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Quasisymmetrically inequivalent

hyperbolic Julia sets

Peter Häıssinsky and Kevin M. Pilgrim

Abstract. We give explicit examples of pairs of Julia sets of hyperbolic
rational maps which are homeomorphic but not quasisymmetrically home-
omorphic.

Introduction

Quasiconformal geometry is concerned with properties of metric spaces that are
preserved under quasisymmetric homeomorphisms. Recall that a homeomorphism
h : X → Y between metric spaces is quasisymmetric if there exists a distortion
control function η : [0,∞) → [0,∞) which is a homeomorphism and which satisfies
|h(x) − h(a)|/|h(x) − h(b)| ≤ η(|x − a|/|x − b|) for every triple of distinct points
x, a, b ∈ X . We shall say that X and Y are quasisymmetrically equivalent if there
exists such a homeomorphism.

A basic – even if still widely open – question is to determine whether two given
spaces belong to the same quasisymmetry class, once it is known that they are
homeomorphic and share the same qualitative geometric properties. This question
arises also in the classification of hyperbolic spaces and word hyperbolic groups in
the sense of Gromov [5], [14], [10]. Besides spaces modelled on manifolds, very few
examples are understood; see nonetheless [4] for examples of inequivalent spaces
modelled on the universal Menger curve. Here, we focus our attention on compact
metric spaces that arise as Julia sets of rational maps. A rational map is hyperbolic
if the closure of the set of forward orbits of all its critical points does not meet its
Julia set. We address the question of whether the geometry of the Julia set of a
hyperbolic rational map is determined by its topology. More precisely, given two
hyperbolic rational maps f and g with homeomorphic Julia sets Jf and Jg, does
there exist a quasisymmetric homeomorphism h : Jf → Jg?

Hyperbolic Julia sets serve our purposes for several reasons. First, it rules
out elementary local obstructions. For instance, the Julia set of f(z) = z2 is the
Euclidean unit circle S1, while that of g(z) = z2+1/4 is a Jordan curve with a cusp
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at the unique fixed point, so they are not quasisymmetrically equivalent. Second,
if f is hyperbolic, it is locally invertible near Jf , and the inverse branches are
uniformly contracting; the Koebe distortion theorem then implies that Jf satisfies
a strong quasi-self-similarity property. Among such maps, in some cases, this
implies that homeomorphic Julia sets are quasisymmetrically homeomorphic.

1. If the Julia set of a hyperbolic rational map is a Jordan curve, then it is
quasisymmetrically equivalent to the unit circle [23].

2. Let C ⊂ R denote the usual middle thirds Cantor set. Recall that any
compact, totally disconnected metric space without isolated points is home-
omorphic to C; see e.g. Theorem 2.97 in [13]. If the Julia set of a hyperbolic
rational map is homeomorphic to C, then, by a theorem of David and Semmes
(Proposition 15.11 in [8]) they are quasisymmetrically equivalent.

3. If f and g are hyperbolic and their Julia sets are homeomorphic by the restric-
tion of a global conjugacy, then they are also quasisymmetrically equivalent
by Theorem 2.9 in [19].

So one must look to more complicated Julia sets for potential examples of
quasisymmetrically inequivalent Julia sets.

We will show:

Theorem 1. Let f(z) = z2 +10−9/z3 and g(z) = z2 +10−20/z4. Then Jf , Jg are
each homeomorphic to C×S1, but they are not quasisymmetrically homeomorphic.

Recall that a metric space X equipped with a Radon measure μ is Ahlfors
regular of dimension Q if the measure of a ball satisfies μ(B(x, r)) � rQ; one has
then that X has locally finite Hausdorff measure in its Hausdorff dimension, Q.
Its conformal dimension confdim(X) is the infimum of the Hausdorff dimensions
of all metric spaces quasisymmetrically equivalent to X . As an invariant of the
quasisymmetry class of a metric space, conformal dimension and other variants
such as the Ahlfors-regular conformal dimension have been the subject of much
recent investigation; see e.g. [15]. Since the Julia set of any hyperbolic rational
map is quasi-self-similar, it follows that it is Ahlfors regular and porous, hence has
Hausdorff dimension strictly less than 2 by Theorem 4 and its corollary in [24].
So if f is hyperbolic then confdim(Jf ) < 2. We prove Theorem 1 by showing
confdim(Jf ) �= confdim(Jg).

