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Convexity of harmonic densities

David Benko, Peter Dragnev and Vilmos Totik

Abstract. The convexity of the densities of harmonic measures is proven
for subsets of a circle or of the real line. As a consequence, we get the
convexity of the densities of equilibrium measures for compact sets lying
on circles or the real axis.

1. Introduction and results

Equilibrium measures, Green’s functions, balayage measures and harmonic mea-
sures are basic objects of potential theory. There are thousands of papers on them
with an enormous number of connections and applications. In this paper we es-
tablish a basic convexity property of these quantities for sets lying on the real line
or on a circle. The predecessor of this work was [2], where the results below were
proven for the case when F is one or two intervals/arcs. An extension to Riesz
kernels, as well as applications of the convexity results to external field problems
and constrained energy problems, are presented in the forthcoming paper [3].

We refer to [4] or [6] for the basic concepts of logarithmic potential theory. All
the measures below will be finite Borel measures. If G is a domain, E ⊆ ∂G is
a closed set and λ ∈ G, then ω(λ,E;G) denotes the harmonic measure of E at λ
with respect to G.

A positive function on an interval is called log-convex if its logarithm is a con-
vex function. This is stronger than mere convexity, and the product of log-convex
functions is clearly log-convex. We shall also need that the sum of log-convex
functions is also log-convex: log-convexity of f means continuity and the inequality

f
(x+ y

2

)
≤

√
f(x)f(y),

and if we know this for f and g then it also follows for f + g since then

(
f + g

)(x+ y

2

)
≤

√
f(x)f(y) +

√
g(x)g(y) ≤

√
(f + g)(x)(f + g)(y),
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where the last inequality follows from the arithmetic-geometric mean inequality
after squaring both sides.

Our main results are:

Theorem 1.1. If F ⊂ R is a closed set, λ ∈ R \F and I ⊂ F is an interval, then
the density of the harmonic measure ω(λ, ·;C\F ) with respect to Lebesgue measure
on R is log-convex on I.

Theorem 1.2. Let C be a circle on the plane. If F ⊂ C is a closed set, λ ∈ C \F
and I ⊂ F is an arc, then the density of the harmonic measure ω(λ, ·;C \ F ) with
respect to arc measure on C is log-convex on I.

In both theorems the harmonic measures are absolutely continuous on I (see
Lemma 3.1), so the densities in question exist.

Theorem 1.1 is a limit case of Theorem 1.2 when the radius of the circle tends
to infinity, but because of its importance we have separated it. The proofs in both
cases have the same ideas.

We also mention that even though circles are images of the real line under
Möbius transformations, Theorem 1.2 does not seem to be a transformed case of
Theorem 1.1, since Möbius transformations do not preserve convexity.

We shall prove Theorems 1.1–1.2 in the following equivalent form. Denote by
Bal(ρ, F ) the balayage of a measure ρ (with ρ(F ) = 0) onto F (often said “out
of C \ F”). See Chapter IV of [5] or Section II.4 of [8] for a detailed introduction
to balayage measures and their properties. In particular, the balayage measures
in our discussion vanish on sets of zero capacity, and then they are unique (see
Theorem 4.6 in [5]).

Theorem 1.3. If F ⊂ R is a closed set, ρ is a measure on R \ F and I ⊂ F is
an interval, then the density of Bal(ρ, F ) with respect to Lebesgue measure on R

is log-convex on I.

Theorem 1.4. Let C be a circle on the plane. If F ⊂ C is a closed set, ρ is a
measure on C \ F and I ⊂ F is an arc, then the density of Bal(ρ, F ) with respect
to arc measure on C is log-convex on I.

