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On the expansions of a real number

to several integer bases

Yann Bugeaud

Abstract. Very little is known about the expansions of a real number
in several integer bases. We establish various results showing that the
expansions of a real number in two multiplicatively independent bases
cannot both be simple, in a suitable sense. We also construct explicitly a
real number ξ which is rich to all integer bases, that is, with the property
that, for every integer b ≥ 2, every finite block of letters in the alphabet
{0, 1, . . . , b− 1} occurs in the b-ary expansion of ξ.

1. Introduction

Throughout this paper, �x� denotes the greatest integer less than or equal to x
and �x� denotes the smallest integer greater than or equal to x. Let b ≥ 2 be an
integer. For a non-zero real number ξ, write

ξ = �ξ�+
∑
k≥1

ak
bk

= �ξ�+ 0.a1a2 . . . ,

where each digit ak is an integer from {0, 1, . . . , b − 1} and infinitely many of
the ak are not equal to b− 1. The sequence (ak)k≥1 is uniquely determined by the
fractional part of ξ. With a slight abuse of notation, we call it the b-ary expansion
of ξ.

We begin by introducing several notions which are commonly used to measure
the complexity of the b-ary expansion of a real number. For a positive integer n,
let p(n, ξ, b) denote the total number of distinct blocks of n digits in the b-ary
expansion of ξ, that is,

p(n, ξ, b) = card
{
(aj+1, . . . , aj+n) : j ≥ 0

}
.

Obviously, we have 1 ≤ p(n, ξ, b) ≤ bn, and both inequalities are sharp. If ξ is ra-
tional, then its b-ary expansion is ultimately periodic, thus, the numbers p(n, ξ, b),
n ≥ 1, are uniformly bounded by a constant depending only on ξ and b.
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If ξ is irrational, then, by a classical result of Morse and Hedlund [18], [19],
we know that p(n, ξ, b) ≥ n+ 1 for every positive integer n, and this inequality is
sharp. Furthermore, since

(1.1) p(n+ n′, ξ, b) ≤ p(n, ξ, b) · p(n′, ξ, b)

holds for all positive integers n, n′, the sequence (log p(n, ξ, b))n≥1 is sub-additive,
and so the sequence ((log p(n, ξ, b))/n)n≥1 converges.

Definition. Let b ≥ 2 be an integer. A real number ξ is rich to base b if, for every
n ≥ 1, p(n, ξ, b) = bn. The entropy of ξ to base b, denoted by E(ξ, b), is defined by

E(ξ, b) = lim
n→+∞

log p(n, ξ, b)

n
.

The notion of richness (also called disjunctiveness) was considered for instance
by Compton [11] and Hertling [15]. Note that the terminology ‘rich’ has been used
since 2008 in combinatorics on words with a different meaning; see [12].

It follows from (1.1) that E(ξ, b) = log b if and only if p(n, ξ, b) = bn for every
n ≥ 1, that is, if and only if ξ is rich to base b. Observe that the entropy of a real
number to base b belongs to [0, log b]. Furthermore, the set of real numbers ξ such
that E(ξ, b) = 0 for some b ≥ 2 has zero Hausdorff dimension; see e.g. [17].

The first result of the present paper asserts that there are irrational real num-
bers that are not rich to every integer base.

A real number ξ is simply normal to base b if every digit from {0, 1, . . . , b− 1}
occurs in its b-ary expansion with the same frequency 1/b. It is normal to base b
if it is simply normal to each base bm with m ≥ 1. A well known theorem of
Borel [6] asserts that almost every real number is normal to every integer base.
Furthermore, any real number normal to base b is clearly rich to base b.

Two positive integers x and y are called multiplicatively independent if the only
pair of integers (m,n) such that xmyn = 1 is the pair (0, 0). Answering a question
of Steinhaus, Cassels [10] (for b = 3) and Schmidt [21] (for every b), independently
established the following result:

Theorem CS. Let b and b′ be two integers ≥ 2. Normality to base b implies
normality to base b′ if, and only if, b and b′ are multiplicatively dependent.

The conclusion of Theorem CS holds if normality is replaced by richness, as
shown by El-Zanati and Transue [14] (actually, the ‘only if’ sense of the next result
was previously established in [21]).