The arguments we use to prove Theorem 1 will generalize to yield:

Theorem 2. There exist hyperbolic rational maps each of whose Julia sets is home-
omorphic to C × S1 and whose conformal dimensions are arbitrarily close to 2.

It follows that there exists an infinite sequence of hyperbolic rational maps
whose Julia sets are homeomorphic to C × S1 but which are pairwise quasisym-
metrically inequivalent.

Our method of proof of Theorem 2 requires that our examples be rational func-
tions whose degrees become arbitrarily large. It is tempting to look for a sequence
of simpler examples. Polynomials will not work: as is shown by Carrasco [7], the



Quasisymmetrically inequivalent hyperbolic Julia sets 1027

conformal dimension of any hyperbolic polynomial with connected Julia set is
equal to 1.

If connected, the Julia sets of hyperbolic polynomials have many cut points. At
the opposite extreme, recall that a Sierpiński carpet may be defined as a topolog-
ically one-dimensional, connected, locally connected compact subset of the sphere
such that the components of its complement are Jordan domains with pairwise
disjoint closures; any two such spaces are homeomorphic [25]. Sierpiński carpets
are one-dimensional analogs of Cantor sets. They also play an important role in
complex dynamics and hyperbolic geometry [17], [1]. Sierpiński carpets which arise
from hyperbolic groups and hyperbolic rational maps also share the same qualita-
tive properties: their peripheral circles are uniform quasicircles and are uniformly
separated; Bonk also proved that any such carpet is quasisymmetrically equivalent
to one where the complementary domains are round disks in Ĉ [2]. Nonetheless,
using similar methods, we will show:

Theorem 3. There exist hyperbolic rational maps with Sierpiński carpet Julia sets
whose conformal dimensions are arbitrarily close to 2.

To our knowledge, an analogous result for conformal dimensions of limit sets
of convex cocompact Kleinian groups is not yet known.

On the one hand, it is perhaps not surprising that there is a plethora of qua-
sisymmetrically distinct Julia sets: any quasisymmetric map between round convex
cocompact Kleinian group carpets is the restriction of a Möbius transformation
according to Theorem 1.1 in [3]. Also, Theorem 8.1 in [1] asserts that any qua-
sisymmetric automorphism of the standard square “middle ninths” carpet is the
restriction of a Euclidean isometry. On the other hand, the proofs of these results
are rather involved.

The proofs of our results rely on the computation of the conformal dimension
of certain metric spaces homeomorphic to C × S1, following the seminal work of
Pansu [21]. We will also make frequent use of the fact that on the Euclidean
2-sphere, an orientation-preserving self-homeomorphism is quasiconformal if and
only if it is quasisymmetric; see Theorem 11.14 in [12]. We denote by S2 the round
Euclidean 2-sphere.

The special case needed for the present purpose is summarized in §1. The
proofs of the theorems appear in §§2 and 3.

Acknowledgement. We are grateful for the comments of the anonymous referee.

1. Annulus maps

Let I = [0, 1] and let ι : I → I be the involution given by ι(x) = 1 − x. Identify
S1 with R/Z. We give I × S1 the product orientation. Fix an even integer m ≥ 2

and let D := (d0, . . . , dm−1) be a sequence of positive integers such that
∑m−1

i=0
1
di

< 1. Then there exist real numbers ai, bi, i = 0, . . . ,m − 1 such that for each i,
|bi − ai| = 1

di
and

0 < a0 < b0 < a1 < b1 < · · · < am−1 < bm−1 < 1.
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Fix such a choice a0, b0, . . . , am−1, bm−1. For each i, let Ji = [ai, bi], and let
gi : I → Ji be the unique affine homeomorphism which is orientation-preserving
if i is even and is orientation-reversing if i is odd. This iterated function system on
the line has a unique attractor C(D) and its Hausdorff dimension, by the pressure
formula given by Theorem 5.3 in [9], is the unique real number λ = λ(D) satisfying

m−1∑
i=0

1

dλi
= 1.