In fact, if δλ denotes the Dirac delta at λ, then ω(λ, ·;C \F ) is just Bal(δλ, F ):

(1.1) ω(λ,E;C \ F ) = Bal(δλ, F )(E),

for all Borel set E ⊂ F (see, e.g., (A.3.3) in [8]), so Theorem 1.1 is the ρ = δλ
special case of Theorem 1.3. Conversely,

(1.2) Bal(ρ, F ) =

∫
Bal(δλ, F )dρ(λ) =

∫
ω(λ, ·;C \ F )dρ(λ),

and hence Theorem 1.3 is an easy consequence of Theorem 1.1. The same can be
said of Theorems 1.2 and 1.4.
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Figure 1. The set H , where the vertices A, B, C and D are the points (±(1 +√
2/3),±√

2), and the white rhomboids with side slopes ±√
3 are erected above the

subintervals of [−1, 1] \ F .

For later use note also the following consequence of (1.2): if u is a continuous
function on C which is harmonic in C \ F , then

(1.3)

∫
u dBal(ρ, F ) =

∫
u dρ

(see also Theorems II.4.1 and II.4.4 in [8]). As an immediate consequence we
obtain:

Theorem 1.5. If F ⊂ R or F ⊂ C as in Theorems 1.1–1.2 is compact, then the
equilibrium measure of F has log-convex density on any subinterval of F .

Indeed, for F ⊂ R this is just the λ = ∞ (or λ → ∞) special case of Theorem 1.1
(see Theorem 4.3.14 in [6]). For F ⊂ C the theorem follows from Theorem 1.4,
since the equilibrium measure is nothing else than the balayage of the normalized
arc measure on C onto F .

The theorems above imply the convexity of harmonic densities on a considerably
larger set than what is stated in those theorems. Consider for example the case
of the real line and assume that F consists of finitely many intervals. We may
also assume that F ⊂ [−1, 1] and ±1 ∈ F . Consider the open set H depicted in
Figure 1, where the horizontal line segments are at height ±√

2 and all other line
segments have slope ±√

3.

Corollary 1.6. With these notations, for all λ ∈ C\H the density of the harmonic
measure ω(λ, ·;C \ F ) is convex on every subinterval of F .

For log-convexity the exceptional region H would be slightly larger: the slopes
of the corresponding slanted lines would be ±1 instead of ±√

3.

Below we make an observation regarding Green’s functions. For a domain
G ⊂ C whose boundary is the union of C2-smooth Jordan curves and for a
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point λ ∈ G, let gG(z, λ) denote the Green’s function in G with pole at λ. Then
(see Theorem II.4.11 in [8]) we have on the boundary of G the formula

dBal(δλ, ∂G) =
1

2π

∂gG(s, λ)

∂n
ds,

where ds is arc-length measure and n denotes the inner normal to G. By applying a
standard limiting process, we can derive the following: if F ⊂ R consists of finitely
many closed intervals and λ ∈ R is a point outside F , then for x lying inside F ,

dBal(δλ, F )

dx
=

1

2π

(
∂g

C\F (x, λ)

∂n+
+

∂g
C\F (x, λ)

∂n−

)
=

1

π

∂g
C\F (x, λ)

∂n+
,

where n± denote the two normals to the real line at x and in the last step we
used the symmetry of the Green’s function g

C\F (., λ). Therefore (since we shall

prove strict log-convexity in our theorems), it follows from Theorem 1.3 that if I is
a closed interval lying in the (one-dimensional) interior of F , then for sufficiently
small τ > 0 the function gC\F (x + iτ, λ) (with real λ) is convex on I. This can
be translated into a statement about the level curves Lδ = {z : g

C\F (z, λ) = δ} of
the Green’s function: for small δ > 0, the portion of this level curve lying above I
is horizontally convex (meaning that the curve lies above its horizontal chords).
Note however, that this level curve need not be convex even if F consists of a
single interval, say F = [−1, 1]: one can easily derive from formula (2.1) below
that if λ > 1 is close to 1, then the reciprocal of ∂g

C\F (x, λ)/∂n is not a concave

function on the interval [8/10, 9/10] and hence the δ-level curve of g
C\[−1,1](z, λ) for

sufficiently small δ > 0 is not convex in the sense that over the interval [8/10, 9/10]
the curve lies below its chords.

The following section contains the proofs of Theorems 1.3 and 1.4. The last
section contains four simple lemmas on balayage measures and their convergence
which we need in the proofs.

