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On the vector-valued Littlewood–Paley–Rubio

de Francia inequality

Denis Potapov, Fedor Sukochev and Quanhua Xu

Abstract. The paper studies Banach spaces satisfying the Littlewood–
Paley–Rubio de Francia property LPRp, 2 ≤ p < ∞. The paper shows
that every Banach lattice whose 2-concavification is a UMD Banach lattice
has this property. The paper also shows that every space having LPRq

also has LPRp with q ≤ p < ∞.

1. Introduction

Let X be a Banach space and let Lp(R;X) be the Bochner space of p-integrable
X-valued functions on R. If X = C, we abbreviate Lp(R;X) = Lp(R), 1 ≤ p <∞.

For every f ∈ L1(R;X), f̂ stands for the Fourier transform. If I ⊆ R is an interval,
then SI is the Riesz projection adjusted to the interval I, i.e.,

SIf(t) =

∫
I

f̂(s) e2πist ds.

The following remarkable inequality was proved by J. L. Rubio de Francia in [9].
For every 2 ≤ p <∞, there is a constant cp such that for every collection of pair-
wise disjoint intervals (Ij)

∞
j=1, the following estimate holds:

(1.1)

∥∥∥∥(
∞∑
j=1

∣∣SIjf
∣∣2) 1

2

∥∥∥∥
Lp(R)

≤ cp ‖f‖Lp(R) , ∀ f ∈ Lp(R).

In this note, we shall discuss a version of the theorem above when functions take
values in a Banach space X . Let (εk)k≥1 be the system of Rademacher functions
on [0, 1]. The space Rad(X) is the closure in Lp([0, 1];X), 1 ≤ p < ∞, of all
X-valued functions of the form

g(ω) =

n∑
k=1

εk(ω)xk, xk ∈ X, n ≥ 1.
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The above definition is independent of 1 ≤ p < ∞. It follows from the
Khintchine–Kahane inequality (see [6]). In fact, the above fact is a consequence
of the so-called contraction principle. It states that, for every sequence of ele-
ments {xj}∞j=1 ⊆ X and sequence of complex numbers {αj}∞j=1 such that |αj | ≤ 1
for j ≥ 1, the following inequality holds:∥∥∥∥

∞∑
j=1

αj εj xj

∥∥∥∥
Lp(R,Rad(X))

≤ cp

∥∥∥∥
∞∑
j=1

εj xj

∥∥∥∥
Lp(R,Rad(X))

.

We shall employ this principle on numerous occasions in this paper.

Following [1], we shall call X a space with the LPRp property with 2 ≤ p <∞,
if there exists a constant c > 0 such that for any collection of pairwise disjoint
intervals {Ij}∞j=1 we have that

(1.2)

∥∥∥∥
∞∑
j=1

εjSIjf

∥∥∥∥
Lp(R;Rad(X))

≤ c ‖f‖Lp(R;X) , ∀ f ∈ Lp(R;X).

It was proved in [5] that every space with the LPRp property is necessarily UMD
and of type 2. It is an open problem whether the converse is true. It is also unknown
whether LPRp is independent of p. Note that Rubio de Francia’s inequality says
that C has the LPRp property for every 2 ≤ p <∞. By the Khintchine inequality
and the Fubini theorem we see that any Lp-space with 2 ≤ p < ∞ has the LPRp

property. Using interpolation, we deduce that a Lorentz space Lp,r has the LPRq

property for some indices p, r and q. However, until recently there were no non-
trivial examples of spaces with LPRp found.

If X is a Banach lattice, the estimate (1.2) admits a pleasant form, as in the
scalar case:

(1.3)

∥∥∥∥(
∞∑
j=1

|SIjf |2
) 1

2

∥∥∥∥
Lp(R;X)

≤ c ‖f‖Lp(R;X) , ∀ f ∈ Lp(R;X).

We shall show that if the 2-concavification X(2) of X is a UMD Banach lattice,
then (1.3) holds for all 2 < p <∞, so X is a space with the LPRp property. Recall
that X(2) is the lattice defined by the following quasi-norm

‖f‖X(2)
=

∥∥ |f | 12 ∥∥2
X
.

The space X(2) is a Banach lattice if and only if X is 2-convex, i.e.,

∥∥∥∥(
n∑

j=1

|fj|2
) 1

2

∥∥∥∥
X

≤
( n∑

j=1

‖fj‖2X
) 1

2

.

We refer to [6] for more information on Banach lattices.

We shall also show that if X is a Banach space (not necessarily a lattice) with
the LPRq property for some q, then X has the LPRp property for every p ≥ q.
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2. Dyadic decomposition

For every interval I ⊆ R, let 2I be the interval of double length and the same
centre as I. Let I = (Ij)

∞
j=1 be a collection of pairwise disjoint intervals. We

set 2I = (2Ij)
∞
j=1. The collection I is called well-distributed if there is a number d

such that each element of 2I intersects at most d other elements of 2I.
In this section, we fix a pairwise disjoint collection of intervals (Ij)

∞
j=1 and we

break each interval Ij , j ≥ 1, into a number of smaller dyadic subintervals such
that the new collection is well-distributed. This construction was employed in a
number of earlier papers.