Let
F̃ :

(

m−1
i=0 Ji

)
× S

1 → I × S
1 =: A.

be the map whose restriction to the annulus Ai := Ji × S1 is given by

F̃ |Ai(x, t) = (g−1
i (x), (−1)idi · t mod 1).

That is, F̃ |Ai is an orientation-preserving covering map of degree di which is a Eucli-
dean homothety with factor di and which preserves or reverses the linear orienta-
tion on the interval factors according to whether i is even or, respectively, is odd.

The invariant set associated to F̃ is

X(D) := C(D) × S
1 =

⋂
n≥0

F̃−n(A).

From Section 3 of [11], we have

Proposition 1.1. The conformal dimension of X(D) is equal to 1 + λ(D).

This statement is a particular case of a well-known general fact: if X is a λ-
Ahlfors regular metric space, then X× [0, 1] equipped with the product metric has
conformal dimension 1 + λ. This criterion is originally due to Pansu, see Proposi-
tion 2.9 in [21]; see also Proposition 3.7 in [10] and Tyson’s Theorem 15.10 in [12].

2. Proofs of Theorems 1 and 2

Let D be a sequence of positive integers defining a family of annulus maps F̃ as in
the previous section, and put X = X(D).

Proposition 2.1. There is a smooth embedding A ↪→ S2 such that (upon identify-
ing A with its image) the map F̃ : 
iAi → A extends to a smooth map F : S2 → S2

whose iterates are uniformly quasiregular. There is a quasiconformal (equivalently,

a quasisymmetric) homeomorphism h : S2 → Ĉ such that h◦F ◦h−1 is a hyperbolic
rational map f , and h(X) = Jf , the Julia set of f .

Proof. The existence of the extension F is a straightforward application of quasi-
conformal surgery. We merely sketch the ideas and refer to [22] for details; see also
the forthcoming text [6] devoted to this topic. The next two paragraphs outline
this construction.

The linear ordering on the interval I gives rise to a linear ordering on the set
of 2m boundary components of the set of annuli A0, . . . , Am−1. We may regard A
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as a subset of a smooth metric sphere S2 conformally equivalent to S2. For i =
1, . . . ,m− 1 let Ci be the annulus between Ai−1 and Ai. Let D0, D1 be the disks
bounded by the least, respectively greatest, boundary of A, so that the interiors
of D0, A,D1 are disjoint. Let D′

0 be the disk bounded by the least component of
A0 and D′

1 be the disk bounded by the greatest component of Am−1.

Figure 1. Caricature of the extended mapping, F .

We now extend F̃ as follows. See Figure 1. Send D′
0 to D0 by a proper map of

degree d0 ramified over a single point x, so that in suitable holomorphic coordinates
it is equivalent to z �→ zd0 acting near the origin; thus D0 ⊂ D′

0 is mapped
inside itself. Similarly, send D′

1 to D0 by a proper map of degree dm−1 ramified
only over x, so that in suitable holomorphic coordinates it is equivalent to z �→
1/zdm−1 acting near infinity; thus D1 ⊂ D′

1 is mapped into D0. To extend over
the annulus Ci between Ai−1 and Ai, note that both boundary components of Ci

map either to the least, or to the greatest, component of ∂A. It is easy to see
that there is a smooth proper degree di−1 + di + 1 branched covering of Ci to
the corresponding disk D0 (if i is even) or D1 (if i is odd). This completes the
definition of the extension F .