2. Proofs

Proof of Theorem 1.3. Case I. F is an interval. It is sufficient to prove the result
for ρ = δλ, where λ 	∈ F (see (1.2)). If F = [a, b], then the density in question is
(see (II.4.47) in [8])

(2.1)
dBal(δλ, F )

dx
=

1

π

1

|λ− x|

√|λ− a| |λ− b|√|x− a| |x− b| ,

and this is clearly log-convex.
The a = −∞ or b = ∞ cases can be obtained from this by letting a → −∞,

or b → ∞.
For later reference let us also mention that the density of the balayage of δλ

onto the complement of the finite interval (a, b) is given by the same formula (2.1)
(just in this case x ∈ R \ [a, b] while in (2.1) we have x ∈ (a, b)). See Lemma 2.3
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in [9] or apply the transformation x → (x − (a + b)/2)−1 which maps R \ (a, b)
into [A,B] = [−2/(b− a), 2/(b− a)], use that harmonic measures (hence balayages
of point masses) are conformally invariant, and apply formula (2.1) to [A,B] (the
calculations are simple if [a, b] = [−1, 1], which can be assumed). Therefore, this
“one interval case” also covers the situation where F = (−∞, a] ∪ [b,∞) is the
union of two intervals “joined” at ∞ (and hence considered as one).

Case II. F consists of finitely many intervals. First we prove the following lemma,
in which ‖ρ‖ = ρ(C) denotes the total mass of the measure ρ.

Lemma 2.1. Let F consist of finitely many intervals and let I ⊂ F be a subinterval
of F . Suppose that there is an α < 1 for which the following is true: for every ρ
with ρ(F ) = 0 there are measures ν and μ such that ν is supported on F , it has
log-convex density on I, μ(F ) = 0, ‖μ‖ ≤ α‖ρ‖ and Bal(ρ, F ) = ν + Bal(μ, F ).
Then for all measures ρ with ρ(F ) = 0 the density of Bal(ρ, F ) is log-convex on I.

Proof. Indeed, let ν1 = ν, μ1 = μ and apply the assumption with ρ = μ1. There
are ν2, μ2 such that ν2 is supported on F , it has log-convex density on I, μ2(F ) = 0,
‖μ2‖ ≤ α‖μ1‖ ≤ α2‖ρ‖, and Bal(μ1, F ) = ν2+Bal(μ2, F ), i.e., Bal(ρ, F ) = ν1+ ν2
+Bal(μ2, F ). Iterating this process we get measures νk, μk with similar properties
such that

Bal(ρ, F ) = ν1 + ν2 + · · ·+ νk +Bal(μk, F ); ‖μk‖ ≤ αk‖ρ‖.
As μk → 0 in the weak∗ topology when k → ∞, Lemma 3.2 gives that if v denotes
the density of Bal(ρ, F ) and vk denotes the density of νk on I, then

v = v1 + v2 + · · · ,
where the series converges uniformly on compact subsets of the interior of I, and
the conclusion follows. �

Now we return to the proof of Theorem 1.3. Thus, let F =
⋃m

i=1 Ii consist
of finitely many intervals Ii. Without loss of generality we may assume that F
is compact, for if one or two of the Ii’s is infinite, then we simply consider the
compact sets F ∩ [−L,L] and let L tend to infinity (cf. Lemma 3.3). Now let
R\F =

⋃m
j=1 Jj be the decomposition of the complement of F into its subintervals

with the understanding that the two infinite subintervals in the complement are
considered as one (of the type (−∞, a] ∪ [b,∞), “joined” at ∞). Choose a δ > 0
smaller than the length of the shortest Ii. We claim that there is a cδ > 0 such
that if ρj is a measure on one of the Jj ’s, then Bal(ρj ,R \ Jj)(F ) ≥ cδ‖ρj‖, i.e.,
at least cδ‖ρj‖ mass of the measure Bal(ρj ,R \ Jj) is supported on F . In fact, if
Jj = [a, b] is finite then it is clear from (1.2) and (2.1) (recall that (2.1) is still the
density of Bal(δλ,R \ Jj) in this case) that