We start with two elementary remarks on estimate (1.2) or (1.3). Firstly, it
suffices to consider a finite sequence (Ij)j of disjoint finite intervals. Secondly, by
dilation, we may assume |Ij | ≥ 4 for all j. Thus all sums on j and k in what follows
are finite. Fix j ≥ 1. Let Ij = (aj , bj ]. Let nj = max{n ∈ N : 2n+1 ≤ bj − aj +4}.
We first split Ij into two subintervals with equal lengths:

Iaj =
(
aj ,

aj + bj
2

]
and Ibj =

(aj + bj
2

, bj

]
.

Then we decompose Iaj and Ibj into relative dyadic subintervals as follows:

Iaj =

nj⋃
k=1

(aj,k, aj,k+1] and Ibj =

nj⋃
k=1

(bj,k+1, bj,k],

where

aj,k = aj − 2 + 2k, 1 ≤ k ≤ nj , and aj,nj+1 =
aj + bj

2
;

bj,k = bj + 2− 2k, 1 ≤ k ≤ nj, and bj,nj+1 =
aj + bj

2
.

Let

Iaj,k = (aj,k, aj,k+1], Ibj,k = (bj,k+1, bj,k]

for 1 ≤ k ≤ nj and let Iaj,k, I
b
j,k be the empty set for the other k’s. Also put

Ĩaj,nj
= (aj − 2+ 2nj , aj − 2+ 2nj+1] and Ĩbj,nj

= (bj + 2− 2nj+1, bj +2− 2nj ].

Lemma 2.1. A Banach space X has the LPRp property if there is a constant c > 0
such that

(2.1) max
u=a,b

∥∥∥∥
∞∑
j=1

εj

nj∑
k=1

ε′kSIu
j,k
f

∥∥∥∥
Lp(R;Rad2(X))

≤ c ‖f‖Lp(R;X) , ∀ f ∈ Lp(R;X),

where Rad2(X) = Rad(Rad′(X)) and Rad′(X) is the space with respect to another
copy of the Rademacher system (ε′k)k≥1.
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Observe that if (2.1) holds for every family of intervals (Ij)
∞
j=1, then X is

a UMD space. Indeed, (2.1) implies that∥∥SIu
j,k
f
∥∥
Lp(R,X)

≤ c ‖f‖Lp(R,X) , u = a, b, j ≥ 1, 1 ≤ k ≤ nj .

That is, by adjusting the choice of intervals, it implies that every projection SI is
bounded on Lp(R, X) and

sup
I⊆R

‖SI‖Lp(R,X) �→Lp(R,X) < +∞.

The latter is equivalent to the fact that X is UMD (see [3]).

Proof. Let f ∈ Lp(R;X). Then∥∥∥∥
∞∑
j=1

εjSIjf

∥∥∥∥
Lp(R;Rad(X))

≤
∥∥∥∥

∞∑
j=1

εjSIa
j
f

∥∥∥∥
Lp(R;Rad(X))

+

∥∥∥∥
∞∑
j=1

εjSIb
j
f

∥∥∥∥
Lp(R;Rad(X))

.

Using the subintervals Iaj,k and the contraction principle, we write

∥∥∥∥
∞∑
j=1

εjSIa
j
f

∥∥∥∥
Lp(R;Rad(X))

=

∥∥∥∥
∞∑
j=1

nj∑
k=1

εjSIa
j,k
f

∥∥∥∥
Lp(R;Rad(X))

∼
∥∥∥∥

∞∑
j=1

nj∑
k=1

εj exp(−2πiaj ·)SIa
j,k
f

∥∥∥∥
Lp(R;Rad(X))

.

Note that
exp(−2πiaj ·)SIa

j,k
f = SIa

j,k
−aj [exp(−2πiaj ·)f ]

and

Iaj,k − aj = (2k − 2, 2k+1 − 2], k < nj; Iaj,nj
− aj ⊆ (2nj − 2, 2nj+1 − 2].

Recall that X is a UMD space. Therefore, applying Bourgain’s Fourier multiplier
theorem (see [3]) to the function

∞∑
j=1

nj∑
k=1

εj exp(−2πiaj ·)SIa
j,k
f ∈ Lp(R; Rad(X))),

we obtain (the contraction principle being used in the last step)∥∥∥∥
∞∑
j=1

nj∑
k=1

εj exp(−2πiaj ·)SIa
j,k
f

∥∥∥∥
Lp(R;Rad(X))

∼
∥∥∥∥

∞∑
j=1

nj∑
k=1

εjε
′
k exp(−2πiaj ·)SIa

j,k
f

∥∥∥∥
Lp(R;Rad2(X))

∼
∥∥∥∥

∞∑
j=1

nj∑
k=1

εjε
′
kSIa

j,k
f

∥∥∥∥
Lp(R;Rad2(X))

.
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Similarly,

∥∥∥∥
∞∑
j=1

εjSIb
j
f

∥∥∥∥
Lp(R;RadX)

∼
∥∥∥∥

∞∑
j=1

nj∑
k=1

εjε
′
kSIb

j,k
f

∥∥∥∥
Lp(R;Rad2(X))

.

