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Vector-valued non-homogeneous Tb theorem
on metric measure spaces

Henri Martikainen

Abstract. We prove a vector-valued non-homogeneous Tb theorem on
certain quasimetric spaces equipped with what we call an upper doubling
measure. Essentially, we merge recent techniques from the domain and
range side of things, achieving a Tb theorem which is quite general with
respect to both of them.

1. Introduction

In the seminal paper [13] by Nazarov, Treil and Volberg, it was already indi-
cated that it should be possible to prove some version of their (Euclidean) non-
homogeneous Tb theorem also in a more abstract metric space setting, just like
the well-established homogeneous theory in this generality [3], [2]. A recent pa-
per [6] by the author and Tuomas Hytönen shows that this is indeed the case:
a non-homogeneous Tb theorem in the general framework of quasimetric spaces
equipped with an upper doubling measure (this is a class of measures that encom-
passes both the power bounded measures, and also, the more classical doubling
measures) was proved. See also [15].

It is natural to seek to extend the generality in the range too (instead of
considering only scalar valued operators). These type of developments, just like
the regular scalar valued Tb theorems, have a long history (for a discussion of
the origins of the vector-valued Tb theory consult e.g. [9]). In the very recent
work [10], a UMD-valued T 1 theorem is established in metric spaces – however,
only with Ahlfors-regular measures μ (i.e., μ(B(x, r)) ∼ rm). This assumption
seems to be necessary for their method of proof based on rearrangements of dyadic
cubes. In [9] a vector-valued non-homogeneous Tb theorem is proved in the case
of the domain being Rn and the relevant measure μ being power bounded (that
is, μ(B(x, r)) ≤ Crm).
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The methods of [9] are already less dependent on the structure of Rn than much
of the earlier vector-valued work, thus foreshadowing the possibility of extending to
more general domains. The goal here is to carefully combine key techniques from
the recent developments [6] and [9] and obtain a proof of a non-homogeneous Tb
theorem, which is simultaneously general with respect to the domain (a metric
space), the measure (an upper doubling measure) and the range (a UMD Banach
space).

2. Preliminaries and the main result

2.1. Geometrically doubling quasimetric spaces

A quasimetric space (X, ρ) is geometrically doubling if every open ball B(x, r) =
{y ∈ X : ρ(y, x) < r} can be covered by at most N balls of radius r/2. Our proof
requires that we impose this geometric condition. A basic observation is that in a
geometrically doubling quasimetric space, a ball B(x, r) can contain the centers xi
of at most Nα−n disjoint balls B(xi, αr) for α ∈ (0, 1].

For many purposes, quasimetrics are just as good as metrics, only somewhat
more technical to deal with. However, some of the more delicate estimates in [6]
require the following regularity condition: for every ε > 0 there exists A(ε) < ∞
so that

ρ(x, y) ≤ (1 + ε)ρ(x, z) +A(ε)ρ(z, y).

Notice that this property is in particular satisfied by all positive powers of an
honest metric, and every quasimetric is equivalent to one of that form by a result
of Maćıas and Segovia [11].

We want to reduce the proof of our main theorem to the case of metric spaces.
All of our assumptions, except possibly for the weak boundedness property (for
the definition, see §2.5 below), are stable under the change to d if ρ is equivalent
with dβ – see §3 of [6]. As noticed in [6], the main problem with the reduction
is that the weak boundedness property is formulated using balls defined by the
given quasimetric ρ. Specifically, the weak boundedness property seems difficult
to transfer for any other type of sets than those for which it is assumed (even for
d-balls). This problem was circumvented in [6] by explicitly constructing a certain
random covering using ρ-balls instead of d-balls (the details of this construction
require the regularity of ρ). Naturally we need to assume this regularity condition
also in the present paper as it is already needed in the simpler scalar case.

2.2. Upper doubling measures

A Borel measure μ in some quasimetric space (X, ρ) is called upper doubling if
there exists a dominating function λ : X × (0,∞) → (0,∞) so that r �→ λ(x, r) is
non-decreasing, λ(x, 2r) ≤ Cλλ(x, r) and μ(B(x, r)) ≤ λ(x, r) for all x ∈ X and
r > 0. The number d := log2 Cλ can be thought of as (an upper bound for) a
dimension of the measure μ, and it will play a similar role as the quantity denoted
by the same symbol in [13].
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2.3. Standard kernels and Calderón–Zygmund operators

Define Δ = {(x, x) : x ∈ X}. A standard kernel is a mapping K : X2 \Δ → C for
which we have for some α > 0 and B,C <∞ that

|K(x, y)| ≤ B min
( 1

λ(x, ρ(x, y))
,

1

λ(y, ρ(x, y))

)
, x �= y,

|K(x, y)−K(x′, y)| ≤ B
ρ(x, x′)α

ρ(x, y)αλ(x, ρ(x, y))
, ρ(x, y) ≥ Cρ(x, x′),

and

|K(x, y)−K(x, y′)| ≤ B
ρ(y, y′)α

ρ(x, y)αλ(y, ρ(x, y))
, ρ(x, y) ≥ Cρ(y, y′).

The smallest admissible B will be denoted by ‖K‖CZα; it is understood that the
parameter C has been fixed, and it will not be indicated explicitly in this notation.

Let T : f �→ Tf be a bounded linear operator L2(X) → L2(X). It is called a
Calderón–Zygmund operator with kernel K if

Tf(x) =

∫
X

K(x, y)f(y) dμ(y)

for x outside the support of f .

2.4. Accretivity

A function b ∈ L∞(μ) is called accretive if | ∫
A
b dμ| ≥ aμ(A) for all Borel sets

A which satisfy the condition that B ⊂ A ⊂ CB for some ball B = B(A),
where C is some large constant which depends on the quasimetric ρ. (We note
that, e.g., C = 500 will do in the case that ρ is a metric. Otherwise, one defines β
via the equation 2β = 3A2

0, where A0 is the constant from the triangle inequality
of ρ, and then C = 4000β suffices. These details are in §3 of [6].)

The point is to have the above estimate whenever A is a ball or one of the
metric dyadic cubes (even after switching to an equivalent metric), but there is no
easy explicit description of what kind of sets they actually are. Because of this, our
formulation of accretivity is technical. However, notice that at least the classical
condition Re b ≥ a > 0 implies it (with any set A).

2.5. Weak boundedness property

Let Λ > 1. Suppose that for every ball B and every ε ∈ (0, 1] there is a function
χ̃B,ε such that χB ≤ χ̃B,ε ≤ χ(1+ε)B, and we have the estimate |〈T χ̃B,ε, χ̃B,ε〉| ≤
S(ε)Aμ(ΛB) with some S(ε) <∞ independent of the other quantities. Here 〈· , ·〉
is the bilinear duality 〈f, g〉 =

∫
fg dμ. We denote the smallest admissible A by

‖T ‖WBPΛ,S . Note that this notion of the weak boundedness property simply asks
the above inequality for some set of functions χ̃B,ε, regular or not. Depending on
the structure of the underlying space X , one may find such functions with different
degrees of regularity.
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Note that if T satisfies |〈TχB, χB〉| ≤ ‖T ‖WBPΛμ(ΛB) for all balls B (where
‖T ‖WBPΛ is the best possible constant for that inequality), then ‖T ‖WBPΛ,1 ≤
‖T ‖WBPΛ . This is because we can take χ̃B,ε := χB and S(ε) := 1 for all ε > 0.

In the Tb theorem, the weak boundedness property is demanded from the
operator Mb2TMb1 , where b1 and b2 are accretive functions and Mb : f �→ bf .

2.6. BMO and RBMO

We say that f ∈ L1
loc(μ) belongs to BMOp

κ(μ), if for any ball B ⊂ X there exists
a constant fB such that( ∫

B

|f − fB|p dμ
)1/p

≤ Lμ(κB)1/p,

where the constant L does not depend on B.
For b ∈ L∞(μ) one can define

〈Tb, f〉 = 〈T (χ2Bb), f〉+
∫
(2B)c

b(x)T ∗f(x) dμ(x)

say for every essentially bounded f which is supported in a ball B and satisfies∫
f dμ = 0. The integral over (2B)c converges by the kernel estimates. The

pairing 〈T (χ2Bb), f〉 makes sense, since T : L2(X) → L2(X). Now the condition
Tb ∈ BMOp

κ(μ) is defined to mean that |〈Tb, f〉| ≤ L‖f‖Lp′(μ)μ(κB)1/p for every f
like before.

Let 	 > 1. A function f ∈ L1
loc(μ) belongs to RBMO(μ) if there exists a

constant L, and for every ball B, a constant fB, such that one has∫
B

|f − fB| dμ ≤ Lμ(	B),

and, whenever B ⊂ B1 are two balls,

|fB − fB1 | ≤ L
(
1 +

∫
2B1\B

1

λ(cB , ρ(x, cB))
dμ(x)

)
.

We do not demand that fB be the average 〈f〉B = 1
μ(B)

∫
B f dμ, and this is actually

important in the RBMO(μ)-condition. The useful thing here is that the space
RBMO(μ) is independent of the choice of parameter 	 > 1 and satisfies the John–
Nirenberg inequality. For these results in our setting, see [8]. The norms in these
spaces are defined in the obvious way as the best constant L.

2.7. UMD Banach spaces

A Banach space Y is said to satisfy the UMD property if there holds that∥∥∥ n∑
k=1

εkdk

∥∥∥
Lp(Ω,Y )

≤ C
∥∥∥ n∑

k=1

dk

∥∥∥
Lp(Ω,Y )
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whenever (dk)
n
k=1 is a martingale difference sequence in Lp(Ω, Y ) and εk = ±1 are

constants. This property does not depend on the parameter 1 < p < ∞ in any
way. Moreover, it is standard knowledge that the dual space Y ∗ of a UMD space Y
is also UMD.

2.8. Vinogradov notation and implicit constants

The notation f � g is used synonymously with f ≤ Gg for some constant G. We
also use f ∼ g if f � g � f . The dependence on the various parameters should be
somewhat clear, but basically G may depend on the various constants of the avove
definitions, and on an auxiliary parameter r (which is eventually fixed to depend
on the above parameters only).

We now state our main theorem. We will discuss the roles of some of the
assumptions in Remark 2.2 below. There we will comment on the usage of differ-
ent BMO spaces and weak boundedness assumptions and the role of the a priori
boundedness assumption.

Theorem 2.1. Let (X, ρ) be a geometrically doubling regular quasimetric space
which is equipped with an upper doubling measure μ. Let Y be a UMD space
and 1 < p < ∞. Let T be an Lp(X)-bounded Calderón–Zygmund operator with a
standard kernel K, let b1 and b2 be two essentially bounded accretive functions, let
α > 0 and κ,Λ > 1 be constant, and let S : (0, 1] → (0,∞) be a function. Then
there holds

‖T ‖ � ‖Tb1‖BMO2
κ(μ)

+ ‖T ∗b2‖BMO2
κ(μ)

+ ‖Mb2TMb1‖WBPΛ,S + ‖K‖CZα ,

where ‖T ‖ = ‖T ‖Lp(X,Y )→Lp(X,Y ).

If we in addition assume that ρ = dβ for some metric d and β ≥ 1, then

‖T ‖ � ‖Tb1‖BMO1
κ(μ)

+ ‖T ∗b2‖BMO1
κ(μ)

+ ‖Mb2TMb1‖WBPΛ + ‖K‖CZα .

Remark 2.2. In both of the scenarios we want to reduce to the case of metric
spaces, update our weak boundedness property and enhance our BMO assump-
tions. In the first part of this remark we shall discuss this. The order of the
reductions is a bit different depending on the case, but after they are done, the
proofs coincide.

Note that in the case of regular quasimetric spaces the Theorem 2.1 is for-
mulated using the space BMO2

κ(μ). This is the case also for the scalar valued
analog Theorem 2.10 in [6]. Indeed, we may use Theorem 2.10 of [6] to conclude
that under the assumptions of Theorem 2.1 we have the following quantitative
scalar-valued L2 operator norm bound:

‖T ‖L2(X)→L2(X) � ‖Tb1‖BMO2
κ(μ)

+ ‖T ∗b2‖BMO2
κ(μ)

+ ‖Mb2TMb1‖WBPΛ,S + ‖K‖CZα .

Using this we may immediately strengthen our weak boundedness property. In fact,
we have |〈T (χAb1), χAb2〉| � μ(A) with any Borel set A ⊂ X . In particular, we may
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then completely reduce to the case of metric spaces (ρ = d for some metric d). This
reduction is done in §3 of [6]. Note that the original weak boundedness property
would not need to transfer to d-balls. However, we just noted that the work done
in the scalar case gives us the much stronger weak boundedness property.

