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L3 estimates for an algebraic variable coefficient

Wolff circular maximal function

Joshua Zahl

Abstract. In 1997, Thomas Wolff proved sharp L3 bounds for his circular
maximal function, and in 1999, Kolasa and Wolff proved certain non-sharp
Lp inequalities for a broader class of maximal functions arising from curves
of the form {Φ(x, ·) = r}, where Φ(x, y) satisfied Sogge’s cinematic cur-
vature condition. Under the additional hypothesis that Φ is algebraic, we
obtain a sharp L3 bound on the corresponding maximal function. Since
the function Φ(x, y) = |x−y| is algebraic and satisfies the cinematic curva-
ture condition, our result generalizes Wolff’s L3 bound. The algebraicity
condition allows us to employ the techniques of vertical cell decomposi-
tions and random sampling, which have been extensively developed in the
computational geometry literature.

1. Introduction

1.1. Background

Consider the Wolff circular maximal function

(1.1) M δf(r) = sup
x

1

|Cδ(x, r)|
∫
Cδ(x,r)

|f |,

where Cδ(x, r) is the δ-neighborhood of the circle centered at x of radius r. In [13],
Wolff proved that for each ε > 0 there exists a constant Cε such that

(1.2)
∥∥M δf

∥∥
L3([1/2,1])

≤ Cε δ
ε ‖f‖L3(R2) ,

which in particular implies that every BRK set (a planar set containing a circle
of each radius r ∈ [1/2, 1]) must have Hausdorff dimension 2. It is not possible
to omit the δ−ε factor since if (1.2) held with this factor omitted, it would imply
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that every BRK set had strictly positive Lebesgue measure, and this is known to
be false. Wolff’s result built off of his earlier work1 (jointly with Kolasa) in [7],
where he proved the bound

(1.3)
∥∥M δf

∥∥
q
≤ Cp,q δ

− 1
2 (

3
p−1) ‖f‖p , p <

8

3
, q ≤ 2p′.

Equation (1.3) can almost be obtained by interpolating (1.2) with the trivial bound

(1.4)
∥∥M δf

∥∥
∞ ≤ C δ−1 ‖f‖1 ,

though in doing so we pick up an additional Cε δ
ε factor.

However, this earlier Kolasa–Wolff result applied not only to circles but to any
family of curves satisfying Sogge’s cinematic curvature condition first introduced
in [12]; let U be a neighborhood of (a, b) ∈ R

2 × R
2 and Φ: U → R with Φ

smooth. Then the family of curves2 Γ(x, r) = {y : Φ(x, y) = r} is said to satisfy
the cinematic curvature condition provided

(1.5) ∇yΦ(a, b) �= 0

and

(1.6) det
(
∇x

[
e · ∇yΦ(x, y)

e · ∇y

( e·∇yΦ(x,y)
|∇yΦ(x,y)|

) ] ∣∣∣
(x,y)=(a,b)

)
�= 0,

where e is a unit vector orthogonal to ∇yΦ(a, b). While there are two potential
choices of vector e, the two choices only differ by a sign, so the veracity of (1.6) is
independent of the choice made.

Informally, the second condition is a quantitative version of the statement that
two distinct curves cannot be tangent to second order – it guarantees that if two
curves Γ and Γ̃ intersect at a point x, then their normal vectors at x or their
curvature at x (or both) must differ by at least the distance between Γ and Γ̃ in
some suitable metric.

Let Γδ(x, r) be the δ-neighborhood of Γ. Define

(1.7) M δ
Φf(r) = sup

x∈U1

1

|Γδ(x, r)|

∫
Γδ(x,r)

|f |,

where U1 is a sufficiently small neighborhood of a. Then Kolasa and Wolff proved
that for any f supported in a sufficiently small neighborhood of b,

(1.8)
∥∥M δ

Φf
∥∥
Lq([1/2,1])

≤ Cp,q δ
− 1

2 (
3
p−1) ‖f‖p , p <

8

3
, q ≤ 2p′.

1While [7] was published after [13], [7] was written first.
2Note that we are reversing the role of x and y from the notation of [7].
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1.2. New results

Theorem 1.1. Let Φ be an algebraic function satisfying the cinematic curvature
conditions (1.5) and (1.6) at (a, b) and let U1 be a sufficiently small neighborhood
of a. Then for all f supported in a sufficiently small neighborhood of b and for all
ε > 0, there exist a constant Cε depending only on ε and Φ such that for all δ > 0,

(1.9)
∥∥M δ

Φf
∥∥
L3([1/2,1])

≤ Cε δ
ε ‖f‖L3(R2) .

Remark 1.2. See Appendix B for the definition of an algebraic function and
related concepts.

Remark 1.3. Theorem 1.1 generalizes (1.2). Indeed, Φ(x, y) = |x − y| is clearly
algebraic, and by the rotational, translational, and scale invariance of Φ, in order
to verify the cinematic curvature condition it suffices to verify the condition at the
point a = (0, 0), b = (1, 0). Then e = (0, 1) and the determinant in (1.6) is 1.
Furthermore, if

(1.10) Φ(x, y) = |x− y|+ P (x, y)

for P a smooth algebraic function with ‖P‖C3 sufficiently small, then Φ satis-
fies (1.6) uniformly in the choice of a, b ∈ [0, 1]2. Thus we obtain (1.9) for any fam-
ily of smooth algebraically perturbed circles, provided the perturbation is not
too large.

We shall prove Theorem 1.1 by modifying Schlag’s arguments in [10]. These
arguments rely on a key incidence lemma for circles, which is proved by Wolff
in [15]. This incidence lemma employs various bounds on the behavior of circle
intersections, which do not obviously hold for the more general class of curves we
are considering. Luckily, most of the analogous statements were proved by Kolasa
and Wolff in [7], so Theorem 1.1 can largely be obtained by patching together
previously known results.

The constraint that Φ be algebraic is quite restrictive and is likely not optimal
(indeed it is reasonable to conjecture that it is completely unnecessary). However,
this constraint allows us to use a “semi-cylindrical algebraic decomposition” argu-
ment from real algebraic geometry. We shall discuss in Section 6 some conjectures
about how the algebraic requirements can be weakened.

1.3. Proof sketch

Through standard reductions, it suffices to prove a discretized version of a bound on
the adjoint of the maximal operatorM δ

Φ. Roughly speaking, if we have a collection
of “tubes” {Γδ} corresponding to curves with δ-separated radii (see (2.1) below for
the definition of Γ), we need to control the area of the region where many of these
tubes overlap. This is Lemma 2.1 below.

In [10], Schlag showed that (1.9) holds for families of curves satisfying two
conditions. The first is a bound ((2.9) below) on |Γδ ∩ Γ̃δ| (where here | · | de-
notes Lebesgue measure) provided we have control over how close Γ and Γ̃ are
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to each other in a suitable parameter space and how close the two curves are to
being tangent.

The second requirement, which is made precise in (2.10) below, controls the
number of almost tangencies that can occur between the elements of W and B
if (W ,B) is a t-bipartite pair. Informally, two collections of curves W and B
are called a t-bipartite pair if every two curves in W (resp B) are close in an
appropriate parameter space while those in W are far from those in B (there are
some additional technical requirements that we shall gloss over here. The full
details can be found in Definition 2.3). The requirement is a quantitative analog
of the incidence geometry result that N circles in R

2 can have at most CεN
3/2+ε

tangencies between pairs of circles. The incidence geometry result was proved
in [5], and in [15], Wolff obtained the quantitative analog that was then used in
Schlag’s argument.

The bulk of this paper will be devoted to showing that families of curves arising
from algebraic defining functions Φ satisfy the second requirement, i.e., that (2.10)
is true. Once this has been established, one can run Schlag’s arguments virtually
verbatim to obtain Theorem 1.1.

2. Definitions and initial reductions

First, let us assume U = U1×U2, with U1 and U2 sufficiently small disks centered at
a and b respectively (the requirement that U1 and U2 be disks will be relevant –we
need U2 to be a semi-algebraic set). In particular, by selecting U1, U2 sufficiently
small we can assume that the cinematic curvature conditions hold for every point
(x, y) ∈ U1 × U2 with uniform bounds on ∇yΦ and with the determinant in (1.6)
bounded uniformly away from 0.

Throughout this paper, C,C′, etc. will denote constants that are allowed to
vary from line to line. We will say X � Y or X is O(Y ) if X < CY and X ∼ Y if
X � Y and Y � X .

Fix 0 < α < C−1 diam(U2). For x ∈ U1, r ∈ [1/2, 1], we define

(2.1) Γ(x0, r0) = {y ∈ B(b, α) : Φ(x0, y) = r0}.

We shall call these sets Φ-circles, and if Γ is a Φ-circle then Γδ will denote its
δ-neighborhood. If Γ, Γ̃, etc. are Φ-circles, then unless otherwise noted, x0, r0 and
x̃0, r̃0 will refer to their respective centers and radii. The Φ-circles defined here are
strict subsets of the sets Γ defined in the introduction. However, if the function f is
supported on a sufficiently small neighborhood of b then we can define a maximal
function analogous to (1.7) with Γ in place of Γ, and the two maximal functions
will agree. Thus we shall henceforth work with curves Γ defined by (2.1).