Combining the preceding estimates, we get

∥∥∥∥
∞∑
j=1

εjSIjf

∥∥∥∥
Lp(R;RadX)

≤ cp

[ ∥∥∥∥
∞∑
j=1

nj∑
k=1

εjε
′
kSIa

j,k
f

∥∥∥∥
Lp(R;Rad2(X))

+

∥∥∥∥
∞∑
j=1

nj∑
k=1

εjε
′
kSIb

j,k
f

∥∥∥∥
Lp(R;Rad2(X))

]
.

�

Let us observe that, if X is a UMD space, the argument in the proof above
shows that

∥∥∥∥
∞∑
j=1

εjSIjf

∥∥∥∥
Lp(R;RadX)

� max
u=a,b

∥∥∥∥
∞∑
j=1

εj

nj∑
k=1

ε′kSIu
j,k
f

∥∥∥∥
Lp(R;Rad2(X))

.

Moreover, the argument can be reversed to show the opposite estimate (see the
proof of (4.1) below). This observation is summarised in the following remark.

Remark 2.2. i) If X is a UMD space, then

∥∥∥∥
∞∑
j=1

εjSIjf

∥∥∥∥
Lp(R;RadX)

� max
u=a,b

∥∥∥∥
∞∑
j=1

εj

nj∑
k=1

ε′kSIu
j,k
f

∥∥∥∥
Lp(R;Rad2(X))

.

ii) If I = (Ij)j≥1 is a collection of pairwise disjoint intervals and, for u = a, b,

Iu =
(
Iuj,k

)
j≥1,1≤k≤nj

, then both collections Ia and Ib are well-distributed.

iii) If X is a Banach lattice then it has the α-property (see [7]). That is,

∥∥∥∥
∞∑

j,k=1

εjε
′
kxjk

∥∥∥∥
Rad2(X)

∼
∥∥∥∥

∞∑
j,k=1

εjkxjk

∥∥∥∥
Rad(X)

,

where (εjk) is an independent family of Rademacher functions.

iv) The above two observations imply that if X is a Banach lattice, then it has
the LPRp property if and only if estimate (1.2) holds for every well-distributed
collection of intervals I.
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3. LPR-estimate for Banach lattices

Theorem 3.1. If X is a Banach lattice such that X(2) is a UMD Banach space,
then X has the LPRp property for every 2 < p <∞.

We shall need the following remark for the proof.

Remark 3.2. IfX is UMD and 1 < p <∞, then the family {SI}I⊆I is R-bounded
(see [4]), i.e., ∥∥∥∑

I⊆I
εISIfI

∥∥∥
Lp(R;Rad(X))

≤ cX

∥∥∥∑
I⊆I

εIfI

∥∥∥
Lp(R;Rad(X))

.

Proof of Theorem 3.1. The proof directly employs the pointwise estimate of [9].
We assume that X is a Köthe function space on a measure space (Ω, μ).

Let f ∈ L1
loc(R;X) and let M(f) be the Hardy–Littlewood maximal function

of f , i.e.,

M(f)(t) = sup
I⊆R

t∈I

1

|I|
∫
I

|f(s)| ds

and

M2(f) =
[
M |f |2 ] 1

2 .

Let

f �(t) = sup
I⊆R

t∈I

1

|I|
∫
I

|f(s)− fI | ds, fI =
1

|I|
∫
I

f(s) ds.

Note thatM(f) is a function of two variables (t, ω): for each fixed ω, M(f)(·, ω) is
the usual Hardy–Littlewood maximal function of f(·, ω). The same remark applies
to M2(f) and f

�. For f sufficiently nice (which will be assumed in the sequel), all
these functions are well-defined.

Observe that due to Remark 2.2 we have only to show estimate (1.2) for a well-
distributed family of intervals. Let us fix a family of pairwise disjoint intervals I
and let us assume that I is well-distributed. Fix a Schwartz function ψ(t) whose
Fourier transform satisfies

χ[−1/2,1/2] ≤ ψ̂ ≤ χ[−1,1].

If I ∈ I, then we set

ψI(t) = |I| exp(2πicIt)ψ(|I| t),
where cI is the centre of I. The Fourier transform of ψI is adapted to I, i.e.,

χI ≤ ψ̂I ≤ χ2I .

In particular,

SI(f) = ψI ∗ SI(f).
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Consequently, from the Khintchine inequality and Remark 3.2,∥∥∥∥(∑
I∈I

|SI(f)|2
) 1

2

∥∥∥∥
Lp(R,X)

≤ cp ‖G(f)‖Lp(R,X) , 1 < p <∞,

where

G(f) =
(∑

I∈I
|ψI ∗ f |2

) 1
2

, f ∈ L1(R;X).

Thus, to finish the proof, we need to show that

‖G(f)‖Lp(R,X) ≤ cp ‖f‖Lp(R,X) , 2 < p <∞.

It was shown in [9] that G(f(·, ω))� is almost everywhere dominated byM2(f(·, ω)),
i.e.,

G(f(·, ω))� ≤ cM2(f(·, ω)), a.e. ω ∈ Ω,

for some universal c > 0. Since

G(f)(t, ω) = G(f(·, ω))(t) and M2(f)(t, ω) =M2(f(·, ω))(t), t ∈ R, ω ∈ Ω,

we clearly have that
G(f)� ≤ cM2(f).

Therefore, ∥∥G(f)�∥∥
Lp(R;X)

≤ c
∥∥M2(f)

∥∥
Lp(R;X)

.

