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Revisiting Riesz transforms on Heisenberg groups

P.K. Sanjay and Sundaram Thangavelu

Dedicated to Eli Stein on his eightieth birthday.

Abstract. We characterise higher order Riesz transforms on the Heisen-
berg group and also show that they satisfy dimension-free bounds under
some assumptions on the multipliers. Using transference theorems, we de-
duce boundedness theorems for Riesz transforms on the reduced Heisen-
berg group and hence also for the Riesz transforms associated to multiple
Hermite and Laguerre expansions.

1. Introduction

The aim of this paper is twofold: to prove dimension-free estimates for Riesz trans-
forms associated to reduced Heisenberg groups Hn

red and to study Riesz transforms
of higher order on Heisenberg groupsHn which are in a sense canonical. Dimension-
free estimates for Riesz transforms on Hn have been studied in the literature by
Coulhon et al. [3] but the proof given there, which depends very much on the di-
lation structure of Hn, does not work for the reduced Heisenberg group. However,
we can view the Riesz transforms on the Heisenberg group (reduced Heisenberg
group) as an operator valued multiplier for the Fourier transform (resp. Fourier
series). Hence using a transference theorem we can deduce results for the reduced
Heisenberg group from those for Hn. Let us set up the notation before stating our
results.

Let Hn = C
n × R denote the (2n+ 1)-dimensional Heisenberg group with the

group operation (z, t)(w, s) = (z + w, t + s + 1
2 Im(z.w̄)). Its Lie algebra hn is

generated by the (2n+ 1) left invariant vector fields

T =
∂

∂t
, Xj =

( ∂

∂xj
+

1

2
yj

∂

∂t

)
, Yj =

( ∂

∂yj
− 1

2
xj

∂

∂t

)
, j = 1, 2, . . . n.
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The operator L = −∑n
j=1(X

2
j + Y 2

j ) is called the sublaplacian on Hn. Written
explicitly,

L = −Δz − 1

4
|z|2 ∂2

∂t2
+N

∂

∂t
,

where Δz is the ordinary Laplacian on Cn and

N =

n∑
j=1

(
xi

∂

∂yj
− yi

∂

∂xj

)
.

We can also write L as

L = −1

2

n∑
j=1

(ZjZ̄j + Z̄jZj) ,

where Zj = (Xj − iYj) and Z̄j = (Xj + iYj) for j = 1, 2, . . . n. We define the Riesz
transforms

Rj = ZjL−1/2 and R̄j = Z̄jL−1/2, j = 1, 2, . . . , n

associated with L.
These operators are known to be singular integral operators on Hn and hence

bounded on Lp(Hn), 1 < p < ∞, and of weak type (1, 1). Moreover, in [3] it is
proved that the bounds do not depend on the dimension of Hn. In this work we
consider the same operators acting on the reduced Heisenberg group Hn

red = Hn/Γ,
where Γ = {(0, 2πk) : k ∈ Z} is a central subgroup (see Chapter 4 of [22] for
details). Thus functions on Hn/Γ are 2π periodic in the central variable. For the
Riesz transforms acting on Lp(Hn/Γ) we prove the following theorem:

Theorem 1.1. For each 1 < p < ∞, there exists a constant Cp, independent of
the dimension n, such that for all f ∈ Lp(Hn/Γ),

∥∥∥∥
( n∑

j=1

|Rjf |2 +
n∑

j=1

|R̄jf |2
)1/2

∥∥∥∥
p

≤ Cp‖f‖p .

As we mentioned earlier, we deduce this theorem from the result of [3] on the
Heisenberg group. The appropriate transference theorem is stated in Section 2.