Theorem EZT. Let b, b′ be two integers greater or equal to 2. Richness to base b
implies richness to base b′ if and only if b and b′ are multiplicatively dependent.

Starting with the Champernowne number

0.1234567891011121314 . . . ,

several explicit examples of real numbers normal to a given base have been con-
structed; see [9] for references. However, it remains an open question to construct
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explicitly a real number which is normal to two multiplicatively independent bases;
see, however, [25], [22] and [4], [5] for computable constructions of real numbers
normal to all integer bases. The situation is much better understood when normal-
ity is replaced by the weaker property of richness. Namely, Hertling [15] has given
explicit examples of real numbers rich to infinitely many pairwise multiplicatively
independent bases, and not rich to some given base. Our second result, inspired by
his work, gives an explicit construction of a real number rich to every integer base.

Apart from the results stated above, very little is known on the expansion of
a given irrational number in two multiplicatively independent bases. We address
the following question:

Problem 1. Are there irrational real numbers having a ‘simple’ expansion in two
multiplicatively independent bases?

We have to explain what we mean by ‘simple’, since there are several ways to
measure the complexity of ξ. If we use the notion of entropy, then Problem 1 can
be rephrased as follows:

Problem 2. Are there irrational real numbers having zero entropy in two multi-
plicatively independent bases?

We are unable to resolve Problem 2. However, Theorem 2.1 below gives some
(very) partial information in this direction.

A different point of view on ‘simplicity’ was taken in [3]. For an integer b ≥ 2,
a real number ξ, and a positive integer n, we count the number of non-zero digits
of ξ among its first n b-ary digits by setting

NZ(n, ξ, b) = card
{
1 ≤ k ≤ n : ak �= 0

}
.

An irrational real number ξ could be considered ‘simple’ to base b if NZ(n, ξ, b) is
small for every large integer n (which means that ξ has only few non-zero digits).

A third point of view, addressed in [8], aims to estimate the asymptotic be-
haviour of the number of digit changes in the b-ary expansion of ξ. Following [8],
we define the function DC, ‘number of digit changes’, by

DC(n, ξ, b) = card
{
1 ≤ k ≤ n : ak �= ak+1

}
,

for any positive integer n. An irrational real number could be considered ‘simple’
to base b if it has only few digit changes in its b-ary expansion.

Since

(1.2) DC(n, ξ, b) ≤ 2NZ(n, ξ, b) + 1,

a lower bound for DC(n, ξ, b) implies a lower bound for NZ(n, ξ, b). However, the
converse does not hold.

Our third result asserts that, if ξ is non-zero and the bases b and b′ are coprime,
then, for n sufficiently large, DC(n, ξ, b) and DC(n, ξ, b′) cannot be simultaneously
very small.

The present paper is organized as follows: Our results are stated in Section 2
and proved in Sections 3 to 6.
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2. Main results

We begin by establishing the existence of real numbers whose entropy to base b is
strictly less than log b for every b ≥ 2. This is a straightforward consequence of
a result of Akhunzhanov [1], [2]. Combined with arguments from [7], we obtain a
slightly stronger statement.

Theorem 2.1. Let ε be a positive real number and b0 ≥ 2 be an integer. There
exist a positive real number c, depending only on ε and b0, and uncountably many
real numbers ξ such that

E(ξ, b0) < ε

and

E(ξ, b) ≤ log b− 1

bcb(log b)
, for every b ≥ 2.

The main ingredient in the proof of Theorem 2.1 is the notion of (α, β)-game,
introduced by Schmidt [23].

Theorem 2.1 implies the existence of real numbers which are not rich to every
integer base. In the opposite direction, we give below an explicit construction of a
real number which is rich to every integer base.

Let b be an odd prime number. For an integer j ≥ 2, let Wj be an integer
whose representation in base j comprises each digit from {0, 1, . . . , j − 1} exactly
once and whose representation in base b finishes with the digit 1. Clearly, we have

Wj ≤ jj .

Let (aj)j≥2 be a sequence of integers ≥ 2 such that aj = 2 for every even index j
and a2j+1 = bj for j ≥ 1.

For j ≥ 2 not a power of b, let (pk,bj/qk,bj)k≥1 denote the sequence of conver-
gents to the irrational number (log bj)/(log j).