It remains to prove∥∥G(f)∥∥
Lp(R;X)

≤ C
∥∥G(f)�∥∥

Lp(R;X)
and

∥∥M2(f)
∥∥
Lp(R;X)

≤ C
∥∥f∥∥

Lp(R;X)
.

The second inequality above immediately follows from Bourgain’s maximal in-
equality for UMD lattices (applied to X(2) here, see Theorem 3 in [10]):∥∥M2(f)

∥∥2
Lp(R;X)

=
∥∥M(|f |2)∥∥

L
p
2 (R;X(2))

≤ C
∥∥|f |2∥∥

L
p
2 (R;X(2))

= C
∥∥f∥∥2

Lp(R;X)
.

It remains to show the first one. To this end we shall prove the following inequality
(for a general f instead of G(f)):∥∥f∥∥

Lp(R;X)
≤ C

∥∥f �
∥∥
Lp(R;X)

.

This is again an immediate consequence of the following classical duality inequality
(see page 146 of [12]): ∣∣∣ ∫

R

uv
∣∣∣ ≤ C

∫
R

u�M(v)

for any u ∈ Lp(R) and v ∈ Lp′
(R), where M(v) denotes the grand maximal

function of v. Note that M(v) ≤ CM(v). Now let g ∈ Lp′
(R;X∗) be a nice

function. We then have∣∣∣ ∫
R×Ω

fg
∣∣∣ ≤ C

∫
R×Ω

f �M(g) ≤ C
∥∥f �

∥∥
Lp(R;X)

∥∥M(g)
∥∥
Lp′(R;X∗)

≤ C
∥∥f �

∥∥
Lp(R;X)

∥∥g∥∥
Lp′(R;X∗) ,
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where we have used again Bourgain’s maximal inequality for g (noting that X∗ is
also a UMD lattice). Therefore, taking the supremum over all g in the unit ball
of Lp′

(R;X∗), we deduce the desired inequality, so prove the theorem.

Finally, observe that the proof above operates with individual functions. This,
coupled with the UMD property of X , implies that X can always be assumed
separable and it can always be equipped with a weak unit. �

4. LPR property for general Banach spaces

Let X be a Banach space (not necessarily a lattice). We shall prove the following
theorem:

Theorem 4.1. If X has the LPRq property for some 2 ≤ q <∞, then X has the
LPRp property for any q ≤ p <∞.

The proof of the theorem requires some lemmas.

Lemma 4.2. Assume that X has the LPRq property. Let (Ij)j≥1 be a finite
sequence of mutually disjoint intervals of R and (Ij,k)

nj

k=1 be a finite family of mu-
tually disjoint subintervals of Ij for each j ≥ 1. Assume that the relative position
of Ij,k in Ij is independent of j, i.e., Ij,k − aj = Ij′,k − a′j whenever both Ij,k and
Ij′,k are present (i.e., k ≤ min {nj , nj′}), where aj is the left endpoint of Ij. Then

∥∥∥∥
∞∑
j=1

nj∑
k=1

εjε
′
kSIj,kf

∥∥∥∥
Lq(R;Rad2(X))

≤ c
∥∥f∥∥

Lq(R;X)
, ∀ f ∈ Lq(R;X).

Proof. We first assume that
⋃nj

k=1 Ij,k = Ij for each j ≥ 1. Note that

SIj,kf = exp(2πiaj ·)SIj,k−aj (exp(−2πiaj ·)f).

Thus, by the contraction principle,

∥∥∥∥
∞∑
j=1

nj∑
k=1

εjε
′
kSIj,kf

∥∥∥∥
q

∼
∥∥∥∥

∞∑
k=1

ε′k
∑

j: nj≥k

εjSIj,k−aj (exp(−2πiaj ·)f)
∥∥∥∥
q

.

Since X has the LPRq property, so does Rad(X). Let us apply this property of

Rad(X) to the intervals
(
Ĩk
)
k≥1

where Ĩk = Ij,k − aj , for some j such that nj ≥ k

(for any such j the interval Ij,k − aj is independent of j by the assumptions of the
lemma). We apply this property to the function

∞∑
k=1

∑
j: nj≥k

εjSIj,k−aj (exp(−2πiaj ·)f) =
∞∑
k=1

SĨk

[ ∑
j: nj≥k

εj (exp(−2πiaj ·)f)
]
.
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We obtain∥∥∥∥
∞∑
k=1

ε′k
∑

j: nj≥k

εjSIj,k−aj (exp(−2πiaj ·)f)
∥∥∥∥
q

(4.1)

≤ c

∥∥∥∥
∞∑
k=1

∑
j: nj≥k

εjSIj,k−aj (exp(−2πiaj ·)f)
∥∥∥∥
q

∼ c

∥∥∥∥
∞∑
j=1

nj∑
k=1

εjSIj,kf

∥∥∥∥
q

= c

∥∥∥∥
∞∑
j=1

εjSIjf

∥∥∥∥
q

≤ c ‖f‖q.