We now turn our attention to higher order Riesz transforms on the Heisen-
berg group. Observe that the Riesz transforms defined as (Xj − iYj)L−1/2 and
(Xj + iYj)L−1/2 are multipliers for the group Fourier transform. The correspond-
ing multipliers are given by Aj(λ)H(λ)−1/2 and A∗

j (λ)H(λ)−1/2 respectively, where
for j = 1, 2, . . . , n and λ ∈ R, Aj(λ) and A∗

j (λ) are the creation and annihilation
operators:

Aj(λ) = − ∂

∂ξj
+ λξj , A∗

j (λ) =
∂

∂ξj
+ λξj

and

H(λ) = −Δ+ λ2|x|2 =
1

2

n∑
j=1

(
Aj(λ)A

∗
j (λ) +A∗

j (λ)Aj(λ)
)
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is the Hermite operator. We would like to consider higher order Riesz trans-
forms on H

n as Fourier multipliers corresponding to higher order analogues of
Aj(λ)H(λ)−1/2 and A∗

j (λ)H(λ)−1/2. In analogy with the case of the standard
Laplacian on Rn, the above operators can be considered as analogues of the
Riesz transform for the Hermite expansions. Moreover, as it was shown in [21],
they turn out to be pseudodifferential operators of order zero and hence bounded
on Lp(Rn), 1 < p < ∞.

Higher order Riesz transforms associated to the Hermite operator have also
been studied in the literature by defining them as operators of the form A(λ)α

H(λ)−
1
2 |α| and A∗(λ)αH(λ)−

1
2 |α|, where α is a multiindex and A(λ) = (Aj(λ)),

A∗(λ) = (A∗
j (λ)) are vectors, see [8] and [12]. Here we consider the operators

Gλ(P )H(λ)−
m
2 as the natural candidates for the higher order Riesz transforms,

where P is a bigraded solid harmonic on Cn and Gλ(P ) is the operator associated
to P by the Weyl correspondence. (For the definition of Gλ(P ), as well as the Weyl
transform Wλ(P ), we refer to Section 3; more details can be found in [23].) This
class of operators includes the preceding ones, because P (z) = zα and Q(z) = z̄α

are bigraded solid harmonics of bidegrees (|α|, 0) and (0, |α|), and by a theorem of
Geller [6], Gλ(P ) = A(λ)α and Gλ(Q) = A∗(λ)α.

Theorem 1.2. For every bigraded solid harmonic P of total degree m, the operator
Gλ(P )H(λ)−

m
2 is bounded on Lp(Rn), 1 < p < ∞, and is of weak type (1, 1).

This theorem can be deduced, in principle, from the known results on higher
order Riesz transforms. However, we prefer to give a painless proof which is based
on Mauceri’s transference theorem [13] for Weyl multipliers. In view of this trans-
ference, we only need to show that Gλ(P )H(λ)−

m
2 is an Lp multiplier for the Weyl

transform Wλ. The operator TP defined on L2(Cn) by

Wλ(TP f) = Wλ(f)Gλ(P )H(λ)−
m
2

turns out to be a twisted convolution operator with a singular kernel. Thanks to
the Hecke–Bochner type formula for the Weyl transform, due to Geller [6], the
kernel can be estimated easily. By appealing to the theory of oscillatory singular
integrals developed by Ricci and Stein [16] and Chanillo and Christ [1] we can
prove

Theorem 1.3. For any bigraded solid harmonic P of total degree m, the opera-
tor TP defined above is bounded on Lp(Cn), 1 < p < ∞, and is of weak type (1, 1).

We now consider the Riesz transforms Gλ(P )H(λ)−
m
2 as multipliers for the

(group) Fourier transform on the Heisenberg group Hn and explain why they are
natural. Recall that a Fourier multiplier for the Heisenberg group is a family of
bounded linear operators M(λ) on L2(Rn) and the multiplier transformation TM

is defined by πλ(TMf) = f̂(λ)M(λ) where f̂(λ) = πλ(f) is the group Fourier
transform on the Heisenberg group. Such operators are precisely those which
are given by convolution with certain kernels on H

n and hence commute with
translations. The unitary group U(n) acts on Hn by automorphisms which leads
to an action on L2(Hn).
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LetHp,q stand for the space of bigraded solid harmonics of bidegree (p, q), which
supports an irreducible unitary representation R(σ) of U(n). In what follows we
let Pk(λ) stand for the orthogonal projection of L2(Rn) onto the k-th eigenspace
of H(λ). We also denote by ρ(σ)f the action of σ ∈ U(n) on functions defined
on Hn, i.e., ρ(σ)f(z, t) = f(σ−1z, t) and by δr, r > 0 the nonisotropic dilation
δrf(z, t) = f(rz, r2t).