Bal(ρj ,R \ Jj)([a− δ, a] ∪ [b, b+ δ]) ≥ cδ‖ρj‖,
and notice that [a− δ, a]∪ [b, b+ δ] ⊆ F . When Jj is infinite, say (−∞, a)∪ (b,∞),
the argument is similar.
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Now if ρ is any measure on R with ρ(F ) = 0 then select a j such that ρ(Jj) ≥
‖ρ‖/m and with ρj = ρ

Ij
let

ν = Bal(ρj ,R \ Jj) F

be the restriction to F of the balayage of ρj onto R \ Jj and let

μ = Bal(ρj ,R \ Jj) R\F + ρ
R\Jj

be the rest of this balayage plus the rest of ρ. It is clear that ν is supported
on F , it has log-convex density on any subinterval of F by the one interval case
(Case I) verified above, and, as we have just seen, ‖ν‖ ≥ cδ‖ρ‖/m. Measure μ
is carried by R \ F (i.e., μ(F ) = 0) and, according to what we have just said,
‖μ‖ ≤ ‖ρ‖ − ‖ν‖ ≤ (1 − cδ/m)‖ρ‖. Finally, the balayage of ρj on F can be
obtained in two steps: first take the balayage of ρj onto R \ Jj , and then take the
balayage of that onto F , i.e.,

Bal(ρj , F ) = Bal(ρj ,R \ Jj) F
+Bal(Bal(ρj ,R \ Jj) R\F , F ),

which shows that Bal(ρ, F ) = ν +Bal(μ, F ). This proves that with α = 1− cδ/m
the assumptions in Lemma 2.1 are satisfied, therefore the claim in the theorem
follows from Lemma 2.1.

Case III. C \ F is regular with respect to the Dirichlet problem. First, Let F be
compact, and let Fn be the set of points in R the distance of which to F is at
most 1/n. Then F =

⋂
n Fn, Fn+1 ⊂ Fn, Fn consists of finitely many intervals,

and if ρ(F ) = 0, then ρ
R\Fn

→ ρ in the weak∗ topology. Therefore, by Lemma 3.2,

the densities of Bal(ρ
R\Fn

, Fn) tend uniformly to Bal(ρ, F ) on compact subsets

of the interior of I. Since the former are all log-convex on I by Case II, the
log-convexity of the density of Bal(ρ, F ) on I follows.

If F is unbounded, then apply what we have just proven to some appropriate
Fm = F ∩ [Lm,Mm], where Lm → −∞ and Mm → ∞, for which C \ Fm is
regular (say Lm ∈ R \ F if R does not contain an infinite interval (−∞, a) and
Lm ∈ (−∞, a) if (−∞, a] ⊆ F ) and take the limit m → ∞ as before.

Case IV. F is arbitrary. By Ancona’s theorem [1] for every n there is a regular
set Fn ⊂ F for which the capacity of F \ Fn is smaller than 1/n. Since the union
of regular sets is regular, we may assume I ⊆ Fn ⊆ Fn+1 for all n. Now we can
invoke Lemma 3.3 to deduce the result from Case III. �

Proof of Theorem 1.4. The proof follows the preceding one. First of all, we have
the analogue of Lemma 2.1.

Lemma 2.2. Let C be a circle, let F consist of finitely many subarcs of C and let
I ⊂ F be a subarc of F . Suppose that there is an α < 1 for which the following is
true: for every ρ with ρ(F ) = 0 there are measures ν and μ such that ν is supported
on F , it has log-convex density on I, μ is supported on C, μ(F ) = 0, ‖μ‖ ≤ α‖ρ‖
and Bal(ρ, F ) = ν + Bal(μ, F ). Then for all measures ρ on C with ρ(F ) = 0 the
density of Bal(ρ, F ) is log-convex on I.
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The proof is the same as that of Lemma 2.1. Now we can follow the proof of
Theorem 1.3.