Let us explain the point of the assumption ρ = dβ , and why this allows the usage
of the larger space BMO1

κ(μ). Notice however the usage of the stronger notion of
the weak boundedness property ‖Mb2TMb1‖WBPΛ <∞ in this case. Since ρ = dβ ,
we have that d-balls are ρ-balls. Thus, we have that |〈T (χBb1), χBb2)〉| � μ(ΛB)
for every d-ball B. After this observation one may assume that ρ = d, since every
other assumption always transfers. In metric spaces (Theorem 3.3) we are able to
show that

‖Tb1‖BMOq
κ(μ) � ‖K‖CZα + ‖Tb1‖BMO1

κ(μ)
+ ‖Mb2TMb1‖WBPΛ , 1 ≤ q <∞.

In particular, Tb1, T
∗b2 ∈ BMO2

κ(μ) so we can even in this case infer from Theo-
rem 2.10 in [6] that |〈T (χAb1), χAb2〉| � μ(A) with any Borel set A ⊂ X .

Therefore, with either set of assumptions we can eventually work in a metric
space with the weak boundedness property enhanced to |〈T (χAb1), χAb2〉| � μ(A)
for any Borel set A ⊂ X , and the BMO assumptions enhanced to Tb1, T

∗b2 ∈
BMOq

κ(μ) with any 1 ≤ q < ∞. We consider this done after §3, and then prove
everything only in this context.

Let us now also comment on the a priori boundedness assumption. Notice that
we only assume the scalar boundedness T : Lp(X) → Lp(X). However, in the proof
we want to actually be able to assume that ‖T ‖ = ‖T ‖Lp(X,Y )→Lp(X,Y ) <∞. Let
us, for this argument, assume that we have shown Theorem 2.1 with this extra
assumption. Consider then any simple function f =

∑N
n=1 χAnyn, where yn ∈ Y

and An ⊂ X with μ(An) < ∞. It follows from the scalar boundedness that
T : Lp(X,E) → Lp(X,E) boundedly for every finite-dimensional subspace E ⊂ Y .
Certainly this trivial bound depends on the dimension, but it has no relevance
since this information is used purely qualitatively. Note that subspaces E ⊂ Y are
UMD with their UMD constants uniformly bounded by the UMD constant of Y .
Therefore, we may conclude that

‖Tf‖Lp(X,Y ) = ‖Tf‖Lp(X,E) � ‖f‖Lp(X,E) = ‖Tf‖Lp(X,Y )

for E = span{yn : n = 1 . . . , N}. Since simple functions are dense in Lp(X,Y ),
Theorem 2.1 follows if we have proven it under this extra assumption.

The scalar boundedness is a separate issue. Certainly most of the time the
point of vector-valued Tb or T 1 theorems is just to ensure that bounded operators
extend to bounded vector-valued operators (see the basic usage in Example 2.3
below). Indeed, the point is that one does not know how to use the scalar-valued
boundedness directly to establish the vector-valued boundedness. Instead, the
idea is to rely on the characterization given by Tb theorems: one proves that
the hypothesis of Tb theorems are enough to actually guarantee the UMD-valued
boundedness. Another important point is the established quantitative bound.
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We still note that one of the standard ways to make operators automatically
bounded in all Lp spaces is by suitably truncating them. Furthermore, we point
out the reference [5], where Hytönen, Liu, Yang and Yang, generalizing the results
of Nazarov, Treil and Volberg [12] to the upper doubling setting, deal with many
standard aspects of this problem.

We give an example before proceeding with the proof of the theorem.

Example 2.3. In Chapter 12 of [6] we gave an example related to the paper [16],
and there the application was in a situation where the measure in question was
genuinely upper doubling (the doubling theory or the theory of power bounded
measures would not have sufficed), and the space was a quasimetric one (so it
really was non-homogeneous theory on metric spaces).

Now we give an example which is actually in the homogeneous situation, but
as the domain is a metric space and the range is a general UMD space, this seems
not to follow from the previous works. Also, it goes to show that it is convenient
to get this doubling theory as a byproduct of the upper doubling theory.

The example we have in mind is the boundedness of the classical Cauchy–
Szegö projection as a UMD-valued operator (this question was asked by Tao Mei
through a private communication with Tuomas Hytönen, and Mei had solved
this question in the special case when the range space Y is a so-called non-
commutative Lp space). The setting is the Heisenberg groupHn, which is identified
with R2n+1, and is a non-abelian group where the group operation is given by

x · y = (x1 + y1, . . . , x2n + y2n, x2n+1 + y2n+1 − 2

n∑
j=1

(xjyj+n − xj+nyn)).

The metric is given by
d(x, y) = ‖x−1 · y‖ ,

where
‖x‖ = (‖(x1, . . . , x2n)‖4R2n + x22n+1)

1/4.

One can also write x = [ξ, t] ∈ Hn = Cn×R. We use the Haar measure for Hn (this
is just the Euclidean Lebesgue measure dξdt on Cn × R). Now λ(x, r) = Cr2n+2

for some appropriate constant C.
Using the above notation x = [ξ, t], let K(x) = C(t+ i|ξ|)−n−1. Set K(x, y) =

K(y−1 · x) for x �= y (i.e. y−1 · x �= 0). The Cauchy–Szegö projection C is an
L2-bounded operator of the form

Cf(x) =

∫
Hn

K(x, y)f(y) dy.

See e.g. [14] for a more exhaustive treatment of the Cauchy–Szegö projection.
Clearly the standard kernel estimates known for K are precisely the same as

demanded by our theory with our chosen λ. Thus, as C is a Calderón–Zygmund
operator which is bounded as a scalar-valued operator (and thus satisfies the BMO
conditions with e.g. b1 = b2 = 1 and the weak boundedness property), we have
by our above Tb (or T 1 in this case) theorem that T is a bounded operator
Lp(Hn, Y ) → Lp(Hn, Y ) for every UMD space Y and for every index p ∈ (1,∞).
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3. John–Nirenberg theorem for Tb1

In this section we work on a geometrically doubling metric space (X, d) with an
upper doubling measure μ. We are given a Calderón–Zygmund operator T with
a standard kernel K and the constants α > 0, κ,Λ > 1. Moreover, we have the
essentially bounded accretive functions b1 and b2. We will show that

(3.1) ‖Tb1‖BMOq
κ(μ) � ‖K‖CZα + ‖Tb1‖BMO1

κ(μ)
+ ‖Mb2TMb1‖WBPΛ

, 1 ≤ q <∞.

Of course, the analogous result holds with T ∗b2.
This reduction is known in the Euclidean setting with a power bounded measure

(see [13]). We now work out the details in our setting.

Lemma 3.1. Consider a fixed ball B = B(cB , rB). There exists RB ∈ [rB, 1.2rB]
so that, for all s ∈ [0, 3/2],

μ({x ∈ X : RB − rBs < d(x, cB) < RB + rBs}) � s μ(B(cB , 3rB)) .

Proof. See page 184 in [13]. �

Lemma 3.2. If B = B(cB , rB) is a ball and RB is a related regularized radius as
in the previous lemma, then it holds that∫

B(cB,RB)

∫
B(cB ,3rB)\B(cB,RB)

|K(x, y)|dμ(y) dμ(x)

� μ(B(cB , RB))
1/2μ(B(cB , 3rB))

1/2

≤ μ(B(cB , 3rB)).

Proof. Consider f(x) =
∫
B(cB ,3rB)\B(cB,RB) |K(x, y)| dμ(y), x ∈ B(cB, RB). Fix

x ∈ B(cB, RB) for the moment and note that we have for all y ∈ B(cB , 3rB) \
B(cB , RB) that d(x, y) ≤ RB + 3rB ≤ 4.2rB < 5rB and d(x, y) ≥ d(y, cB) −
d(x, cB) ≥ RB − d(x, cB). We temporarily set h = RB − d(x, cB) for this fixed x
and estimate

f(x) �
∫
h≤d(x,y)<5rB

dμ(y)

λ(x, d(x, y))
≤

∑
1≤j<log2(10rB/h)

∫
2j−1h≤d(x,y)<2jh

dμ(y)

λ(x, d(x, y))

≤
∑

1≤j<log2(10rB/h)

μ(B(x, 2jh))

λ(x, 2j−1h)
� log(10rB/h) = log

( 10rB
RB − d(x, cB)

)
.

This implies through Hölder’s inequality that∫
B(cB ,RB)

f(x) dμ(x)

� μ(B(cB , RB))
1/2

(∫
B(cB ,RB)

[
log

( 10rB
RB − d(x, cB)

)]2
dμ(x)

)1/2

.
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We then continue to note that∫
B(cB ,RB)

[
log

( 10rB
RB − d(x, cB)

)]2
dμ(x)

equals ∫ ∞

0

μ
({
x ∈ B(cB, RB) :

[
log

( 10rB
RB − d(x, cB)

)]2
> t

})
dt,

which in turn equals∫ ∞

0

μ
({x : RB − 10rBe

−√
t < d(x, cB) < RB}

)
dt =

[
log

(10rB
RB

)]2
μ(B(cB , RB))

+

∫ ∞

[log(10rB/RB)]2
μ
({x : RB − 10rBe

−√
t < d(x, cB) < RB}

)
dt.

Note that
∫∞
0
e−

√
t dt = 2 and use the previous lemma with s = 10e−

√
t ≤

RB/rB ≤ 1.2 < 1.5 for t ≥ [log(10rB/RB)]
2 to get that∫ ∞

[log(10rB/RB)]2
μ({x : RB − 10rBe

−√
t < d(x, cB) < RB}) dt � μ(B(cB , 3rB)).

This yields the claim. �

Theorem 3.3. Under the assumptions stated at the beginning of this section, the
estimate (3.1) holds.

Proof. We will begin by proving that Tb1 ∈ RBMO(μ) with the following interpre-
tation. If d(X) <∞, we set B0 = X . If d(X) = ∞, we write X =

⋃∞
i=1Bi so that

B1 ⊂ B2 ⊂ · · · , and 1.1Bi �= Bi for every i = 1, 2, . . .We consider some fixed i and
set B0 = Bi. We need to show that the function T (χ100B0b1) satisfies the defining
properties of the RBMO(μ) space for all the balls that are subset of B0, and in
such a way that the RBMO(μ) norm does not depend on B0.

Notice that 1.1B0 �= B0 implies that if B ⊂ B0 is a ball, then aB ⊂ (2.1a+1)B0.
We define fB = T (b1χ100B0\4B)(cB) if B ⊂ B0 is a ball.

We note that

|T (b1χ100B0\4B)(x)− T (b1χ100B0\4B)(cB)| � 1,

if B ⊂ B0 is a ball and x ∈ B. Indeed, we have

|T (b1χ100B0\4B)(x) − T (b1χ100B0\4B)(cB)|

�
∫
100B0\4B

|K(x, y)−K(cB, y)| dμ(y) � rαB

∫
X\B

d(cB, y)
−α

λ(cB, (d(cB , y))
dμ(y) � 1.

The last estimate follows from Lemma 2.2 of [6].
Let B ⊂ B1 ⊂ B0 be balls. Notice that∫

B

|T (b1χ100B0)− fB| dμ �
∫
B

|T (b1χ4B)| dμ+ μ(B),
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since, like noted above, there holds

|T (b1χ100B0\4B)(x) − fB| = |T (b1χ100B0\4B)(x) − T (b1χ100B0\4B)(cB)| � 1

for every x ∈ B. Moreover, we have that |fB − fB1 | = |T (b1χ100B0\4B)(cB) −
T (b1χ100B0\4B1

)(cB1)|, and this can be dominated by

|T (b1χ100B0\4B)(cB)− T (b1χ100B0\4B1
)(cB)|

+ |T (b1χ100B0\4B1
)(cB)− T (b1χ100B0\4B1

)(cB1 )|.
Notice that again |T (b1χ100B0\4B1

)(cB)− T (b1χ100B0\4B1
)(cB1)| � 1.

One has to be careful when estimating

|T (b1χ100B0\4B)(cB)− T (b1χ100B0\4B1
)(cB)|.

Let us first study the case B = B1 (as sets, that is, a ball is defined by a pair (c, r)).
This does not necessarily imply anything particular about cB, cB1 and rB, rB1 . We
split this into two cases: 4B1 ⊂ 4B or 4B1 �⊂ 4B. If 4B1 �⊂ 4B, then 4B ⊂ 6B1 ⊂
9B1. If B � B1, then also necessarily 4B ⊂ 9B1. We deduce that if B ⊂ B1, then
at least one of the inclusions 4B1 ⊂ 4B or 4B ⊂ 9B1 is true.

Let us first estimate |T (b1χ100B0\4B)(cB)−T (b1χ100B0\4B1
)(cB)| when we know

that B ⊂ B1 and 4B1 ⊂ 4B. We write

|T (b1χ100B0\4B)(cB)− T (b1χ100B0\4B1
)(cB)|

=
∣∣∣ ∫

100B0\4B
K(cB, y)b1(y) dμ(y)−

∫
100B0\4B1

K(cB, y)b1(y) dμ(y)
∣∣∣

=
∣∣∣ ∫

4B\4B1

K(cB, y)b1(y) dμ(y)
∣∣∣

=
∣∣∣ ∫

4B1\B
K(cB, y)b1(y) dμ(y)−

∫
4B\B

K(cB, y)b1(y) dμ(y)
∣∣∣

�
∫
4B1\B

dμ(y)

λ(cB , d(cB, y))
+

∫
4B\B

dμ(y)

λ(cB , d(cB, y))

=

∫
2B1\B

dμ(y)

λ(cB , d(cB, y))
+

∫
4B1\2B1

dμ(y)

λ(cB , d(cB, y))
+

∫
4B\B

dμ(y)

λ(cB , d(cB, y))
.

