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On Hardy spaces associated with certain
Schrodinger operators in dimension 2

Jacek Dziubanski and Jacek Zienkiewicz

Abstract. We study the Hardy space H* associated with the Schrédinger
operator L = —A +V on R? where V > 0 is a compactly supported non-
zero C*-potential. We prove that this space, which is originally defined
by means of the maximal function associated with the semigroup gener-
ated by —L, admits a special atomic decomposition with atoms satisfying
a weighted cancellation condition with a weight of logarithmic growth.

1. Introduction

The aim of this paper is to prove a special atomic characterization of the Hardy
spaces H' associated with Schrodinger operators in R? with compactly supported
non-negative smooth potentials. In other dimensions such characterizations were
obtained in [4] and [10], and only the 2-dimensional situation remained open.

Let Ky (z,y) be the integral kernels of the semigroup of linear operators { K }1~0
on R? generated by a Schrédinger operator —L = A — V(z), where V(z) is
a non-zero nonnegative C?-function supported by the unit open ball B(0,1). The
Feynman—Kac formula

(L1) Kif(2) = B (e” o VXD (x,) ),

where X is the Brownian motion associated with the heat semigroup P; := e
(see, e.g., Chapter V of [16]), implies that

(1.2) 0 < Ky(x,y) < (4rt) "L exp(—|z — y|?/4t) := Py(z —y).

Clearly, for every 1 < p < oo, the family {K:}:~¢ forms a semigroup of linear
contractions on LP(R?).

The Hardy space H} is defined by means of the maximal function for the
semigroup {K;};~0, namely,

(1.3) Hp ={feL'(R*): MrfeL'(R")},
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where
(1.4) My f(x) = sup |Kif(x)].
>0
The norm || f|| 1 on the space H} is given by the formula

(1.5) £l = IMLfllprge)-

Let w(xz) > 0 be a locally integrable function. We say that a measurable
function b defined on R? is an atom for the Hardy space H,, ,; if there exists a ball
B = B(xg, ) such that

(1.6) suppb C B, [|bllz= < |B|7Y,

b(x)w(z)dx = 0.
RQ

The atomic norm || f|[z:  is given by the formula
(1.8) HfHHLu = inf { Z Al f= Z)\jbj, Aj € C,b; are atoms for H&),at}'
J J

Clearly, if w = 1, then the H&} ap-atoms coincide with the classical (1, co)-atoms
for the Hardy space H'(R?). For the theory of the classical real Hardy spaces
HP(R) we refer the reader to [3], [11], [12], [17], and the references therein.

Our goal in this paper is to prove the following theorem:

Theorem 1.1. Assume that L = —A+V is a Schridinger operator in R?, where V
is a non-zero nonnegative C%-function such that suppV is contained in the unit
ball B(0,1). Then there exists a regular L-harmonic weight w such that

(1.9) C'In(2 + |z|) < w(z) < Cn(2 + |2|),
H} = Hy, ., and
(1.10) C M fmy  < Wfley < Cllflla,

The construction and the properties of the weight w are given in Section 3.

Let us finally emphasize the differences which occur in atomic decompositions of
the Hardy spaces associated with Schrodinger operators with compactly supported
potentials in dimensions different than 2. It was proved in [10] that for d >3
and any compactly supported nonnegative V' € L¢(R%), ¢ > d/2, the Hardy
space H! 5 |, coincides with H,, ., where

(1.11) w(z) = lim Ki(x,y) dy.

t—00 Rd
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Here K,(x,y) are the integral kernels of the semigroup generated by A —V in R9.
The function w defined by (1.11) satisfies

O0<c<w(x) <1, lim wk) =1, |wk)—wx) <Clz-—27.

|z|— o0

See [10] for details and proofs.
The one-dimensional situation is different and was studied in [4]. Let V€ L] (R)
be a nonnegative potential. In order to define the notion of an atom for the

space H! \ Lv> one defines the auxiliary function

y+r

ply) = inf{r>0:7“ V(z)de > 1}.

y—r

Then atoms for H* 4y are either the classical (1,00)-atoms for the Hardy space
HY(R) or |[I|7txs(z), where I = (y — p(y),y + p(y)). Hence, in this case, the
Hardy space is local, where the scale of localization is adapted to the behavior of
the potential (see [4]).

The reader interested in results concerning Hardy spaces associated with semi-
groups of linear operators, and in particular semigroups generated by Schrodinger
operators, is referred to [1], [2], [4], [6], [7], [8], [9], [10] and [15].

The paper is organized as follows. In Section 2 we derive estimates for the
integral kernels Ki(x,y) of the semigroup generated by —L = A — V, where
V € C?(B(0,1)) C R?, V > 0, V # 0. Then we prove some properties of the
operator VL~!. Section 3 is devoted for the construction of the weight function w
(see Theorem 1.1). In Section 4 we provide a relation between the classical atoms
and the H)} ,;-atoms (see Proposition 4.2). The proofs of the inequalities in (1.10)
are presented in Sections 5 and 6.

Acknowledgments. The authors want to thank the reviewer for his valuable
remarks which improved the presentation of the paper.

2. Estimates of kernels in R?

Henceforth, unless otherwise stated, we assume that V is a non-zero nonnegative
C?-potential supported in the unit ball B(0,1) of R?, Ky(x,y) are the integral
kernels of the semigroup {K;};~o generated by —L = A — V (z).

For Cy > 0 (big enough) we define

1

G(z) == %/]R? In|z —y|V(y)dy + Co.

Then G € C*°(R?) and, if we take C large,

(2.1) G(r)>2 and G(z) ~In(2+2[z|) forz e R
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The function G(x) is L-subharmonic, that is, LG(z) > 0. Indeed,

LG() = (A + V() (5 / Infe —y| V(y)dy + Co)

= V(@) + V(x) Glx) > 0.