Case I. F is an arc. Here we could simply refer to Lemma 4.9 in [2], where the
log-convexity in question is proved, but for completeness we include a proof. We
may assume that C is the unit circle C1, and let I ⊂ C1 be an arc on it, say
I = JA := {eit t 	∈ (−A,A)}. We have to show that the density of the balayage
of δeis with s ∈ (−A,A) is log-convex on I, i.e., if v(δeis ; t) is this density at the
point eit, then v(δeis ; ·) is a log-convex function on the interval [A, 2π − A]. In
what follows all arguments are understood modulo 2π.

The mapping z → w with

w = i
z + 1

z − 1

maps JA onto [− cotA/2, cotA/2] while eit is mapped into x = cot t/2, and eis is
mapped into λ := cot s/2 with |λ| > cotA/2. Since

dx = − 1

sin2 t/2
dt,

it follows from (2.1) and from the conformal invariance of harmonic measures that

v(δeis ; t) =
1

π

√
λ2 − cot2 A/2

|λ− cot t/2|
√
cot2 A/2− cot2 t/2

1

sin2 t/2
.

If we substitute here λ = cot s/2 and make use of the identities

cotα± cotβ =
sin(β ± α)

sinα sinβ
,

then we obtain for the density in question the expression

1

π

√
sin A−s

2 sin A+s
2√

sin t−A
2 sin t+A

2

1

sin |t−s|
2

,

which is clearly log-convex in t on [A, 2π −A].

Case II. F consists of finitely many arcs. This case follows from the one arc case
via Lemma 2.2 exactly as in Case II in the proof of Theorem 1.3.

Case III. C \ F is regular with respect to the Dirichlet problem. Just apply the
argument of Case III from the proof of Theorem 1.3.

Case IV. F ⊂ C is arbitrary. Apply again the argument of Case IV from the proof
of Theorem 1.3. �

Proof of Corollary 1.6. We have to show that the density of Bal(δλ, F ) is convex
on every subinterval I of F . Let λ = a + ib, and assume e.g. that b > 0, a ≥ 0.
If the downward cone with vertex at λ and with side slopes ±√

3 does not contain
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an interior point of F , then we form the balayage of δλ onto F in two steps: first
take it onto the real line, and then onto F . When we take the balayage onto
the real line then we take it out of the upper half plane for which the harmonic
measure is the well known Poisson kernel on that half plane, so Bal(δλ,R) has
density b/π(b2+(x−a)2), which is convex on I (note that the function 1/(1+x2),
which appears in the density of Bal(δi,R), is convex on (−∞,−1/

√
3) and on

(1/
√
3,∞)). Now the corollary follows, since when we balayage further the measure

Bal(δλ,R) R\F onto F , then the density is again convex on I by Theorem 1.3. This

argument takes care of the cases where λ belongs to the rhomboids in Figure 1 or
to the two infinite cones with vertices at ±1 and with side slopes ±√

3.
On the other hand, if λ 	∈ H but the aforementioned cone with vertex at λ

contains an inner point of F then necessarily b ≥ √
2, and in this case we take the

balayage of δλ first onto the interval [−1, 1]. By Lemma 3.4, for b ≥ √
2 the density

of Bal(δλ, [−1, 1]) is log-convex on (−1, 1), and to get Bal(δλ, F ) we have to take
a further balayage of Bal(δλ, [−1, 1])

[−1,1]\F onto F , which has again log-convex

density on I by Theorem 1.3.
For later reference let us mention that the first part of the proof demonstrates

log-convexity of the density of Bal(δλ, [−1, 1]) for all λ = a + ib with |a| ≥ |b|
because the function 1/(1 + x2), which appears in the density of Bal(δi,R), is
log-convex on (−∞,−1) and on (1,∞)). �

3. Lemmas

We are going to formulate our first three lemmas for the real line, but they are
equally true on circles (with arcs replacing intervals and C \ F replacing R \ F )
with the same proofs.

In what follows Int(I) denotes the (one-dimensional) interior of I, and regularity
of a closed set F means that C\F is regular with respect to the Dirichlet problem.