Then we note that∫
4B1\2B1

dμ(y)

λ(cB , d(cB , y))
≤ μ(4B1)

λ(cB , rB1)
≤ μ(B(cB , 5rB1))

λ(cB , rB1)
� 1

and ∫
4B\B

dμ(y)

λ(cB, d(cB , y))
≤ μ(4B)

λ(cB , rB)
� 1.

We have shown that

|fB − fB1 | � 1 +

∫
2B1\B

dμ(y)

λ(cB , d(cB , y))

if B ⊂ B1 and 4B1 ⊂ 4B.



Vector-valued non-homogeneous Tb theorem on metric measure spaces 971

Let us then study the more natural case B ⊂ B1 and 4B ⊂ 9B1. Now we
have that

|T (b1χ100B0\4B)(cB)− T (b1χ100B0\4B1
)(cB)|

=
∣∣∣ ∫

9B1\4B
K(cB, y)b1(y) dμ(y)−

∫
9B1\4B1

K(cB, y)b1(y) dμ(y)
∣∣∣

�
∫
2B1\B

dμ(y)

λ(cB , d(cB, y))
+

∫
9B1\2B1

dμ(y)

λ(cB , d(cB , y))
,

and ∫
9B1\2B1

dμ(y)

λ(cB , d(cB, y))
≤ μ(9B1)

λ(cB , rB1)
≤ μ(B(cB , 10rB1))

λ(cB , rB1)
� 1.

We have now established the right bound for |fB−fB1 | for every ball B ⊂ B1 ⊂ B0.

Recalling the definition of RBMO(μ) we notice that we have reduced to con-
trolling

∫
B |T (b1χ4B)| dμ for every ball B ⊂ X . We shall prove that∫

B

|T (χ4Bb1)| dμ � μ(ηB)

for η = max(κ, 3, 2Λ). Given a function g so that ‖g‖L∞(μ) ≤ 1 and spt g ⊂ B it
suffices to show that |〈T (χ4Bb1), gb2〉| ≤ μ(ηB). Define c by setting

c =

∫
B gb2 dμ∫
B̃
b2 dμ

,

where B̃ = B(cB, RB) and RB is a regularized radius given by Lemma 3.1. We
have |c| � μ(B)/μ(B̃) ≤ 1 by the accretivity of b2. The definition of c precisely
means that

∫
(gb2−cb2χB̃) dμ = 0. Moreover, there holds ‖gb2−cb2χB̃)‖L∞(μ) � 1

and spt(gb2 − cb2χB̃) ⊂ B̃ ⊂ 2B.
We now split

〈T (b1χ4B), gb2〉 = 〈T (b1χ4B), gb2 − cb2χB̃〉+ c
( 〈T (b1χ4B\B̃), b2χB̃〉

+ 〈T (b1χB̃), b2χB̃〉
)
.

Write h = gb2 − cb2χB̃. We have that

〈T (b1χ4B), h〉 = 〈Tb1, h〉 −
∫
(4B)c

b1(x)T
∗h(x) dμ(x) ,

from which it follows that

|〈T (b1χ4B), h〉| � μ(κB) + μ(2B) � μ(ηB).

Here it was used that Tb1 ∈ BMO1
κ(μ). The bound μ(2B) comes from the second

term via kernel estimates. Lemma 3.2 yields that |〈T (b1χ4B\B̃), b2χB̃〉| � μ(3B).



972 H. Martikainen

The fact that here we have 4B\B̃ instead of 3B\B̃ makes absolutely no difference,
since ∫

B̃

∫
4B\3B

1

λ(x, d(x, y))
dμ(y) dμ(x) ≤

∫
B̃

μ(B(x, 6rB))

λ(x, rB)
dμ(x) � μ(2B).

Finally, the property ‖Mb2TMb1‖WBPΛ <∞ yields |〈T (b1χB̃), b2χB̃〉| � μ(2ΛB).

We have established that Tb1 ∈ RBMO(μ). We have by Corollary 6.3 of [8] that
the BMOq

ρ(μ) norm can be dominated by the RBMO(μ) norm for every q ∈ [1,∞)
and for every ρ > 1 (note that the corollary is, indeed, proven in the context of a
geometrically doubling metric space equipped with an upper doubling measure).
This, in particular, implies the estimate (3.1). �

4. Random dyadic systems and good/bad cubes

One feature of the proof in [9] is that one basically takes all the cubes to be good in
the various summations – this is in contrast with the proof in [6] where things were
usually summed so that the bigger cubes are arbitrary but the smaller cubes from
the other grid were assumed to be good. This modification seems to be particularly
useful when dealing with certain paraproducts in these general UMD spaces.

This leads us to fiddle with our randomization from [6]. We shall make the
randomization so that there is no removal procedure involved (unlike in [6]) – then
a certain index set may serve as a fixed reference set more conveniently. Such a
modification is also used in the paper [4] by T. Hytönen and A. Kairema, where
the authors, among other things, provide a streamlined version of the dyadic con-
structions presented in [6].

Furthermore, we will change the definition of a good cube to be such that
given a cube Q its change to be good does not depend on the smaller cubes R
with �(R) ≤ �(Q). Related to this we shall also make a minor tweak to our half-
open cubes from [6] (to get a better dependence on the randomized dyadic points).
This is also spelled out in [4]. Finally, we add a layer of artificial badness so
that P(Q is good) does not depend on the particular choice of the cube Q.

Remark 4.1. The basic source of these randomization techniques in metric spaces
is [6]. However, as stated, we need some modifications for the purposes of this
paper. When writing the first version of this article, the paper [4] was not yet
available. However, I learned about the trick of avoiding the removal procedure
from the authors through a private communication. Moreover, the paper [1] by
P. Auscher and T. Hytönen has also become available. Striving for the most
simple and state of the art approach, I will also borrow, in this revision, a few
nice simplifying and expository details from [1]. Certainly we will not repeat every
detail here, but we do present the basic aspects of the construction so that one may
clearly follow the metric probabilistic arguments, some of which are completely new
in this paper (like the pseudogoodness).
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4.1. Construction of the random dyadic cubes

Let δ = 1/1000. One starts by constructing a collection of points (zkα)k,α so that
for every k ∈ Z:

(i) {zkα}α ⊂ {zk+1
β }β ;

(ii) minα d(x, z
k
α) < 2δk for every x ∈ X ;

(iii) d(zkα, z
k
β) ≥ δk for α �= β.

In page 4 of [1] it was noted that one may easily arrange the extra property (i)
by allowing the harmless factor 2 in (ii). Before this, it was standard to just use
some maximal δk-separated sets for every k ∈ Z, and not to necessarily have the
property (i). The property (i) is just an added convenience for us: every point zkα
is also of the form zk+1

β .

Note that the above set of points zkα and indices (k, α) are now fixed once and
for all. Now we will further fix a transitive relation ≤ among the labels (k, α)
as follows: each (k + 1, β) satisfies (k + 1, β) ≤ (k, α) for exactly one (k, α), and
we have that if d(zk+1

β , zkα) < δk/2, then necessarily (k + 1, β) ≤ (k, α), and that

(k + 1, β) ≤ (k, α) always implies that d(zk+1
β , zkα) < 2δk.

We call pairs of same generation (k, α) and (k, β) neighbours, if they have such
children (k + 1, γ) ≤ (k, α) and (k + 1, η) ≤ (k, β) that d(zk+1

γ , zk+1
η ) < δk/2. The

whole idea of the randomization procedure is to replace, according to some rule,
each zkα by some zk+1

β , (k + 1, β) ≤ (k, α). However, we cannot allow the new
dyadic points to end up arbitrarily close to each other. Hence neighbours form
an obstruction, which has to be circumvented. In [6] we used a certain removal
procedure. However, we will this time circumvent this particular problem by using
the idea of double labels from [4] together with some simplification from [1].

Let L be the maximal number of neighbours andM be the maximal number of
children a pair (k, α) can have. It follows from the geometric doubling condition
that L � 1 andM � 1. We will now equip each pair (k, α) with two labels L1(k, α)
and L2(k, α). The label L1(k, α) ∈ {0, 1, . . . , L} is chosen in a way that any two
neighbours have a different label. The label L2(k, α) ∈ {0, 1 . . . ,M} is chosen in a
way that no two children of the same parent have the same label.

We let Υ = ({0, 1, . . . , L}× {0, 1 . . . ,M})Z be the underlying probability space
equipped with the natural product probability measure. Given υ = (υk)k∈Z ∈ Υ,
υk = (�1,k, �2,k), and a pair (k, α), define

xkα(υ) = xkα(υk) =

⎧⎪⎪⎨⎪⎪⎩
zk+1
β , if L1(k, α) = �1,k and (k + 1, β) ≤ (k, α)

with L2(k + 1, β) = �2,k,
zkα, if L1(k, α) �= �1,k or there is no (k + 1, β) ≤ (k, α)

with L2(k + 1, β) = �2,k.

Notice carefully that the new dyadic points of generation k depend only on υk.
This means by the product probability structure that the new dyadic points of
different generations are independently chosen. The following list gives the other
crucial, but almost immediate, properties:
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1. We have for every υ ∈ Υ that xkα(υ) = zk+1
β for some (k + 1, β) ≤ (k, α).

2. Given (k, α) and a children (k + 1, β) ≤ (k, α) there holds that P({υ ∈ Υ :
xkα(υ) = zk+1

β }) ≥ π0 for some absolute π0 > 0 depending only on the
geometric doubling condition.

3. For every υ ∈ Υ we have minα d(x, x
k
α(υ)) < 4δk for every k ∈ Z and x ∈ X .

Moreover, there holds d(xkα(υ), x
k
β(υ)) ≥ δk/2 if α �= β.

Fix some k0 ∈ Z. This preassigned index is used purely for technical reasons
as will become clear. Given new dyadic points x
β = x
β(υ
), we want to construct

certain sets Qk
α = Qk

α(υ), which are called metric dyadic cubes. The original
deterministic construction of sets of such type is by M. Christ [2]. Moreover, we
want that if k ≤ k0, the cube Qk

α depends only on υ
 for � ≥ k.

We will now indicate the construction of the cubes. For this, we need a new
relation ≤υ. It would be possible to construct this like the relation ≤ was con-
structed (just using the new dyadic points and a bit different constants). We note
that the construction has some degrees of freedom, but any one way to do it is
ok. Then the truth or falsity of the relation (k + 1, β) ≤υ (k, α) depends on υk
and υk+1. However, we shall use the following explicit definition of ≤υ given in [1]:
(k + 1, β) ≤υ (k, α) if and only if

d(zk+1
β , xkα(υk)) < δk/4

or

(k + 1, β) ≤ (k, α) and there is no such γ that d(zk+1
β , xkγ(υk)) < δk/4.

Defined like this the truth or falsity of the relation (k+1, β) ≤υ (k, α) depends
only on υk – a fact that is by no means crucial for us, but we prefer it anyway.
What is important is that this definition still implies the following:

1. If d(xk+1
β (υk+1), x

k
α(υk)) < δk/5, then (k + 1, β) ≤υ (k, α).

2. If (k + 1, β) ≤υ (k, α), then d(xk+1
β (υk+1), x

k
α(υk)) < 5δk.

This means that it behaves analogously to ≤ despite the bit different definition.
The property (2) is easily iterated to yield that if (�, β) ≤υ (k, α), then

d(x
β(υ
), x
k
α(υk)) < 6δk.

We may now define various dyadic cube type objects:

Q̂k
α(υ) = {x
β(υ
) : (�, β) ≤υ (k, α)},

Q̄k
α(υ) = Q̂k

α(υ),

Q̃k
α(υ) = int Q̄k

α(υ),

where the overline means closure and int means the interior points. Notice that
all of these sets depend only on υ
 for � ≥ k.
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Just like in Rn, instead of these closed or open dyadic cubes, we prefer to use
what can be understood as half-open dyadic cubes (these will be finally denoted
by Qk

α(υ)). With this we mean that the cubes of the same generation will cover
exactly the whole X and two different cubes of the same generation will be disjoint.
It is true that X =

⋃
α Q̄

k
α(υ) with any k ∈ Z, but there may be overlap in the

boundaries. Indeed, one only knows that Q̄k
α(υ) ∩ Q̃k

β(υ) = ∅ for α �= β.

This further minor tuning of the existing sets will worsen the dependence on υ.
However, this problem is not too big, since one is free to choose the k0, and one
may perform the tuning so that the dependence remains the same for k ≤ k0.
Assume (by enumeration) that the pairs (k, α) are parametrized by α ∈ N for each
k ∈ Z. We set

Qk0
0 (υ) = Q̄k0

0 (υ), Qk0
α (υ) = Q̄k0

α (υ) \
α−1⋃
β=0

Qk0

β (υ), α ≥ 1.