Put c2 = 1 and n2 = 2. Let j be a positive integer such that c2, . . . , c2j and
n2, . . . , n2j have been constructed. To shorten the notation, set �j := �bj log(bj)�
and mj := �(log bj)/(log j)�. Note that the b-ary expansion of Wbj has less than �j
digits. If j is not a power of b, then set

n2j+1 = p6(�j+mj log n2j)+1,bj , c2j+1 = Wbj .

If j is a power of b, then set

n2j+1 = n2
2j + �j + 2, c2j+1 = Wbj .

In every case, set

n2j+2 = �bn2j+1 log j�, c2j+2 = 1.

We are ready to state our second result.



On the expansions of a real number to several integer bases 935

Theorem 2.2. Let b be an odd prime number. With the sequences (cj)j≥2 and
(nj)j≥2 defined above, the real number

ξ =
∑
j≥2

cj
bnj

is rich to every integer base.

Now, we turn our attention to Problem 1 and we show that a real number
cannot have very few digit changes simultaneously in two coprime bases.

Theorem 2.3. Let b and b′ be multiplicatively independent positive integers. Let ξ
be an irrational real number. If b and b′ are coprime, then there exist an integer n0

and a positive real number c such that

(2.1) DC(n, ξ, b) +DC(n, ξ, b′) ≥ c logn, for n ≥ n0,

and

(2.2) NZ(n, ξ, b) +NZ(n, ξ, b′) ≥ c logn, for n ≥ n0.

If b and b′ are not coprime, then there are a positive real number c and arbitrarily
large integers n such that

(2.3) DC(n, ξ, b) +DC(n, ξ, b′) ≥ c logn

and

(2.4) NZ(n, ξ, b) +NZ(n, ξ, b′) ≥ c logn.

The assumption that the bases b and b′ are multiplicatively independent is nec-
essary. Indeed, for a very rapidly increasing sequence (nk)k≥1 of positive integers,
b ≥ 2, and m and � positive integers, the number

∑
k≥1

1

bm�nk
=

∑
k≥1

1

(b�)mnk
=

∑
k≥1

1

(bm)�nk

has only few non-zero digits in base b� and in base bm.
It should be pointed out that, if b and b′ are not coprime, then there are

irrational real numbers ξ for which (2.3) and (2.4) do not hold for every large
integer n. Indeed, take for example b = 6, b′ = 10, and

ξ =
∑
k≥1

1

2nk
,

for a very rapidly increasing sequence (nk)k≥1 of positive integers. Then, there
exist integers ak,h in {0, 1, . . . , 5} and bk,h in {0, 1, . . . , 9} such that

ξ =
∑
k≥1

3nk

6nk
=

∑
k≥1

�nk(log 3)/(log 6)�∑
h=0

ak,h
6nk−h

=
∑
k≥1

5nk

10nk
=

∑
k≥1

�nk(log 5)/(log 10)�∑
h=0

bk,h
10nk−h

.
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Consequently, if nk > 4nk−1, then among the first nk/4 digits of ξ written in base 6
or in base 10, there are at most nk−1 non-zero digits, and

NZ(nk/4, ξ, 6) +NZ(nk/4, ξ, 10) ≤ nk−1,

DC(nk/4, ξ, 6) + DC(nk/4, ξ, 10) ≤ nk−1.

Since nk can be chosen arbitrarily large, this proves our claim.

In particular, Theorem 2.3 asserts that an irrational real number cannot have
very few non-zero digits simultaneously in base 2 and in base 3. This gives a very
partial answer to Problem 1.

A related question has been investigated in 1973 by Senge and Straus [24], who
proved that the number of integers, the sum of whose digits in each of the bases b
and b′ lies below a fixed bound, is finite if, and only if, b and b′ are multiplicatively
independent. Their proof rests on the Thue–Siegel–Roth theorem and hence is inef-
fective. Using Baker’s theory of linear forms in logarithms, Stewart [26] succeeded
in establishing an effective version of Senge and Straus’ theorem. He showed that
if b and b′ are multiplicatively independent, then, for every c ≥ 1, each integer m
whose sum of digits in base b as well as in base b′ is bounded by c satisfies

(2.5) m < exp exp{κc log(3c)},

where κ is a positive constant which is effectively computable in terms of b and b′

only. A similar result holds for the number of digit changes. Note that, when b
and b′ are not coprime, then an elementary argument based on the considera-
tion of p-adic valuations, for a prime number p dividing b and b′, gives a slight
strengthening of (2.5).