We shall restrict our attention to those Φ-circles Γ with x0 ∈ U1 and r0 ∈
(1− τ, 1) for τ a sufficiently small constant which depends only on Φ. By standard
compactness arguments, we can recover Lp([1/2, 1]) bounds on MΦ from those on
the “restricted” version of MΦ by considering the supremum over a finite number
of scaled versions of the function.
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Using standard reductions (see e.g. [10]), in order to prove Theorem 1.1 it
suffices to prove the following estimate:

Lemma 2.1. For η > 0 and δ sufficiently small depending on η, let A be a
collection of Φ-circles with δ-separated radii, with each radius lying in (1 − τ, 1).
Then there exists Ã ⊂ A with #Ã ≥ 1

C #A such that for all Γ ∈ Ã and δ < λ < 1,

(2.2)
∣∣∣B(b, C−1α) ∩

{
y ∈ Γδ :

∑
Γ̃∈A

χΓ̃δ(y) > δ−ηλ−2
}∣∣∣ ≤ λ |Γδ|.

In [10], Schlag took Wolff’s combinatorial incidence result from [15] and used
it in conjunction with an induction on scales argument to prove the analogue of
Lemma 2.1 (in [10], this is Lemma 8). In order to state Schlag’s theorem, we first
need some additional definitions.

Definition 2.2. For X ⊂ B(b, α), we define

(2.3) ΔX(Γ, Γ̃) = inf
y∈X : Φ(x0,y)=r0
ỹ∈X : Φ(x̃0,ỹ)=r̃0

|y − ỹ|+
∣∣∣ ∇yΦ(x0, y)

‖∇yΦ(x0, y)‖ − ∇yΦ(x̃0, ỹ)

‖∇yΦ(x̃0, ỹ)‖
∣∣∣.

Crucially,
ΔB(b,C−1α)(Γ, Γ̃) ≥ ΔB(b,α)(Γ, Γ̃),

but there exists a finite family of translates {ti} ⊂ R
2 (the cardinality of the family

depends only on C) so that

(2.4) inf
i
ΔB(b+ti,C−1α)(Γ, Γ̃) ≤ ΔB(b,α)(Γ, Γ̃).

In the example Φ(x, y) = |x − y|, ΔX(Γ, Γ̃) describes how “far” (in (x0, r0) pa-
rameter space) we would need to move Γ so that Γ̃ and the newly moved curve Γ′

are incident at some point in X . Indeed, if Φ(x, y) = |x − y| and X = R
2 then

ΔX(Γ, Γ̃) =
∣∣|x0 − x̃0| − |r0 − r̃0|

∣∣, provided x0, x̃0 ∈ U1 with diam(U1) sufficiently
small so that in particular, the only way circles can be tangent is if they are
internally tangent.

Let

(2.5) d(Γ, Γ̃) = |x0 − x̃0|+ |r0 − r̃0|.
This d(·, ·) is a metric on the space of curves. Throughout our arguments, the
particular choice of metric will not be important since we will not care about
multiplicative constants.

Definition 2.3. Let W ,B be collections of Φ-circles. We say that (W ,B) is a
t-bipartite pair if

|r0 − r̃0| ≥ δ for all Γ, Γ̃ ∈ W ∪ B,(2.6)

d(Γ, Γ̃) ∈ (t, 2t) if Γ ∈ W , Γ̃ ∈ B,(2.7)

d(Γ, Γ̃) ∈ (0, t) if Γ, Γ̃ ∈ W or Γ, Γ̃ ∈ B.(2.8)
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Definition 2.4. A (δ, t)-rectangle R is the δ-neighborhood of an arc of length√
δ/t of a Φ-circle Γ. We say that a Φ-circle Γ is incident to R if R is contained

in the C1δ neighborhood of Γ. We say that R is of type (� μ,� ν) relative to a
t-bipartite pair (W ,B) if R is incident to at least Cμ curves in W and at least Cν
curves in B for some absolute constant C to be specified later.

We are now able to state Schlag’s result.

Proposition 2.5 (Schlag). Let A be a family of Φ-circles with δ-separated radii
that satisfy the following requirements:

(i)

(2.9) |Γδ ∩ Γ̃δ ∩B(b′, C−1α)| � δ2

(d(Γ, Γ̃) + δ)1/2(ΔB(b,α)(Γ, Γ̃) + δ)1/2

for any b′ in a sufficiently small neighborhood of b.

(ii) For any t-bipartite pair (W ,B), with t > Cδ for an appropriate choice of C;
W ,B ⊂ A; #W = m; #B = n; and for any ε > 0, the number of (� μ,� ν)
(t, δ)-rectangles is at most

(2.10) Cε(mn)
ε
((mn

μν

)3/4

+
m

μ
+
n

ν

)
.

Then Lemma 2.1 holds for the collection A.

Proof. The proof of this theorem can be found in Section 4 of [10]. However, we
need the following minor modifications.

• Schlag actually requires the bound

(2.11) |Γδ ∩ Γ̃δ| � δ2(
d(Γ,Γ) + δ

)1/2(
ΔB(b,α)(Γ,Γ) + δ

)1/2 .

in place of (2.9). However, (2.11) can be obtained from (2.9) by summing
over finitely many translates of the ball B(b, C−1α).

• Schlag stipulates that requirement (ii) in the above theorem hold for all values
of t and δ, not merely those for which t > Cδ. However, there are at most
� δ−2 (δ, t)–rectangles incident to (W ,B), and if t < Cδ we can use this fact
in place of the bound from (2.10). �

The next sections shall be devoted to proving that any δ-separated family of
Φ-circles satisfy the two requirements from Proposition 2.5. Once this has been
established we will have proved Theorem 1.1. The first requirement will not present
much difficulty; indeed, it was already proved by Kolasa and Wolff in [7], and it is
Property 4.7 in Section 4 below. Thus the bulk of our efforts will be devoted to
proving that the second requirement is satisfied. This will appear as Lemma 5.18
in Section 5.
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3. Algebraic considerations

Let Γ = Γ(x0, r0) be a Φ-circle and X ⊂ B(b, α) an open semi-algebraic set of
dimension 2 (see Appendix B for the definition of the dimension of a semi-algebraic
set); in our discussion below we will only consider balls. For w = (w1, w2, w3) ∈ R

3,
let

VΓ,X,w =
{
(x, r, y) ∈ U1 × (1− τ, 1)×X : Φ(x0, y)− r0 = w1,

Φ(x, y)− r = w2,∇yΦ(x0, y) ∧ ∇yΦ(x, y) = w3

}
,

(3.1)

where
(z(1), z(2)) ∧ (z̃(1), z̃(2)) = z(1)z̃(2) − z(2)z̃(1).

This VΓ,X,w should be thought of as the space of pairs (Γ̃, y) with Γ̃ a Φ-circle
tangent to Γ at the point y ∈ X . Intuitively, we can think of w1, w2, w3 as being 0.
However, setting w1, w2, w3 equal to 0 might cause VΓ,X,w to fail to have the correct
dimension. Thus we shall choose a very small “generic” choice of w1, w2, w3 which
fixes this problem. This will be elaborated upon in Lemma 3.1.

Let

(3.2) SΓ,X,w =
(
π(x,r)VΓ,X,w

) ∩ {(x, r) : |x− x0| > Cδ} ,
for an appropriately chosen C, where π(x,r) : (x, r, y) �→ (x, r) is the projection

operator. SΓ,X,w should be thought of as the set of Γ̃ that are incident to Γ at
some point y ∈ X . In the example where Φ(x, y) = |x − y|, SΓ,X,0 is a section of
the right-angled “light cone” with vertex (x0, r0) ∈ R

3, i.e.,

SΓ,X,0 ⊂ {(x, r) : |x− x0| = |r − r0|}.
Lemma 3.1. For an appropriate choice of 0 ≤ w1, w2, w3 < C−1δ, SΓ,X is a
semi-algebraic set of bounded complexity. Furthermore, if X = B(b, α) then SΓ,X

has (semi-algebraic) dimension 2.

Proof. We shall first show that if w1, w2, w3 are chosen appropriately then VΓ,X,w

is a semi-algebraic set of codimension 3. It suffices to show that the the defining
functions in (3.1) are algebraic functions whose zero-sets intersect transversely.
Φ(x0, y) − r0 and Φ(x, y) − r are immediately seen to be smooth and algebraic
since Φ is smooth and algebraic. The components of ∇yΦ(x0, y) and ∇yΦ(x, y) are
smooth and algebraic since the partial derivatives of a smooth algebraic function
are smooth and algebraic, and thus∇yΦ(x0, y)∧∇yΦ(x, y) is smooth and algebraic.
The complexity of these functions is clearly independent of the choice of Γ. Finally,
by Sard’s theorem we can find 0 ≤ w1, w2, w3 < C−1δ such that (w1, w2, w3) is a
regular value of the map

(x, r, y) �→ (
Φ(x0, y)− r0, Φ(x, y)− r, ∇yΦ(x0, y) ∧∇yΦ(x, y)

)
.

For such a choice of values of w1, w2, w3 we have that SΓ,X,w has geometric codi-
mension 3, and thus semi-algebraic codimension 3, as desired (see Appendix B for
a review of the relevant real algebraic geometry).
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By the Tarski–Seidenberg theorem, π(x,r)VΓ,X,w is semi-algebraic of bounded
complexity, and thus so is SΓ,X,w. At this point, the dimension of the components
of SΓ,X,w could be 0, 1, or 2. However, we shall show in Corollary 4.10 below that
if X = B(b, α), then SΓ,X,w is a smooth manifold of dimension 2 or 3, and thus
the components of SΓ,X are in fact of (semi-algebraic) dimension 2. �

Remark 3.2. It is somewhat curious to note that in our proof, we use algebraic
considerations to show dim(SΓ,X,w) ≤ 2 and differential geometric considerations
to show dim(SΓ,X,w) ≥ 2, and thus conclude that dim(SΓ,X,w) = 2.