For k < k0 we set

Qk
α(υ) =

⋃
β: (k0,β)≤υ(k,α)

Qk0

β (υ).

Notice that, indeed, these sets still depend only on υ
 for � ≥ k. The way to define
Qk

α(υ) for k > k0 is by induction. The easy details are spelled out in Theorem 4.4
of [6] for k0 = 0 and in Lemma 2.18 of [4] with general k0 ∈ Z (the difference being
absolutely trivial). We shall not repeat this, since what we have said is enough to
thoroughly understand the dependence on υ
 at least for all the cubes of generation
k ≤ k0, and this will be enough for us (we do not actually use arbitrarily small
cubes at all). Let us formulate the dyadic structure of these sets as a proposition.
For a verification that our definitions actually yield these properties, the most
thorough reference by now is [4].

Proposition 4.2. For any fixed υ the cubes Qk
α(υ) satisfy: for every k ∈ Z we

have

X =
⋃
α

Qk
α(υ);

for every k ∈ Z and � ≥ k there holds that either Qk
α(υ) ∩ Q


β(υ) = ∅ or Q

β(υ) ⊂

Qk
α(υ), and for every � ≥ k we have

Qk
α(υ) =

⋃
β:(
,β)≤υ(k,α)

Q

β(υ).

We also have that Q̃k
α(υ) ⊂ Qk

α(υ) ⊂ Q̄k
α(υ). Actually, there holds intQk

α(υ) =

Q̃k
α(υ) and Qk

α(υ) = Q̄k
α(υ). Finally, we note that B(xkα(υ), C1δ

k) ⊂ Qk
α(υ) and

the diameter d(Qk
α(υ)) < C0δ

k for C0 = 10 and C1 = 1/10, say. We now define
�(Qk

α(υ)) = δk – a constant that depends only on the generation gen(Qk
α(υ)) = k.

Therefore, many things can be formulated completely equivalently using either the
“sidelength” �(Qk

α(υ)) or generation gen(Qk
α(υ)).
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4.2. Probabilistic notions: geometric goodness, pseudogoodness and
goodness

The following crucial lemma, which states the small boundary layer property, is
based on the independence of different υk and the following: given (k, α) and
(k + 1, β) ≤ (k, α), there holds that P(xkα = zk+1

β ) ≥ π0 > 0. Recall that this
property was already stated before. Now the same proof as in Lemma 10.1 of [6]
also gives us the same result with this modified randomization. That is, we have:

Lemma 4.3. For any fixed x ∈ X and k ∈ Z, there holds

P
(
x ∈

⋃
α

δQk
α

)
� εη

for some η > 0. Here δQk
α
= {y : d(y,Qk

α) ≤ ε�(Qk
α) and d(y,X \Qk

α) ≤ ε�(Qk
α)}.

Proof. We point out a different source for the proof than Lemma 10.1 of [6]. It
is page 7 of [1], and the proof there is particularly nice. It is formulated in a
slightly different way. To see that it can be applied, one only has to notice that⋃

α δQk
α(υ) ⊂

⋃
α δk,α(υ), where

δk,α(υ) = {y ∈ Q̄k
α(υ) : d(y,X \ Q̃k

α(υ)) ≤ εδk}.
Therefore, it suffices to show that P(x ∈ ∪αδk,α(υ)) � εη for any fixed x ∈ X and
k ∈ Z. This is what is shown in page 7 of [1]. �

We are now given two independent copies Υ and Υ′ of the probability space
({0, 1, . . . , L} × {0, 1 . . . ,M})Z, and we denote υ ∈ Υ and υ′ ∈ Υ′. This generates
two independent dyadic systems D = Dυ = {Qk

α(υ)} = {Qk
α} and D′ = Dυ′ =

{Rk
α(υ

′)} = {Rk
α} (we use the notation Rk

α just to distinguish the grids more
easily). We denote the related points xkα = xkα(υk) and y

k
α = ykα(υ

′
k).

We set
γ :=

α

2(α+ d)
,

where we recall that d := log2 Cλ in our setting. We now want to define what we
mean by geometric goodness. We want that ifQ ∈ D is geometricallyD′-good, then
for every R ∈ D′ for which �(Q) ≤ δr�(R) we have either d(Q,R) � �(Q)γ�(R)1−γ

or d(Q,X \ R) � �(Q)γ�(R)1−γ . However, if we define it like this, then for every
Q the condition in particular depends on υ′
 for every �. However, for technical
reasons, we need it to only depend on υ′
 for � < gen(Q). We now give a technical
definition, which only has the aforementioned dependence. Then we show that it
implies the much more natural geometric condition – the proof of this fact should
be the key to understanding the sufficiency of the technical definition.

Definition 4.4. We say that Qk
α ∈ D is geometrically D′-bad, if there exists

(k− s, β) �= (k− s, γ) for some s ≥ r so that for some (k − 1, η) ≤υ′ (k − s, β) and
(k − 1, ξ) ≤υ′ (k − s, γ) we have d(xkα, y

k−1
η ) ≤ δγkδ(1−γ)(k−s) and d(xkα, y

k−1
ξ ) ≤

δγkδ(1−γ)(k−s). Otherwise Qk
α is geometrically D′-good.
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Remark 4.5. Note that the geometric goodness is actually a property of the
center xkα(υk) and not of the cube. This notion depends on υk and υ′
 for � < k.

The usage of this lesser dependence will be as follows. Suppose gen(Q) ≤
gen(R) ≤ k0, that is δ

k0 ≤ �(R) ≤ �(Q) for Q ∈ D and R ∈ D′. The cube R as a
set depend on υ′
 for � ≥ gen(R). The geometric goodness of Q depends on υ′
 for
� < gen(Q) ≤ gen(R). So in view of the probability Pυ′ , these are independent.

Let us then explain why this is still pretty close to the definition given in [6].
That is, why it implies the natural geometric condition.

Note that δk = δ(1−γ)s · δγkδ(1−γ)(k−s) and δ(1−γ)s ≤ δ(1−γ)r < 10−5 (as r
is fixed to be big enough). Suppose Qk

α is geometrically D′-good and s ≥ r.
We have that xkα ∈ Rk−1

η ⊂ Rk−s
β for some unique (k − 1, η) ≤υ′ (k − s, β).

Now d(xkα, y
k−1
η ) < 10δk−1 = 104δk < δγkδ(1−γ)(k−s). Suppose (aiming for a

contradiction) that we would have d(xkα, X \ Rk−s
β ) < (3/4)δγkδ(1−γ)(k−s). Then

we would have for some z ∈ X \ Rk−s
β that d(xkα, z) ≤ (3/4)δγkδ(1−γ)(k−s). But

then z ∈ Rk−1
ξ ⊂ Rk−s

γ for some (k − 1, ξ) ≤υ′ (k − s, γ) �= (k − s, β), and

d(xkα, y
k−1
ξ ) ≤ d(xkα, z) + d(z, yk−1

ξ ) ≤ [3/4 + 10−1]δγkδ(1−γ)(k−s) < δγkδ(1−γ)(k−s)

contradicting the goodness of Qk
α. So we must have

d(Qk
α, X \Rk−s

β ) ≥ d(xkα, X \Rk−s
β )− 10δk

≥ [3/4− 10−4]δγkδ(1−γ)(k−s) ≥ 2−1δγkδ(1−γ)(k−s).

Thus also d(Qk
α, R

k−s
γ ) ≥ 2−1δγkδ(1−γ)(k−s) for every γ �= β. We record these easy

observations as a lemma.

Lemma 4.6. If Q ∈ D is geometrically D′-good, then for every R ∈ D′ for
which �(Q) ≤ δr�(R) we have either d(Q,R) � �(Q)γ�(R)1−γ or d(Q,X \ R) �
�(Q)γ�(R)1−γ .

If Qk
α is geometrically D′-bad, then the definition demands that for some s ≥

r we have that xkα ∈ Rk−s ∈ D′ so that d(xkα, X \ Rk−s) ≤ δγkδ(1−γ)(k−s) =
δγsδk−s = δγs�(Rk−s). Lemma 4.3 with ε = δγs then yields that

P(Qk
α is geometrically D′-bad) �

∞∑
s=r

(δγη)s � δrγη.

We have proved the following:

Lemma 4.7. For a fixed Q ∈ D we have under the random choice of the D′-grid
that

P(Q is geometrically D′-bad) � δrγη.

We still need to achieve the effect that P(Q is good) would not depend on the
particular choice of the cube Q (in Rn this followed from symmetry, see [9]). That
is, we want to make it a constant independent of (k, α) and υ. There seems to be
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no obvious reason why this should be the case already, so we will force this by
understanding goodness in a stronger sense: a cube is good if it is geometrically
good and pseudogood (an extra condition that scales the probability down).

Define πk,α(υk) = Pυ′(xkα(υk) is geometrically good) (recall that the geometric
goodness is actually a property of the center and not of the cube). Set πgood =
1−Cδrγη so that always πk,α(υk) ≥ πgood. For every (k, α) we take an independent
uniformly on [0, 1] distributed random variable tkα. We say that Qk

α(υ) (or rather
the triple (k, α, υk)) is pseudogood if tkα ∈ [0, πgood/πk,α(υk)]. Then we define
that Qk

α(υ) is D′-good if it is geometrically D′-good and pseudogood. Consider
the grid D fixed – that is, consider υ fixed. There holds P(Qk

α is D′-good) =
Pυ′(Qk

α is geometrically D′-good)P(tkα ∈ [0, πgood/πk,α(υk)]) = πgood (notice that
with fixed υ the geometric goodness depends only on υ′ and the pseudogoodness
on tkα). We use independent uniformly on [0, 1] distributed random variables ukα to
define pseudogoodness (and then D-goodness) for pairs (k, α, υ′k) (that is for the
grid D′).

Basically all these modification were done to prove the following analogue of
Lemma 5.2 of [9] with our randomized systems of metric dyadic cubes. This enables
us to later establish that a certain paraproduct is bounded following the strategy
used in [9].

First a few comments. In the following section we shall introduce two fixed
functions f and g, and their martingale difference decompositions using Haar func-
tions. The aim is then to control a certain average (5.1). The details of this are
not important for the next lemma, except for the fact that looking at that partic-
ular sum one sees that it is enough to sum over some fixed finite index set (k, α)
(because the functions have bounded support, the space is geometrically doubling,
and cubes of only finitely many generations are needed). Thus, we assume that
such is the case in the next lemma also. This enables us to move E in and out
the summation freely (see the proof). Also, ϕ(Q,R) is an L1-function of cubes Q
and R and their children – basically in the only application of this lemma we take
ϕ(Q,R) = 〈g, ψR〉〈b2, T (b1ϕQ)〉〈ψR〉Q〈ϕQ, f〉 (see Sections 5 and 8).

Lemma 4.8. We have that

(1− Cδrγη) E
∑
R∈D′

∑
Q∈Dgood

δk0<
(Q)≤
(R)

ϕ(Q,R) = E
∑

R∈D′
good

∑
Q∈Dgood

δk0<
(Q)≤
(R)

ϕ(Q,R),

where the grid D′ is fixed (so υ′ is fixed) and we average over every other random
quantity υ, tkα, u

k
α.

Proof. We start by recalling the dependencies (remember that the υ′ is fixed).
The goodness of Rm

γ (υ′) (or χgood(R
m
γ (υ′))) depends on umγ and υ
 for � < m.

The goodness of Qk
α(υ) depends on υk and tkα. The Qk

α(υ) and its children as
sets are determined by υ
, � ≥ k (this uses the fact that k + 1 ≤ k0). Therefore,
χgood(Q

k
α(υ))ϕ(Q

k
α(υ), R

m
γ (υ′)) depends on υ
, � ≥ k, and on and tkα. This means

that χgood(R
m
γ (υ′)) and χgood(Q

k
α(υ))ϕ(Q

k
α(υ), R

m
γ (υ′)) are independent for m ≤

k < k0. Moreover, 1− Cδrγη = πgood = P(Rm
γ (υ′) ∈ D′

good) = E(χgood(R
m
γ (υ′))).
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Using this information we may now calculate

πgood E
∑
R∈D′

∑
Q∈Dgood

δk0<
(Q)≤
(R)

ϕ(Q,R)

= πgood E
∑
(m,γ)

∑
(k,α)

m≤k<k0

χgood(Q
k
α)ϕ(Q

k
α, R

m
γ )

=
∑
(m,γ)

∑
(k,α)

m≤k<k0

E(χgood(R
m
γ ))E(χgood(Q

k
α)ϕ(Q

k
α, R

m
γ ))

=
∑
(m,γ)

∑
(k,α)

m≤k<k0

E(χgood(R
m
γ )χgood(Q

k
α)ϕ(Q

k
α, R

m
γ ))

= E
∑

R∈D′
good

∑
Q∈Dgood

δk0<
(Q)≤
(R)

ϕ(Q,R).