We highlight a much weaker question than Problem 2.

Problem 3. Let b and b′ be multiplicatively independent positive integers. Let ξ
be an irrational real number. Is it true that

p(n, ξ, b) + p(n, ξ, b′) ≥ 2n+ 3 (n ≥ 1)?

A positive answer to Problem 3 would mean that no real number can have a
Sturmian expansion in two multiplicatively independent bases.

Our last result is a metric statement concerning simple normality to distinct
bases. Apparently, Hertling [16] was the first to establish the correct analogue of
Theorem CS when normality is replaced by simple normality.

Theorem H. Simple normality to base b implies simple normality to base b′ if and
only if b is a power of b′.

More precisely, Hertling proved that, for integers b and b′ both ≥ 2 such that b
is not a power of b′, the set of real numbers which are simply normal to base b, but
not simply normal to base b′, is uncountable. Our last theorem is a refinement of
his result.
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Theorem 2.4. Let a and b be integers ≥ 2 such that a is not an integer power
of b. Then, the set of real numbers which are simply normal to base a but not
simply normal to base b has full Hausdorff dimension.

When a and b are multiplicatively independent integers, Theorem 2.4 has been
proved by Nagasaka [20]. Thus, we are only concerned with multiplicatively depen-
dent integers a and b. Our proof differs from that of the weaker result established
in [16]. We make use of a classical theorem of Eggleston [13], see Theorem E in
Section 6.

3. Proof of Theorem 2.1

Before giving an outline of the proof of Theorem 2.1, we claim that, for a real
number ξ, an integer b ≥ 2, and positive integers n and t, we have

(3.1) p(tn, ξ, b) ≤ tbtp(n, ξ, bt).

To see this, observe that any block of tn consecutive digits of ξ to base b is composed
of t1 digits of ξ to base b followed by n− 1 digits of ξ to base bt and by t− t1 digits
of ξ to base b, for some integer t1 with 0 ≤ t1 ≤ t− 1.

The key ingredient of the proof of Theorem 2.1 is the notion of Schmidt game,
introduced in [23]. By means of a suitable modification of the original procedure,
Akhunzhanov ([1], [2]) proved that there are real numbers ξ such that

(3.2) ||bnξ|| ≥ exp{−5000b(log b)2}, for every n ≥ 1 and every b ≥ 2,

where || · || denotes the distance to the nearest integer. Let ξ have this property
and let b ≥ 2 be an integer. Set

t = �5000b(log b)�.
Property (3.2) implies that ξ has (at least) one missing digit in its expansion to
base bt, yielding that

p(n, ξ, bt) ≤ (bt − 1)n, for n ≥ 1.

We deduce from (3.1) that

p(tn, ξ, b) ≤ tbt(bt − 1)n,

and, by taking the logarithm, dividing by tn and letting n tend to infinity, it follows
that

(3.3) E(ξ, b) ≤ log(bt − 1)

t
≤ log b− 1

tbt
.

We can do slightly better by combining [1] and [2] with ideas from [7], where
the Schmidt game is played on a Cantor set. Let ε be a positive real number.
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Let b0 ≥ 2 be an integer. Let t be a positive integer, and consider the Cantor
set Ct composed of the numbers ξ in [0, 1] having only the digits 0 and bt0 − 1 in
base bt0. Then, clearly,

p(n, ξ, bt0) ≤ 2n.

We deduce from (3.1) that
p(tn, ξ, b0) ≤ tbt02

n,

and

(3.4) E(ξ, b0) ≤ log 2

t
< ε,

if t is chosen large enough.
Instead of playing the Schmidt game on a real interval of length 2 as in [1]

and [2], we play it on the set Ct. The analogue of Lemma 4 from [2] shows that
a countable intersection of winning sets on Ct is also winning on Ct. There is no
additional difficulty, therefore we omit the details of the proof. Proceeding in this
way, we establish that there are uncountably many ξ satisfying (3.4) and (3.3) for
every b ≥ 2. This proves the theorem. �

4. Proof of Theorem 2.2

The proof of Theorem 2.2 depends on a series of lemmas, some of which were
already established by Hertling in [15].