Theorem 1.4. Let T be a translation invariant operator taking L2(Hn) into
L2(Hn,Hp,q) and let M(λ) be the corresponding Fourier multiplier. Assume that

(i) R(σ)Tf(z, t) = ρ(σ)Tρ(σ∗)f(z, t) for every σ ∈ U(n),

(ii) Tδrf(z, t) = δrTf(z, t) for every r > 0, and

(iii) M(λ)Pk(λ) = ((2k + n)|λ|)− 1
2 (p+q)S(λ) for some (unbounded ) operator S(λ).

Then for any linear functional β of Hp,q the operator β(T )f = β(Tf) is a

linear combination of the Riesz transforms with multipliers Gλ(P )H(λ)−
p+q
2 as P

runs through an orthonormal basis of Hp,q.

The above theorem is the analogue of a result of Stein for higher order Riesz
transforms on Rn, see page 79 in [17]. For variations on the same theme we refer to
the recent works [9] and [10] of Kobayashi and Nilsson. The operators on L2(Hn)

with multipliers Gλ(P )H(λ)−
p+q
2 turn out to be singular integral operators. Hence

we get:

Theorem 1.5. Let T satisfy the assumptions of the previous theorem and let β be
a linear functional on Hp,q. Then β(T ) is bounded on Lp(Hn), 1 < p < ∞, and is
of weak type (1, 1).

Given P ∈ Hp,q let RP stand for the (higher order) Riesz transform with multi-

plier Gλ(P )H(λ)−
p+q
2 . The boundedness of these higher order Riesz transforms on

Lp(Hn) is well known, see e.g. the works of Folland [5], Lohoué and Varopoulos [11]
and Ter Elst et al. [4]. However, dimension-free estimates are not known and we
conjecture that such estimates are true. Here we prove such estimates under some
assumptions on P. Indeed, we let P0(z) = zpj z̄k

q, j �= k, and denote by O(P0) the
orbit of P0 under the action of U(n). We then have:

Theorem 1.6. For every P ∈ O(P0), the Riesz transform RP satisfies the esti-
mate ‖RPf‖p ≤ Cp‖f‖p on Lp(Hn), 1 < p < ∞, where Cp is independent of the
dimension n and P ∈ O(P0).

We actually show that for any solid harmonic P and σ ∈ U(n) the opera-
tors RP and Rρ(σ)P have the same norm on Lp(Hn). The theorem is then proved
by showing that RP0 satisfies dimension-free bounds on Lp(Hn). We prove this us-
ing known estimates for first order Riesz transforms and a dimension-free estimate
for a particular singular integral operator on the Heisenberg group, see Section 3.

A slight strengthening of the above theorem is possible. (We are thankful to
the referee for pointing this out.) Given a solid harmonic P on Cn we can also
consider it as a solid harmonic on Cm for any m ≥ n which depends only on the
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first n variables. Hence we can define Riesz transforms Rm
P acting on Lp(Hm).

As U(n) can be considered as a subgroup of U(m) in the obvious way, the operator
norm of Rm

P on Lp(Hm) is the same as that of Rm
P0

which is independent of m. Thus
Rm

P : Lp(Hm) → Lp(Hm) satisfies estimates which are independent of m ≥ n ≥ 2
and P ∈ O(P0).