Definition 3.3. Abusing notation slightly, we shall suppress the dependence of
SΓ,X,w on w, and we shall define SΓ,X to be SΓ,X,w for an appropriate choice of w,
the existence of which is guaranteed by Lemma 3.1. None of our arguments below
will depend on the specific choice of w, and all of the constants in the estimates
below will be independent of the choice of w, provided |w| < C−1δ for a sufficiently
large constant C.

We have defined SΓ,X and ΔX so that

(3.3) SΓ,X,0 =
{
Γ′ : ΔX(Γ,Γ′) = 0

}
,

and thus since 0 ≤ w1, w2, w3 ≤ C−1δ,

SΓ,X ∈ {
Γ′ : ΔX(Γ,Γ′) = 0

}
+B(0, C−1δ),(3.4) {

Γ′ : ΔX(Γ,Γ′) = 0
} ∈ SΓ,X +B(0, C−1δ),(3.5)

where the + symbol denotes the Minkowski sum. These inclusions are the key facts
linking the algebraic and geometric properties of Φ. Lemma 3.1 allows us to use
the technique of semi-cylindrical algebraic decompositions (also known as vertical
algebraic decompositions) to decompose R

3 into a collection of “cells” adapted to
a collection of surfaces {SΓ,X}. Informally, a cell is an open subset of R3 whose
boundary consists of pieces of the surfaces from the collection {SΓ,X} as well as
additional surfaces that are added to guarantee that the cells have certain favorable
properties. More precisely we have the following result:

Lemma 3.4. Let D be a collection of Φ-circles, #D = N . Then there exists an
algorithm for creating a vertical decomposition of U1×(1−τ, 1) (recall that U1 and τ
were specified in Section 2 and depend only on Φ) into � N3 logN open (in R

3)
cells {Ωi} such that U1 × (1− τ, 1) is the union of sets of the following types:

• cells,

• the dividing surfaces {SΓ,B(b,α) : Γ ∈ D},
• vertical walls: 2-dimensional semi-algebraic sets whose projections under the

map πx : (x, r) �→ x are 1-dimensional semi-algebraic sets.

The cells in this decomposition have the property that

(3.6) Ω ∩ SΓ,B(b,α) = ∅ for all cells Ω and all Γ ∈ D.
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Furthermore, for each cell Ω in the decomposition, there is a bounded number
(6 will suffice) of dividing surfaces such that Ω is one of the cells arising from the
decomposition algorithm applied to this subcollection of surfaces (i.e. the existence
of the other N − 6 surfaces is irrelevant if all we care about is the cell Ω).

Proof. This statement follows from the techniques developed by Chazelle, Edels-
brunner, Guibas, and Sharir in [4]. Unfortunately, while Theorem 3.4 is claimed
in [4] and follows (with some effort) from the methods described in Chapter 8 of [1],
we are unaware of a complete and detailed proof of Theorem 3.4 in the literature.
The author intends to present such a proof in his forthcoming PhD thesis. In the
interests of keeping this paper self contained, we will give a brief expository sketch
of the vertical algebraic decomposition in Appendix A. �

Lemma 3.5. Let B be a collection of Φ-circles, #B = n. Randomly select (see Re-
mark 3.6) a subset D ⊂ B with #D = N < C−1n, and let {Ωi}M1 , M ≤ N3 logN
be the cells from Lemma 3.4. Then with high probability (see Remark 3.7) we have
that for each i,

(3.7) #
{
Γ ∈ B : SΓ,B(b,α) ∩Ωi �= ∅} � N logn

n
.

Remark 3.6. To obtain our random selection we shall take a uniformly distributed
random sample with replacement from B. However, our algorithm will only work
if the elements of the sample are all distinct. By requiring that N ≤ 1

Cn for C
sufficiently large, we can ensure that this will occur with high probability, so this
assumption will not cause difficulty.

Remark 3.7. By “high probability” we mean that for any probability P < 1
we can select a choice of constant C in the quasi-inequality in (3.7) so that the
decomposition satisfies (3.7) with probability at least P . Later in the proof of The-
orem 1.1 we shall need the above decomposition to satisfy additional properties
which also occur with high probability (relative to another set of constants that
we can weaken at will). We can ensure that all of these properties are simultane-
ously satisfied by requiring that each of the properties are separately satisfied with
sufficiently high probability and using the trivial union bound.

Proof. Lemma 3.5 follows from Lemma 3.4 by the technique of random sampling
(see e.g. [5]). Again, we shall briefly review this technique in Appendix A. �

Lemma 3.4 (which is only used to prove Lemma 3.5) is the only place where
Lemma 3.1 is used, and it is thus the only place where we use the requirement
that Φ be algebraic. We shall discuss in Section 6 some conjectures about how to
obtain Lemma 3.4 through other (less algebraic) means, though our best attempts
in this direction have thus far yielded only provisional results.

Added 2/14/2012: In a recent paper, the author has obtained an analogue of
Lemma 3.5 using the discrete polynomial ham sandwich theorem of Guth and Katz
in place of Lemma 3.4. With this new technique, the requirement that Φ be alge-
braic is no longer necessary, i.e. Theorem 1.1 is established for all defining func-
tions Φ satisfying the cinematic curvature condition. See [16] for further details.
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4. Cinematic curvature and its implications

Many of Wolff’s arguments from [13] rely on the local differential properties of
families of circles. The relevant properties are captured by the notion of cinematic
curvature defined in the introduction. In [7], Kolasa and Wolff establish several
key properties of families of curves with cinematic curvature which we shall recall
below.

Property 4.1 (Straightening out). Let x0 ∈ U1. Then we can find a diffeomor-
phism ψx0 : U

′
2 → U2 and a choice of r0 = r0(x0) such that

Φ(x0, ψx0(y))− r0 = y(2) ,

where U ′
2 is an appropriately chosen domain (which may no longer be a disk).

Furthermore for fixed y0,

(4.1) ψx0(y0) and r0(x0) are continuous functions of x0.

This is discussed on page 126 of [7]. To simplify notation, we shall say that Φ has
been straightened out around x0 if we (temporarily) replace the function Φ(x0, ·)
with Φ(x0, φx0(·))− r0(x0), i.e., in “straightened out” coordinates, Φ(x0, y) = y(2).
Note that if we straighten out around x0 then in this new coordinate system Φ
might no longer be algebraic. This will not pose any problems to our analysis below;
we shall only be straightening out to simplify the proofs of certain diffeomorphism-
invariant statements, and the statement can then be “pulled back” to the original
(semi-algebraic) Φ. This process may change some of the constants involved in the
relevant statements. However (4.1) will guarantee that the constants are worsened
by at most a bounded amount so we can safely ignore this problem.

Property 4.2 (Derivative bounds). If we straighten out Φ at x0, then for y ∈
B(0, α),

|∂y(1)Φ(x, y)|+ |∂2
y(1)Φ(x, y)| ∼ |x− x0|,(4.2)

|∂y(2)Φ(x, ψx0,r0(y))| ∼ 1,(4.3)

where ∂y(1) denotes the partial derivative in the y(1)-direction, etc. The constants in
the quasi-equalities above are uniform in all variables. Indeed, since the cinematic
curvature condition is diffeomorphism invariant, (4.2) and (4.3) are equivalent to
the cinematic curvature condition. This is addressed in equation (21) of [7] and
the surrounding discussion.

Property 4.3 (Unique point of parallel normals). Let Γ, Γ̃ be Φ-circles with

ΔB(b,C−1α)(Γ, Γ̃) ≤ C′−1|x0 − x̃0|
for a sufficiently large constant C′. Then there is a unique point

ξ = ξ(x0, r0, x̃0) ∈ Γ ∩B(0, α)
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such that

(4.4) ∇yΦ(x0, ξ) ∧ ∇yΦ(x̃0, ξ) = 0.

Furthermore,

(4.5) |Φ(x̃0, ξ)− r̃0| � ΔB(b,C−1α)(Γ, Γ̃),

and

(4.6) Γ ∩ Γ̃ ∩B(b, C−2α) ⊂ B

(
ξ, C

(ΔB(b,C−1α)(Γ, Γ̃)

|x0 − x̃0|
)1/2

)
.

Equations (4.5) and (4.6) are equations (26) and (27) in [7].

Property 4.4 (Appolonius-type bounds). Let t > Cδ. Fix three Φ-circles Γ1, Γ2,
and Γ3, let B0 = B(b, C−2α), and let

Y =
{
Γ: ΔB(b,C−1α)(Γ,Γi) < C1δ, i = 1, 2, 3;

d(Γ ∩B0,Γi ∩B0) > t, i = 1, 2, 3;

Γδ ∩ Γδ
i ∩B0 �= ∅, i = 1, 2, 3;

dist(ΓC1δ ∩ ΓC1δ
i B0,Γ

δ ∩ Γδ
j ∩B0) > C3

√
δ/t, i �= j

}
.

(4.7)

Informally, Y is the collection of curves that are almost tangent to each of the
curves Γ1,Γ2,Γ3, with the additional requirement that the three regions of almost
tangency not be too close to each other.