Lemma 4.1. Let b be an odd prime number. Let a ≥ 2 be an integer coprime
with b. Let μb be the order of a modulo b and let �b be the greatest integer � such
that b� divides aμb − 1. For any positive integer n exceeding �b and any integer c
prime to b, every block on {0, 1, . . . , a− 1} of length at most (n− �b) loga b occurs
in the a-ary expansion of c/bn.

Although this lemma can be found in [15], we give a proof.

Proof. The length of the periodic part of the a-ary expansion of c/bn is at most
equal to the order of a modulo bn, thus it is less than bn. Let 0.a1a2 . . . be
the a-ary expansion of the fractional part of c/bn. Let w be a word of length
L := �(n− �b) loga b� on {0, 1, . . . , a− 1} and set

Iw :=
{
ξ ∈ [0, 1) : the a-ary expansion of ξ begins with w

}
.

For every m ≥ 0, we have am+1 . . . am+L = w if, and only if, cam modulo bn lies
in the interval bn · Iw ⊂ [0, bn). Since the length of bn · Iw ⊂ [0, bn) is equal to at
least

bn · a−L ≥ bn · b−n+�b = b�b ,

there exists an integer in {0, 1, . . . , bn − 1} which is congruent to c modulo b�b and
belongs to bn · Iw . On the other hand, the subgroup of (Z/bnZ)∗ generated by aμb
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is equal to the set of classes x in (Z/bnZ)∗ which are congruent to 1 modulo b�b .
Since b and c are coprime, we have

{
c · aμbj mod bn : j ≥ 0

}
=

{
x mod bn : x ≡ c mod b�b

}
,

and there exists an integer j such that c ·aμbj modulo bn lies in bn · Iw. This shows
that the word w occurs in the a-ary expansion of c/bn. �

The next lemma is a version of Lemma 5.1 of Hertling [15].

Lemma 4.2. Let a ≥ 2 and b ≥ 2 be coprime integers. Let (mi)i≥1 be an increasing
sequence of positive integers. For i ≥ 1, let di be an integer coprime with b and
satisfying 0 < di ≤ bmi/2. If for some positive integers M and j we have

mj+1 ≥ 2(M logb a+mj + 2 + logb a),

then the prefixes of length M of the a-ary expansions of

j∑
i=1

dib
−mi and

∑
i≥1

dib
−mi

coincide.

Proof. As pointed out in the proof of Lemma 5.1 of [15], the a-ary expansion of
any rational number d/bmj , where the integer d is coprime with b, cannot have
�(loga b)mj� + 1 consecutive digits (a − 1). Denoting by d′1, . . . , d

′
M the first M

digits of the a-ary expansion of
∑j

i=1 dib
−mi , this shows that

j∑
i=1

di
bmi

<

M∑
i=1

d′i
ai

+
1

aM
− 1

aM+1+	(loga b)mj
 ≤
M∑
i=1

d′i
ai

+
1

aM
− 1

aM+1bmj
.

Combined with the inequalities

∑
i≥j+1

dib
−mi ≤

∑
i≥j+1

b−mi/2 ≤ b−mj+1/2(1 + b−1/2 + b−1 + · · · )

≤ 4b−mj+1/2 ≤ a−M−1b−mj ,

this proves the lemma. �

Lemma 4.3. Let b and j be multiplicatively independent positive integers. Let
(pk/qk)k≥1 denote the sequence of convergents to (log bj)/(log j). For any k ≥ 3bj
and any positive integer d with d < (bj)(k log 2)/2, the representation in base bj of
djp2k+1 begins with the representation of d in base bj.

Proof. Since j and b are multiplicatively independent, the real number (log bj)/(log j)
is irrational and we have

− 1

q22k+1

<
log bj

log j
− p2k+1

q2k+1
< 0,
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for every k ≥ 1. This implies that, for k ≥ 3bj, we have

jp2k+1 > (bj)q2k+1

and

jp2k+1 < (bj)q2k+1j1/q2k+1 < (bj)q2k+1(1 + 2(log j)/q2k+1)

< (bj)q2k+1 + (bj)q2k+1−2−(log q2k+1)/(2 log bj).