By considering functions on Cn which are homogeneous we show that the Riesz
transforms Tzj and Tz̄j are related to Riesz transforms for multiple Laguerre ex-
pansions studied by Nowak and Stempak [14]. We prove that the boundedness of
these Laguerre–Riesz transforms are equivalent to certain weighted norm inequal-
ities for Tzj and Tz̄j on Lp(Cn).

2. Riesz transforms on the reduced Heisenberg group

In this section we prove Theorem 1.1. As we mentioned earlier, this will be done
by using a transference theorem which we now describe. Let the special Hermite
operators Lλ be defined by the equation L(eiλtf(z)) = eiλtLλf(z). Then it is
known that

Lλ = −Δ+ λ2|z|2 + iλN ,

where Δ is the Laplacian on Cn and

N =

n∑
j=1

(
xi

∂

∂yj
− yi

∂

∂xj

)
.

We can also write Lλ as

Lλ = −1

2

n∑
j=1

(
Zj(λ)Z̄j(λ) + Z̄j(λ)Zj(λ)

)
,

where Zj(e
iλtf(z)) = eiλtZj(λ)f(z) and Z̄j(e

iλtf(z)) = eiλtZ̄j(λ)f(z). In view of
this, the Riesz transforms on the Heisenberg group can be written as

Rjf(z, t) =
1

2π

∫ ∞

−∞
e−iλtRj(λ) f

λ(z) dλ ,

where Rj(λ) = Zj(λ)L
−1/2
λ . We have a similar expression for R̄j .

Therefore, we can view the Riesz transforms as operator valued multipliers for
the (Euclidean) Fourier transform on R. Indeed, if we let X = Lp(Cn) then Lp(Hn)
can be identified with Lp(R, X) and Rj are multiplier transforms corresponding
to the (operator valued) multipliers Rj(λ). Using the same notation for Riesz
transforms on Hn/Γ, they are given by

Rjf(z, t) =
1

2π

∞∑
k=−∞

e−iktRj(k) f
k(z).
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Thus the Riesz transforms for Hn/Γ are multipliers for the Fourier series acting
on Lp(S1, X). In order to treat the vector of the Riesz transforms we set

Rf =
(
R1f,R2f, . . . , Rnf, R̄1f, R̄2f, . . . , R̄nf

)
and introduce the Banach space Y = Lp(Cn)× Lp(Cn)× · · · × Lp(Cn) (2n times)
equipped with the norm

‖f‖Y =

∥∥∥∥
( 2n∑

j=1

|fj|2
)1/2

∥∥∥∥
p

, f = (f1, . . . , f2n).

Then the result of [3] can be written as

‖Rf‖Lp(R,Y ) ≤ C ‖f‖Lp(R,X) ,

where C is independent of the dimension. We are interested in showing that a
similar estimate holds when Lp(R, X) and Lp(R, Y ) are replaced by Lp(S1, X)
and Lp(S1, Y ) respectively. All we need in order to prove this is the following
transference result.

Denote by (Lp(R,X), Lp(R, Y )) the set of all Fourier multipliers taking Lp(R, X)
into Lp(R, Y ). Let T ∈ (Lp(R, X), Lp(R, Y )) and let m be the corresponding mul-
tiplier so that

Tf(t) =
1

2π

∫ ∞

−∞
e−iλtm(λ)f̂ (λ)dλ.

We can define a periodised operator T̃ by

T̃ f(t) =
1

2π

∞∑
k=−∞

e−iktm(k)f̂(k)

for every f ∈ Lp(S1, X).

Theorem 2.1. Suppose 1 ≤ p ≤ ∞ and T ∈ (Lp(R, X), Lp(R, Y )), where X
and Y are Banach spaces. Let m be the multiplier corresponding to T and assume
that m is continuous at every point of Z, the set of all integers. Then the periodised
operator T̃ belongs to (Lp(S1, X), Lp(S1, Y )) and satisfies ‖T̃‖ ≤ ‖T ‖.