Let us still spell out the details of the above computation. We first removed
everything that is random from the summations. Then we moved the expectation
inside the summation (the sum is finite by assumption), and after that we also
moved the constant πgood = 1 − Cδrγη inside the summation noting then that
it equals E(χgood(R

m
γ )) with any (m, γ). Next we used the product rule of ex-

pectations of independent quantities. Finally, we moved the expectation out and
rewrote the summation so that it again contains the random quantities. �

5. Martingale difference decomposition, Haar functions and
the tangent martingale trick

We remind the reader of the reductions done in Remark 2.2. That is, we are
proving Theorem 2.1 under the additional assumptions that ρ = d is a metric,
‖T ‖Lp(X,Y )→Lp(X,Y ) <∞ (Y is a fixed UMD-space), |〈T (χAb1), χAb2〉| � μ(A) for
any Borel set A ⊂ X , and that Tb1, T

∗b2 ∈ BMOq
κ(μ) with any 1 ≤ q <∞.

Let us be given some system of cubes {Qk
α} and some accretive function b. We

set (we use the notation 〈f〉A = μ(A)−1
∫
A
f dμ for the average of a function f

over a set A)

Eb
kf =

∑
α

〈f〉Qk
α
〈b〉−1

Qk
α
χQk

α
b,

Eb
Qk

α
f = χQk

α
Eb

kf,

Δb
kf = Eb

k+1f − Eb
kf,

Δb
Qk

α
f = χQk

α
Δb

kf.



980 H. Martikainen

Consider a cube Q. It has subcubes of the next generation Qi, i = 1, . . . , s(Q),

where s(Q) � 1. We set Q̂k =
⋃s(Q)

i=k Qi, and note that we can always arrange

the indexation of the subcubes to be such that |b(Q̂k)| � μ(Q) for every k =
1, . . . , s(Q). Indeed, we can index so that (here a is the accretivity constant of b)

|b(Q̂k)| ≥
(
1− k − 1

s(Q)

)
a μ(Q) � μ(Q),

and this can proven as Lemma 4.3 in [9]. Note also that trivially |b(Q̂k)| � μ(Q)
(so |b(Q̂k)| ∼ μ(Q)) and |b(Qi)| ∼ μ(Qi).

Now define
Δb

Q,uf = Eb
Qu
f + Eb

Q̂u+1
f − Eb

Q̂u
f

also noting that

Δb
Qf =

s(Q)−1∑
u=1

Δb
Q,uf.

A computation shows that

Δb
Q,uf = bϕb

Q,u〈ϕb
Q,u, f〉,

where we have the adapted Haar functions

ϕb
Q,u =

(b(Qu)b(Q̂u+1)

b(Q̂u)

)1/2( χQu

b(Qu)
−

χQ̂u+1

b(Q̂u+1)

)
as in [9]. Here we have to interpret ϕb

Q,u = 0 if μ(Qu) = 0. We also have the
non-cancellative (does not, in general, have zero integral) adapted Haar function

ϕb
Q,0f = b(Q)−1/2χQ

using which we write Eb
Qf = b ϕb

Q,0 〈ϕb
Q,0, f〉.

We record the key properties (the last two being only important special cases):∫
b ϕb

Q,u dμ = 0,

|ϕb
Q,u| ∼ μ(Qu)

1/2
( χQu

μ(Qu)
+
χQ̂u+1

μ(Q)

)
,

‖ϕb
Q,u‖Lp(X) ∼ μ(Qu)

1/p−1/2

and
‖ϕb

Q,u‖L1(X) ‖ϕb
Q,u‖L∞(X) ∼ 1.

Given a dyadic system D = {Q} we can write with any m that

f =
∑
Q∈D


(Q)≤δm

Δb1
Q f +

∑
Q∈D


(Q)=δm

Eb1
Q f =

∑
Q∈D


(Q)≤δm

∑
u

b1ϕ
b1
Q,u〈ϕb1

Q,u, f〉,

where the u summation runs through 1, . . . , s(Q) − 1 if �(Q) < δm, and through
0, 1, . . . , s(Q)− 1 if �(Q) = δm. The unconditional convergence of this in Lp(X,Y )
is not at all clear, but it nevertheless follows as in Proposition 4.1 of [9] (note that
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in that proof certain abstract paraproducts are used, but their theory is formulated
in Chapter 3 of [9] in an abstract filtered space which directly applies also in our
situation).

Basically the strategy we shall use is the usual one: write the same decom-
position for a function g ∈ Lp′

(X,Y ∗) just using some other grid D′ = {R} and
the other test function b2, and then decompose the pairing 〈g, T f〉 accordingly.
However, Lemma 4.8 has the restriction involving k0 (which we have not yet fixed)
and so we somehow need to get into a situation where we do not need to consider
arbitrarily small cubes.

We start by choosing two boundedly supported functions f ∈ Lp(X,Y ) and
g ∈ Lp′

(X,Y ∗) so that f/b1 and g/b2 are Lipschitz, ‖f‖Lp(X,Y ) = ‖g‖Lp′(X,Y ∗) = 1

and ‖T ‖ ≤ 2|〈g, T f〉|. Here, of course, ‖T ‖ = ‖T ‖Lp(X,Y )→Lp(X,Y ). For the fact
that Lipschitz functions are dense, see e.g. the proof of Proposition 3.4 of [8]. We
now also fix m so that the supports of the functions f and g are contained in some
balls B(x0, δ

m) and B(x1, δ
m) respectively. The k0 can now be fixed to be so big

that δk0 is small enough for the estimates that follow.
Using any two dyadic systems D and D′ we decompose

〈g, T f〉 = 〈g − Eb2
k0
g, T f〉+ 〈Eb2

k0
g, T (f − Eb1

k0
f)〉+ 〈Eb2

k0
g, T (Eb1

k0
f)〉,

and then estimate

|〈g, T f〉| ≤ ‖T ‖‖g − Eb2
k0
g‖Lp′(X,Y ∗)‖f‖Lp(X,Y )

+ ‖T ‖‖Eb2
k0
g‖Lp′(X,Y ∗)‖f − Eb1

k0
f‖Lp(X,Y ) + |〈Eb2

k0
g, T (Eb1

k0
f)〉|.

Note that ‖Eb2
k0
g‖Lp′(X,Y ∗) � ‖g‖Lp′(X,Y ∗) = 1 so that we get

|〈g, T f〉| ≤ (C(b2)‖f−Eb1
k0
f‖Lp(X,Y )+‖g−Eb2

k0
g‖Lp′(X,Y ∗))‖T ‖+|〈Eb2

k0
g, T (Eb1

k0
f)〉|.

Next we employ the facts that f/b1 and g/b2 are Lipschitz (with a constant L,
say). Let h = f/b1. Let x ∈ X and then let Q denote the unique D-cube of
generation k0 containing x. We have that

‖Eb1
k0
f(x)− f(x)‖Y � ‖〈b1〉Qh(x)− 〈b1h〉Q‖Y

≤ 1

μ(Q)

∫
Q

|b1(z)| ‖h(z)− h(x)‖Y dμ(z)

� Ld(Q) � Lδk0 .

Noting that
⋃{Q : Q ∈ Dk0 , Q ∩B(x0, δ

m) �= ∅} ⊂ B(x0, 2δ
m) we have that

‖f − Eb1
k0
f‖Lp(X,Y ) � Lλ(x0, δ

m)1/pδk0 .

A similar estimate holds for ‖g − Eb2
k0
g‖Lp′(X,Y ∗). The k0 is so large that we have

‖T ‖/2 ≤ |〈g, T f〉| ≤ ‖T ‖/4 + |〈Eb2
k0
g, T (Eb1

k0
f)〉|,

that is, ‖T ‖ ≤ 4|〈Eb2
k0
g, T (Eb1

k0
f)〉| with any grids D and D′ (but only with these

particular fixed functions f and g, of course).
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Now we write 〈Eb2
k0
g, T (Eb1

k0
f)〉 as the following sum:〈 ∑

R∈D′
bad

δk0<
(R)≤δm

Δb2
R g +

∑
R∈D′

bad


(R)=δm

Eb2
R g, T (E

b1
k0
f)
〉

+
〈 ∑

R∈D′
good

δk0<
(R)≤δm

Δb2
R g +

∑
R∈D′

good


(R)=δm

Eb2
R g, T

( ∑
Q∈Dbad

δk0<
(Q)≤δm

Δb1
Q f +

∑
Q∈Dbad


(Q)=δm

Eb1
Q f

)〉

+
∑

Q∈Dgood, R∈D′
good

δk0<
(Q), 
(R)≤δm

∑
u,v

〈ϕb2
R,v, g〉〈b2ϕb2

R,v, T (b1ϕ
b1
Q,u)〉〈ϕb1

Q,u, f〉,

where the u summation runs through 1, . . . , s(Q) − 1 if �(Q) < δm, and through
0, 1, . . . , s(Q)− 1 if �(Q) = δm, and similarly for the v summation. We thus have
that ‖T ‖/4 is bounded by the sum of the following terms:

‖T ‖
∥∥∥ ∑

R∈D′
bad

δk0<
(R)≤δm

Δb2
R g +

∑
R∈D′

bad


(R)=δm

Eb2
R g

∥∥∥
Lp′(X,Y ∗)

‖Eb1
k0
f‖Lp(X,Y ),

‖T ‖
∥∥∥∥ ∑

R∈D′
good

δk0<
(R)≤δm

Δb2
R g +

∑
R∈D′

good


(R)=δm

Eb2
R g

∥∥∥∥
Lp′(X,Y ∗)

∥∥∥∥ ∑
Q∈Dbad

δk0<
(Q)≤δm

Δb1
Q f +

∑
Q∈Dbad


(Q)=δm

Eb1
Q f

∥∥∥∥
Lp(X,Y )

and ∣∣∣∣ ∑
Q∈Dgood, R∈D′

good

δk0<
(Q), 
(R)≤δm

∑
u,v

〈ϕb2
R,v, g〉〈b2ϕb2

R,v, T (b1ϕ
b1
Q,u)〉〈ϕb1

Q,u, f〉
∣∣∣∣.

Note that clearly

‖Eb1
k0
f‖Lp(X,Y ) � ‖f‖Lp(X,Y ) = 1

and ∥∥∥∥ ∑
R∈D′

good


(R)=δm

Eb2
R g

∥∥∥∥
Lp′(X,Y ∗)

� ‖g‖Lp′(X,Y ∗) = 1.

Also, using unconditionality and the contraction principle, we have that∥∥∥∥ ∑
R∈D′

good

δk0<
(R)≤δm

Δb2
R g

∥∥∥∥
Lp′(X,Y ∗)

� ‖g‖Lp′(X,Y ∗) = 1.
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Thus, the terms involving bad cubes are dominated by

‖T ‖
[∥∥∥∥ ∑

R∈D′
bad

δk0<
(R)≤δm

Δb2
R g +

∑
R∈D′

bad


(R)=δm

Eb2
R g

∥∥∥∥
Lp′(X,Y ∗)

+

∥∥∥∥ ∑
Q∈Dbad

δk0<
(Q)≤δm

Δb1
Q f +

∑
Q∈Dbad


(Q)=δm

Eb1
Q f

∥∥∥∥
Lp(X,Y )

]
.

Taking expectations over all the random quantities in the randomization of cubes,
it is easy to see that

E

∥∥∥∥ ∑
R∈D′

bad


(R)=δm

Eb2
R g

∥∥∥∥
Lp′(X,Y ∗)

+ E

∥∥∥∥ ∑
Q∈Dbad


(Q)=δm

Eb1
Q f

∥∥∥∥
Lp(X,Y )

� η(r),

where η(r) → 0 when r → ∞. Working similarly as later in Section 9 (when
estimating a certain term B) we have that

E

∥∥∥∥ ∑
R∈D′

bad

δk0<
(R)≤δm

Δb2
R g

∥∥∥∥
Lp′(X,Y ∗)

+ E

∥∥∥∥ ∑
Q∈Dbad

δk0<
(Q)≤δm

Δb1
Q f

∥∥∥∥
Lp(X,Y )

� η(r)

as well. One can consult Chapter 12 of [9] too. The proof requires a certain im-
provement of the contraction principle recalled in Proposition 9.1 (this is Lemma 3.1
of [7]).

Choosing r large enough we thus have that

(5.1) ‖T ‖/8 ≤ E

∣∣∣∣ ∑
Q∈Dgood, R∈D′

good

δk0<
(Q), 
(R)≤δm

∑
u,v

〈ϕb2
R,v, g〉〈b2ϕb2

R,v, T (b1ϕ
b1
Q,u)〉〈ϕb1

Q,u, f〉
∣∣∣∣.