Since q2k+1 ≥ 2k, this shows that the representation in base bj of jp2k+1 begins
with a digit 1 followed by at least �(k log 2)/(2 log bj)� zeros. Consequently, for any
positive integer d with d < (bj)(k log 2)/2, the representation in base bj of djp2k+1

begins with the representation of d in base bj. �

The next lemma, whose proof is omitted, is an easy observation.

Lemma 4.4. Let b ≥ 2 and j ≥ 2 be integers. Let d and n be positive integers
with d < bn. Then the bj-ary expansion of d/bn terminates, and setting

d

bn
=

djn

(bj)n
:=

∑
k≥1

dk
(bj)k

,

we have dk = 0 for k ≥ n+ 1 and for k ≤ n− �(n log j + log d)/ log(bj)� − 1.

Completion of the proof of Theorem 2.2. We keep the notation of Section 2. Let
a ≥ 2 be an integer. Let w be a finite word on {0, 1, . . . , a − 1} of length L. We
have to distinguish three cases.

Assume first that a = b. Since b ≥ 3, the b-ary expansion of Wbj has no more
than �j digits for j ≥ 2, and it follows from Lemma 4.4 that the b-ary expansion
of ξ is the concatenation of blocks of digit 0 and of the b-ary expansions of cj for
j ≥ 2. From the definition of WbL , it follows that w occurs in the b-ary expansion
of ξ. Consequently, ξ is rich to any base which is an integral power of b.

Assume now that b does not divide a, that is, that a and b are coprime. Let J
be a large integer. Note that b and c2J+1 are coprime since the last digit in the
representation of c2J+1 in base b is the digit 1. Consequently, the denominator

of the lowest form of the rational number
∑2J+1

j=1 cj/b
nj is bn2J+1 and the a-ary

expansion of this rational is purely periodic. By Lemma 4.1, if J is large enough,
then w occurs in the a-ary expansion of

∑2J+1
j=1 cj/b

nj , which is of length at most
bn2J+1 . Again, for J large enough, our choices of n2J+2 and c2J+2 imply that the
assumption of Lemma 4.2 is satisfied with j = 2J + 1 and M = bn2J+1 . This
implies that w occurs in the a-ary expansion of ξ.

Finally, assume that b divides a, but that a is not a power of b. Set J = aL/b.
By Lemma 4.4, we may assume that L is large enough to guarantee that the a-ary
expansions of cj/b

nj , j ≥ 2J , do not overlap. Note that

c2J+1

bn2J+1
=

c2J+1

bp6(�J+mJ log n2J )+1,bJ
= c2J+1 · (a

L/b)
p6(�J+mJ log n2j)+1,bJ

ap6(�J+mJ log n2J )+1,bJ
.
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It then follows from Lemma 4.3 that the representation in base aL of the rational
integer c2J+1(a

L/b)
p6(�J+mJ log n2j)+1,bJ begins with the representation in base aL of

c2J+1. Since w can be viewed as a letter to base aL, our choice of c2J+1 and the
definition of WbJ imply that the a-ary expansion of c2J+1/b

n2J+1 contains w.
This completes the proof of Theorem 2.2. �

5. Proof of Theorem 2.3

We use repeatedly the elementary fact that, if the b-ary expansion of a rational
number ζ reads

0.a1a2 . . . anaaa . . . ,

with a, a1, . . . an in {0, 1, . . . , b− 1} and a �= an, then

{bnζ} = 0.aa . . . =
a

b− 1

and there exists an integer r such that ζ = r/(bn(b − 1)). A difficulty arises since
the latter rational number may not be written in its lowest form. To see this, just
observe that

ζ =
an + an−1b+ . . .+ a1b

n−1

bn
+

a

bn(b− 1)

=
(an − a) + b(an − an−1) + . . .+ bn−1(a2 − a1) + a1b

n

bn(b− 1)
,

and note that an − a has no reason to be coprime with b. Note however that,
since a is not equal to an, there exists a prime number p and a positive integer v
such that pv divides b, but pv does not divide an − a. This shows that if ζ = A/B
is in its reduced form, then pn divides B.