Hence,
d
o | Bz Gly)dy=— | Ki(z,y) LG(y) dy <0,
R? R?
and, consequently,
(2.2) . Ki(z,y) G(y) dy < G(z).

Since G(z) is bounded on compact sets,
(2.3) /Kt(z,y) G(y)dy < C fort>0and |z] < 3.

Lemma 2.1. There is C > 0 such that

fort <2(1+|z]),

fort >2(1+ |z]).

1
. Ki(z,y)dy < {C In(2+2]2)

Int
Proof. Thanks to (1.2), it suffices to consider ¢t > 2(1 + |z|). Using (2.2) together
with (2.1), we have that

Ki(z,y) dy:/

ly|<tt/4

Ki(z,y) dy+/ Ki(z,y)dy

ly|>t/4

< 71
= /y<t1/4 dy+C Ki(zy) Intl/4 dy

ly|>t1/4
G(z) <C In(2 + 2|z|)

ntl/4 — Int

R2

<Ot/ +cl

Lemma 2.2. There exists a constant § > 0 such that

(2.4) /R Ki(z,y) dy > 5% for t > 2(1 + |a).

Proof. The Feynman—Kac formula (1.1) implies that
(2.5) e Wl p(z —y) < Ky(z,vy).
Set ¢(x,t) = fR2 Ki(x,y)dy. Clearly, by (1.2) and the semigroup property,
(2.6) 0< p(x,t1) < Ppa,ta) forty > ta > 0.
Let Q = {z € R? : |x| > 1}. We have

0> %QS(%@ = A¢(x,t) — V(z)p(x,t) = Ad(z,t) for x € Q,



H' SPACES IN DIMENSION 2 1039

and so for fixed ¢, ¢(z,t) is superharmonic on 2. Moreover, from the Feynman—
Kac formula we conclude that there exists a constant dy > 0 such that ¢(z,t) > do
for |z| = v/t > 2. For fixed t > 4, let

In |x|

Then
0=u(z) < ¢(x,t) for |z)=1 and & =u(z) < d(z,t) for |z| =V4t,

and, consequently, since u is harmonic,

In|z|
Oln\/f B

Now we consider |z| < 2. Let t > 5. Then,

/ Ki(z,y) dy = / K@, 2)Ki1 (2 ) d= dy
R2 R2 JR2

Z// Ki(z,2)Ki—1(2z,y) dz dy
R2 J2<]|z|<3

Wi} [ [ Ky

(2.7) 0 u(z) < ¢(x,t) = /R2 Ki(z,y)dy for 1< |z| < VL.

> in
{lz[<2, 2<]2|<3}
> 060 7
T lnvt—-1
where in the last inequality we have used (2.5) and (2.7). Thus, thanks to (2.6)
and (2.7), the lemma is proved for ¢t > 2(1+|z|)2. Assume now that ¢ > 2(1+ |z|).
Since 2 > t,
n(2+[z))  0ln(2 + |z|)
In(t2)  2Int

]
Ki(z,y)dy > / K (x,y)dy > 6
R2 R2

The perturbation formula (see, e.g., Chapter 3 of [5]) asserts that
t
(28) Pt:Kt+/ Pt_sVstS.
0
Thus

29) /0 . V(2)Ks(z,y)dzds = /R2(Pt(m —y) — Ki(z,y)) dx
2.9

=1— [ Kz,y)dx.
R2

Hence, using Lemma 2.1, we get

(2.10) /000 . V(2)Ks(z,y)dzds = 1.
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Lemma 2.3. There exists a constant C' > 0 such that for x,y € R? we have
(2.11) / Ky, y) dt < Cmin(In(2 + |2]),In(2 + [y]).

2

Proof. Observe first that for 2,y € R?, and ¢t > 2 one has

In(2 + |z|) In(2 + |y|)
t(Int)?

(2.12) Ki(e,y) <C
Indeed, if u € R?, then from Lemma 2.1 we conclude

Ki(xz,u) = /z Kijo(x,2)Kyjo(2,u) dz < ct! /2 Kijo(x, 2) dz
R’ R

In(2 + |z)
- tlnt
Applying again Lemma 2.1 combined with (2.13), we obtain

Kiwg) = [ Kol 2)Kplevy) dz
R

C In(2 + |z]) C In(2 + |z|) In(2 + |y|)
< - K < .
tInt /R 12(2,y) dz < H(nf)?

Clearly, (2.12) implies (2.11) for |z|, |y| < 2. Thus, to complete the proof of the
lemma, we can assume that |y| > |z| and |y| > 2. If additionally |y| > 2|z|, then
by (2.12) and (1.2),

(2.13)

ly|? o0

/ Ki(z,y)dt < Ky(z,y)dt + Ki(z,y)dt
2 2

ly|?

 In(2 + |z]) In(2 + |y|)
ly|2 t(h’lt)2

If 2|z| > |y| > |z|, then from (2.12) and (1.2) we get

ly|? ,
< C/ t~te W16t g 4 © dt < Cln(2 + |z).
2

o ly|? > In(2 + |z|) In(2 + |y])
< —1
/2 Ki(z,y)dt < C/z trdt+C t(Int)2

dt < Cln(2+ |z]).
[y]?
O

For € > 0 we set

A =A—cl, L.:=—-A+4+ecl4+V=-A.+V.

