1) \B(0, 12 ), with
f = 1 on ∂B(0, 12 ) and f = 0 on ∂B1. By the Hopf Lemma, ∂νf(−e1) > ε0 > 0.
We then observe that

H(x) = C
Md0
φ(0)

f
( x
d0

)
.

So (4.5) holds and then

∂νgu(−d0e1) >
CM
φ(0)

.
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Next we recall that q1 is the closest point to p1 on the free boundary. Now
we consider local coordinates around q1 so that p1 = expq1(d0e1). Then, by (4.4),
near the origin the free boundary Γ is below the surface

x1 = ψ(x′) = − Q̄(x
′)

M + C
( |x′|3

M
)
.

Near the origin, according to the estimate on the directional derivative at 0, we
have

(4.6) u+(x) ≥ CM
φ(p1)

x1 + ◦(|x|).

As a consequence of (4.6),

J+
r =

∫
B(0,r)

|∇gu
+|2

|x|n−2
dVg ≥

( CM
φ(p1)

)2

r2.

Then the monotonicity formula in Theorem A yields

J−
r =

∫
B(0,r)

|∇gu
−|2

|x|n−2
dVg ≤

(φ(p1)
CM

)2

r2.

Using Lemma 2.4 we have

(4.7) sup
B(y,r)

(u−) ≤ C
φ(p1)

M r, |y| < r/2.

The remaining part of the proof of the Lipschitz continuity of u is almost exactly
like the perturbation argument in [2]. The main reason that the difference between
the Riemannian manifold and R

n does not cause major difficulty from this point on
is that the perturbation argument is performed in a very small neighborhood of q1.
The size of the neighborhood can be arbitrarily small (independent of M), and
therefore all the error terms that come from the difference between (M, g) and R

n

are easily controlled. Two differences in the notations should be mentioned. First,
when we consider the Laplacian of the distance function to an (n− 1)-dimensional
sub-manifold, we have that Δgd equals (n − 1) times the mean curvature of the
manifold when the point tends to the submanifold (Lemma 10.4 and equation (10.5)
of [12]). Another important fact is that the Divergence Theorem holds for sets of
finite perimeter under the definition in [11]. We omit the proof of this part. The
Lipschitz continuity of u is established.

5. Higher regularity of the free boundary and the jump con-
dition

5.1. C1,12 regularity of the free boundary

The results of this section are similar to what is stated in [2], i.e., the reduced

part of Γ is C1, 12 and the set of singular points has zero s-dimensional Hausdorff
measure for any s > n − 8. The proof is a modification of the one in [2], and
the main idea is to “reduce it to the Euclidean case”. Let x0 ∈ Γ and restrict the
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discussion to B(x0, δ) for δ > 0 small. Let A ∈ B(x0, δ) and select Ω1 such that
ΩΔΩ1 ⊂⊂ Br(x), x ∈ A, r small. Let ur be any perturbation of u inside B(x, r)
with the same Lipschitz constant L and such that (ur,Ω

+) is admissible. Then
E(u,Ω+) ≤ E(ur,Ω

+
1 ) yields

Per(Ω+, B(x, r)) ≤ Per(Ω+
1 , B(x, r)) + CL2rn.

Next we observe that Per(Ω+, B(x, r)) = O(rn−1) by the minimality of E(u,Ω+),
as Per(Ω+

1 , B(x, r)) can be chosen to be O(rn−1). If we consider the area of these
two quantities in the Euclidean metric (which we will denote by PerEuclid) we have

(5.1) PerEuclid(Ω
+, B(x, r)) ≤ PerEuclid(Ω

+
1 , B(x, r)) + Crn.

Indeed, using gij = δij + O(r2), (5.1) can be obtained easily. With (5.1) we can
define α(r) = Cr2 and the standard Almgren–Tamanini theory for almost minimal
boundaries can be applied (see Theorem 5.1 in [2]) to obtain the regularity result
mentioned at the beginning of this section.

5.2. Free boundary condition and higher regularity of the free boundary

We now derive the jump condition on Γ∗. Let p ∈ Γ∗ and let B(p, δ) be a small
neighborhood of p. Suppose Γ∗ is represented by x1 = f(x′) in local coordinates
at p such that f(0) = 0 and f ′(0) = 0. Let SQ be a quadratic surface touching Γ∗

from the Ω+ side. Using the same perturbation technique as in [2] we have

(5.2) |∇gu
+(0)|2 − |∇gu

−(0)|2 ≤ (n− 1)κ(SQ)(0) ,

where κ(SQ) is the mean curvature of SQ in the metric g. According to Defini-
tion 6.1 in [2], (5.2) means that Γ∗ is a weak sub-solution of

(5.3) |∇gu
+|2 − |∇gu

−|2 = (n− 1)κ(Γ∗).

Since the proof of Γ∗ being a super-solution of (5.3) is similar, we conclude
that (5.3) holds in the weak sense. Then the standard regularity estimate for vis-

cosity solutions of elliptic equations yields Γ∗ ∈ C2, 12 (see [2], [6]). Consequently,
further regularity estimates can be obtained on u+ and u− over Ω+ and Ω− respec-
tively. Then we can use a bootstrapping argument to obtain that Γ∗ is smooth.
Theorem 1.1 is established.
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