If we identify Φ-circles Γ with points (x0, r0) ∈ R
3 then

(4.8) Y is the union of two sets, each of diameter � t.

This is Lemma 3.1(ii) in [7].

Property 4.5. For three fixed curves Γ1,Γ2,Γ3, and a given curve Γ = Γ(x0, r0),
we say that Φ is Γ-adapted if there exist points a1, a2, a3, with aj ∈ Γj such that

|aj − ξj(x0)| ≤ C−1
√
δ/t,

and

Φ(x, a1) = 0,

∇xΦ(x, a2) = (e · (a2 − a1))β

for all x, where e is a unit tangent vector to Γ1 at a1, β is a vector independent of
y with |β| ∼ 1, and

ξi(x0) = ξ(xi, ri, x0).
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Remark 4.6. Informally, the notion of a Γ-adapted defining function is a way of
getting around the problem that we are forced to work with a defining function Φ,
but we are actually interested in its level sets {Φ(x, ·) = r}. Thus we are free
(within certain constraints to be dealt with below) to modify Φ provided that
our new defining function has the same level sets as the old one. Choosing a
Γ-adapted defining function (provided a suitable one exists) simplifies many of the
technicalities in our estimates.

Lemma 3.6 in [7] tells us that if Γ ∈ Y then by pre-composing Φ with suitable
diffeomorphisms, a Γ-adapted defining function Φ exists which satisfies uniform
derivative bounds, and this function Φ has the same level sets as our original Φ
(i.e., it gives rise to the same Φ-circles), so the corresponding maximal functions
are identical (the adapted defining function may not be algebraic, but this will not
affect our analysis).

Now, if Φ is Γ-adapted, define

(4.9) T (x) =

⎛
⎝ ∇xΦ(x, ξ1(x)) −1

∇xΦ(x, ξ2(x)) −1
∇xΦ(x, ξ3(x)) −1

⎞
⎠ .

Informally, if we fix a choice of Γ and select a defining function adapted to Γ, then
for x in a neighborhood of x0, T (x) describes how changing x affects how close
Γ(x, r0) is to being tangent with each of Γ1,Γ2,Γ3.

Lemma 3.8 in [7] tells us that when restricted to each connected component
of Y (individually), T is boundedly conjugate to its linear part, i.e., if Γ and Γ̃ lie
in the same connected component of Y , then

(4.10) T (x0)T (x̃0)
−1 = I + E(x̃0),

where (say) ‖E(x̃0)‖ < 1/100. Furthermore, for the same choices of Γ and Γ̃,

(4.11) |ξ1(x̃0)− ξ1(x0)| �
√
δ/t.

Equation (4.11) is a consequence of equation (45) in [7] once we note that if Γ̃ ∈ Y
is in the same connected component as Γ ∈ Y , then since T is boundedly conjugate
to its linear part, |T (x0)(x̃0 − x0, r̃0 − r0)| < Cδ.

Property 4.7 (Bounds on intersection area). Let Γ and Γ̃ be Φ-circles. Then,

|Γδ ∩ Γ̃δ ∩B(b, C−2α)| � δ2(
d(Γ, Γ̃) + δ

)1/2(
ΔB(b,C−1α)(Γ, Γ̃) + δ

)1/2 ,(4.12)

diam(Γδ ∩ Γ̃δ ∩B(b, C−2α)) �
(ΔB(b,C−1α)(Γ, Γ̃) + δ

d(Γ, Γ̃) + δ

)1/2

.(4.13)

This is Lemma 3.1(i) in [7].
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As noted above, when Φ(x, y) = |x− y|, then SΓ,B(b,α) is a section of the right-
angled light cone with focus at (x0, r0). We shall establish several lemmas that
show that certain key properties of light cones are preserved when we consider
the set SΓ,B(b,α) for Φ a general defining function satisfying the requirements from
Theorem 1.1.

Lemma 4.8. Let Γ and Γ̃ be Φ-circles with

(4.14) ΔB(b,C−1α)(Γ, Γ̃) < C′−1|x0 − x̃0|.

Then there exists Γ′ with x′0 = x̃0, |r′0 − r̃0| � ΔB(b,C−1α)(Γ, Γ̃) such that

(4.15) Γ′ ∈ SΓ,B(b,α).

Furthermore,

(4.16) ΔB(b,α)(Γ, Γ̃) � dist(SΓ,B(b,α), Γ̃) � ΔB(b,C−1α)(Γ, Γ̃).

Remark 4.9. Note that we have to use different sets X in the subscript of Δ on
the right and left sides of (4.16). In the case where Φ(x, y) = |x− y| (and thus we
can define Φ over (say) a large dilate of the unit circle),

Δ(B(0,100))(Γ, Γ̃) =
∣∣|x0 − x̃0| − |r0 − r̃0|

∣∣,
provided Γ and Γ̃ lie in suitably restricted sets, and if two circles are nearly incident,
we can always change one of them slightly so that they are exactly incident. In the
more general case we are considering, however, it may not always be possible to
make two almost incident curves exactly incident by changing one of them slightly;
it is possible that when we try to move one of the curves to make the two curves
incident, the “point of incidence” occurs outside the domain of definition of Φ (and
thus there is no point of incidence). Thus, we need to be more careful about how
we define incidence and almost incidence. This consideration will occur frequently
in the lemmas below, and it will significantly lengthen our analysis.

Proof. By (3.4) and (3.5), in order to obtain (4.16), it suffices to establish the
estimate

(4.17) ΔB(b,α)(Γ, Γ̃) � dist(SΓ,B(b,α),0, Γ̃) � ΔB(b,C−1α)(Γ, Γ̃).

First, note that ΔB(b,α)(·, ·) is jointly smooth in both variables with uniformly

bounded derivatives. Since ΔB(b,α)(Γ, Γ̃) = 0 for Γ̃ ∈ SΓ,B(b,α), we immedi-
ately obtain the first inequality in (4.17). The second inequality in (4.17) follows
from (4.15), which we shall now prove.

Straighten out Φ around x̃0. From Property 4.3 of Φ, there exists ξ ∈ B(b, α)∩Γ
such that

(4.18) ∇yΦ(x0, ξ) ∧ ∇yΦ(x̃0, ξ) = 0,
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i.e. (in straightened out coordinates),

∇yΦ(x0, ξ)

|∇yΦ(x0, ξ)| = (±1, 0),

and
|Φ(x̃, ξ)− r̃0| � ΔB(b,C−1α)(Γ, Γ̃),

where here and below the implicit constants are uniform in the choice of Γ and Γ̃
provided (4.14) is satisfied uniformly. Thus if we select x′0 = x̃0, r

′
0 = r̃0+Φ(x̃0, ξ)

then ξ lies on Γ′, which establishes (4.15). �

Corollary 4.10. SΓ,B(b,α) is a smooth manifold and dim(SΓ,B(b,α)) ≥ 2.

Proof. Let (x̃0, r̃0) ∈ SΓ,B(b,α). Then for C sufficiently large, B(0, 1/C) embeds
into SΓ,B(b,α) in a neighborhood of (x̃0, r̃0) via the embedding (x, r) �→ (x+ x̃0, r

′),
where r′ is as described in Lemma 4.8. �

Corollary 4.11. There exists C0 such that for all Φ-circles Γ, all (x, r) ∈ SΓ,B(b,α),
and all t < C−1|x− x0|,
(4.19) πx

(
SΓ,B(b,α) ∩ {(x′, r′) : |x− x′| < t, |r − r′| < C0t}

)
= {x′ : |x− x′| < t},

i.e., the cylindrical section centered at (x, r) ∈ SΓ,B(b,α) of radius t and height Ct
contains all of (or possibly all of one of the sheets of ) SΓ,B(b,α) confined to the
corresponding truncated cylinder.

5. Counting incidences between bipartite pairs of curve fam-
ilies

Recall the definitions of a t-bipartite pair (W ,B), a (δ, t)-rectangle, and a rectangle
of type (� μ,� ν) relative to (W ,B) (Definition 2.4).

Definition 5.1. We shall say that a (δ, t) rectangle R is of type (∼ μ,∼ ν) if it is
of type (� μ,� ν), but is neither of type (� Cμ,� ν) nor (� μ,� Cν) for some
absolute constant C which shall be determined later.

Definition 5.2. We say that two (δ, t)-rectangles are close if there is a (2δ, t)
rectangle containing both of them. We say that two (δ, t)-rectangles are comparable
if there is a (C0δ, t)-rectangle containing both of them.

For (W ,B) a t-bipartite pair with t > Cδ and X a set, define

IX =
{
(Γ, Γ̃) ∈ (W ,B) : ΔX(Γ, Γ̃) < δ

}
,

ĨX =
{
(Γ, Γ̃) ∈ (W ,B) : ΔX(Γ, Γ̃) < Cδ

}
,

for some constant C to be determined later, where we recall that ΔX is defined
in (2.3).
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We shall state and prove a series of lemmas that are analogous to Lemmas 1.5–
1.16 in [15]. If the proof of a lemma is the same as that of the corresponding lemma
in [15], we shall omit it. Throughout the discussion below, (W ,B) is a t-bipartite
pair with #W = m, #B = n.

Lemma 5.3.

(i) If ΔB(b,C−1α)(Γ, Γ̃) < δ, then there exists a (δ, t)-rectangle R ⊂ B(b, α) such

that Γ and Γ̃ are tangent to any (δ, t)-rectangle close to R.