Assume now that
⋃nj

k=1 Ij,k �= Ij for some j. In this case, consider the family of

intervals
(
Ĩk
)∞
k=1

introduced above. Observe that every Ĩk ⊆ [0,+∞). Observe
also that the the right ends of the intervals (Ij − aj)j≥1, that is the points bj − aj ,

do not belong to the union ∪∞
k=1Ĩk. Let

(
Ĩ�
)∞
�=1

be the family of disjoint intervals
such that ∞⋃

�=1

Ĩ� = [0,+∞) \
∞⋃
k=1

Ĩk

and such that neither of the points (bj − aj)
∞
j=1 is inner for some Ĩ�. Let also mj

be the maximum number such that the intervals Ĩ� with 	 ≤ mj are all to the left

of the point bj − aj . Set Ij,� = Ĩ� + aj . Then,

Ij =

nj⋃
k=1

Ij,k +

mj⋃
�=1

Ij,�.

It is clear that the relative position of (Ij,k)
nj

k=1∪(Ij,�)mj

�=1 in Ij is again independent
of j.

Before we proceed, let us re-index the intervals (Ij,k)
nj

k=1 and (Ij,�)
mj

�=1 into a

family (Ij,s)
mj+nj

s=1 as follows. We arrange these intervals from left to right within Ij
and index them sequentially from 1 up to nj +mj. Moreover, let Kj ⊆ [1, nj+mj]
be the subset corresponding to the first family of intervals and Lj ⊆ [1, nj +mj ]
be the subset of indices corresponding to the second family of intervals. Observe
that, if K = ∪∞

j=1Kj and L = ∪∞
j=1Lj, then, for every j, Kj = K ∩ [1, nj +mj ]

and, similarly, Lj = L ∩ [1, nj +mj ]. Thus by the previous part we get∥∥∥∥
∞∑
j=1

nj+mj∑
s=1

εjε
′
sSIj,sf

∥∥∥∥
q

≤ cq
∥∥f∥∥

q
.

Observe also that

∞∑
j=1

nj+mj∑
s=1

εjε
′
sSIj,sf =

∞∑
s=1

∑
j: nj+mj≥s

εjε
′
sSIj,sf

=
∑
s∈K

∑
j: nj+mj≥s

εjε
′
sSIj,sf +

∑
s∈L

∑
j: nj+mj≥s

εjε
′
sSIj,sf .
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Thus, by taking the projection onto the subspace spanned by {ε′s}s∈K , we obtain∥∥∥ ∑
s∈K

∑
j: nj+mj≥s

εjε
′
sSIj,sf

∥∥∥
q
≤ cq

∥∥f∥∥
q
.

Finally, we observe that

∑
s∈K

∑
j: nj+mj≥s

εjε
′
sSIj,sf =

∞∑
j=1

nj∑
k=1

εjε
′
kSIj,kf.

Hence the lemma is proved. �

Next lemma is interesting in its own right. We shall only need its first part.

Lemma 4.3. Let Y be a Banach space. Let (Σ, ν) be a measure space and (hj) ⊂
L2(Σ) a finite sequence.

i) If Y is of cotype 2 and there exists a constant c such that∥∥∥∑
j

αjhj

∥∥∥
2
≤ c

(∑
j

|αj |2
)1/2

, ∀ αj ∈ C,

then ∥∥∥∑
j

hjaj

∥∥∥
L2(Σ;Y )

≤ c′
∥∥∥∑ εjaj

∥∥∥
Rad(Y )

, ∀ aj ∈ Y.

ii) If Y is of type 2 and there exists a constant c such that(∑
j

|αj |2
)1/2 ≤ c

∥∥∥∑
j

αjhj

∥∥∥
2
, ∀ αj ∈ C,

then ∥∥∥∑ εjaj

∥∥∥
Rad(Y )

≤ c′
∥∥∥∑

j

hjaj

∥∥∥
L2(Σ;Y )

, ∀ aj ∈ Y.

Proof. i) Let (aj) ⊂ Y be a finite sequence. Consider the operator u : 	2 → Y
defined by

u(α) =
∑
j

αjaj, ∀ α = (αj) ∈ 	2.

It is well known (see Lemma 3.8 and Theorem 3.9 in [8]) that

π2(u) ≤ c0

∥∥∥∑ εjaj

∥∥∥
Rad(Y )

,

where c0 is a constant depending only on the cotype 2 constant of Y . Let h(σ) =
(hj(σ))j for σ ∈ Σ. Then by the assumption on (hj) we get∥∥∥∑

j

hjaj

∥∥∥
L2(Σ;Y )

= π2(u) sup
{(∫

Σ

∣∣∣∑
j

ξjhj(s)
∣∣∣2ds)1/2

: ξ ∈ 	2, ‖ξ‖2 ≤ 1
}

≤ c′
∥∥∥∑ εjaj

∥∥∥
Rad(Y )

.
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ii) Let H be the linear span of (hj) in L2(Σ). Let h∗j be the functional on H

such that h∗j (hk) = δj,k. We extend h∗j to all of L2(Σ) by setting h∗j = 0 on H⊥.
Then h∗j ∈ L2(Σ) and the assumption implies that

∥∥∥∑
j

βjh
∗
j

∥∥∥
2
≤ c

(∑
j

|βj |2
)1/2

, ∀ βj ∈ C.