When X = Y = C, this theorem is due to De Leeuw, and a proof can be found
in Stein–Weiss [19], see Theorem 3.8, Chapter VII. The proof given there can be
easily modified to yield the above version of transference. We leave the details to
the interested reader. Once we have the above theorem it is clear that Theorem 1.1
follows from the corresponding result for Riesz transforms on Hn proved in [3]. We
can also treat higher order Riesz transforms: for every P ∈ Hp,q let us define

R̃P f(z, t) =
1

2π

∞∑
k=−∞

e−iktTP f
k(z) ,

where TP is as in Theorem 1.3. Then:

Theorem 2.2. The operators R̃P defined above are all bounded on Lp(Hn/Γ)
for 1 < p < ∞.
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The first order Riesz transforms satisfy dimension-free bounds and we expect
the same for higher order Riesz transforms. This is an interesting open problem
even in the case of Hn. Our partial result, Theorem 1.6, naturally has an analogue
for Hn/Γ.

3. Higher order Riesz transforms on the Heisenberg group

In this section we prove Theorems 1.4, 1.5, and 1.6 stated in the introduction. The
statement and the proof of Theorem 1.4 are both inspired by the corresponding
result of Stein for the Euclidean case stated in [17] (see Chapter III, Section 4.8,
page 79). For the proof we need some facts about Weyl transform Wλ and Weyl
correspondence Gλ. We closely follow the notations from the monograph [21], to
which we refer for any unexplained terminology. For each non-zero real λ, the
Weyl transform Wλ(f) of a function on Cn is defined as the operator

Wλ(f) =

∫
Cn

f(z)πλ(z, 0) dz ,

where πλ is the Schrödinger representation of Hn with parameter λ. The Weyl
correspondence is then defined by Gλ(f) = Wλ(Fλ(f)) where Fλ(f) is the sym-
plectic Fourier transform of f. As in the introduction we denote by Hp,q the space
of bigraded spherical harmonics of bidegree (p, q).

We now recall the Hecke–Bochner formula for the Weyl transform proved by
Geller [6]. We remark that the notation we use here is different from that of Geller
as we follow [22]. When f is radial and P is a bigraded solid harmonic of bidegree
(p, q) we have (for λ > 0)

Wλ(Pf) = Gλ(P )
( ∞∑

k=p

Rλ
k−p(f)Pk(λ)

)
,

where Pk(λ) are the projections associated to the Hermite operator H(λ) and

Rλ
k (f) =

Γ(k − p+ 1)Γ(n)

Γ(k + q + n)

∫
Cn+p+q

f(|z|)ϕn+p+q−1
k,λ (z)dz.

In the above formula,

ϕn+p+q−1
k,λ (z) = Ln+p+q−1

k

(1
2
λ|z|2

)
e−

1
4λ|z|2

are the Laguerre functions of type (n+p+ q− 1). We refer to [23] (Theorem 2.6.2)
and [6] (Theorem 4.2) for more details.

We now begin with a proof of Theorem 1.4. Since T is a translation in-
variant operator taking L2(Hn) into L2(Hn,Hp,q) it is a convolution operator
with a distributional kernel k(z, t) taking values in Hp,q: Tf(z, t) = f ∗ k(z, t).
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Let {Yj : j = 1, 2, . . . , d(p, q)} be an orthonormal basis of Hp,q consisting of spher-
ical harmonics so that

k(z, t) =

d(p,q)∑
j=1

kj(z, t)Yj ,

where kj(z, t) are scalar valued distributions on Hn. Then, we can write

Tf(z, t) =

d(p,q)∑
j=1

Tjf(z, t)Yj =

d(p,q)∑
j=1

f ∗ kj(z, t)Yj .

The hypothesis (i), namely ρ(σ)Tρ(σ−1)f = R(σ)Tf , translates into

R(σ)Tf(z, t) = Tρ(σ−1)f(σ−1z, t) =

d(p,q)∑
j=1

Tjρ(σ
−1)f(σ−1z, t)Yj .