(ii) Conversely, if Γ, Γ̃ are tangent to a common (δ, t)-rectangle R ∈ B(b, α),
then ΔB(b,α)(Γ, Γ̃) ≤ Cδ, and if Γ and Γ̃ are tangent to comparable (δ, t)-

rectangles R,R′ ∈ B(b, α) then ΔB(b,α)(Γ, Γ̃) � δ.

Lemma 5.4. Let Γ ∈ W and Γ̃ ∈ B. Then there are at most O(1) incomparable
(δ, t)-rectangles R ⊂ B(b, α) tangent to both Γ and Γ̃.

Proof. Since d(Γ, Γ̃) ∼ t, (4.12) gives us the bound

(5.1) |B(b′, C−1α) ∩ Γ ∩ Γ̃| � δ3/2t−1/2

for all b′ in a sufficiently small neighborhood of b. Each (δ, t)-rectangle has area
∼ δ3/2t−1/2 and incomparable (δ, t)-rectangles are pairwise disjoint. The lemma
follows by applying (5.1) to O(1) choices of b′ = b+ ti. �

Lemma 5.5.

(i) Let R ⊂ B(b, α) be a collection of pairwise nonclose rectangles. Then

#ĨB(b,α) � #
{
(R,Γ, Γ̃) ∈ R× B ×W : Γ and Γ̃ are tangent to R

}
.

(ii) There exists a collection R of pairwise incomparable (δ, t)-rectangles R ∈
B(b, α) such that

#IB(b,C−1α) � #
{
(R,Γ, Γ̃) ∈ R× B ×W : Γ and Γ̃ are tangent to R

}
.

Proof. The first statement is immediate. The second statement can be proved
in the same way as Lemma 1.7 in [15] with (4.4) and (4.5) used in place of the
analogous equations in [15]. �

Lemma 5.6. Let Γ1,Γ2,Γ3 be three Φ-circles. Let R be a collection of pairwise
incomparable rectangles R ∈ B(b, α) with the property that for each R ∈ R there
is a Φ-circle Γ such that:

• d(Γ,Γi) ≥ t, i = 1, 2, 3.

• Γ and Γ1 are tangent to R.

• There exist two (δ, t)-rectangles R2, R3 ∈ B(b, α) such that Γ and Γi are
tangent to Ri, i = 2, 3, and such that R1, R2, R3 are pairwise incomparable.

Then #R � 1.
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Proof. We shall establish the proof with the additional restriction that R must lie
in B(b′, C−2α) for b′ in a sufficiently small neighborhood of b. Once this has been
established, we can recover the full result by selecting O(1) choices of b′ such that
B(b, α) ⊂ ⋃

b′ B(b′, C−2α).
Let R ∈ R and let Γ be a Φ-circle satisfying the above conditions. Then we

must have Γ ∈ Y, where Y is as defined in (4.7); indeed the above requirements
on Γ are precisely those needed to ensure that Γ ∈ Y . By (4.12),

(5.2) Γ ∩ Γ1 ∩B(b′, C−2α) ⊂ B
(
ξ(x0, r0, x1), Cδ

1/2t−1/2
)
.

Now, let Γ0 ∈ Y and let Φ̃ be a Γ0-adapted defining function with the same level
sets as Φ. Since Φ̃ has the same level sets as Φ and the gradient of Φ̃ is comparable
to that of Φ, it suffices to prove the lemma for Φ̃. However, by (4.11) we have that
if Γ is in the same connected component of Y as Γ0 then

(5.3) |ξ(x1, r1, x0)− ξ(x1, r1, x)| �
√
δ/t.

Since Y contains only two connected components, (5.2) and (5.3) imply that⋃
(x0,r0)∈Y

Γ(x0, r0) ∩ Γ1 ∩B(b′, C−2α)

⊂
(
B(z0, Cδ

1/2t−1/2) ∩ Γ1

)
∪
(
B(z1, Cδ

1/2t−1/2) ∩ Γ1

)
,

(5.4)

where z0, z1 are points in the two connected components of Y respectively. In
particular, the set on the right hand side of (5.4) has measure � δ3/2t−1/2. Since
every R ∈ R must lie in this set, and pairwise incomparable rectangles must be
disjoint, we obtain #R � 1. �

Lemma 5.7. Let Γ and Γ̃ be Φ-circles with d(Γ, Γ̃) = t > Cδ and r0 ≥ r̃0. Let
R, R̃ ∈ B(b, C−1α) be comparable (δ, t)-rectangles with Γ and Γ̃ tangent to R and R̃,
respectively. Then,

(i) Γ̃ ∩B(b, C−1α) is contained in the Cδ-neighborhood of{
y ∈ B(b, α) : Φ(x0, y) ≤ r0

}
.

(ii) For any constant A there is a constant C(A) such that the cardinality of any
set of pairwise incomparable (δ, t)-rectangles R ∈ B(b, C−1α) each of which
is tangent to Γ and intersects the Aδ-neighborhood of{

y ∈ B(b, α) : Φ(x̃0, y) ≤ r0
}

does not exceed C(A).

Proof. Straighten Φ around x0. By Lemma 5.3.(ii), with α replaced by C−1α,
we have ΔB(b,C−1α)(Γ, Γ̃) ≤ C′δ. Thus if we choose the value of C in the state-
ment of the lemma to be sufficiently large (depending on C′), then |x0 − x̃0| >
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C′′ΔB(b,C−1α)(Γ, Γ̃), so by Property 4.3 of the cinematic curvature, there exists a

unique point ξ(x̃0, r̃0, x0) ∈ Γ̃ satisfying (4.4), i.e.,

∇yΦ(x̃0, ξ) = (0,±1),

so ξ(1) is the point where the function y(1) �→ Φ(x̃0, (y
(1), y(2))) achieves its max-

imum in the domain (y(1), y(2)) ∈ B(b, α), where y(2) = y(2)(y(1)) is implicitly
defined by (y(1), y(2)(y(1))) ∈ Γ̃ (we can verify without difficulty that this is
well-defined). By (4.5) (noting that in the straightened out coordinate system,
Γ = {y(2) = 0} ∩ U ′

2),

Φ(x̃0, ξ) � ΔB(b,C−1α)(Γ, Γ̃) � δ,

and thus for an appropriate choice of C,

Γ̃ ∩ U ′
2 ⊂ {y(2) < Cδ}.

Returning to our original coordinate system, this is Statement (i) of the lemma.
To obtain the second statement, note that by the same reasoning as above,

ΓCδ ∩
(
{y ∈ B(b, α) : Φ(x̃0, y) ≤ r̃0}+B(0, Aδ)

)
⊂ ΓC(A)δ ∩ Γ̃C(A)δ ∩B(b, α)

(5.5)

for a suitable constant C(A), where the + in the above equation denotes the
Minkowski sum. The result then follows from (4.12) and the fact that incomparable
rectangles are disjoint. �

Lemma 5.8.

(i) The cardinality of any set of (∼ μ,∼ ν) rectangles is � mn2/3

μν2/3 .

(ii) The cardinality of any set of (� μ,� ν) rectangles is � mn2/3

μν2/3 + n
ν log m

μ .

Remark 5.9. Recall that a rectangle of type (� μ,� ν) is a rectangle that is
incident to at least Cμ curves in W and to at least Cν curves in B for some
absolute constant C (a rectangle of type (∼ μ,∼ ν) is defined similarly), so the
statement of the lemma is well-defined.

Proof. Combined with the previous lemmas, statement (i) is just the graph-theo-
retic statement, due to Kővari, Sós, and Turan in [8], that an m × n matrix with
entries 0 and 1 which has a forbidden 2 × 3 submatrix of 1s has � mn2/3 1s in
total. Statement (ii) is obtained from statement (i) by dyadic summation. �

The following lemma is the analogue of Lemma 1.11 in [15]. The proof is
identical.

Lemma 5.10. Let (W ,B) be a t-bipartite pair that has no (� 1,� ν0) or (� μ0,� 1)
rectangles R ∈ B(b, α). Then,

(5.6) #IB(b,C−1α)(W ,B) � μ
1/3
0 nm2/3 log ν0 + ν0m logμ0.
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Lemma 5.11. Let (W ,B) be a t-bipartite pair with #B = n. Randomly select
a subset D ⊂ B with #D = N < 1

Cn, (we shall call the elements of D dividing
circles), and let S = {SΓ,B(b,α) : Γ ∈ D}. Then with high probability (relative to
our random selection of D ⊂ B), we can partition

(5.7) W = W∗ �
M⊔
1

Wi

so that the decomposition has the following properties:

(i) M � N3 logN .

(ii) For each i,

#
{
Γ ∈ B : ΔB(b,C−1α)(Γ, Γ̃) ≤ Cδ for some Γ̃ ∈ Wi

}
� n logn

N
.

(iii) For each Γ ∈ W∗ there exists a dividing Φ-circle Γ̃ such that

ΔB(b,α)(Γ, Γ̃) � δ.

Remark 5.12. The implicit constants appearing above depend only on Φ and the
probability that a randomly selected D ⊂ B has the desired properties. In partic-
ular, by worsening the implicit constants we can make the probability arbitrarily
close to 1.

Proof. Perform the cell decomposition of the arrangement D, as described in
Lemma 3.4. Let

(5.8) W∗ =
{
Γ ∈ W : dist(Γ, SΓ̃,B(b,α)) ≤ Cδ for some Γ̃ ∈ D}

,

and for each i = 1, . . . ,M , let

(5.9) Wi =
{
Γ ∈ W\W∗ : Γ ∈ Ωi

}
.