Set λ = (log b)/(log b′) and c = 2 + �2/λ�.
Assume that b and b′ are coprime. Let N be a large positive integer such

that DC(N, ξ, b) = DC(2N + c, ξ, b). This implies that the (N + 1)-th through the
(2N + c + 1)-th digits in the b-ary expansion of ξ are all the same. Let n be the
smallest positive integer such that the (n+1)-th through the (2N+c+1)-th digits
in the b-ary expansion of ξ are all the same. We have n ≤ N and there exists an
integer r such that ∣∣∣ξ − r

bn(b− 1)

∣∣∣ ≤ 1

b2N+c+1
.

Let h be the integer defined by the inequalities

(5.1) h+ 1 ≤ λ(2N − n+ c− 1) < h+ 2.

If the rational integer r′ satisfies

(5.2) r(b′)h(b′ − 1) = r′bn(b− 1),
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then our choice of n and the discussion at the beginning of this section imply that
there exists a prime number p dividing b such that pn divides (b′)h(b′− 1). Since b
and b′ are coprime, p does not divide b′, and we get that n is bounded by a constant
depending only on b and b′. This shows that if N is sufficiently large, in terms
of b, b′ and ξ, then (5.2) holds for no rational integer r′. Observe that

2bn(b′)h(b− 1)(b′ − 1) ≤ 2bn+1b2N−n+c−1 ≤ b2N+c+1.

Consequently, if N is large enough, then for any rational integer r′, the triangle
inequality gives

∣∣∣ξ − r′

(b′)h(b′ − 1)

∣∣∣ ≥
∣∣∣ r

bn(b− 1)
− r′

(b′)h(b′ − 1)

∣∣∣−
∣∣∣ξ − r

bn(b− 1)

∣∣∣

≥ 1

bn(b′)h(b− 1)(b′ − 1)
− 1

b2N+c+1

≥ 1

2bn(b′)h(b− 1)(b′ − 1)
≥ 1

(b′)λ(n+1)+h+2
.

This implies that, in the b′-ary expansion of ξ, the (h + 1)-th through the
(λ(n+ 1) + h+ 2)-th digits cannot be all the same, whence

DC(λ(n + 1) + h+ 1, ξ, b′) ≥ DC(h, ξ, b′) + 1.

It then follows from (5.1) that

DC(2λN + λc, ξ, b′) ≥ DC(λN + (c− 1)λ− 2, ξ, b′) + 1 ≥ DC(λN, ξ, b′) + 1,

since n ≤ N and (c− 1)λ− 2 > 0, by our choice of c.
Set u1 = 1 and un+1 = 2un + c for n ≥ 1. A rapid calculation shows that

un ≤ (c+ 1)2n for n ≥ 1. We have thus proved that

DC(un+1, ξ, b)−DC(un, ξ, b) +DC(λun+1, ξ, b
′)−DC(λun, ξ, b

′) ≥ 1,

for every integer n large enough. Consequently, setting λ′ = max{1, λ}, we get

DC(λ′(c+ 1)2n, ξ, b) +DC(λ′(c+ 1)2n, ξ, b′) ≥ n,

for every large enough integer n. This implies (2.1). Using (1.2), we get immedi-
ately (2.2).

Assume now that the bases b and b′ are not coprime. We keep the notation
used above. If, for every large integer N , equality (5.2) holds for no integer r′,
then we can proceed exactly as above to get the same result.

Consequently, we assume that there are integers n, h, r, r′ with

h+ 1 ≤ λ(2N − n+ c− 1) < h+ 2

and

(5.3) r(b′)h(b′ − 1) = r′bn(b− 1).
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We make the further assumption that there exists a prime number p that di-
vides b but does not divide b′. Set u = vp(b), where vp is the p-adic valuation. It
follows that

(5.4) vp(r) = un+ δ,

for some integer δ exceeding −(log b′)/(log p).
Observe also that, by our choice of n, there are d in {0, 1, . . . , b − 1} and an

integer R < bn such that

(5.5)
r

bn(b− 1)
=

R

bn
+

d

bn(b− 1)
.

Thus,

(5.6) r = (b− 1)R+ d.