It is easy to arrange that F is smooth, hence quasiregular. We may further ar-
range that the locus where F is not conformal is contained in a small neighborhood
of C1 ∪ · · · ∪ Cm−1. This locus is nonrecurrent, so the iterates of F are uniformly
quasiregular. By a theorem of Sullivan (Theorem 9 in [24]), F is conjugate via a

quasiconformal homeomorphism h : S2 → Ĉ to a rational map f . By construction,
every point not in h(X) converges under f to a superattracting fixed point h(x)
in the disk h(D0), so f is hyperbolic and h(X) = Jf . �

We now establish a converse.

Proposition 2.2. Suppose f : Ĉ → Ĉ is a rational map for which there exist
a closed annulus A and essential pairwise disjoint subannuli A0, A1, . . . , Am−1,
m even, contained in the interior of A such that (with respect to a linear ordering
induced by A) A0 < A1 < · · · < Am−1. Let D0, respectively D1, be the disk bounded
by the least, respectively greatest, boundary component of A. Further, suppose
that for each i = 0, . . . ,m−1, f |Ai : Ai → A is a proper covering map of degree di,
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with f mapping the greatest component of Ai and the least component of Ai+1

to the boundary of D1 if i is even, and to the boundary of D0 if i is odd. Put
D = (d0, d1, . . . , dm−1). Let f̃ = f |⊔m−1

i=0 Ai
and put Y =

⋂
n≥0 f̃

−n(A). Then

Y ⊂ Jf , f̃(Y ) = Y = f̃−1(Y ), and there is a quasisymmetric homeomorphism

h : Y → X conjugating f̃ |Y : Y → Y to F̃ |X : X → X where F̃ is the family of
annulus maps defined by the data D.

Proof. The conformal dynamical systems of annulus maps defined by f̃ and by F̃
are combinatorially equivalent in the sense of McMullen (see Appendix A in [18]),
so by Theorem A.1 in [18] there exists a quasiconformal (hence quasisymmetric)
conjugacy h̃ from f̃ to F̃ ; we set h = h̃|Y . �

Combined with Proposition 1.1, this yields:

Corollary 2.1. Under the assumptions of Proposition 2.2, confdim(Jf ) ≥ 1 +
λ(D), with equality if Y = Jf .

Proof of Theorem 1. For ε ∈ C let fε(z) = z2+ε/z3. In Section 7 of [16], McMullen
shows that for |ε| sufficiently small the map fε restricts to a family of annulus
maps with the combinatorics determined by the data D = (2, 3) and with Julia
set homeomorphic to the repellor X(2,3) determined by D; it is easy to see that
ε = 10−9 will do.

Exactly the same arguments applied to the family gε(z) = z2 + ε/z4 show that
if |ε| is sufficiently small, the family gε restricts to a family of annulus maps with
the combinatorics determined by D = (2, 4) and whose Julia set is homeomorphic
to the corresponding repellor X2,4. It is easy to see that ε = 10−20 will do; one may
take A = {10−6 < |z| < 1010}. By Corollary 2.1 and Proposition 1.1, the conformal
dimensions 1+λf , 1+λg of Jf , Jg satisfy the respective equations 2−λf +3−λf = 1,
2−λg + 4−λg = 1 and are therefore unequal. Since the conformal dimension is a
quasisymmetry invariant, the proof is complete. �

Proof of Theorem 2. For an even integer n ≥ 4, let Dn = (d0, d1, . . . , dn−1) where
d0 = n + 1 and di = n for i = 1, . . . , n − 1. Let fn be the rational map given
by Proposition 2.1. By Corollary 2.1 confdim(Jfn) is 1 plus the unique positive
root λn of the equation

(n+ 1)−λ + (n− 1)n−λ = 1.