If some Γ is present in more than one Wi, remove it from all but one of the Wi

(the choice is irrelevant). We shall now verify that this decomposition satisfies the
properties claimed in the lemma. Property (i) is immediate from Lemma 3.4, and
property (iii) follows from (4.16). Thus it remains to verify property (ii). The idea
is to show that if Γ ∈ B satisfies ΔB(b,C−1α)(Γ, Γ̃) ≤ Cδ for some Γ̃ ∈ Wi, then Γ
must lie in the corresponding cell Ωi of the cell decomposition. Once this has been
established we can use (3.7) to control the number of times this can occur.

Suppose Γ ∈ Wi, Γ̃ ∈ B with ΔB(b,C−1α)(Γ, Γ̃) ≤ Cδ. Then by (4.16),

dist(Γ, SΓ̃,B(b,α)) ≤ Cδ,

and so we can select Γ′ ∈ SΓ̃,B(b,α) with d(Γ′,Γ) ≤ Cδ (for a possibly larger

constant C). Furthermore, since (W ,B) is a t-bipartite pair, we have that |x′0 −
x̃0| � t > Cδ, and thus by Corollary 4.11, there exists r′′0 such that

(5.10) Γ(x′0, r
′′
0 ) ∈ SΓ̃,B(b,α) ∩

{
(x′, r′) : |x′0 − x̃0| < C1 δ, |r′′ − r̃0| < C2 δ

}
.
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However, (5.10) implies that |r′′0 −r0| < C2δ, and selecting constants appropriately
in the definition of W∗, this is less than dist(Γ, SΓ′′′,B(b,α)) for any Γ′′′ ∈ D.
Since the boundary of each cell Ω consists only of dividing surfaces SΓ′′′,B(b,α) and
vertical manifolds (2-dimensional surfaces that can be written as unions of vertical
line segments), we conclude that (x′0, r

′′
0 ) ∈ Ωi, and thus

SΓ̃,B(b,α) ∩ Ωi �= ∅.
Equation (3.7) bounds the number of dividing surfaces that can intersect each
cell Ωi, and this in turn gives us property (ii). �

Lemma 5.13. With high probability,

(5.11) #W∗ �
n#ĨB(b,α)(W ,B)

N
.

Proof. This follows from property (iii) of Lemma 5.11. Indeed, the probability of
a given Γ ∈ W being in W∗ is bounded by

n

N
{Γ̃ ∈ B : ΔB(b,α)(Γ, Γ̃) < Cδ},

so the expected size of W∗ is
n#ĨB(b,α)(W,B)

N , from which the result follows. �

Definition 5.14. We define a cluster of Φ-circles analogously to Wolff’s definition
in [15]: A cluster is a subset C ⊂ W (or B) with the property that there exists a
(δ, t)-rectangle R such that every Γ ∈ C is tangent to a (δ, t)-rectangle comparable
to R.

Lemma 5.15. Let C ⊂ W be a cluster and let Γ ∈ B. Then then any set of
pairwise incomparable (δ, t)-rectangles each of which is tangent to some circle in C
and to Γ has cardinality O(1).

Remark 5.16. Lemma 5.7 is used to prove this lemma. See Lemma 1.14 of [15]
for details.

Lemma 5.17. Given a value of μ0, we can write

(5.12) W = Wg �Wb,

where

(i) Wg and B have no (δ, t)-rectangles of type (� μ0,� 1).

(ii) Wb is the union of � #W
μ0

(logm)(log n) clusters.

Lemma 5.18. Let (W ,B) be a t-bipartite pair with m = |W|, n = |B|. Let R be
a set of pairwise incomparable (≥ μ,≥ ν) (δ, t)-rectangles contained in B(b, α).

For any ε > 0,

(5.13) #R �ε (mn)
ε
((mn

μν

)3/4

+
m

μ
+
n

ν

)
.
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In order to prove Lemma 5.18, it suffices to consider the case where μ = ν = 1
and establish the bound

(5.14) #R �ε (mn)
ε
(
(mn)3/4 +m logn+ n logm

)
.

To obtain (5.13) from (5.14) we apply a random sampling argument. The details of
this random sampling argument are on page 1253 of [15], so we shall not reproduce
them here. We shall call the Φ-circles Γ ∈ W “white” Φ-circles and those in B
“black” Φ-circles. By Lemma 5.4, each pair (Γ, Γ̃) ∈ (W ,B) of white and black
Φ-circles are jointly incident to at most O(1) incomparable (δ, t)-rectangles, so
#R � mn. Thus if (mn)1/C < log(mn) then (5.14) holds immediately (with an
implicit constant depending on C). Thus we may assume

(5.15) (mn)1/C > log(mn)

for some fixed choice of C which will be determined below.
We shall closely follow [15] and substitute our lemmas above for Wolff’s anal-

ogous ones. Wolff’s induction argument allows him to control the number of in-
comparable (δ, t)-rectangles of type (� 1,� 1) relative to a collection (W ,B) over
the region B(b, α) if he has similar control over smaller collections (W ′,B′). Our
argument will allow us to control the number of incomparable (� 1,� 1) rectangles
in a small region B(b, C−1α) if we have control over the number of incomparable
rectangles in a much larger region B(b, α), but luckily we only require this control
for smaller collections of circles. Since the control is uniform in b, we can apply
this result to finitely many translates {b + ti} of b to recover the result over the
larger region B(b, α), which allows us to iterate the induction step. We shall focus
on the key steps where our arguments differ from Wolff’s, and refer readers to [15]
for the details of those arguments which are identical.

To simplify our notation, we will employ the following definition:

Definition 5.19. For (W ,B) a t-bipartite pair and X ⊂ R
2, define RX(W ,B) to

be the maximum possible cardinality of a set of pairwise incomparable rectangles of
type (≥ 1,≥ 1) that are contained in the set X.

Assume (5.14) holds for all pairs (W ′,B′) with (#W ′)(#B′) < mn/2. The base
case of the induction is taken care of by (5.15).

If m ≤ n
1
3+ε or vice versa, then Lemma 5.18 follows from Lemma 5.8. Thus we

may assume

(5.16) m1/3+ε < n < m.

Let W = Wg ∪ Wb, B = Bg ∪ Bb be the decomposition from Lemma 5.17 with
μ0 = ν0 = (mn)1/4. From property (ii) of the decomposition and Lemma 5.15, we
have

RB(b,α)(Wb,B) < logm logn (mn)3/4,(5.17)

RB(b,α)(W ,Bb) < logm logn (mn)3/4.(5.18)
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These quantities are < 1
1000 (mn)

ε(mn)3/4 provided that we choose the appropriate
constant C in (5.15).

We shall now obtain the bound

(5.19) RB(b′,C−1α)(Wg,Bg) ≤ Cε(mn)
ε(mn)3/4C−1

0 ,

where we can make C0 arbitrarily large at the cost of increasing Cε. Furthermore,
this bound will be independent of the choice of b′ ∈ B(b, α). Thus we shall ap-
ply (5.19) with b′ = b + ti for {ti} a finite family of translates such that for every
point x ∈ B(b, α), there exists an index i such that x is contained in B(b+ti, C

−1α)
and is distance at least Ct from the boundary, and thus any (δ, t)-rectangle con-
tained in B(b, α) is contained in some B(b + ti, C

−1α). We thus have

(5.20) RB(b,α)(Wg,Bg) ≤
∑

RB(b+ti,C−1α)(Wg,Bg).

Thus if we apply (5.19) for each ti and select C0 sufficiently large we obtain

(5.21) RB(b,α)(Wg,Bg) ≤ 1

1000
Cε(mn)

ε(mn)3/4.

Combining (5.21), (5.17), and (5.18) and using Lemma 5.5 we obtain (5.14). It
thus suffices to prove (5.19).

Write Wg = W∗
g �⊔M

1 W i
g as given by Lemma 5.11, with α replaced by C−1α

and selecting a value of N satisfying

(5.22) C log(mn)1/ε < N < C−1 min
(
n3/4m−1/4 log(mn),m1/4 n−1/12 log(mn)

)
.

Such a value of N exists by assumption (5.16) and by selecting a sufficiently large
constant in (5.15).

We claim:

(5.23) #W∗
g ≤ 1

1000C0
#Wb.

Indeed, (Wg,Bg) contain no (δ, t)-rectangles of type (� μ0,� 1) or (� 1, � ν0) so
by Lemma 5.10 (with δ replaced by Cδ for a suitable constant C),

#ĨB(b,C−1α)(Wg,Bg) � m5/4n1/4 logm+m3/4n13/12 logn,

and thus by Lemma 5.13 (recall that now α is replaced by C−1α and C−1α is
replaced by C−2α) we can select our decomposition of Wg so that

(5.24) #W∗
g � n

N

(
m5/4n1/4 logm+m3/4n13/12 logn

)
.

Using (5.22) and selecting a sufficiently large constant in (5.15) (of course the
choice of constant in (5.15) will depend on the desired constant C0 in (5.23)) we
obtain (5.23). Since (#W∗

g )(#B) < mn/2 we can apply the induction hypothesis
to obtain

(5.25) RB(b,α)(W∗
g ,Bg) ≤ 1

1000C0
Cε(mn)

ε
(
(mn)3/4 +m logn+ n logm

)
.
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Now, for each i let

(5.26) Bi
g =

{
Γ ∈ Bg : ΔB(b,C−2α)(Γ, Γ̃) < Cδ for some Γ̃ ∈ W i

g

}
.