Now let (a∗j ) ⊂ Y ∗ be a finite sequence. Applying i) to Y ∗ and (h∗j ) we obtain

∣∣∣∑
j

〈a∗j , aj〉
∣∣∣ = ∣∣∣〈∑

j

h∗ja
∗
j ,

∑
j

hjaj
〉∣∣∣ ≤ ∥∥∥∑

j

h∗ja
∗
j

∥∥∥
L2(Σ;Y ∗)

∥∥∥∑
j

hjaj

∥∥∥
L2(Σ;Y )

≤ c′
∥∥∥∑

j

εja
∗
j

∥∥∥
Rad(Y ∗)

∥∥∥∑
j

hjaj

∥∥∥
L2(Σ;Y )

.

Taking the supremum over (a∗j ) ⊂ Y ∗ such that
∥∥∑ εja

∗
j

∥∥
Rad(Y ∗) ≤ 1, we get the

assertion. �

Now we proceed to the proof of Theorem 4.1. It is divided into several steps.

The singular integral operator T . Let (Ij)j be a family of disjoint finite
intervals and ψ be a Schwartz function as in Sections 2 and 3. We keep the
notation introduced there. We now set up an appropriate singular integral operator
corresponding to (2.1). It suffices to consider the family (Iaj,k)j,k, (I

b
j,k)j,k being

treated similarly. Henceforth, we shall denote Iaj,k simply by Ij,k. Let cj,k =

aj,k +2k−1 for 1 ≤ k ≤ nj . Note that cj,k is the centre of Ij,k if k < nj and of Ĩj,k
if k = nj . Define

ψj,k(x) = 2k exp(2πicj,k x)ψ(2
kx)

so that the Fourier transform of ψj,k is adapted to Ij,k, i.e.,

(4.2) χIj,k ≤ ψ̂j,k ≤ χ2Ij,k for k < nj and χĨj,nj
≤ ψ̂j,nj ≤ χ2Ĩj,nj

.

We should emphasize that our choice of cj,k is different from that of Rubio de
Francia in [9], which was cj,k = nj,k 2

k for some integer nj,k. Rubio de Francia’s
choice makes his calculations easier than ours in the scalar-valued case. The sole
reason for our choice of cj,k is that cj,k splits into a sum of two terms depending
on j and k separately. Namely, cj,k = aj − 2 + 2k + 2k−1. By (4.2),

SIj,kf = SIj,kψj,k ∗ f.

We then deduce, by the splitting property and Remark 3.2,∥∥∥∑
j,k

εjε
′
kSIj,kf

∥∥∥
p
≤ cp

∥∥∥∑
j,k

εjε
′
kψj,k ∗ f

∥∥∥
p
.
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Now write

ψj,k ∗ f(x) =
∫

2kψ(2k(x− y)) exp(2πicj,k(x− y))f(y)dy

= exp(2πicj,k x)

∫
2kψ(2k(x− y)) exp(−2πicj,k y)f(y)dy

= exp(2πicj,k x)

∫
Kj,k(x, y)f(y)dy,

where

(4.3) Kj,k(x, y) = 2kψ(2k(x− y)) exp(−2πicj,k y).

Using the splitting property of the cj,k mentioned previously and the contraction
principle, for every x ∈ R we have∥∥∥∑

j,k

εjε
′
kψj,k ∗ f(x)

∥∥∥
Rad2(X)

=
∥∥∥∑

j,k

εjε
′
k exp(2πicj,k x)

∫
Kj,k(x, y)f(y)dy

∥∥∥
Rad2(X)

∼
∥∥∥∑

j,k

εjε
′
k

∫
Kj,k(x, y)f(y)dy

∥∥∥
Rad2(X)

.

Thus we are led to introduce the vector-valued kernel K:

(4.4) K(x, y) =
∑
j,k

εjε
′
kKj,k(x, y) ∈ L2(Ω), x, y ∈ R.

K is also viewed as a kernel taking values in B(X,Rad2(X)) by multiplication.
Let T be the associated singular integral operator:

T (f)(x) =

∫
K(x, y)f(y)dy, f ∈ Lp(R;X).

By the discussion above, inequality (2.1) is reduced to the boundedness of T from
Lp(R;X) to Lp(R; Rad2(X)):

(4.5)
∥∥T (f)∥∥

p
≤ cp

∥∥f∥∥
p
, ∀ f ∈ Lp(R;X).

The Lq boundedness of T . We have the following:

Lemma 4.4. T is bounded from Lq(R;X) to Lq(R; Rad2(X)).

Proof. Let f ∈ Lq(R;X). By the previous discussion we have

‖Tf‖q ∼
∥∥∥∑

j,k

εjε
′
kψj,k ∗ f

∥∥∥
q
.

By (4.2), ∑
j,k

εjε
′
kψj,k ∗ f =

∑
j,k

εjε
′
kψj,k ∗ (S2Ij,kf).
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Note that for each j the last interval Ij,nj above should be the dyadic interval Ĩj,nj .
We claim that∥∥∥∑

j,k

εjε
′
kψj,k ∗ gj,k

∥∥∥
q
≤ c

∥∥∥∑
j,k

εjε
′
kgj,k

∥∥∥
q
, ∀ gj,k ∈ Lq(R;X).