We have
[ee] [ee]
ATt = 7/ e S'Pdt, L7'= / e 'K, dt.
0 0
Since P; and K; are contractions on every LP(R?), the operators AZ! and L_! are
bounded on every LP(R?), 1 < p < co. Moreover,
(I-VAHYI-VLY)y=I-VLHI-VAIYH) =1

These equalities can be proved by direct computation if we substitute V = A.+ L..
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For f € L'(R?) let

@ = [ [ K s dye
0 R2

Formula (2.10) implies that the operator VL~! is bounded on L!(R?) (see also
Lemma 2.3). Clearly,

(214) I=I-VAHUI -VL Y+ (T -VAHVL ' -VLIY) on LY(R?).

Finally let A= f(z) = f* E(z), with E(z) = (2r)"'In|z|. Since E belongs to
BMO(R?), there is a constant C' > 0 such that for any classical H'(R?)-atom a
one has |A™'a(x)| < C and

1/e

(2.15) A7ta(z) = — lim Pia(x)dt

e—0t Jo

(see also (5.2) and (5.3)).

As a consequence of (2.10) we have the following lemma:

Lemma 2.4. For every f € L'(R?)

/(I ~ VLY f(x)dx = 0.

For e > 0 let
Wo(z,y) = V(m)/ Ko, y)(1 — et dt.
0

It is clear that W.(z,y) is the integral kernel of the operator VL™t — VL1,

Lemma 2.5. Ase — 0, W.(z,y) — 0 uniformly on sets of the form R? x B(0, R).
Proof. Recall that V is a C? function supported in B(0,1). Hence, We(z,y) = 0
for |x| > 1. Fix R > 2. If |y| < R and |z| < 1, then by (1.2) and (2.12) we obtain

R 0o
Wg(m,y) < V(iﬂ)/o ||KtHoo etdt+ V(x)/R Kt(ft,y)(l _ efet) dt

(2.16) > In(2+ R)

< _ —et .
_C’HVHooRerCHVHOO/R g e

The lemma follows by applying the Lebesgue dominated convergence theorem. O

The following corollary can be concluded from Lemmas 2.3 and 2.5:
Corollary 2.6. ||[VL™' — VLI 11 < 1. Moreover, for every f € L'(R?),

lim (VL™ = VL") fllLige) = 0.
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3. Auxiliary weight function
Let

1 [ du 1 ™
O(e) = E/1 exp(—su)z =

Note that

1 1
0(5)—Elng:cl+0(s) ase — 0T,

For 0 < € <1 we define the weight function

/R/ V() K (2y) (1 — e==) ds dz.

Proposition 3.1. There are constants C,c > 0 such that

we(y) < Cn(2 + 2Jy),

cln(2+2yl) <w:(y) for yl <e7".

Proof. We split the integral which defines w. into two parts:

€) /81 /R? V(2)Ks(z,y)(1 — e %) dzds

31) +0(e /_/ y)(1 —e %) dzds
= Ji(y) + J5(y R

Using (2.10) and Lemma 2.1, we get

J5(y) ~ 0(e / / (z,y)dzds
R2
zydzdsf/ / Ky(z,y)dzds
(32) / /RQ R2 )

- 9(5)(1 (1 —/R2 Ko(z)dz)) < 09(5)7(2”'@')

Inl/e
< Cln(2 + 2|y).
Observe that if |y| < e71, then from Lemma 2.2 we obtain
(3.3) J5(y) = cIn(2+[y)).

We now turn to estimating J5(y). By the perturbation formula (see (2.9))
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and Lemma 2.1 we have
671
E)(/ V(2)Ks(z,y)dzds
0 R2

—/ / (e4+V(2))Ks(z,y)e” % dzds +/ / EKs(z,y)e_“dzds)
0 R2 0 R2
—/ K.-1(z,y)dz
RZ

—|—/ Kgfl(z,y)e_ldz—i—/ / EKS(z,y)e_“dzds)
R2 0 R2

(3.4) =0() et —1) | K.1(z,y)dz+ 9(5)5/ Ks(z,y)e **dzds
R2 R2
In(2 + 2|y|
< K
< ClO(e)—————= ln(l/s / (z,y)dzds
+9(5)€/ == In(2 + 2Jy|) (In /T/2) " ds
e—1/2
< Cn(2 + 2Jy)) + COE)e2 + COE)e In(2 + 2ly[)(In 1 /e) / ds
e—1/2

< C'ln(2 + 2|y|).

Thus from (3.1)—(3.4) we get the proposition. O

From Proposition 3.1 we conclude that there is a subsequence £; — 0 such
that w,, (z) converges to a function w(x) in the weak™* sense and (1.9) holds.

Since for every y € R? and t > 0 the function = — K;(z,y) is continuous and
has Gaussian decay, we have

(3.5) lim we; () K¢ (2, y) dm:/ w(x)K¢(z,y) de.

J—0 JR2 R2

Proposition 3.2. The function w is L-harmonic, that is,
Kow(y) = / w(x)K¢(z,y) de = w(y) for every t > 0.
R2

In order to prove the proposition we need the following lemma:

Lemma 3.3. For every t > 0, there is a constant C' > 0 such that, for every
0 <e <1, one has

| Kiwe(z) — we(z)| < CHO(e)e.
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Proof of Lemma 3.3. We have:

Kow. (x) = 6(c) / 2 / N [ K p)V () Kz 0)(1 - ) dzdsdy

/ / Kopi(x,2)(1 —e %) dzds
R2

2)(1 —efe %) dz ds

z2)(L—e %) dzds

@ /Rz
5)/t /R2 V(z)Ks(x

0 / h [ VR (2 = et dads

/ [ VK201 - ) dzds

/ /R? 2)(1 —e %) dzds

5)/ . V(2)Ks(z,2)e (1 — ) dz ds

= ) —6(e //R2 z2)(1 —e %) dzds.
5—:)/t /R2 V(2)K(x,2)e” (1 — ) dz ds,

which, by using (2.10) and the mean value theorem, implies the lemma. O
Proof of Proposition 3.2. Write v(x) = Kyw(x). Since w(y) is the weak™ limit of
We; (y)7 we get

tim [, K e) dy = [ wl)Kilo)dy = ofo)