Item (ii) in Lemma 5.11 implies

(5.27) #Bi
g � n logn

N
.

Now, we can apply the induction hypothesis to the pair (Wi
g,Bi

g) to conclude

(5.28) RB(b,α)(W i
b,Bi

b) ≤ Cε

[
(#W i

b) (#Bi
b)
]ε[

(#W i
b) (#Bi

b)
]3/4

C−1
0 .

However, Bi
g was selected so that

RB(b,C−2α)(W i
g,Bg) ≤ RB(b,α)(W i

g,Bi
g),

and thus (5.28) implies

(5.29) RB(b,C−2α)(W i
g,Bg) ≤ Cε

[
(#W i

g) (#Bi
g)
]ε[

(#W i
g) (#Bi

g)
]3/4

C−1
0 .

Summing (5.29) over the M � N3 logN choices of i and applying Hölder’s
inequality (see pages 1252–3 of [15] for the details), we obtain∑

i

RB(b,C−2α)(W i
g,Bi

g)

≤ 1

1000
Cε(mn)

ε
(
(mn)3/4 +m logn+ n logm

)
.

(5.30)

Combining (5.30), (5.22), and (5.25) we obtain (5.19).

6. Riemannian metric circles and other generalizations

It is reasonable to ask whether (1.9) holds for functions Φ which satisfy the cine-
matic curvature conditions but are not algebraic. An examination of the arguments
above reveals that the only place where the algebraic properties of Φ are used is
in Lemma 3.4, where we make use of the fact that the level sets of Φ(x, ·) (and
of various functions obtained from Φ) are algebraic curves, and in particular, any
two such curves intersect O(1) times.

One might hope that we could extend (1.9) to analytic Φ by approximating Φ
by the first ∼ | log δ| terms of its Taylor expansion. Unfortunately, the bounds
obtained above are more than superexponential in the degree of Φ, so if we approx-
imate Φ by a polynomial of degree ∼ | log δ| then the above proof yields maximal
function bounds that are worse than the Kolasa–Wolff result (1.8).

Working through the proof of Lemma 3.4, we see that the proof requires us
to control the number of times certain pairs of curves can intersect. For x, x̃ ∈
U1, ω ∈ {±1}, let
(6.1) γx,x̃,ω,r = {y : Φ(x, y) + ωΦ(x̃, y) = r}.
We shall call such curves Φ-conics.
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Definition 6.1. We say that Φ has the bounded conic intersection property if it
satisfies the following requirements:

(i) If {x, x̃} �= {x′, x̃′}, then
(6.2) #(γx,x̃,ω,r ∩ γx′,x̃′,ω′,r′) � 1.

(ii) All Φ-circles Γ and Φ-conics γ haveO(1) y(1)-extremal points (defined below).

Definition 6.2. A y(1)-extremal point of a curve ζ is a point y0 ∈ ζ such that

ζ ∩ V is contained in one of the closed half-spaces {y(1) ≥ y
(1)
0 } or {y(1) ≤ y

(1)
0 }

for V a sufficiently small open neighborhood of y0.

Requirement (6.2) is the most difficult to satisfy, and it is the analogue of
the Euclidean statement that distinct irreducible conic sections intersect in at
most O(1) places (actually 4).

If Φ satisfies the cinematic curvature hypotheses, it need not have the bounded
conic intersection property. Indeed, consider the example

(6.3) Φ(x, y) = y(2) + x(1)y(1) + x(2)(y(1))2 + p(x, y).

If p(x, y) = 0, the Φ-conics

γ = {y : Φ((1, 0), y) + Φ((−1, 0), y) = r},
γ̃ = {y : Φ((0, 1), y) + Φ((0,−1), y) = r}

are identical (both are simply the line y(2) = r. Thus we can select p to be a
highly oscillatory C∞ perturbation which causes #(γ ∩ γ̃) to be arbitrarily large,
independent of (say) the C3-norm of Φ (we could choose some other reasonable
norm on Φ and construct similar counter-examples). For example, we could choose

(6.4) p(x, y) = C−1φ(x)
(
y(2) − exp

[− 1/|(y(1))6|] sin ( exp [1/|(y(1))2|]))
for φ(x) a C∞ function supported in a small neighborhood of (1, 0). This choice
of Φ satisfies the cinematic curvature hypothesis, since it satisfies (4.2) and (4.3)
(provided we choose C sufficiently large so the contributions from p do not affect
the calculations), but it does not satisfy (6.2). Of course, the Φ given in (6.3) may
still satisfy (1.9), but a different proof would be needed.

Added 2/14/2012: Indeed, the new results from [16] show that the defining
function Φ from (6.3) satisfies the bound (1.9), though of course Φ from (6.3) does
not have the bounded conic intersection property.

While general Φ need not satisfy (6.2), we conjecture:

Conjecture 6.3. Let Φ(x, y) = ρ(x, y) for ρ a Riemannian metric sufficiently
close to Euclidean. Then Φ satisfies the bounded conic intersection property.

This would imply

Corollary 6.4 (conditional on Conjecture 6.3). Let Φ(x, y) be as in Conjecture 6.3.
Then (1.9) holds for MΦ.
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Remark 6.5. Actually, we can still obtain Corollary 6.4 if we weaken Conjec-
ture 6.3 to the following statement: If Φ(x, y) = ρ(x, y) for ρ a Riemannian
metric, define a δ-generic Φ-conic to be a curve γx,x̃,ω,r which is not contained
in the δ-neighborhood of any geodesic (this is a quantitative analogue of an (al-
gebraic) conic section being irreducible). Then γx,x̃,ω,r admits a decomposition
γx,x̃,ω,r =

⋃
i γ

i
x,x̃,ω,r into � | log δ|C connected components such that (6.2) is sat-

isfied for any two components of any two Φ-conics.

A. The cell decomposition

We shall give a brief sketch of the techniques developed by Chazelle et al. in [4]
(see also [5] and [1] for a rigorous exposition closer to the one sketched here) on
the method of vertical cell decompositions and random sampling.

Let S = {S1, . . . , SN} be a collection of 2-dimensional semi-algebraic sets in R
3

(for which we shall use the coordinates (x, r) ∈ R
2 × R).

By subdividing each Si into a bounded number of pieces if necessary, we may
assume that each set Si may be written in one of the following three forms:

• S = graph(f), for f : V → R a smooth algebraic function and V ⊂ R
2 a (Eu-

clidean) open semi-algebraic set. We shall call these sets “surface patches”.

• Si a semi-algebraic set with dim(Si) = 2 but dim(πx(Si)) = 1. We shall call
these sets “vertical manifolds.”

• Si a semi-algebraic set with dim(Si) < 2.

To keep our exposition brief, we shall ignore the latter two types of sets, since their
presence is merely a technical annoyance that does not contribute significantly to
the analysis of the decomposition. Thus we shall assume that the sets in S consist
entirely of surface patches.

Definition A.1. For S a surface patch, we shall define bdry(S) = S\S, where S
denotes the closure of S in the Euclidean (rather than Zariski) topology. Note that
dim(bdry(S)) = 1.

Definition A.2. A vertical line segment L ⊂ R
3 is a connected 1-dimensional

semi-algebraic set with the property that πx(L) is a point. If (x0, r0) ∈ R
3, we say

that the (connected) vertical line segment L containing (x0, r0) is maximal with
respect to S if L meets no point of any surface in S except possibly at (x0, r0),
but any strictly larger line segment does.

If γ ⊂ R
3 is a 1-dimensional semi-algebraic set (i.e. a union of segments of

algebraic curves) which is not a union of vertical lines and isolated points, then if
we erect a maximal line segment from every point of γ we obtain a 2-dimensional
semi-algebraic set Vγ with πx(Vγ) = πx(γ). We shall call this set the “maximal
vertical wall above γ” (relative to S).

To construct the cell decomposition, erect a maximal vertical wall above S ∩ S̃
for every pair of distinct S, S̃ ∈ S, and a maximal vertical wall above bdry(S)
for each S ∈ S. If we consider R3 with the surfaces S ∈ S and the above maximal
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vertical walls removed, then the remaining connected sets (which we shall call pre-
cells) each have a unique “top” and “bottom” bounding surface, i.e. for each pre-
cell Ω there are unique S, S̃ ∈ S such that any maximal line containing (x, r) ∈ Ω
terminates at points in S and S̃. Thus at this point, each pre-cell is a “cylindrical
algebraic set,” i.e., it is of the form

Ω =
{
(x, r) : x ∈ VΩ, f1,Ω(x) < r < f2,Ω

}
for VΩ ⊂ R

2 an open, semi-algebraic set and algebraic functions f1,Ω, f2,Ω.
Now, bdry(VΩ) is a 1-dimensional semi-algebraic set, and thus it can be written

uniquely as an almost disjoint finite union of segments of irreducible algebraic
curves such that if any two segments share a boundary point then their defining
polynomials are distinct (and thus neither defining polynomial divides the other).
We will call the boundaries of these segments the vertices of VΩ. Now, for each
vertex x0 ∈ VΩ, erect the wall

Wx0,Ω =
{
(x, r) ∈ Ω: x(1) = x

(1)
0

}
.