Indeed, using the splitting property of the cj,k we have∥∥∥∑
j,k

εjε
′
kψj,k ∗ gj,k

∥∥∥
q
∼

∥∥∥∑
j,k

εjε
′
kψ̃j,k ∗ g̃j,k

∥∥∥
q
,

where
ψ̃j,k(x) = 2kψ(2kx) and g̃j,k(x) = exp(−2πicj,k x)gj,k(x).

For x ∈ R define the operator N(x) : Rad2(X) → Rad2(X) by

N(x)
(∑

j,k

εjε
′
kaj,k

)
=

∑
j,k

εjε
′
kψ̃j,k(x)aj,k.

It is obvious that N : R → B(Rad2(X)) is a smooth function and∑
j,k

εjε
′
kψ̃j,k ∗ g̃j,k = N ∗ g̃ with g̃ =

∑
j,k

εjε
′
kg̃j,k.

It is also easy to check that N satisfies Theorem 3.4 in [11]. Since Rad2(X) is
a UMD space, it follows from [11] that the convolution operator with N is bounded
on Lq(R; Rad2(X)). Thus,∥∥∥∑

j,k

εjε
′
kψ̃j,k ∗ g̃j,k

∥∥∥
q
≤ c

∥∥∥∑
j,k

εjε
′
kg̃j,k

∥∥∥
q
.

Using again the splitting property of the cj,k and going back to the gj,k, we prove
the claim. Consequently, we have

‖T (f)‖q ≤ c
∥∥∥∑

j,k

εjε
′
kS2Ij,kf

∥∥∥
q
.

We split the family
{
2Ij,k

}
into three subfamilies

{
2Ij,3k+�

}
of disjoint intervals

with 	 ∈ {0, 1, 2}. Accordingly, we have

‖T (f)‖q ≤ c

2∑
�=0

∥∥∥∑
j,k

εjε
′
kS2Ij,3k+�

f
∥∥∥
q
.

Each subfamily
{
2Ij,3k+�

}
j,k

satisfies the condition of Lemma 4.2. Hence,∥∥∥∑
j,k

εjε
′
kS2Ij,3k+�

f
∥∥∥
q
≤ c ‖f‖q.

Thus the lemma is proved. �
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An estimate on the kernel K. This subsection contains the key estimate on
the kernel K defined in (4.4). Fix x, z ∈ R and an integer m ≥ 1. Let

Im(x, z) =
{
y ∈ R : 2m|x− z| < |y − z| ≤ 2m+1|x− z|}.

Lemma 4.5. If X∗ is of cotype 2 and if (λj,k) ⊂ X∗, then

∫
Im(x,z)

∥∥∥∑
j,k

[Kj,k(x, y)−Kj,k(z, y)]λj,k

∥∥∥2
X∗
dy ≤ c

∥∥∑
j,k εjε

′
kλj,k

∥∥2
Rad2(X∗)

25m/3|x− z| .

Proof. Let (λj,k) ⊂ X∗ such that∥∥∥∑
j,k

εjε
′
kλj,k

∥∥∥
Rad2(X∗)

≤ 1.

By the definition of Kj,k in (4.3), we have∑
j,k

[
Kj,k(x, y)−Kj,k(z, y)

]
λj,k =

∑
k

μk2
k
[
ψ(2k(x− y))− ψ(2k(z − y))

]
qk(y) ,

where

μk =
∥∥∥∑

j

εjλj,k

∥∥∥
Rad(X∗)

and qk(y) = μ−1
k

∑
j

λj,k exp(−2πicj,k y).

Since Rad(X∗) is of cotype 2,∑
k

μ2
k ≤ c

∥∥∥∑
k

ε′k
∑
j

εjλj,k

∥∥∥2
Rad(Rad(X∗))

≤ c.

Thus,∫
Im(x,z)

∥∥∥∑
j,k

[
Kj,k(x, y)−Kj,k(z, y)

]
λj,k

∥∥∥2
X∗
dy

≤
∑
k

22k sup
y∈Im(x,z)

∣∣ψ(2k(x − y))− ψ(2k(z − y))
∣∣2 ∫

Im(x,z)

‖qk(y)‖2X∗dy.

Note that for fixed k

(4.6) |cj,k − cj′,k| ≥ 2k, ∀ j �= j′ .

Now we appeal to the following classical inequality on Dirichlet series with small
gaps. Let (γj) be a finite sequence of real numbers such that

γj+1 − γj ≥ 1, ∀ j ≥ 1.

Then, by Theorem 9.9 in Chapter V of [13], for any interval I ⊂ R and any sequence
(αj) ⊂ C, ∫

I

∣∣∣∑
j

αj exp(2πiγj y)
∣∣∣2dy ≤ cmax(|I|, 1)

∑
j

|αj |2 ,
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where c is an absolute constant. Applying this to the function qk, using Lemma 4.3
and (4.6), we find

∫
Im(x,z)

‖qk‖2X∗ dy ≤ c 2−k max(2k|Im(x, z)|, 1)μ−2
k

∥∥∥∑
j

εjλj,k

∥∥∥2
Rad(X∗)

= c max(2m|x− z|, 2−k) .

Let

k0 = min
{
k ∈ N : 2−k ≤ 2m|x− z|}

and k1 = min
{
k ∈ N : 2−k ≤ 22m/3|x− z|}.