Lemma 3.1. Let I ⊂ R be an interval. Then the measures in{
Bal(ρ, F ) : I ⊂ F ⊂ R, ‖ρ‖ ≤ 1, ρ(F ) = 0

}
are absolutely continuous on I and they have uniformly equicontinuous densities
on compact subsets of Int(I).

Proof. First we prove the claim when F is an interval. Indeed, if F = [a, b], then the
density of Bal(δλ, F ) is given by (2.1), and this gives also the absolute continuity
of this balayage measure. Now formula (2.1) shows that if [α′, β′] ⊂ (α, β) are
fixed, then the derivatives of the densities of all Bal(δλ, [a, b]) with a ≤ α, β ≤ b,
λ 	∈ [a, b] are uniformly bounded on [α′, β′]. Hence it follows (by integration with
respect to ρ) that{

Bal(ρ, [a, b]) : I ⊂ [a, b], ‖ρ‖ ≤ 1, ρ([a, b]) = 0
}

have uniformly equicontinuous densities on compact subsets of Int(I).
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However, if I ⊂ F is arbitrary, then

Bal(ρ, F )
I
= Bal(ρ, I)− Bal

(
Bal(ρ, F )

F\I , I
)
,

and the lemma follows from the just established interval case. �

Lemma 3.2. Let I ⊂ R be an interval, let F, Fn n = 1, 2, . . . be regular compact
sets such that Fn+1 ⊆ Fn, I ⊂ F =

⋂
n Fn, and let {ρn} be a sequence of measures

on R such that ρn(Fn) = 0 and ρn → ρ in the weak∗ topology to some ρ with
ρ(F ) = 0. Then Bal(ρn, Fn) → Bal(ρ, F ) in the weak∗ topology, and the densities of
Bal(ρn, Fn) tend to the density of Bal(ρ, F ) uniformly on compact subsets of Int(I).

Here the weak∗ topology is understood on the set of continuous functions on
C = C ∪ {∞}. In particular, if ρn → ρ in this topology, then ‖ρn‖ → ‖ρ‖.
Proof. Let N ⊂ N be arbitrary, and select a subsequence N ′ of N such that as
n → ∞, n ∈ N ′, we have Bal(ρn, Fn) → σ for some measure σ. Since Bal(ρn, Fn)
is supported on Fn, it follows that σ is supported on F .

Let U be a continuous function on F and let u be the solution of the Dirichlet
problem in C\F with boundary function U . By the regularity of the domain C\F
this u (defined as U on the boundary) is continuous on C, hence∫

Udσ = lim
n→∞, n∈N ′

∫
u dBal(ρn, Fn) = lim

n→∞, n∈N ′

∫
u dρn

=

∫
u dρ =

∫
U dBal(ρ, F ),

where the second and fourth equalities follow from (1.3). Since this is true for all
continuous U on F , we can conclude σ = Bal(ρ, F ), and since this is true for any
subsequence N ⊂ N, we can conclude that Bal(ρn, F ) → Bal(ρ, F ) for all n → ∞
in the weak∗ topology.

Let I ′ be a closed subinterval of Int(I). If vn is the density of Bal(ρn, Fn), then
it follows from Lemma 3.1 and from the Arzelà–Ascoli theorem (which we can apply
to {vn} because of the equicontinuity expressed in Lemma 3.1 and because this
sequence is clearly uniformly bounded on I ′, since the ‖ρn‖ are bounded) that from
any subsequence of {vn}n∈N we can select a uniformly convergent subsequence
{vn}n∈N ′ , vn → v uniformly on I ′ as n → ∞, n ∈ N ′. Let f be a continuous
function with compact support in Int(I ′). We have, as n → ∞, n ∈ N ′, the just
proven ∫

f dBal(ρn, Fn) →
∫

f dBal(ρ, F ),

and at the same time ∫
f dBal(ρn, Fn) =

∫
fvn →

∫
fv,

so ∫
f dBal(ρ, F ) =

∫
fv.
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Since this is true for every such f , it follows that

Bal(ρ, F )
Int(I′) = v(x)dx,

i.e., v is the density of Bal(ρ, F ) on Int(I ′). Since this is true for any subsequence
N ⊂ N, we can finally conclude that the whole sequence {vn} converges to v
uniformly on compact subsets of Int(I ′), and this proves the claim. �

Lemma 3.3. Let I be an interval in the real line and let I ⊂ F ⊂ R be an
arbitrary closed set. Let furthermore Fn, n = 1, 2, . . ., be regular closed sets such
that I ⊆ Fn ⊆ Fn+1 ⊆ F , for all n, and F \⋃∞

n=1 Fn is of zero logarithmic capacity.
Then for any ρ on R with ρ(F ) = 0 the densities of Bal(ρ, Fn) tend to the density
of Bal(ρ, F ) uniformly on compact subsets of Int(I).

Proof. Let E be a closed subinterval of Int(I), and let U and un, respectively, be
the solutions of the Dirichlet problem in C \ F and C \ Fn, with boundary values
equal to 1 on E and 0 elsewhere. Then (extending U and un to the boundary
with these boundary values) un is continuous on C except at the two endpoints
of E, and U ≤ un+1 ≤ un for all n. By Harnack’s theorem, {un} converges on
compact subsets of C \ F to a harmonic function u. We claim that U = u. The
fact U ≤ u ≤ 1 is clear, so u has boundary limit 1 at every point of E since U does
also.

On the other hand, if z ∈ Fn \ E for some n, then u has zero boundary limit
at z (because U ≤ u ≤ un on C \F ). Therefore, as quasi-every point of F belongs
to

⋃
n Fn, we can see that u has boundary limit 1 on E and 0 quasi-everywhere

on F \ E, hence it is the solution of the Dirichlet problem in C \ F with these
boundary values. This proves u = U .

Since for λ 	∈ F we have

U(λ) = ω(λ,E;C \ F ) = Bal(δλ, F )(E)

and

un(λ) = ω(λ,E;C \ Fn) = Bal(δλ, Fn)(E),

from (1.2) and from Lebesgue’s monotone convergence theorem we can conclude
that Bal(ρ, Fn)(E) → Bal(ρ, F )(E) as n → ∞. This is true for all subintervals E
of Int(I), and then, in view of Lemma 3.1, the lemma easily follows. �

Lemma 3.4. For b2 ≥ 2, the balayage measure Bal(δa+ib, [−1, 1]) is log-convex
on (−1, 1) for any a.

We note that this is no longer true for b2 < 2. Moreover, if a = 0, then the y
in the following proof is ∞ and (3.3) takes the form

dBal(δib, [−1, 1])

dx
=

|b|√|λ+ 1| |λ− 1|
π

1√
1− x2 (x2 + b2)

,
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whose second derivative at 0 is

b2 − 2

π|b|3√|λ+ 1| |λ− 1| ,

so Bal(δib, [−1, 1]) is not even convex around the origin when b2 < 2.

Proof. We first recall the formula for the equilibrium measure of an arc (see Ex-
ample 11.1.4 in [7]). Let 0 ≤ α < β ≤ 2π. Denote by [eiα, eiβ ] := {eiθ α ≤ θ ≤ β}
the corresponding arc of the unit circle T := {z |z| = 1}. Let γ = π + α+β

2 , that
is, eiγ is the midpoint of the complementary arc T \ [eiα, eiβ]. The equilibrium
measure of the arc is given as

(3.1) μ[α,β]=
cos( θ2 − α+β

4 ) dθ

2π
√
sin(β−θ

2 ) sin( θ−α
2 )

=
|eiγ − eiθ|

2π
√|eiθ − eiα||eiθ − eiβ | dθ, α ≤ θ ≤ β,

and in this last form the circle (with radius 1) need not be the unit circle as long
as dθ denotes arc length on it.