We almost always suppress the finite summation over u, v and after that is done,
simply write ϕQ = ϕb1

Q,u, ψR = ϕb2
R,v and TRQ = 〈b2ψR, T (b1ϕQ)〉. The summation

condition δk0 < �(Q), �(R) ≤ δm is always in force, and thus most of the time
not explicitly written. The estimation of this series involving good cubes only is
now split into multiple subseries to be considered in the subsequent sections. We
primarily deal with the part �(Q) ≤ �(R) the other being symmetric. Although we
have ‖f‖Lp(X,Y ) = ‖g‖Lp′(X,Y ∗) = 1, in some of the estimates below we explicitly

write ‖f‖Lp(X,Y ) and ‖g‖Lp′(X,Y ∗) in place of 1 for clarity.
We still comment on some of the techniques used on the following sections.

We use independent random signs εk with P(εk = 1) = P(εk = −1) = 1/2. The
underlying probability space for these signs is denoted by Ω. They are often indexed
by cubes rather than the size of cubes in situations, where there is for some reason
at most one non-zero term for every generation of cubes.
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Related to this vector-valued Lp-theory we combine basic randomization tricks
with the more sophisticated tool called the tangent martingale trick in [9]. Let us
now formulate this since it is of fundamental importance to us (this is Corollary 6.3
of [9]).

Proposition 5.1. Let A =
⋃

k Ak, where Ak is a countable partition of X into
Borel sets of finite μ-measure, and the generated σ-algebras σ(Ak) satisfy σ(Ak) ⊂
σ(Ak+1). For each A ∈ A we are given a UMD-valued function fA : X → Y
supported on A, and so that fA is σ(Ak+1)-measurable whenever A ∈ Ak. For
each A ∈ A we are also given a jointly measurable function kA : A×A→ C, which
is pointwise bounded by 1. We have∫

Ω×X

∥∥∥∑
k∈Z

εk
∑

A∈Ak

χA(x)

μ(A)

∫
A

kA(x, z)fA(z) dμ(z)
∥∥∥p
Y
dP(ε) dμ(x)

�
∫
Ω×X

∥∥∥∑
k∈Z

εk
∑

A∈Ak

fA(x)
∥∥∥p

Y
dP(ε) dμ(x).

This is the only version of the trick we explicitly need in this paper. For this
result and some more general theory related to this see Chapter 6 of [9]. Lastly,
we record the following randomization trick which is used multiple times in the
sequel. For the proof see the page 10 of [9].

Lemma 5.2. Suppose that for each R ∈ D′ we are given a subcollection D(R) ⊂ D.
There holds∣∣∣ ∑

R∈D′
〈g, ψR〉

∑
Q∈D(R)

TRQ〈ϕQ, f〉
∣∣∣

� ‖g‖Lp′(X,Y ∗)

∥∥∥∑
k∈Z

εk
∑

R∈D′
k

ψR

∑
Q∈D(R)

TRQ〈ϕQ, f〉
∥∥∥
Lp(Ω×X,Y )

.

6. Separated cubes

We consider the part of the series where R ∈ D′
good, Q ∈ Dgood, �(Q) ≤ �(R) and

d(Q,R) ≥ CC0�(Q). Also the adapted Haar functions ϕQ related to the smaller
cubes Q are assumed to be cancellative (by which we only mean that they have
zero integral).

We begin with some estimates for the matrix elements TRQ = 〈b2ψR, T (b1ϕQ)〉
– these follow, with some modifications, Lemma 6.1 and Lemma 6.2 of [6].

Lemma 6.1. Let Q ∈ D and R ∈ D′ be such that �(Q) ≤ �(R) and d(Q,R) ≥
CC0�(Q). Assume also that ϕQ is cancellative. We have the estimate

|TRQ| � �(Q)α

d(Q,R)α supz∈Q λ(z, d(Q,R))
‖ϕQ‖L1(μ) ‖ψR‖L1(μ).
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Proof. Recalling that
∫
b1ϕQ dμ = 0, we have for an arbitrary z ∈ Q that

TRQ =

∫
R

∫
Q

[K(x, y)−K(x, z)] b1(y)ϕQ(y) b2(x)ψR(x) dμ(y) dμ(x).

The claim follows from the kernel estimates (which we may utilize since d(x, z) ≥
d(Q,R) ≥ CC0�(Q) ≥ Cd(y, z)). �

We set D(Q,R) = �(Q) + �(R) + d(Q,R).

Lemma 6.2. Let Q ∈ Dgood and R ∈ D′ be such that �(Q) ≤ �(R) and d(Q,R) ≥
CC0�(Q). Assume also that ϕQ is cancellative. We have the estimate

|TRQ| � �(Q)α/2�(R)α/2

D(Q,R)α supz∈Q λ(z,D(Q,R))
‖ϕQ‖L1(μ)‖ψR‖L1(μ).

Proof. If �(Q) > δr�(R), then d(Q,R) � D(Q,R), and the claim follows from the
previous lemma. In the case d(Q,R) ≥ �(R), we also have d(Q,R) � D(Q,R), and
the claim again follows from the previous lemma.

We may thus assume that �(Q) ≤ δr�(R) and d(Q,R) ≤ �(R). As Q is good,
we have d(Q,R) � �(Q)γ�(R)1−γ . Consider an arbitrary z ∈ Q. Using the identity

C
−γ log2

�(R)
�(Q)

λ =
( �(R)
�(Q)

)−γd

and the doubling property of λ one gets that

λ(z, d(Q,R)) �
( �(R)
�(Q)

)−γd

λ(z, �(R)).

The claim then follows from the previous lemma, the identity γd+ γα = α/2, and
the fact that in our situation �(R) � D(Q,R). �

Let us then state and prove the main result of this section – this follows, save
the technical modifications, from pages 25–26 of [9].

Proposition 6.3. There holds∣∣∣∣ ∑
R∈D′

good

∑
Q∈Dgood


(Q)≤
(R), d(Q,R)≥CC0
(Q)

〈g, ψR〉TRQ〈ϕQ, f〉
∣∣∣∣ � ‖g‖Lp′(X,Y ∗)‖f‖Lp(X,Y )

with the additional interpretation that the adapted Haar functions ϕQ related to
the smaller cubes Q are cancellative, even on the coarsest level �(Q) = δm.

Proof. We first consider the case⎧⎪⎨⎪⎩
�(R) = δk, k ∈ Z,

�(Q) = δk+m, m = 0, 1, 2, . . . ,

δk−j < D(Q,R) ≤ δk−j−1, j = 0, 1, 2, . . . .
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The last requirement says that D(Q,R)/�(R) ∼ δ−j . The estimate from the pre-
vious lemma gives

|TRQ|
‖ϕQ‖L1(μ)‖ψR‖L1(μ)

� δαm/2δαj

supz∈Q λ(z, δ
k−j)

.

We suppress from our notation the requirement that d(Q,R) ≥ CC0�(Q). Lemma 5.2
gives that∣∣∣∑

k∈Z

∑
R∈D′

good,k

∑
Q∈Dgood,k+m

D(Q,R)/
(R)∼δ−j

〈g, ψR〉TRQ〈ϕQ, f〉
∣∣∣

� ‖g‖Lp′(X,Y ∗)

∥∥∥∑
k∈Z

εk
∑

R∈D′
good,k

∑
Q∈Dgood,k+m

D(Q,R)/
(R)∼δ−j

ψRTRQ〈ϕQ, f〉
∥∥∥
Lp(Ω×X,Y )

.

For a cube Q denote by Q̃
 the unique cube of generation � ≤ gen(Q) for which
Q ⊂ Q̃
. Let θ(j) denote the smallest integer for which θ(j) ≥ (jγ + r)(1 − γ)−1.
Recalling that R is good and r is large enough, we must have for any Q and R in
the above summation that R ⊂ Q̃k−j−θ(j). Thus, we may write∑

R∈D′
good,k

=
∑

S∈Dk−j−θ(j)

∑
R∈D′

good,k

R⊂S

.

Also, we have

μ(S) � inf
w∈S

λ(w, δk−j−θ(j)) � δ−dθ(j) inf
w∈S

λ(w, δk−j).

Define tRQ via the identity

TRQ =
δαm/2δαj−dθ(j)

μ(S)
‖ϕQ‖L1(μ)‖ψR‖L1(μ)tRQ,

and note that we have

|tRQ| � infw∈S λ(w, δ
k−j)

supz∈Q λ(z, δ
k−j)

≤ 1.

Also relevant is the estimate

δαj−dθ(j) � δ[α−dγ(1−γ)−1]j = δ(α
2+αd)(α+2d)−1j .

For every S ∈ Dk−j−θ(j) we set

KS(x, y) =
∑

R∈D′
good,k

R⊂S

∑
Q∈Dgood,k+m

D(Q,R)/
(R)∼δ−j

ψR(x)‖ψR‖L1(μ)tRQ‖ϕQ‖L1(μ)ϕQ(y)b1(y).

As ‖ϕQ‖L1(μ)‖ϕQ‖L∞(μ) � 1, ‖ψR‖L1(μ)‖ψR‖L∞(μ) � 1, ‖b1‖L∞(μ) � 1, |tRQ| � 1
and for every fixed x and y there is at most one non-zero term in the double
sum defining KS , we have |KS(x, y)| � 1. Also, KS is supported on S × S as
sptψR ⊂ R ⊂ S and sptϕQ ⊂ Q ⊂ S.
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Using the fact that
∫
b1ϕQ dμ = 0 one notes that 〈ϕQ, f〉 = 〈ϕQ,Δ

b1
k+mf〉 for

Q ∈ Dk+m. Using this and the definitions from above, we see that∥∥∥∑
k∈Z

εk
∑

R∈D′
good,k

∑
Q∈Dgood,k+m

D(Q,R)/
(R)∼δ−j

ψRTRQ〈ϕQ, f〉
∥∥∥
Lp(Ω×X,Y )

can be dominated by

δ
α
2 m δ

α2+αd
α+2d j

∥∥∥∑
k∈Z

εk
∑

S∈Dk−j−θ(j)

χS

μ(S)

∫
S

KS(·, y)
χS(y)Δ

b1
k+mf(y)

b1(y)
dμ(y)

∥∥∥
Lp(Ω×X,Y )

.

Due to the measurability requirements of the tangent martingale trick we further
split up the above sum over k ∈ Z into m+ j + θ(j) + 1 � m+ j + 1 subseries:

∑
k∈Z

=

m+j+θ(j)∑
k0=0

∑
k≡k0

modm+j+θ(j)+1

.

The point is that y �→ χS(y)Δ
b1
k+mf(y)

b1(y)
is constant on the subcubes of generation

k+m+1 = k′ − j− θ(j), where k′ = k+(m+ j+ θ(j)+ 1). Applying the tangent
martingale trick to each of these subseries then yields that∣∣∣∑

k∈Z

∑
R∈D′

good,k

∑
Q∈Dgood,k+m

D(Q,R)/
(R)∼δ−j

〈g, ψR〉TRQ〈ϕQ, f〉
∣∣∣

� δ
α
2 mδ

α2+αd
α+2d j‖g‖Lp′(X,Y ∗)

m+j+θ(j)∑
k0=0

∥∥∥ ∑
k≡k0

εk
∑

S∈Dk−j−θ(j)

χSΔ
b1
k+mf

b1

∥∥∥
Lp(Ω×X,Y )

� δ
α
2 mδ

α2+αd
α+2d j(m+ j + 1)‖g‖Lp′(X,Y ∗)‖f‖Lp(X,Y ),

where the last inequality follows from the unconditional convergence of the adapted
martingale difference decomposition (after discarding 1/b1). Summing over m, j =
0, 1, 2, . . . yields the claim. �

7. Cubes well inside another cube

We consider the case R ∈ D′
good, Q ∈ Dgood, Q ⊂ R and �(Q) < δr�(R). As usual,

there is a need to introduce some cancellation. To this end, here we consider the
modified matrix

T̃RQ = TRQ − 〈b2, T (b1ϕQ)〉〈ψR〉Q
= −〈χX\Sb2, T (b1ϕQ)〉〈ψR〉S +

∑
S′⊂R\S


(S′)=δ
(R)

〈χS′ψRb2, T (b1ϕQ)〉,
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where S ⊂ R is such that �(S) = δ�(R) (that is, S is a child of R, and gen(S) =
gen(R) +1) and Q ⊂ S. The point is that Q is separated from the rest of the sub-
cubes S′ and we have introduced cancellation for this one problematic subcube S.
The correction terms form a paraproduct operator, the boundedness of which will
be considered in the next section.

We again begin with some estimates for the matrix T̃RQ. Let us be brief as
these estimates follow pretty much as in the pages 20–21 of [6]. Fix some z ∈ Q.
Recalling that for every ball B = B(cB , rB) and for every ε > 0 we have the
estimate (integrate over dyadic blocks 2jrB ≤ d(x, cB) < 2j+1rB or see Lemma 2.4
in [6]) ∫

X\B

d(x, cB)
−ε

λ(cB , d(x, cB))
dμ(x) �ε r

−ε
B ,

we establish by changing K(x, y) to K(x, y)−K(x, z) (using
∫
b1ϕQ dμ = 0), using

the kernel estimates and noting that X \ S ⊂ X \B(z, d(Q,X \ S)) that
|〈χX\Sb2, T (b1ϕQ)〉| � �(Q)α‖ϕQ‖L1(μ)d(Q,X \ S)−α.