J—0 JR2 R2

On the other hand, by Lemma 3.3, we have

o(w) = lim [ e, ()Kil,y) dy = lim w, (@) + O(0(e;)e,).

j—o0 JR2
Thus, v(z) = w(z) for every z € R2. O

Clearly, Aw(x) = V(x)w(z), because w is L-harmonic. Since w has logarithmic
growth (see (1.9)), there is C; > 0 such that

(3.6) w(z) = (2m) 7! / V(y)w(y)In |z —yldy + Ci.
R2
Tt follows from (3.6) that

(3.7) [Vw(z)] < C1+ )7
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and
(3.8) lw(z) —w(z")| < C provided |z|/2 < |2'| < 2|z].
Another direct consequence of (3.6) is the following lemma:

Lemma 3.4. Let a be a classical H'(R?)-atom. Set g = (I — VA~ )a. Then

/g(m)w(m) dx = 0.

4. Atoms

We start this section by proving the following lemma:

Lemma 4.1. Let ¢; be a sequence as in the definition of the function w(x). Let b
be an atom for H}U’at. Then

(4.1) lim (VAZY(VL™Y = VLZY) b(z) =0
j—o0o J J
uniformly in x.

Proof. Since supp V' C B(0, 1), it is enough to consider |z| < 1. Let U.(x,y) denote
the integral kernel of the operator —VAZ}(VL™! — VL:1)). Fix an atom b for
H), .. (see (1.6)~(1.7)). Let r be such that suppb C B(0,r). Then for |z| <1 and
ly| < r we have

Uc(z,y) = /0 /]Rz /0 V(z)Py(x — 2)e” ="V (2)Ki(2,y)(1 — e ") dt dz du

1 3 1 e’}
= ...dtdzdqu/// ..o dtdzdu
w2 L gy
+/ // .odtdz du
1 Rr2 Jo

= Il(xay) + 12(‘r’y) + Ig(l‘,y).

By the mean value theorem and (1.2) we obtain that

1 3
Il(:c,y)§CV(:c)/ / / P,(x — 2)V(2)||Kt||lo et dt dz du
o Jr2Jo
< CeV(@)[|[Vlloo-

(4.3)

To estimate Iz we apply (2.12) and obtain

1 o0 n r
L(z,y) gCV(x)/O /}R/3 Pu(xz)V(z)%aea)dtdzdu
(44 <oVl [ B a e a

<CV(@)In2+7)||V]eo Ine~H L
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In order to deal with I3 we split the integral as follows:

I5(

/ /RZ / (= 2)=Pu(0)) e V(2) Ki(2,y) (1 — e") dt dz du

/ /Ra/ 0)e™ ="V (2) Ki(2,y)(1 — ") dt dz du

= I3(x,y) + V(2)we(y)-

By the mean value theorem,

B(x,y)| < C /100 / /OOO V(@u=/2V (2)Ki(2,y) (1 — =) dt dz du

1/vE
(4.6) <CV(2) /Rz/ V(2)Ki(z,y)et dt dz

+CV(x) V(2)Ki(z,y)dtdz
R J1/ e
< CV(@)Vel Vg +CV(@) |V (ne™h) ™,

where in the last inequality we have used (2.12). Hence we obtain the lemma
from (4.2)—(4.6) and (1.7), because

tim [ Vi), (0)0) dy = V(o) [ wl)bie)dy =0,
J—=0 JR2 R2
O

The goal of this section is to prove the following proposition, which will be used
in the proof of the second inequality in (1.10).

Proposition 4.2. There is a constant C > 0 such that if b is an atom for the Hardy
space Hy, . associated with a ball B(xr), then there exist a finite sequence ay of
classical Hl(Rz) atoms and a sequence A\, € C such that

(4.7)  each atom ay, is associated with a ball B(xy, i) with r,, < max(1,r),

(4.8) Sl SC and b= NI - VA Ny
k

k

The proof of the proposition consists of Lemmas 4.3, 4.7, 4.8, 4.9, and Corol-
lary 4.6 below.

For n,m € NU{0}, n < m, let Ry, = {x € R? : 27/2 < |z| < 2™/?}. The
following decomposition will be frequently used here:

n
(49) |Rn»n+1|71XRn,n+1 = |R071|71XRO,1 + kav
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where
Sr = [Reg1 ] XRusrs — [ Re—1.6l ™ XRe -

Observe that for k = 1,2,...,n we have

supp fr C Ri—1,k+1, /2 Jr(y)dy =0,
R

C
|Ri—1,k+1]

(4.10)
| felloo < s Wkl @2y < C,

with a constant C' independent of n and k. Consequently,

n n
(411)  [Rons1] ™ XRpir = 1 Roal X, + D VAT i+ > (I = VAT,
k=1 k=1

n
(4.12) H|R0,1|—1XR0,1 +ZVA‘1ka < C(n+1).
k=1 o

Lemma 4.3. Assume that b is an H,, . -atom such that suppb C B(0,3) and
1b]lco < |B(0,3)|7t. Then there is an H'(R?)-atom a such that suppa C B(0,3),
llallee < C, and b= (I — VA~ 1)a.