Note that k0 ≤ k1. For k ≤ k1 we have

|ψ(2k(x− y))− ψ(2k(z − y))| ≤ c 2k|x− z|.

Recall that ψ is a Schwartz function, in particular |x|2 |ψ(x)| ≤ c. Thus, for k ≥ k1,
we have

|ψ(2k(x− y))− ψ(2k(z − y))| ≤ c 2−2k|y − z|−2 ≤ c 2−2k−2m|x− z|−2 ,

where the second estimate comes from the fact that y ∈ Im(x, z). Let

αk = 22k sup
y∈Im(x,z)

|ψ(2k(x− y))− ψ(2k(z − y))|2
∫
Im(x,z)

‖qk(y)‖2Xdy.

Combining the preceding inequalities, we deduce the following estimates on αk:

αk ≤ c 22k22k|x− z|22−k = c 23k|x− z|2 for k ≤ k0;

αk ≤ c 22k22k|x− z|22m|x− z| = c 24k2m|x− z|3 for k0 < k < k1;

αk ≤ c 22k(2k+m|x− z|)−42m|x− z| = c 2−2k2−3m|x− z|−3 for k ≥ k1.

Therefore,∫
Im(x,z)

∥∥∥∑
j,k

[Kj,k(x, y)−Kj,k(z, y)]λj,k

∥∥∥2
X∗
dy

≤
∑

1≤k≤k0

αk +
∑

k0<k<k1

αk +
∑
k≥k1

αk

≤ c
[
23k0 |x− z|2 + 24k12m|x− z|3 + 2−2k12−3m|x− z|−3

]
≤ c 2−5m/3|x− z|−1 .

This is the desired estimate for the kernel K. �
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The L∞-BMO boundedness. Recall that T is the singular integral operator
associated with the kernel K.

Lemma 4.6. The operator T is bounded from L∞(R;X) to BMO(R; Rad2(X)).

Proof. Recall that

‖g‖BMO(R;X) ≤ 2 sup
I⊆R

1

|I|
∫
I

‖g(x)− bI‖X dx,

where {bI}I⊆R
⊆ X is any family of elements of X assigned to each interval I ⊆ R.

Fix a function f ∈ L∞(R;X) with ‖f‖∞ ≤ 1 and an interval I ⊂ R. Let z be the
centre of I and let

bI =

∫
(2I)c

K(z, y)f(y) dy.

Then, for x ∈ I,

Tf(x)− bI =

∫
(2I)c

[K(x, y)−K(z, y)]f(y) dy +

∫
2I

K(x, y)f(y) dy.

Thus

1

|I|
∫
I

∥∥Tf(x)− bI
∥∥
Rad2(X)

dx

≤ 1

|I|
∫
I

∥∥∥ ∫
(2I)c

[K(x, y)−K(z, y)]f(y) dy
∥∥∥
Rad2(X)

dx

+
1

|I|
∫
I

∥∥∥ ∫
2I

K(x, y)f(y)dy
∥∥∥
Rad2(X)

dx

def
= A+B.

By Lemma 4.4 we have

B ≤ |I|−1/q
∥∥T (fχ2I)

∥∥
q
≤ c.

To estimate A, fix x ∈ I. Choose (λj,k) ⊂ X∗ such that∥∥∥∑
j,k

εjε
′
kλj,k

∥∥∥
Rad2(X∗)

≤ 1.

and

∥∥∥ ∫
(2I)c

[K(x, y)−K(z, y)]f(y) dy
∥∥∥
Rad2(X)

∼
∑
j,k

〈
λj,k,

∫
(2I)c

[Kj,k(x, y)−Kj,k(z, y)]f(y) dy
〉



On the vector-valued Littlewood–Paley–Rubio de Francia inequality 855

Then by Lemma 4.5, we find∥∥∥ ∫
(2I)c

[K(x, y)−K(z, y)]f(y) dy
∥∥∥
Rad2(X)

≤
∫
(2I)c

∥∥∥∑
j,k

[Kj,k(x, y)−Kj,k(z, y)]λj,k

∥∥∥
X∗
dy

≤
∞∑

m=1

|Im(x, z)|1/2
( ∫

Im(x,z)

∥∥∥∑
j,k

[Kj,k(x, y)−Kj,k(z, y)]λj,k

∥∥∥2
X∗
dy

)1/2

≤ c

∞∑
m=1

(2m|x− z|)1/2(25m/3|x− z|)−1/2 ≤
∞∑

m=1

c 2−m/3 ≤ c.

Therefore, A ≤ c. Thus T is bounded from L∞(R;X) to BMO(R; Rad2(X)). �

Combining the results of Lemma 4.6 and Lemma 4.4 and applying interpolation
(see [2]), we immediately see that the operator T is bounded from Lp(R;X) to
Lp(R; Rad2(X)) for every q < p <∞. Thus Theorem 4.1 is proved.

Remark 4.7. Let

T (f)�(x) = sup
x∈I

1

|I|
∫
I

∥∥T (f)(y)− T (f)I
∥∥
Rad2(X)

dy

and

Mq(f)(x) = sup
x∈I

(
1

|I|
∫
I

∥∥f(y)∥∥q
X
dy

) 1
q

.

Under the assumption of Theorem 4.1 one can show the following pointwise esti-
mate:

T (f)� ≤ cMq(f).
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