Let (ai,j(σ)) stand for the matrix corresponding to R(σ) in the basis {Yj : j =
1, 2, . . . , d(p, q)}. Then we have

d(p,q)∑
j=1

ai,j(σ)Tjf(z, t) = Tiρ(σ
−1)f(σ−1z, t) ,

which gives after a simple calculation the relation

f ∗
d(p,q)∑
j=1

ai,j(σ)kj(z, t) = f ∗ ρ(σ−1)ki(z, t).

This shows that

R(σ) k(z, t) = ρ(σ−1) k(z, t) = k(σz, t), σ ∈ U(n).

From this relation we observe that for any unit vector w ∈ C
n, k(w, t) as an

element of Hp,q is invariant under all σ ∈ U(n) which fixes w. Therefore, there is a
scalar valued function c(w, t) such that k(w, t) = c(w, t)Yw , where Yw is the zonal
harmonic with pole at w.

For any two unit vectors z and w we can always find σ ∈ U(n) such that
σz = w. Hence R(σ)k(z, t) = k(σz, t) = k(w, t) leads to the equation

c(w, t)Yw = R(σ)k(z, t) = c(z, t)R(σ)Yz .

Evaluating both sides at w and noting that R(σ)Yz(w) = Yz(z) = Yw(w), we
see that c(z, t) is a constant as long as |z| = 1 and hence k(z, t) = c(t)Yz for
all z ∈ S2n−1. Now the hypothesis δrT = Tδr translates into the homogeneity
k(rz, r2t) = r−2n−2k(z, t). Therefore, for any z ∈ Cn,

k(z, t) = |z|−2n−2k
( z

|z| ,
t

|z|2
)
= |z|−2n−2c

( t

|z|2
)
Y z

|z| .
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Let Pj stand for the solid harmonic satisfying Pj(z) = |z|p+qYj(z/|z|). Expanding
k(z, t) in terms of Yj and noting that (Yz/|z|, Yj)Hp,q = Yj(z/|z|) = |z|−p−qPj(z),
we get

kj(z, t) = |z|−2n−p−q−2c
( t

|z|2
)
Pj(z) = gj(z, t)Pj(z).

Note that gj(z, t) is a radial function satisfying the homogeneity condition

δrgj = r−2n−p−q−2gj .

Let β be any linear functional on Hp,q. Then we have

β(Tf) =

d(p,q)∑
j=1

cjTjf =

d(p,q)∑
j=1

cjf ∗ kj .

The operator Tj is a Fourier multiplier operator with multiplier Mj(λ) = Wλ(k
λ
j ),

which can be calculated using Hecke–Bochner formula. As kλj (z) = gλj (z)Pj(z) it
follows that for λ > 0

Wλ(Pjg
λ
j ) = Gλ(Pj)

( ∞∑
k=p

Rλ
k−p(g

λ
j )Pk(λ)

)
,

where

Rλ
k(g

λ
j ) =

Γ(k − p+ 1)Γ(n)

Γ(k + q + n)

∫
Cn+p+q

gλj (z)ϕ
n+p+q−1
k,λ (z)dz.

As gλj (rz) = r−2n−p−qgλr
2

j (z) we have Rλr2

k (gλr
2

j ) = r−p−qRλ
k(g

λ
j ) and hence

Rλ
k(g

λ
j ) = R1

k(g
1
j )λ

−(p+q)/2.

Therefore, we have shown that the multiplier Mj(λ) is of the form

Mj(λ) = Gλ(Pj)
( ∞∑

k=p

ck−pPk(λ)
)
λ−(p+q)/2.

Finally, the hypothesis on Mj(λ)Pk(λ) shows that ck−p = (2k + n)−(p+q)/2 for
all k ≥ p. It can be checked that Gλ(Pj)Pk(λ) = 0 for k < p and consequently
Mj(λ) = Gλ(Pj)H(λ)−(p+q)/2, which proves Theorem 1.4.