Proof. Set a = (I — VL™ Y)b. Clearly, suppa C B(0,3), ||alloc < C and, by
Lemma 2.4, [ a = 0. Moreover, using (2.14) combined with (2.15), and Lemmas 2.5
and 4.1, we get b = (I — VA 1)a. 0

Lemma 4.4. Let b be a function such that suppb C Ry pi1, [[b]ec < 277, and
Jbw =0. Then there exists a finite sequence {aj}?iol of classical H'(R?)-atoms

and a sequence {/\j};-’iol of complex numbers such that

n+1 n+1
b:Z)\j(IfVA’l)aj, Z|AJ—| <C.
j=0 j=0

The constant C' is independent of b.

Proof. Set

K= b(z) dx.
R2

Fix xy € Ry nt+1. By the assumptions on b and (3.8), we obtain
(4.13) || = w(mo)_l‘/ b(x)(w(zo) —w(x))de| < Cw(ze) ' < Cn™t,
RQ

where in the last inequality we have used (1.9). Applying (4.9) (see also (4.11)),
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we have
b= IRn%ﬂXR”'”“ + (b — IRn,n+1|XR"’"+1)
@1y = HlRealxm + ”i VAT 4+ vaT (b= ﬁm)
+(I-VA™Y (b —~ mmﬁxmmﬂ) + ﬁzn:(f — VAT fi.

k=1

Clearly, b — £|Rpnt1| " XRoniy and fr, k = 1,2,...,n, are multiples of H'(R?)-
atoms with a universal constant factor independent of b (see (4.10) and (4.13)).
Moreover, the function

n
_ _ _ K
9(x) = K|Roa| YXRo, +5 Y VAT + VA 1(b
k=1

- XR )
|Rn,n+1| mr

is supported in B(0,v/2), and, thanks to (4.12) and (4.13), we have that || g||e < C.
Since [bw = 0, we conclude from (4.14) and Lemma 3.4 that [ gw = 0. Therefore,
by Lemma 4.3, g = (I — VA™Y)fo, where fo is a multiple of a classical H!(R?)-
atom. Hence, Lemma 4.4 follows form (4.14), (4.12), and (4.13). O

Lemma 4.5. Assume that b is an H, , -atom associated with B(0,2"/?), n > 1.

Then there is a sequence of functions by, k=0,1,...,n — 1, such that

kuHoo < C27n, /bkw =0,

suppbo € B(0,V2), suppby C Rp—1 1 fork=1,2,...,n—1,

n—1

b= b
k=0
Proof. Let By = B(0,1) and A = |B(0,2"/2)|7! = 77'27". By the assumptions,
Ib]| o < A. Define

w(B(0,1))
w(Ro,l) ’

w(Ri—1,1)

So =1+
0 w( Ry k+1)

S =145k fork=1,2,...

where w(U) = [, w(z) dx for a measurable set U C R?. Formula (3.6) implies that
0 < w(Rk—1,5)/w(Rept1) <r <1 fork>2.
Hence the sequence sy is bounded. Set
b= (bxB, — CoXRo.) + (COXRo, + bXRo.) = bo + bo,

where

co = ! / bw
* " w(Ron) Jp,
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Obviously, |co| < Aw(By)w(Ro,1)~". We easily see that

/bow:/gowzo,

supp bp = B(0,v2), Suppgo C Ron,
|b0(l‘)| S ASQ,

~ A f R,
|b0(:£)| < So lor x € [,
A for z € Ry .

Now we decompose by:
b0 = (boXRes — C1XR1a) + (C1XR1 2 + DXRy,) == b1 + b1,

where ¢; = w(Ry )7t fRO

15010. Clearly, [bjw = fglw = (0. Moreover,
’w(Ro’l)

<A
|Cl| =~ S0 w(RLz))

supp b1 C Ro,2, suppgl C Rip, and

A for z € Ro.1,
|b1(m)|§{ S0 or r 0,1

A sg —ZEZ‘;S for x € Ry o,

~ A f R
|b1(:E)| < S1 or r € Ii2,
A for z € Ry .

Then we decompose 31:
51 = (51XR1,2 - CQXRQ,I}) + (CQXRQ,g + bXRQ,n) = by +52’

where co = w(Ra3)7! [

nglw. We have [ bow = fggw =0, and

w(R1 2)
< As] ———=2.
le2] < "V w(Raz)

In addition, supp ba C Ry 3, suppgg C Ry, and

Asy for x € RLQ,

ba(z)| < L
| | Asy %2:3 for z € Ry 3,

~ A f
()] < sy for x € Ry,
A for z € R3 .
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We continue the procedure and get functions by and bk, k=1,2,. -2, such
that supp by C Ri_1.k41, SUpp by C Ry, J brw = fbkw =0, b* bn 2+Zk 0 o b
and
Asj_q for z € Ry—1.,
|bw ()| < {A w(Rk—1,k) £ cR
k=1 w(Ry 1) O kbt
~ A fi R
b)) < Sk or r € g k+1,
A for x € Riy1n-

Set b,_1 = En,g. From the above we see that |bx| < C 27", with C independent
of b. O

As a direct consequence of Lemmas 4.4 and 4.5, we obtain the following corol-
lary:

Corollary 4.6. The conclusion of Proposition 4.2 holds for every H] at-atom b
associated with a ball B(0,2™/?), n > 1.

Lemma 4.7. The conclusion of Proposition 4.2 holds for every H}, . -atom b
associated with a ball B(xo,r), |xo| <2, r < 1.