The left-hand side is larger than 1 when λ = log(n−1)
log(n) , so λn > log(n−1)

logn and thus

λn → 1 as n → ∞. Hence confdim(Jfn) → 2 as n → ∞. �

3. Proof of Theorem 3

Fix an even integer n ≥ 2. For each such n, we will build a rational function
fn : Ĉ → Ĉ with the following properties: (1) its Julia set is homeomorphic to

the Sierpiński carpet, and (2) there exist an annulus A ⊂ Ĉ, and parallel pairwise
disjoint essential subannuli A0, . . . , An−1 such that for each i = 0, . . . , n− 1, the
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restriction f |Ai : Ai → A is a proper holomorphic covering of degree (n+4), just as
in the previous section. Theorem 3 will then follow immediately from Corollary 2.1
with D = ( n+ 4, . . . , n+ 4︸ ︷︷ ︸

n

).

We will first define abstract Riemann surfaces X and Y , an isomorphism ϕ :
Y → Ĉ, and an isomorphism h : Y → X . The construction of the Riemann
surface X will depend on n. Next, we will define a holomorphic map g : X → Y .
The composition F = g◦h : Y → Y will yield a dynamical system; fn = ϕ◦F ◦ϕ−1

is the desired rational function. We are grateful to Daniel Meyer for suggesting
this construction which is more explicit than our original one.

Below, it will be useful to identify the complex plane C with R2 in the usual
way: x+ iy ↔ (x, y). For z ∈ Ĉ set j(z) = z̄.

Figure 2. The map g : X → Y when n = 2. The domain and codomain are respectively
the doubles of the two polygons Q+, R+ along their boundaries. Note that both Q+

and R+ have an anticonformal symmetry given by reflection in the diagonal line x = y.

In this paragraph, we define Y . Let R+ denote the Euclidean square [0, 1/2]×
[0, 1/2] (we will call it “white”) and R− its mirror image [0, 1/2]× [−1/2, 0] under j
(we will call it “gray”). Let Y be the Riemann surface obtained by taking the
disjoint union of R+ and R− and gluing the boundaries of the squares R± via j.
Then Y is isomorphic to the Riemann sphere; indeed, an isomorphism ϕ is induced
from the unique Z[i]-periodic Weierstrass function ℘ sending the ordered quadruple
(0, 1/2, (1 + i)/2, i/2) to (∞,−1, 0, 1). The isomorphism ϕ sends R± to H±, the
upper and lower half planes. See the right-hand side of Figure 2. The anticonformal
involution j : R± → R∓ induces an anticonformal involution jY of Y to itself; the
isomorphism ϕ conjugates jY to j.

In this paragraph, we define X . Set δ = 1
2(n+4) , and let

Q+ = [0, 1/2]2 ∪ ([−δ, 0]× [0, δ]) ∪ ([0, δ]× [−δ, 0])

and Q− = j(Q+); see the left-hand side of Figure 2, which illustrates Q+. Let X be
the sphere obtained from the disjoint union of Q+ and Q− by gluing their bound-
aries via the map j. Then X inherits a conformal structure from that of Q±: away
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from the corners this is clear; by the removable singularities theorem, this con-
formal structure extends over the corners. By the Uniformization Theorem, X is
isomorphic to the Riemann sphere. Again, there is an involution jX induced by j.

In this paragraph, we define the isomorphism h : Y → X . Observe that
both R+ and Q+ are Jordan domains in C, on whose boundaries lie four distin-
guished points (0, 1/2, (1+i)/2, i/2), turning R+ and Q+ into quadrilaterals whose
conformal shapes are characterized by their moduli. R+ is a square – the modulus
is equal to 1. The square is the unique quadrilateral admitting an anticonformal
involution fixing a pair of opposite vertices. The reflection x + iy ↔ y + xi gives
such an involution of Q+ to itself. We conclude that there is a conformal isomor-
phism h+ : R+ → Q+ fixing each element of the quadruple (0, 1/2, (1 + i)/2, i/2).
The Schwarz reflection principle implies h+ extends to an isomorphism h : Y → X
sending the classes of the elements of the quadruple (0, 1/2, (1 + i)/2, i/2) in Y to
those in X .