Finally, if γ is a 1-dimensional semi-algebraic set, then we say that x0 ∈ Γ is a
x(1)-extremal point if there exists an open neighborhood U of x0 and an irreducible
algebraic curve γ′ containing γ∩U such that γ′∩U is contained in one of the closed

half planes {x : x(1) ≥ x
(1)
0 } or {x : x(1) ≤ x

(1)
0 } (see Figure 1).

extremalnon−extremal

Figure 1. Examples of extremal and non-extremal points of a semi-algebraic curve.

Remark A.3. This definition of a x(1)-extremal point is consistent with the def-
inition given in Section 6 (Definition 6.2) for Φ-conics when Φ(x, y) is a smooth
algebraic function. The wording of the above definition differs from that of Def-
inition 6.2 since in Definition 6.2 we do not assume that the defining function is
algebraic, and thus there is no notion analogous to the Zariski closure of a semi-
algebraic set or of an irreducible component of an algebraic set.

For each extremal point x0 ∈ VΩ, erect the vertical wall Wx0,Ω. Once this has
been done, a vertical wall will have been erected in Ω above each of the dashed
lines in VΩ in Figure 2. We also need to add some additional vertical walls Wx0,Ω
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Figure 2. A schematic view of πx(Ω) after vertical walls have been erected. The dashed
lines correspond to vertical walls.

with x0 the endpoint of certain line segments (since the irreducible algebraic curve
that contains a line segment is of course a line, which (provided it is not parallel to
the x(2)-axis) does not have any x(1)-extreme points), but in the interest of brevity
we shall gloss over this point (we can also ensure that line segments never occur
by applying a slight perturbation at an earlier stage of the decomposition).

Once these vertical walls have been erected for each cell Ω, the resulting ar-
rangement of surfaces partitions R3 into topologically trivial open sets (cells). This
partition has the following properties:

(i) Each cell is a semi-algebraic set defined by at most 6 algebraic surfaces.

(ii) For each cell Ω, there is a collection of at most 6 surfaces S1, . . . , S6 ∈ S
such that if the above cell decomposition algorithm were applied to S ′ =
{S1, . . . , S6}, then Ω would be one of the resulting cells in the decomposition.

(iii) There are � N3 logN cells.

Properties (i) and (ii) are immediate from the above cell decomposition algorithm:
each cell Ω is contained in a unique pre-cell Ω′. The top and bottom of Ω are the
same algebraic surfaces S, S̃ as the top and bottom of Ω′. The “front” and “back”
walls of Ω (if they exist) are segments of the vertical wall raised above curves γ, γ̃
which were obtained by intersecting respectively S and S̃ with two other surfaces
S′, S̃′ ∈ S, and the “right” and “left” walls of Ω (if they exist) are walls of the
form Wx0,Ω′ where x0 is a point of intersection of γ1 and γ2, where γ1 is a section

of S ∩ S′ or S̃ ∩ S̃′, and γ2 is a section of S ∩ S1 or S̃ ∩ S̃1 for some S1 or S̃1 ∈ S.
The analysis required to obtain (iii) is somewhat lengthy, but the key idea is

as follows. The main step in obtaining property (iii) is to bound the number of
vertices in the sets VΩ, since a bound on the number of vertices leads to a bound
on the number of vertical walls Wx0,Ω added to the arrangement (the contribution
from the vertical walls from x(1)-extremal points is negligible). These vertices arise
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when the algebraic curves defining ∂VΩ intersect. By Bézout’s theorem, any two
algebraic curves intersect in at most O(1) places (since Φ is of bounded degree,
all of the algebraic curves appearing in the cell decomposition are also of bounded
degree). This fact allows us to use the theory of Davenport–Schinzel sequences to
control the total number of intersections between the algebraic curve segments that
define the boundaries of the cells (and thus the total number of vertices occurring
in the sets VΩ as Ω ranges over the cells in the decomposition).

Property (ii) of the cell decomposition allows us to use a random sampling
argument of the type discussed in [5] to obtain Lemma 3.4. We shall give a brief
sketch of this lemma here. Let S be a collection of 2-dimensional semi-algebraic
surfaces with #S = n. Randomly select a subset D ⊂ S with #D = N < C−1n
(the requirement N < C−1n allows us to gloss over the distinction between select-
ing curves from S with and without replacement, since the probability of the same
curve being selected twice is low). Apply the above cell decomposition algorithm
to the collection D. For each resulting cell Ω in the decomposition, let

Z(Ω) = #{S ∈ S : S ∩ Ω �= ∅}.
Then,

(A.1) P
(
Z(Ω) ≥ λ | Ω ∩ S = ∅ for all S ∈ D) ≤ (

1− λ

n

)N

.

If we set λ = C n logn
N , then the right hand side of (A.1) is � n−C . Thus since our

vertical algebraic decomposition gives us an injection from D6 into the collection
of all cells arising from the decomposition of the collection of surfaces D, and since
each cell in the resulting decomposition does not intersect any of the surfaces in D
(since the cells are subsets of R3\⋃S∈D S), the probability that even a single cell

meets more than λ = C n logn
N surfaces is at most C′n6−C , which we can make

arbitrarily small by choosing C sufficiently large.

B. Real algebraic geometry

In this appendix we shall briefly review a few definitions and theorems from real
algebraic geometry. Throughout our discussion, the base field shall be R and all
polynomials shall be assumed to have real coefficients. Unless otherwise noted, all
open sets shall be assumed to be open in the Euclidean topology. Many of the
results discussed below are applicable to any real field but we shall not pursue
this here. Further details on the material reviewed below can be found in [3], [2],
and [9] (see [11] for an English summary of the key results we need from [9]).

Definition B.1. A set S ⊂ R
n is semi-algebraic if

(B.1) S =

n⋃
i=1

{x : fi,1(x) = 0, . . . fi,	i(x) = 0, gi,1(x) > 0, . . . , gi,mi(x) > 0},

where {fi,j} and {gi,j} are collections of polynomials.
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Definition B.2. The complexity of a semi-algebraic set is defined as

(B.2) min
(∑

i,j

deg fi,j +
∑
i,j

deg gi,j

)
,

where the minimum is taken over all representations of S of the form (B.1).

Remark B.3. This definition of complexity is not standard. In the body of the
paper we refer to sets of “bounded complexity.” This means that the complexity of
the semi-algebraic set is bounded by a number that depends only on the defining
function Φ from (1.9).

Definition B.4. A function f : Rn → R
m is semi-algebraic if its graph is a semi-

algebraic set. The complexity of a semi-algebraic function is the complexity of its
graph.

Theorem B.5 (Tarski–Seidenberg). Let S ⊂ R
n be semi-algebraic. Then

π(x1,...,xn−1)(S) ⊂ R
n−1

is semi-algebraic, and the complexity of π(x1,...,xn−1)(S) is controlled by the com-
plexity of S.

Definition B.6. Let S ⊂ R
n be a semi-algebraic set. We define

(B.3) I(S) = {f ∈ R[X1, . . . , Xn] : f |S ≡ 0}.
I(S) is an ideal in R[X1, . . . , Xn].

Definition B.7. For an ideal I in R[X1, . . . , Xn], we define

(B.4) Z(I) = {(x1, . . . , xn) ∈ R
n : f(x1, . . . , xn) = 0 for all f ∈ I},

so in particular, S ⊂ Z(I(S)).
Definition B.8. Let S be a semi-algebraic set. We define

P(S) = R[X1, . . . , Xn]/I(S).
Then the dimension of S is given by

dim(S) = dim(P(S)),

the maximal length of a chain of prime ideals in the ring P(S) (see e.g. [6]).

Proposition B.9. Let S be a semi-algebraic set. Then S has the same dimension
as its closure in the real Zariski topology, i.e.,

dim(S) = dim(Z(I(S))),
and the latter set is algebraic.
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Proposition B.10. Let f(x, xn+1) be a polynomial in n + 1 variables. Then
there exists a partition of R

n into semi-algebraic sets A1, . . . , Am and for each
i = 1, . . . ,m a finite number of semi-algebraic functions ξi,1, . . . , ξi,	i : Ai → R

such that

(i) For each x ∈ Ai such that f(x, ·) is not identically 0,

(B.5) {ξi,1(x), . . . , ξi,	i(x)} = {xn+1 : f(x, xn+1) = 0}.

(ii)
(B.6) graph(ξi,j) ⊂ {f = 0}.

The complexities of the Ai and ξi,j depend only on the complexity of f .

Corollary B.11. Let S ⊂ R
n+1 be an algebraic set. Then we can write

(B.7) S =

n⋃
1

Si ∪
m⋃
1

Ti,

with Si = graph(fi|Ai) for fi a smooth algebraic function and Ai ⊂ R
n an open

semi-algebraic set, and dimπ(x1,...,xn)(Ti) < dimS. The complexities of the fi, Ai,
and Ti depend only on the complexity of S.

Remark B.12. In addition to Proposition B.10, Corollary B.11 relies on the the
fact that the set of singular points of a semi-algebraic set is itself a semi-algebraic
set of strictly lower dimension (see Chapter 2 of [3] for a complete discussion of
these ideas).

Proposition B.13. Let S =
⋃n

1 Si with Si a semi-algebraic set homeomorphic to
[0, 1]di. Then dim(S) = max{d1, . . . , dn}.

Proposition B.14. Let S be a semi-algebraic set that is also a smooth manifold.
Then dim(S) equals the dimension of S as a smooth manifold.
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