Proof. Set co = |B(xo, )|~ [ b(x)dz. By (1.6)-(1.7) and the mean value theorem,
(4.15) lco| = |B(x0,7")|71w(:co)*1‘/ b(x)(w(zo) — w(x))dz| < Or~?
R2

Define Bj = B(zo,2/r), ¢; = co%, j=0,1,...,[logy 771 = k. Then,

k

b= (b—coxn,) +colBol Y _(I1B;| " x5, — [Bjs1l™"x,:1) + colBol | Begi |~ Xy -
=0

Set ag = (b — coxm,) and aj41 = |Bj|"'xB, — |Bjt1] ' XB,., for j =0,1,... k.
Clearly aj, j = 0,1,..., k, are multiples of classical H'(R?)-atoms with a constant
factor independent of b. So,

b=T-VA Yag+ I -VA~ Zco|Bo|aJ
(4.16)

B
+ VA lag + VA~ ZCO|BO|QJ+CO|;I€0||XBM
Jj=1 1

Note that Z?zl ¢o|Bo| < C. Further, from Lemma 3.4 we deduce that

By
VAL (ao + ZCO|BO|(LJ) + co |g | |XBk+1

is a multiple of an H,) ,.-atom associated with the ball B(0,3). Hence, the lemma

follows by applying (4 16) and Lemma 4.3. O



H' SPACES IN DIMENSION 2 1051

Lemma 4.8. Assume that b is an H,, . -atom associated with B(xo,r), |zo| > 1,

r < 1. Then the conclusion of Proposition 4.2 about the decomposition holds.
Proof. Let n = [logor™ ], s = [|zol], Bx = B(xg,2%r), for k = 0,1,...,n, and
By = B(*wxo,2"r), for j =1,...,s. Put ¢o = [Bo| ™! [ b(x) dz,

apg = b — C()XBO, )\0 = 1;

ar, = |Be—1| " Xy — [Br| "' XBes A =colBol, k=1,2,....m

antj = |Bnl '(XBosss = XBuiy)s Ants =colBol, j=12,....s.
Then, from (1.6), (1.7), (3.7), and the mean value theorem we obtain that

|co| w(zo) | Bol |zo| < Cr.

Moreover, the a,, are multiples of classical H!(R?)-atoms (with a constant factor
independent of b) and

n+s

B
b= mZ::O Am @ + Co %XB,H_S-
Clearly, >-7"% |\,,| < C, and
n—+s n+s |BO|
(4.17) b= An(I = VA Dam + Y AuVA ap + B, X
m=0 m=0 nts

The function g = 22;60 M VA an, + ¢o|Bol|Bngst+1| ' XBunsosy is supported
in B(0,2), ||lg]lsc < C, and, by Lemma 3.4, [g(z)w(z)dz = 0. The proof is
completed by the use of (4.17) and Lemma 4.3. O

Lemma 4.9. The conclusion of Proposition 4.2 holds for every H}, . -atom b
associated with a ball B(xo,1), |xo| > 2r > 2.

Proof. Let s = [|lzo|/r], n = [logyr] + 1, B = B(=£wzo,r), k = 0,1,...,s, and

Bsij = B(0,2797), j =1,2,...,n. Set ¢g = |Bo|~* [ b(z) dz. We have
|co|w(zo)|Bol|zol < .
Define
ag = b— CoX By )\0 = 1;
ak = |Bk|71(XBk—1 - XBk)v )‘k? = CO|BO|7 k= 17' -y 8]
As+j = |Bs+j—1|_1st+J‘—1 - |Bs+j|_1XBs+j) )‘s-‘rj = COlBS|7 .7 = 1a27' BEENLS

The functions a, k = 0,1,...,s + n, are multiples of the classical H'(R?)-atoms.
By the same arguments as in the proof of the previous lemma,

s+n s+n |B |
(4.18) b= Z (I— VA_I)/\mam + Z VA_l/\mam +co |stn| XBsin

m=0 m=0
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with S2°+" |\,,| < C, the function

m=0

s+n
g = Z VA’I)\mam + CO|Bs| |BS+7L|71XBs+n

m=0

being a multiple of an H, ,;-atom supported in B(0,2). From equation (4.18) and
Lemma 4.3, we get the decomposition. O

5. Boundedness of maximal functions

The main goal of this section is to prove the second inequality in (1.10) of Theo-
rem 1.1, that is, there exists a constant C' > 0 such that

(5.1) [IMLfllLrre) < Cl[f||m

w,at

Let us first note that if a is a classical H'(R?)-atom associated with a ball of
radius 7 > 0, then

Cs=3/% for s > r2,
Cr—2 for s < r2.

(5.2) |Psa(z)| < {
Hence, there is C' > 0 such that
[ee]
(5.3) / \Pya(z)|ds < C
0

for every classical H'(R?)-atom a.
The perturbation formula asserts that

t t

(54) Kt:Pt*/ (Kt,S*Kt)VPSdS*Kt/ VPSdS.
0 0

Let f € HY(R?). Then

Kt(I—VA_l)f:Ptf+Kt/oo VPsfds—i—/t(Kt—Kt_s)VPsfds
t 0
=DBf+Quf +Ref + Sif,

(5.5)
where
Qt = Kt/ VPS dS,
t
t/2
Rt = / (Kt - Kt_s)VPs dS,
0

t
St = / (Kt - Kt,s)VPS ds.
t/2
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Lemma 5.1. There exists a constant C > 0 such that, for every H'(R?)-atom a,
one has

(5.6) ||0i1t124|QtalHL1 <c, | 0i224|Rta|HL1 <c, | Oigr§>4lStGIHL1 <C

Proof. Let a be a classical H'(R?)-atom associated with a ball B(z,7). Denote
Mo f(z) = sup Pi|f|().
0<t<4

Clearly, supg ;<4 K| f[(z) < Mo f(z). Using (5.3), we get

(5.7) sup |Qra(z)] < CMoxg(o,1)(2)-
0<t<4

Similarly, for 0 < ¢t < 4, we have

Ria(z)) < K, / VPl ds)( / Ky oV|Psa|(2) ds

(5.8) %
< CMoxgo,n(z) +C K /5V|Psal(x) ds
0

< C"Moxp0,1)(T).