We now define the holomorphic map g : X → Y . The quadrilateral Q+ is tiled
by (n + 4)2 + 2 squares of side length δ, as shown on the left of Figure 2. The
dilation map z �→ (n + 4)z sends the small white square [0, δ] × [0, δ] ⊂ Q+ ⊂ X
conformally onto the large white square R+ ⊂ Y . Applying the Schwarz reflection
principle repeatedly, we conclude that this dilation extends to a degree (n+4)2+2
holomorphic map g : X → Y .

The remainder of the proof consists in verifying that the rational function
fn : Ĉ → Ĉ given by the composition

Ĉ
ϕ−1

−→ Y
h−→ X

g−→ Y
ϕ−→ Ĉ

has the desired properties.
The critical points of F are points in X which are corners of four or more tiles.

It follows that under f , every critical point of f is mapped into the set {−1, 0, 1,∞}
and then to infinity, which is therefore a fixed critical point at which f has local
degree 3. Hence f is a critically finite hyperbolic rational map.

To find the desired annuli, set A′
+ = [2δ, 1/2− 2δ] × [0, 1/2] ⊂ Q+ and A′

− =
j(A+) ⊂ Q−; the union of A± defines an annulus A′ in the quotient space X , so
that A := h−1(A′) is an annulus in Y . By construction, the preimage F−1(A)
consists of (n+ 4) disjoint annuli parallel to A mapping by degree n+ 4, together
with one annulus lying in the double of the strip [−δ, 0]×[0, δ] mapping by degree 1.
Among the former, there are n subannuli A0, . . . , An−1 compactly contained in A,
each mapping under F by degree n+ 4. Conjugating by ϕ, Corollary 2.1 applies,
yielding confdim(Jfn) ≥ 1 + λn, where Jfn is the Julia set of fn and λn is the
unique positive root of the equation

n(n+ 4)−λ = 1.

As n → ∞, clearly λn → 1 and so confdim(Jfn) → 2.
Finally, we show that Jf is a Sierpiński carpet. We imitate the arguments of

Milnor and Tan given in the Appendix of [20]. They first show the following:
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Lemma 3.1. Let f be a hyperbolic rational map and z a fixed point at which the
local degree of f equals k ≥ 2. Suppose W is the immediate basin of attraction
of z. Suppose there exist domains U and V , each homeomorphic to the disk, such
that W ⊂ U ⊂ U ⊂ V and f |U : U → V is proper and of degree k. Then ∂W is a
Jordan curve.

Consider Figure 2. The conformal isomorphism ϕ : Y → Ĉ sends the union of
the top and right-hand edges of the right square to the interval [−1, 1] and sends the

lower left corner point on the right labelled 0 to infinity. Let V = Ĉ \ [−1, 1]. The
map f has a unique periodic Fatou component W – the immediate basin of ∞ –
and clearly W ⊂ V . The domain V is simply connected and contains exactly
one critical value of f , namely the point ∞. It follows that there is exactly one
component U of f−1(V ) containing ∞, and W ⊂ U ⊂ U ⊂ V and f |U : U → V
is proper and of degree 3. By Lemma 3.1, ∂W is a Jordan curve. The remaining
arguments needed are identical to those given in the Appendix of [20]: since f
is hyperbolic and critically finite, the Julia set is topologically one-dimensional,
connected and locally connected, and there are no critical points in the Julia set.
It follows that every Fatou component is a Jordan domain, and that the closures
of the Fatou components are pairwise disjoint. Therefore Jfn is homeomorphic to
the Sierpiński carpet [25].
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[2] Bonk, M.: Uniformization of Sierpiński carpets in the plane. Invent. Math. 186
(2011), no. 3, 559–665.

[3] Bonk, M., Kleiner, B., and Merenkov, S.: Rigidity of Schottky sets. Amer. J.
Math. 131 (2009), no. 2, 409–443.

[4] Bourdon, M.: Immeubles hyperboliques, dimension conforme et rigidité de
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