Now, let us derive a formula for Bal(δλ, [−1, 1]) for λ = a + ib, b > 0. Take
inversion with respect to the circle with center λ and radius R =

√
2b. The image

of R is a circle K of radius one, with λ being its north pole (see Figure 2). Denote
the images of −1 and 1 by A and B respectively. The image under inversion of
the interval [−1, 1] is the arc ÂB. Let us consider the triangle with vertices −1, 1
and λ, and let l (resp. y) denote the intersection with R of the interior (resp.
exterior) angular bisectors at λ. Observe that y is the image under the inversion of

the midpoint C of the gap K \ ÂB. Denote by z the intersection with R of the line
through λ that is perpendicular to the line connecting 0 and λ. We may assume
a ≥ 0, and then |λ− 1| ≤ |λ+ 1|, and, as a consequence, 0 ≤ l < 1 < z ≤ y. Also,
from similarity of triangles, we derive that z = (a2 + b2)/a.

Let T be the image in K of a generic point x ∈ R. The distance and measure
conversion formulas are

|C − T | = 2b |y − x|
|λ− x| |λ − y| ,

1√|A− T | |B − T | =
|λ− x|√|λ+ 1| |λ− 1|

2b
√
1− x2

|dT | = 2b dx

|λ− x|2 .

Using (3.1) we can write the formula for the equilibrium measure of ÂB as

(3.2) dμ
̂AB

=
|T − C|

2π
√|T −A| |T −B| |dT |.

Since harmonic measures are conformally invariant and λ is mapped into the point
infinity under the above inversion, the balayage measure Bal(δλ, [−1, 1]) is the
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Figure 2. Balayage of λ = a+ ib onto [−1, 1].

transform of the equilibrium measure for the arc ÂB. Substituting the preceding
values in (3.2) we obtain

(3.3)
dBal(δλ, [−1, 1])

dx
=

b
√|λ+ 1||λ− 1| |y − x|

π|λ− y|√1− x2 ((x− a)2 + b2)
=: φ(x), x ∈ [−1, 1],

which is the needed formula.

In proving log-convexity of the density we may assume, without loss of gener-
ality, that in λ = a+ ib we have a ≥ 0, b > 0. Let us first prove the lemma when
b =

√
2. If a ≥ √

2 the log-convexity in question follows from the last paragraph
of the proof of Corollary 1.6, so in what follows let a ≤ √

2. Differentiating lnφ(x)
twice we get that

(3.4) g(x; a,
√
2) := (lnφ(x))

′′
=

1 + x2

(1− x2)2
+

2(x− a)2 − 4

((x − a)2 + 2)2
− 1

(y − x)2
.

Observe that for 0 ≤ a ≤ √
2 and x ∈ [−1, 1] we have

g(−|x|; a,
√
2) ≥ g(|x|; a,

√
2).

Indeed, (y − 2)/(y2 + 2)2 is an increasing function on the interval [0, 6], and 0 ≤
(|x| − a)2 ≤ (|x| + a)2 < 6 in this case. Hence, we may assume x ∈ [0, 1]. From
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y ≥ z = (a2 + b2)/a and (3.4) we conclude that

g(x; a,
√
2) ≥ 1 + x2

(1− x2)2
+

2(x− a)2 − 4

((x − a)2 + 2)2
− 1

(a
2+2
a − x)2

=
1 + x2

(1− x2)2
− 1 +

(x − a)4 + 6(x− a)2

((x− a)2 + 2)2
− 1

(a
2+2
a − x)2

≥ x2(3− x2)

(1 − x2)2
+

6(x− a)2

((x− a)2 + 2)2
− a2

(a(a− x) + 2)2

=: U(x, a).

If 0 ≤ x ≤ a/2, then

U(x, a) ≥ 6(x− a)2 − a2

((x− a)2 + 2)2
≥ a2

2((x− a)2 + 2)2
≥ 0,

and if a/2 < x ≤ 1, then

U(x, a) ≥ a2(3− x2)

4(1− x2)2
− a2

(a2 − a+ 2)2
≥ 3a2

4
− 16a2

49
≥ 0.

This establishes the lemma when b =
√
2.

If b >
√
2, then we first balayage δλ onto the line �m(z) =

√
2 (notice that this

leaves the potential on the real line unchanged up to a constant), then take the bal-
ayage of the resulting measure onto [−1, 1] and use the superposition principle (1.2)
and the just verified case when b =

√
2. �
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