To deal with S; we apply (5.2) and obtain

c ¢ K,SV 72d ift < 27
K sV Psa(z)ds| < ftt/Q( t )(‘T)Ti S 1 r

Cft/Q(Kt*sV)(ff)S 32pds  ift > 12,
< CMOXB(0,1)(JJ)-

Similarly to (5.8), by the use of (5.3), we get

t

(5.9) t/2

¢
K,V Psa(z) ds
/2

(5.10) < CMoxp(0,1)(@).

Now the lemma follows from (5.7)-(5.10) and from the fact that Mo maps xp(o,1)
into L. O

Lemma 5.2. There exists a constant C > 0 such that, for every classical H'(R?)-
atom a associated with a ball B(xo,r), one has

swp Q| <c.
t>max(r?,4) Lt
(5.11) sup  |Real|| | <O,

t>max(r2,4)

sup  |Sial ‘ <C.
t>max(r?,4)
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Proof. From (5.2), for ¢t > max(r?, 4), we have

(5.12)  |Quaz)| < CK, ( /0 T Vs ds) (2) < Crt= 2K,V (x).

In order to deal with R; we note that for 0 < s < ¢/2 one has

(5.13) Kz, 2) — Ki_y(z,2)| < ct% exp(—c|z — 2|/tV/?) = %Z)t(:c —2).

Hence, by (5.2), we obtain

r?/2 s
|Ria(z)] < /0 . ;d)t(m — 2)V(2)|Psa(z)| dzds

t/2
4+ / S bu(x — 2)V(2)| Poa(2)] d ds
r2/2 JR2 t

5.14 r*/2
(5.14) < / f(ﬁt(m — 2)V(2)r 2 dzds
0 RZ t

t/2

+ / f(bt(x —2)V(2)rs3/?dz ds
r2/2 JR? t

<Crt™ V24, % V(z)+Ct Y2 ¢, « V().

We now turn to estimating Sia. Applying (5.2) we get
t

K,V Psa(x)
/2

t
< C/ Ko o(x,2)V(2)rs™3/*dz ds
t/2 JR?

r t/2
SC,—/ Ky(x,2)V(z)dzds
a ) | Kwavi

(5.15)
r 2 r t/2
r /2
SCt_lMOV(J:)—i—CtSW/ (KV)(x) ds.
2
Set
- /2
S(z) = sup —/ K,V)(x)ds.
( ) t>max(r?,4) t3/2 2 ( )< )

If |z| <2, then we use (2.12) and get

-
(5.16) S(xz)<C  sup VEvE)

t>max(r2,4)

t/2
/ s (Ins)"2ds < Cr(1 +7r)73.
2
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If 2 < |z| < max(r,2), then

|$| t/2
r
S(z) < Ct>mii‘52,4> 7 /2 2)ds + =73 /x (K.V)() ds)
|z| t/2
r 1 T In|z|
<C 1 clz|?/s d o d >
(5.17) B t>mi252,4) t3/ 2/2 s+t3/2 2| s(lns)? y

1
<Celyc sup ! ( )
t>max(r2,4) t3/2 | | In |.Z‘| lnt

<Cellyo@+r)2
Finally, if |z| > max(r,2), then

t/2 t/2
,
Sx) <C sup — KV(z)ds+ C sup —= KV (x)ds
( ) |z|2>t>max(r?, 4)153/2 2 ( ) t>|x|? t3/2 ( )
t N-1
r s
<C sup C—r= ——ds
|z|2>t>max(r2,4) t3/2 2 |:L'|2N
|z| t/2
(5.18) + C sup 373 KV (z)ds+ C sup 373 K,V (z)ds

t>]z)2 T t>]z)2 T ||

lz] ¢N—1 t/2 |z|
r r r n|x

< C—+C sup —/ ds+ C sup —/ ds
|23 a2 132 Jy 2PN t>l22 132 Jiz s(lns)?

The estimates for Sup;s ax(r2,4) | ftt/z K,V Psads| are similar to those we have
provided for @; (see (5.12)). Observe that

sup  rt'/? O V(x)’
t>max(r2,4)

Hence, taking together (5.12)—(5.18) we obtain the lemma. O

L1(R2) —

Proof of (5.1). It suffices to prove that | Mpb||1 < C for b being any H,, ,-atom.
If an atom b is associated with a ball B(xg, ), then, from (1.2) one easily concludes
that || supg;<,2 |K:bl[|,1 < C. Thus there remains only the case t > 2. To this
end, we note that by Proposition 4.2 it is enough to prove that || sup,s.,» [K¢(I —
VAil)aH‘Ll < C for every classical H!(R?)-atom a. This is a direct consequence
of (5.5), and Lemmas 5.1 and 5.2. O

6. Atomic decomposition

The goal of this section is to prove the first inequality in (1.10) of Theorem 1.1,
(6.1) Il ., < ClIMLflLr,

w,at T

with a constant C' > 0 independent of f. For this purpose we shall use results
about Hardy spaces associated with Schrédinger operators proved in [15].
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Let {T:}+>0 be a semigroup of linear operators generated by a Schrédinger
operator £ = A —V on R, where V is a nonnegative locally integrable potential.
Let M > 1 be a positive integer. A function @ € L'(R?) is called a (1,2, M)-atom
associated with £ (see Section 2 of [15]) if there exists a function b which belongs
to the domain of the operator LM considered on L?(R¢) and a ball B = B(zq,r5)
such that

(i) @ = LMb;
(i) suppﬁkgc B, k=0,1,..., M;

(iii) [|£50]| L2 (ray < P2 2*|BIV2, k= 0,1,..., M.