To see that it was legitimate to use the kernel estimates note that in the corre-
sponding integral d(x, z) ≥ d(X \ S,Q) � �(Q)γ�(S)1−γ ≥ δ−r(1−γ)�(Q), so that
d(x, z) ≥ Cd(y, z) choosing r large enough. Furthermore, note that d(Q,X \ S) �
�(Q)γ�(S)1−γ ≥ �(Q)1/2�(R)1/2, and so continuing the above estimates we obtain

|〈χX\Sb2, T (b1ϕQ)〉| �
( �(Q)

�(R)

)α/2

‖ϕQ‖L1(μ).

For the other finitely many terms involving a subcube S′ ⊂ R (where we have
separation) we have using Lemma 6.2 (or actually, a trivial modification) that

|〈χS′ψRb2, T (b1ϕQ)〉| �
( �(Q)

�(S′)

)α/2 ‖ψR‖L1(μ)

λ(z, �(S′))
‖ϕQ‖L1(μ)

�
(�(Q)

�(R)

)α/2 ‖ψR‖L1(μ)

μ(R)
‖ϕQ‖L1(μ),

where the last estimate follows after noting that

μ(R) ≤ μ(B(z, C0�(R))) ≤ λ(z, C0�(R)) = λ(z, C0δ
−1�(S′)) � λ(z, �(S′)).

Let us recapitulate all this as a lemma.

Lemma 7.1. If R ∈ D′, Q ∈ Dgood, Q ⊂ R, �(Q) < δr�(R) and S is the subcube
of R for which �(S) = δ�(R) and Q ⊂ S, we have

|T̃RQ| �
(�(Q)

�(R)

)α/2[
|〈ψR〉S |+

‖ψR‖L1(μ)

μ(R)

]
‖ϕQ‖L1(μ).

A familiar strategy involving kernels and the tangent martingale trick shall
now be employed (as in the previous section and as in [9]). For this, the following
lemma is both natural and useful.



Vector-valued non-homogeneous Tb theorem on metric measure spaces 989

Lemma 7.2. If R ∈ D′, Q ∈ Dgood, Q ⊂ R, �(Q) < δr�(R) and S is the subcube
of R for which �(S) = δ�(R) and Q ⊂ S, we have

|ψR(x)T̃RQϕQ(y)| �
( �(Q)

�(R)

)α/2[χR\S(x)
μ(R)

+
χS(x)

μ(S)

]
.

Proof. Taking the previous lemma and the estimates ‖ϕQ‖L1(μ)‖ϕQ‖L∞(μ) � 1
and ‖ψR‖L1(μ)‖ψR‖L∞(μ) � 1 into account it suffices to prove that

|〈ψR〉S ||ψR(x)| �
χR\S(x)
μ(R)

+
χS(x)

μ(S)
.

This follows by recalling that ψR = ϕb2
R,v for some v, denoting S = Rw, subdividing

the estimation into cases (v = w and x ∈ S), (v = w and x ∈ R \ S) and v �= w,
and finally recalling that one has

|ψR| ∼ μ(Rv)
1/2

( χRv

μ(Rv)
+
χR̂v+1

μ(R)

)
(or |ψR| ∼ μ(R)−1/2 if v = 0 and no subdivision into cases is necessary). �

We are now ready to prove the main result of this section.

Proposition 7.3. There holds that∣∣∣ ∑
R∈D′

good

∑
Q∈Dgood, Q⊂R


(Q)<δr
(R)

〈g, ψR〉T̃RQ〈ϕQ, f〉
∣∣∣ � ‖g‖Lp′(X,Y ∗)‖f‖Lp(X,Y ).

Proof. Let s(R) denote the number of subcubes of a cube R ∈ D′ and set s =
maxR∈D′ s(R) � 1. Fix w ∈ {1, . . . , s} and m ∈ {r + 1, r + 2, . . .}. The already
used randomization trick gives∣∣∣∑

k∈Z

∑
R∈D′

good,k

∑
Q∈Dgood,k+m

Q⊂Rw

〈g, ψR〉T̃RQ〈ϕQ, f〉
∣∣∣

� ‖g‖Lp′(X,Y ∗)

∥∥∥∑
k∈Z

εk
∑

R∈D′
good,k

∑
Q∈Dgood,k+m

Q⊂Rw

ψRT̃RQ〈ϕQ, f〉
∥∥∥
Lp(Ω×X,Y )

.

We introduce the relevant kernels now. Indeed, set

Kc
R = δ−αm/2

∑
Q∈Dgood,k+m

Q⊂Rw

μ(R)χR\Rw
(x)ψR(x) T̃RQ ϕQ(y) b1(y),

Ki
R = δ−αm/2

∑
Q∈Dgood,k+m

Q⊂Rw

μ(Rw)χRw(x)ψR(x) T̃RQ ϕQ(y) b1(y).
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The previous lemma yields at once that |Kc
R(x, y)| � 1 and |Ki

R(x, y)| � 1. Also,
the supports lie in R×R and Rw ×Rw respectively. There holds∑

k∈Z

εk
∑

R∈D′
good,k

∑
Q∈Dgood,k+m

Q⊂Rw

ψR(x) T̃RQ〈ϕQ, f〉

= δαm/2
∑
k∈Z

εk
∑

R∈D′
good,k

χR(x)

μ(R)

∫
R

Kc
R(x, y)

χR(y)Δ
b1
k+mf(y)

b1(y)
dμ(y)

+ δαm/2
∑
k∈Z

εk
∑

R∈D′
good,k

χRw(x)

μ(Rw)

∫
Rw

Ki
R(x, y)

χRw(y)Δ
b1
k+mf(y)

b1(y)
dμ(y).

The tangent martingale trick cannot quite yet be used: the measurability con-
ditions need not hold (note the important difference with the argument of the
previous section – there we did not have the dyadic systems D and D′ mixed in
the way we have here). To fix this, one simply defines new partitions

Fk = {S ∩Q �= ∅ : S ∈ D′
k, Q ∈ Dk−r−1} ,

and exploits the goodness of the cubes R via the observations

D′
good,k ⊂ Fk and {Rw ∈ D′

k+1 : Rw ⊂ R ∈ D′
good,k} ⊂ Fk+1.

We then extend the above sums to be over the sets Fk and Fk+1 respectively
by using zero kernels for all the new sets R. We may then apply the tangent
martingale trick after passing to the obvious subseries over k yielding, just like in
the previous section, the bound∣∣∣∑

k∈Z

∑
R∈D′

good,k

∑
Q∈Dgood,k+m

Q⊂Rw

〈g, ψR〉 T̃RQ〈ϕQ, f〉
∣∣∣

� δαm/2 (m+ r + 1) ‖g‖Lp′(X,Y ∗) ‖f‖Lp(X,Y ),

from which the claim follows after summing over m = r + 1, r + 2, . . . and w =
1, . . . , s. �

8. The correction term and the relevant paraproduct

Recall that we subtracted 〈b2, T (b1ϕQ)〉〈ψR〉Q from TRQ in the case R ∈ D′
good,

Q ∈ Dgood, Q ⊂ R and �(Q) < δr�(R). Thus, we now need to consider the sum

(8.1)
∑

R∈D′
good

∑
Q∈Dgood, Q⊂R


(Q)<δr
(R)

〈g, ψR〉 〈b2, T (b1ϕQ)〉 〈ψR〉Q 〈ϕQ, f〉.

Recall also that we always have the suppressed summation over u, v and the re-
striction that δk0 < �(Q), �(R) ≤ δm. Writing out the above sum unhiding these
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conventions and then recalling that e.g. Δb1
Q f =

∑
u b1ϕQ,u〈ϕQ,u, f〉, we see that

(writing explicitly only the relevant restrictions)

(8.1) =
∑

Q∈Dgood


(Q)>δk0

( ∑
R∈D′

good, R⊃Q

δ−r
(Q)<
(R)≤δm

〈Δb2
R g/b2〉Q

+
∑

R∈D′
good, R⊃Q

δ−r
(Q)<
(R)=δm

〈Eb2
R g/b2〉Q

)
〈T ∗b2,Δb1

Q f〉.

Now we use the trick from [9] noting that the inner summation would collapse
to 〈Eb2

R g/b2〉Q = 〈g〉R/〈b2〉R, where R ∈ D′ is the unique cube of generation
gen(Q)− r for which Q ⊂ R, were it not for the restriction to good D′-cubes in the
summation. Now it is clear why Lemma 4.8 was worth proving. Indeed, we may
achieve this effect just by considering the grid D′ being fixed and averaging over
all the other random quantities used in the randomization of cubes (that is: υ′ is
fixed and we average over υ, tkα, u

k
α). We use Lemma 4.8 twice. First, to remove

the restriction to good R, and after collapsing the series, to put the restriction
back. This yields

E(8.1) = E
∑

Q∈Dgood

∑
R∈D′

good, R⊃Q


(R)=δ−r
(Q)

〈g〉R
〈b2〉R 〈T ∗b2,Δb1

Q f〉

= E
∑

R∈D′
good

∑
Q∈Dgood, Q⊂R


(Q)=δr
(R)

〈g〉R
〈b2〉R 〈T ∗b2, b1ϕQ〉〈ϕQ, f〉,

where the standard summation conditions were yet again suppressed.
Notice now that the right hand side of this is the expectation of a pairing

〈Πg, f〉, where we have (for every fixed choice of the random quantities) the para-
product

Πg =
∑

R∈D′
good

∑
Q∈Dgood, Q⊂R


(Q)=δr
(R)

〈g〉R
〈b2〉R 〈T ∗b2, b1ϕQ〉ϕQ.

We shall next study this with any fixed choice of the random quantities. Note that
in [6] the paraproduct had the inessential difference that instead of the requirement
of Q being good we had the requirement d(Q,X \ R) ≥ CC0�(Q) (which follows
from the goodness), and the essential difference that the bigger cubes were not
restricted to good cubes. As was noted in [9], this restriction is useful in this
vector valued context.

Lemma 8.1. If ϕ ∈ BMOp
κ(μ), then∥∥∥∥ ∑

Q∈Dgood, Q⊂R


(Q)≤δr
(R)

εQ 〈ϕ, b1ϕQ〉ϕQ

∥∥∥∥
Lp(Ω×X)

� μ(R)1/p‖ϕ‖BMOp
κ(μ).
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Proof. This can be proven similarly as Lemma 7.1 in [6], borrowing some mi-
nor additional ingredients related to this vector valued context from the proof of
Lemma 9.3 of [9]. �

Since T ∗b2 ∈ BMOq
κ(μ) for any 1 ≤ q <∞ (see Remark 2.2 and Theorem 3.3),

the previous lemma is important in proving that the paraproduct Π is bounded.
We will not provide the exact details instead citing [9] as this part of the argument
no longer has anything special to do with the metric space structure or with our
use of more general measures. Indeed, having been able to do all these reductions
in the metric space setting, one can now follow the argument found in pages 32–33
of [9] pretty much word to word (when reading that, notice that §3 of [9] is already
in an abstract form suitable for us), and this yields:

Proposition 8.2. We have

‖Πg‖Lp′(X,Y ∗) � ‖T ∗b2‖BMOp′
κ (μ)

‖g‖Lp′(X,Y ∗) � ‖g‖Lp′(X,Y ∗).

The main result of this section now readily follows.

Proposition 8.3. We have that∣∣∣E ∑
R∈D′

good

∑
Q∈Dgood, Q⊂R


(Q)<δr
(R)

〈g, ψR〉 〈b2, T (b1ϕQ)〉 〈ψR〉Q 〈ϕQ, f〉
∣∣∣

� ‖g‖Lp′(X,Y ∗)‖f‖Lp(X,Y ),

where we average over all the random quantities used in the randomization of the
cubes (υ, υ′, tkα, ukα).

9. Estimates for adjacent cubes of comparable size

We shall now deal with the part of the series where good cubes Q ∈ Dgood and
R ∈ D′

good are adjacent (d(Q,R) < CC0 min(�(Q), �(R))) and of comparable size
(|gen(Q)− gen(R)| ≤ r). We denote the last condition by �(Q) ∼ �(R). Also, only
the size, and not the cancellation, properties of the adapted Haar functions are
used.

We are given some fixed small ε > 0. Given cubes Q and R define Δ = Q ∩R,

δQ = {x : d(x,Q) ≤ ε�(Q) and d(x,X \Q) ≤ ε�(Q)},

and

δR = {x : d(x,R) ≤ ε�(R) and d(x,X \R) ≤ ε�(R)}.
Set also

Qs = Q \Δ \ δR, Q∂ = Q \Δ \Qs, Rs = R \Δ \ δQ and R∂ = R \Δ \Rs.
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Given R ∈ D′
good, there are only finitely many Q ∈ Dgood which are adjacent

to R and of comparable size. Thus, one needs only to study finitely many subseries∑
R∈D′

good

〈g, ψR〉TRQ〈ϕQ, f〉,

whereQ = Q(R) is implicitly a function ofR – a convention that is used throughout
this section. We shall also act like the mapping R �→ Q(R) is invertible – this only
amounts to identifying some terms with zero (if there are no preimages) or splitting
into finitely many new subseries using the triangle inequality (if there are multiple
preimages).