We study the representation of R in base b. Write

(5.7) R =

n−1∑
j=0

djb
j ,

where dj is in {0, 1, . . . , b− 1}.
Let t be a real number strictly greater than (log b)/(u log p). Let J be a positive

integer such that dJ = dJ+1 = . . . = dH , where H = �t(J + 2)�. We observe that

d+ (b− 1)

J−1∑
j=0

djb
j − dJb

J �= 0,

since, by the choice of n, the digits d and d0 are different. Furthermore, we check
that

vp

(
d+ (b− 1)

J−1∑
j=0

djb
j − dJb

J
)
≤ (J + 2)

log b

log p
,

(b − 1)

H∑
j=J

djb
j − dHbH+1 + dJb

J = 0,

and

vp

(
(b− 1)

n−1∑
j=H+1

djb
j + dHbH+1

)
≥ u(H + 1) ≥ ut(J + 2).

Recall that we have

vp

(
d+ (b− 1)

n−1∑
j=0

djb
j
)
= un+ δ.
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By (5.5), (5.6), (5.7), and our choice of t, we get a contradiction if (J +2)(log b) <
(un + δ)(log p). Consequently, for every positive integer J satisfying this last
inequality, there exists j with J ≤ j ≤ t(J + 2) − 1 such that dj and dj+1 are
different. This shows that there are at least some constant times logn digit changes
in the b-ary expansion of R. This proves (2.3) and (2.4) when there is a prime
dividing b but not dividing b′.

It remains to explain why the same argument works if b and b′ have the same
prime divisors. Assume that b = pe11 · · · pe�� and b = pf11 · · · pf�� , where the pi
are distinct primes and the ei and fi are positive integers. Since b and b′ are
multiplicatively independent, we may assume that the quotients e1/f1 and e2/f2
are different. Looking at (5.3), we see that for at least one of the primes p1 or p2
we have an equality of type (5.4). Namely, there is i ∈ {1, 2} and a positive
integer c such that vpi(r) ≥ cn. We then continue exactly as above and get the
same conclusion. �

6. Proof of Theorem 2.4

We recall a result of Eggleston [13].

Theorem E. Let b ≥ 2 be an integer. Let p0, p1, . . . , pb−1 be non-negative real
numbers whose sum is 1. Then, the set of real numbers ξ in (0, 1) whose b-ary
expansion 0.a1a2a3 . . . satisfies

lim
N→+∞

card{1 ≤ n ≤ N : an = j}
N

= pj for j = 0, . . . , b− 1

has Hausdorff dimension

− 1

log b

b−1∑
j=0

pj log pj .

Taking into account the results of Nagasaka [20], Theorem 2.4 is an immediate
consequence of Theorem 6.1 below.

Theorem 6.1. Let b ≥ 2 be an integer. Let m,n be coprime positive integers with
n ≥ 2. The set of real numbers which are simply normal to base bm but not simply
normal to base bn has Hausdorff dimension 1.

Proof. Recalling that simple normality to base b�m implies simple normality to
base bm, we assume that m is greater than n. We work in base B = b2mnbm .
Let w be a word on {0, 1, . . . , b− 1} obtained as the concatenation of 2n− 2 copies
of 0m, of 2n− 1 copies of 1m, and of 2n copies of each other word of length m on
{0, 1, . . . , b− 1}. Clearly, the length of w is then

m(4n− 3) + 2nm(bm − 2) = 2nmbm − 3m.
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Put
w0 = w0m1m0m and w1 = w02m1m.

The words w0 and w1 have length 2nmbm, thus they can be written to base bn as
words of length 2mbm. Writing 2m+ h = jn and m− h′ = j′n, with 0 ≤ h, h′ < n
and j, j′ integers, the last jn digits of w0 to base b are

0h1n−h, 1n, . . . , 1n, 1n−h′
0h

′
, 0n, . . . , 0n,

while the last jn digits of w1 to base b read

0n, . . . , 0n, 0n−h′
1h

′
, 1n, . . . , 1n.

Since n does not divide m, we have h′ �= 0, thus, at least one of w0 and w1 cannot
be written as a concatenation, in some order, of 2m copies of every letter to base bn.
Without any loss of generality, we may assume that w0 has this property.

Let B be the set of real numbers ξ whose expansion to base B has the property
that every letter, except w0, occurs with the same frequency 1/(B − 1). Then, by
Theorem E, this set has Hausdorff dimension log(B − 1)/ logB.

Our choice of w0 implies that each element of B is simply normal to base bm, but
not simply normal to base bn. Recalling that simple normality to base b�m implies
simple normality to base bm, we get our result by replacing m by an arbitrarily
large multiple of m coprime with n. �
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