*

The atomic norm || f||z2 s defined by

g, =it { 3" 1},
j=1

where the infimum is taken over all representations f = Z;‘;l Ajaj, where \; € C
and the a; are (1,2, M)-atoms. The following atomic decomposition was shown in
Theorem 8.2 of [15]. For every integer M > 1 there is a constant Cp; > 0 which
depends on M and d such that

(6.2) Car 1l

L,at,M

S IMefllprway < Curllfll

Loat,M’

Using (6.2) we shall prove another atomic decomposition for elements of the
Hardy space H'! associated with £. We say that a function a is a generalized (1, q)-
atom (1 < ¢ < oo) for H] , ; if there exists a function b and a ball B = B(zo,7p)
such that

(i) suppb C B;
(i) HbHLq(Rd) <|BJYa
(ili) a = (I — T,z )b.
The norm || flg: ,  is defined by
1l =inf {0 1 =D Nay
J J

where the infimum is taken over all decompositions f = Zj Aja;, A; € C, and
the a; are generalized (1, ¢)-atoms.

Proposition 6.1. There is a constant Cy such that
(63) H./\/l[;a||L1(Rd) § Cq.

for every generalized (1, q)-atom a.
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Proof. Using standard arguments (see, e.g., [13]) we have that there is a con-
stant C, such that

<,
L1(da)

<2H sup |Tib ‘
L (dx) 0<t<2r ITib(@)|

H sup |Tia(x |‘
0<t<ry
for every generalized (1, g)-atom a.

We now consider sup;,,2 [K;a(z)|. Using the functional calculus for Schrodin-

ger operators, see e.g. [14], one gets ||L2Ty|| 1 (ray— 1 (ray < Ct~2. Hence,

t4r%
sup [Tya(z)| = sup |( Tyyrz —Tt)b (z)| = sup LK b(x) ds‘
t>r% t>r% t>r2 ' Jt
t+7’B
= sup K,b(x )duds’
t>r
t+rB
< sup/ / |£2K b(x |dud5—7“B/ |£2K b(x |du
t>rB
and, consequently,
|| sup |Tta(x)|||L1(dm) S C
tZr%
O
Lemma 6.2. There is a constant C' > 0 such that
(6.4) Il ., < ClIMefllge-

Proof. Assume that [ M f]|11(ray < 0o. Then, by virtue of (6.2),

(6.5) F=Y Na;, >IN < ColMeflprray,
i i

where the @; are (1,2, 1)-atoms.
Let @ be a (1,2,1)-atom. By definition there is a function b and a ball B =
B(xo,rp) such that

Ezﬁg, suppECB(mo,rB), and ||cF bHLng)<rB 2’“|B|_1/2, k=0,1.

Set B

g =15 p(rpL)b,
where ©(\) = Ae (1 —e~*)~1. Obviously, ¢ € §([0,00)) and a = (-T2 )(a+g).
By [14] the integral kernel ¢(r% L)(x,y) of the operator ¢(r% L) satisfies

(6:6) el L) y)] < enrp (14 =)
B
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Hence,

| —x0|)—N

(6.7) g(z)| < chgd(1 n
rB

One can easily conclude from (6.7) that g can be written as

(6.8) g= Z/Mbia Z il < Cy,

where each b; is supported by a ball B; = B(y;,rg), ||billr~ < |B;|~! and the
constant C} is independent of a. Now let A = {x € B : |a(z)| > e |B|~!}, where
€ > 0 is a small constant which will be determined later. By the Tchebychev
inequality, |[A| < e?|B|. Set a® = a(z)xp\a(z) and a™(z) = a(z)xa(z). We have
that [|a®||z <e™'[B|™! and [[a*||f3/2ra) < /3| B|~1/3. Proposition 6.1 implies
that Mz (I —Ty2)a> |z < C3/2¢'/3. Thus, using (6.8), we get

(6.9 4= (U ~Tg)a’ + ) il — Tr;g)gi> + (I —Tpz)a>* :=h +hy,
with

hoflg < max(e” !, Cp),  [Mchallpigey < Cspe™/?.
Thanks to (6.5) and (6.9), we decompose
(6.10) f=f+h
with
cae =G0 max(e~ ", Co) [Mefl i ray,
[Mefill o gay < CoCsyae® | Mefll L may-

Il

Taking e small enough we guarantee that CyCy /251/ 3 < 1/2. Now we use the
decomposition (6.10) for f; instead of f and obtain f; = f3 + fo with

olle, ., < Comax(="", CIIMefills o
< Comax(e™!, C)27 H IMefllprway,
IMcfollLr(ray < CoCspae' B Mefill prmay < 272 ML f s ray-
Tterating this procedure we get the desired decomposition (6.4). O

Proof of (6.1). According to Lemma 6.2 it suffices to prove that every generalized
(1,00)-atom a = (I — T,2)b can be written as

a=>y \bj,
J

where the b; are H, ,-atoms and _; |A;| < C.



H' SPACES IN DIMENSION 2 1059

Let B = B(xo,7) be a ball such that suppb C B, ||b|L~ < |B|~!. Then

/Rz a(z)w(z)dr = / b(z)(I — T,2)w(x) dx = 0,

R2

because w is L-harmonic. Clearly,
la(z)| < Cr~2exp(—|z — 20| /7).

Write 28 B = B(zg,2*r) and set

cp = —w(QkB)fl/ a(r)w(x)dr, k=0,1,2...;
(2+B)e

bo=(a—co)xB, br=cr-1Xor-15— CkXorp + AX2kB\2k—1B-

Then a = Z;ozo b;. One can easily see, using the fact that w(z)dz is a doubling
measure, that each b; is a multiple of an H,, ,.-atom and [|b;|| 1 < Cj~2, which
finishes the proof. O
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