Recall that TRQ = 〈ψRb2, T (b1ϕQ)〉. We note that

b1ϕQ〈ϕQ, f〉 =
∑

Q′∈D:Q′⊂Q


(Q′)=δ
(Q)

b1χQ′〈ϕQ〉Q′〈ϕQ, f〉 =
∑

Q′∈D:Q′⊂Q


(Q′)=δ
(Q)

b1χQ′AQ′ ,

where AQ′ = 〈ϕQ〉Q′〈ϕQ, f〉. Similarly there holds

b2ψR〈g, ψR〉 =
∑

R′∈D′:R′⊂R

(R′)=δ
(R)

b2χR′BR′ ,

where BR′ = 〈ψR〉R′〈g, ψR〉. Thus, we are left with finitely many new subseries of
the form ∑

R∈D′
BR〈χRb2, T (b1χQ)〉AQ,

where Q = Q(R) is a new function of R but one still has �(Q) ∼ �(R). Note also
that the parents of these cubes are always good.

Given R and then Q = Q(R) as in the above sum, we shall now split the pairing
〈χRb2, T (b1χQ)〉 into five terms. Such a simple decomposition is only possible
because we have exploited the work that has already been done in the scalar
case [6] to update our WBP into a stronger one (see Remark 2.2). While this part
of the argument could be made self-contained, this saves us from a lot of problems
which are even worse in this vector-valued setting than in the scalar setting.

We now decompose

〈χRb2, T (b1χQ)〉 = 〈χRsb2, T (b1χQ)〉+ 〈χR∂
b2, T (b1χQ)〉

+ 〈χΔb2, T (b1χΔ)〉+ 〈χΔb2, T (b1χQ∂
)〉+ 〈χΔb2, T (b1χQs)〉

= A+B + C +D + E.

It is time to deal with these terms now. These belong to various different
groups: we have the terms A and E with separation, the terms B and D involving
bad boundary regions, and the diagonal term C, which needs the stronger WBP
if one wants to avoid complicated additional surgery. (For the details of the more
complicated surgery in the metric situation see §8 and §9 in [6].)
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Also, when we sum over R we have to use different kinds of strategies involving
simple randomization (for the diagonal term), the tangent martingale trick (for the
separated terms) and a certain improvement of the contraction principle (for the
bad boundary region terms). In the bad boundary region terms control is gained
only after using the a priori boundedness of T , and in these cases it is essential to
get a small constant in front so that these may later be absorbed. This requires
that we average over all the dyadic grids.

We have C = αΔμ(Δ), where |αΔ| � 1, since actually |〈T (χAb1), χAb2〉| �
μ(A) with any Borel set A ⊂ X . Using randomization, Hölder’s inequality and
the contraction principle, we obtain (denoting the dyadic parent of Q by Q̃ and
similarly for R) that∣∣∣∑

R

BRC(R)AQ

∣∣∣ = ∣∣∣ ∫
Ω

∫
X

∑
R

εRχRBR

∑
R′

εR′αΔAQ(R′)χQ(R′) dμ dP
∣∣∣

≤
∥∥∥∑

R

εRχRBR

∥∥∥
Lp′(Ω×X,Y ∗)

∥∥∥∑
Q

εQαΔAQχQ

∥∥∥
Lp(Ω×X,Y )

�
∥∥∥∑

R

εRψR̃〈g, ψR̃〉
∥∥∥
Lp′(Ω×X,Y ∗)

∥∥∥∑
Q

εQϕQ̃〈ϕQ̃, f〉
∥∥∥
Lp(Ω×X,Y )

� ‖g‖Lp′(X,Y ∗)‖f‖Lp(X,Y ).

Let us then estimate the separated terms A and E. However, these are so
similar that we only explicitly handle A here. The first kernel estimate yields

|A| = |〈χRsb2, T (b1χQ)〉| �
∫
Rs

∫
Q

1

λ(y, d(x, y))
dμ(y) dμ(x).

Then we note that

λ(y, d(x, y)) ≥ λ(y, d(x,Q)) ≥ λ(y, ε�(Q)) � εdλ(y, �(Q)).

Thus, we may write

A = βQ
μ(Q)μ(R)

infy∈Q λ(y, �(Q))
,

where |βQ| � ε−d (note that the infimum may be zero only if μ(Q) = 0). Now we
may write∑

R

BRA(R)AQ =
∑
R

〈g, ψR̃〉 〈ψR̃〉R βQ
μ(Q)μ(R)

infy∈Q λ(y, �(Q))
〈ϕQ̃〉Q 〈ϕQ̃, f〉

=
∑
R

〈g, ψR̃〉 ‖ψR̃‖L1(μ)
β̃Q

infy∈Q λ(y, �(Q))
‖ϕQ̃‖L1(μ) 〈ϕQ̃, f〉,

where |β̃Q| ≤ |βQ| � ε−d. Recall that these parents R̃ and Q̃ are again good cubes.
Also recall that every cube has at most � 1 children. So it remains to study the
series ∑

R

〈g, ψR〉 ‖ψR‖L1(μ)
σQ

infy∈Q λ(y, �(Q))
‖ϕQ‖L1(μ) 〈ϕQ, f〉,
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where again |σQ| � ε−d (note that λ(y, �(Q̃)) � λ(y, �(Q))). Using a randomization
trick and then reindexing the summation we see that this may be dominated by

‖g‖Lp′(X,Y ∗)

∥∥∥∑
k∈Z

εk
∑
S∈Dk

∑
Q∈Dgood,k+2r

Q⊂S

‖ψR‖L1(μ)ψR(x)

· σQ
infy∈Q λ(y, �(Q))

‖ϕQ‖L1(μ) 〈ϕQ, f〉
∥∥∥
Lp(Ω×X,Y )

.

Since R is good, �(R) ≤ δ−r�(Q) = δr�(S) and CC0�(R) > d(Q,R), one easily
checks that R ⊂ S (if r is large enough). We then set for S ∈ Dk that

KS(x, y) = εd
∑

Q∈Dgood,k+2r

Q⊂S

‖ψR‖L1(μ)ψR(x)
μ(S)

infw∈Q λ(w, �(Q))
σQ‖ϕQ‖L1(μ)ϕQ(y)b1(y),

and note that the previous majorant can now be written in the form

ε−d
∥∥∥∑

k∈Z

εk
∑
S∈Dk

χS(x)

μ(S)

∫
S

KS(x, y)
χS(y)Δ

b1
k+2rf(y)

b1(y)
dμ(y)

∥∥∥
Lp(Ω×X,Y )

,

which is amenable to the tangent martingale trick as is next demonstrated. Indeed,
just note that KS is supported on S × S and that |KS(x, y)| � 1 holds, and then
divide the summation over k into � 1 appropriate pieces to get that∣∣∣∑

R

BRA(R)AQ

∣∣∣ � ε−d‖g‖Lp′(X,Y ∗)‖f‖Lp(X,Y ).

The same, as already stated earlier, works with A replaced by E.
It still remains to deal with the terms B and D involving bad boundary regions.

The small term in front of ‖T ‖ is gained only after averaging over the dyadic
grids D and D′. We only deal with the term B – the term D is handled completely
analogously.

We turn to the details. Using randomization, Hölder’s inequality and the a
priori boundedness of T one gets that∣∣∣∑

R

BRB(R)AQ

∣∣∣ ≤ ‖T ‖
∥∥∥∑

R

εRBRχR∂
b2

∥∥∥
Lp′(Ω×X,Y ∗)

∥∥∥∑
Q

εQAQb1χQ

∥∥∥
Lp(Ω×X,Y )

.

Now, the second term is easily seen to be dominated by ‖f‖Lp(X,Y ) using the
contraction principle and unconditionality.

The first term is more involved since it is here that the small factor needs to
be extracted. Let us define

δ(k) =

k+r⋃
j=k−r

⋃
Q∈Dj

δQ.
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Note that if gen(R) = k, then gen(Q(R)) ∈ [k − r, k + r], and so we must have
χR∂

= χR∂
χδ(k)χR. Throwing χR∂

and b2 away using the contraction principle,
we get∥∥∥∑

R

εRBRχR∂
b2

∥∥∥
Lp′(Ω×X,Y ∗)

�
∥∥∥∑

k∈Z

εkχδ(k)

∑
R∈D′

k

BRχR

∥∥∥
Lp′(Ω×X,Y ∗)

.

Now, keeping everything else fixed, we take the conditional expectation of this over
the grids D. Using Jensen’s inequality and Fubini’s theorem, we get

E
∥∥∥∑

k∈Z

εkχδ(k)

∑
R∈D′

k

BRχR

∥∥∥
Lp′(Ω×X,Y ∗)

�
( ∫

X

E
∥∥∥∑

k∈Z

εkχδ(k)(x)
∑

R∈D′
k

BRχR(x)
∥∥∥p′

Lp′(Ω,Y ∗)
dμ(x)

)1/p′

.

In order to gain access to a certain improvement of the contraction principle (to
be formulated shortly), it is still beneficial to further dominate this by(∫

X

[
E
∥∥∥∑

k∈Z

εkχδ(k)(x)
∑

R∈D′
k

BRχR(x)
∥∥∥t

Lp′(Ω,Y ∗)

]p′/t
dμ(x)

)1/p′

,

where t ≥ p′. We now fix t once and for all demanding only that it is larger
than p, p′, the cotype of Y and the cotype of Y ∗ (recall that the dual of a UMD
space is UMD and that a UMD space has nontrivial cotype). The requirements
involving p and the cotype of Y are only needed when handling the similar term D.

We now formulate the contraction principle we need (this is Lemma 3.1 of [7]).

Proposition 9.1. Suppose Z is a Banach space of cotype s ∈ [2,∞), ξj ∈ Z,

s < u <∞ and θj ∈ Lu(Ω̃) (here Ω̃ is a probability space). Then∥∥∥ ∞∑
j=1

εjθjξj

∥∥∥
Lu(Ω̃,L2(Ω,Z))

� sup
j

‖θj‖Lu(Ω̃)

∥∥∥ ∞∑
j=1

εjξj

∥∥∥
L2(Ω,Z)

.

Utilizing the above contraction principle together with Lemma 4.3 and Ka-
hane’s inequality gives (here the Lt norm is taken over the probability space used
in the randomization of D)

E
∥∥∥∑

R

εRBRχR∂
b2

∥∥∥
Lp′(Ω×X,Y ∗)

�
(∫

X

sup
k∈Z

‖χδ(k)(x)‖p
′

Lt

∥∥∥∑
k∈Z

εk
∑

R∈D′
k

BRχR(x)
∥∥∥p′

Lp′(Ω,Y ∗)
dμ(x)

)1/p′

� εη/t
∥∥∥∑

R

εRBRχR

∥∥∥
Lp′(Ω×X,Y ∗)

� εη/t‖g‖Lp′(X,Y ∗).

We now formulate the above considerations as a proposition.



Vector-valued non-homogeneous Tb theorem on metric measure spaces 997

Proposition 9.2. Let ε > 0. We have the estimate

E
∣∣∣ ∑
R∈D′

good

∑
Q∈Dgood : 
(Q)∼
(R)

d(Q,R)<CC0 min(
(Q),
(R))

〈g, ψR〉TRQ〈ϕQ, f〉
∣∣∣

� C(ε) ‖g‖Lp′(X,Y ∗) ‖f‖Lp(X,Y ) + ‖T ‖ c(ε) ‖g‖Lp′(X,Y ∗) ‖f‖Lp(X,Y ),

where we average over all the random quantities used in the randomization of the
cubes, and c(ε) can be made arbitrarily small by choosing ε small enough.

Remark 9.3. Recall that when we dealt with the separated cubes in Propo-
sition 6.3 we had the assumption that the adapted Haar functions related to the
smaller cubes are cancellative (have zero integral). Note that there are only bound-
edly many terms with �(Q) = �(R) = δm where the contrary can happen (due to
the assumptions about the supports of the functions f and g). Thus, the relevant
arguments involving separated sets used in the present section let us also remove
this assumption.

10. Completion of the proof

Combining all that we have done in the previous sections shows that

E

∣∣∣∣ ∑
Q∈Dgood, R∈D′

good

δk0<
(Q), 
(R)≤δm

∑
u,v

〈ϕb2
R,v, g〉〈b2ϕb2

R,v, T (b1ϕ
b1
Q,u)〉〈ϕb1

Q,u, f〉
∣∣∣∣ � C(ε) + c(ε)‖T ‖,

where c(ε) → 0 when ε → 0. Recalling (5.1) the estimate ‖T ‖ � 1 follows by
taking ε small enough. We have proved what we set out to prove, namely Theo-
rem 2.1.
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