We now turn our attention to the proofs of Theorems 1.5 and 1.6. Recall
that for P ∈ Hp,q we have defined RP as the (higher order) Riesz transform with

multiplier Gλ(P )H(λ)−
p+q
2 . As defined earlier, O(P0) stands for the orbit of P0

under the action of U(n). In other words, O(P0) is the set of all ρ(σ)P0 as σ ranges
over U(n).

Proposition 3.1. In order to prove dimension-free estimate for RP , P ∈ O(P0),
it is enough to consider P0(z) = zpj z̄

q
k. (Here we assume n ≥ 2).
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Proof. To prove the proposition we make use of the operators ρ(σ) introduced
earlier. For f ∈ Lp(Hn), ‖ρ(σ)f‖p = ‖f‖p, and hence we need to show that

∫
Hn

|ρ(σ)(RP ρ(σ
∗)f)(z, t)|p dz dt ≤ Cp

∫
Hn

|f(z, t)|p dz dt.

From the theorem of Stone–von Neumann we know that, for every σ ∈ U(n),

πλ(σ.z, t) = μλ(σ)
∗πλ(z, t)μλ(σ) ,

where μλ(σ) are certain unitary operators on L2(Rn). In view of this, a simple
calculation shows that

πλ(ρ(σ)f) = μλ(σ)f̂ (λ)μλ(σ)
∗ ,

and hence

πλ(ρ(σ)RP ρ(σ
∗)f) = f̂(λ)μλ(σ)Gλ(P )μλ(σ)

∗H(λ)−
p+q
2 ,

where we have made use of the fact that μλ(σ) commutes with H(λ). However,

μλ(σ)Gλ(P )μλ(σ)
∗ = Gλ(ρ(σ)P ) ,

and the proposition is proved by choosing σ such that ρ(σ)P (z) = zpj z̄
q
k, which is

possible for any P ∈ O(P0). �

The proof of the above proposition actually shows that if RP is bounded on
Lp(Hn) then so is R(ρ(σ)P ). As R is a unitary representation of U(n) on Hp,q, any
P ∈ Hp,q is a finite linear combination of elements from the orbit of P0(z). This
proves Theorem 1.5.

We continue with our proof of Theorem 1.6. As j �= k are arbitrary, we can very
well assume that P0(z) = zp1 z̄

q
2 . The operator Gλ(P ) associated to it by the Weyl

correspondence is explicitly known and given by A2(λ)
qA1(λ)

∗p, see Geller [6]
or [23]. Thus it is enough to consider the Riesz transform with this multiplier.
Without loss of generality we can assume that q ≥ p. Since A2(λ)A1(λ)

∗ commutes
with H(λ) (as can be easily checked by testing against the Hermite functions Φλ

α)
the multiplier can be written as

A2(λ)
qA1(λ)

∗pH(λ)−
p+q
2 = A2(λ)

q−pH(λ)−
q−p
2 A2(λ)

pA1(λ)
∗pH(λ)−p.

Furthermore, using the commutativity again, we have

A2(λ)
pA1(λ)

∗pH(λ)−p = (A2(λ)A1(λ)
∗H(λ)−1)p,

which can be put in the form
(
H(λ)−1/2A2(λ)A1(λ)

∗H(λ)−1/2
)p
.

It is now clear that the operator with multiplier A2(λ)
pA1(λ)

∗pH(λ)−p satisfies
a dimension-free estimate, since the first order Riesz transforms with multipli-
ersH(λ)−1/2A2(λ) and A1(λ)

∗H(λ)−1/2 satisfy such estimates. Here we have made
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use of the fact that the multiplier H(λ)−1/2A2(λ) corresponds to the adjoint of
the Riesz transform whose multiplier is A2(λ)

∗H(λ)−1/2. Therefore, Theorem 1.6
will be proved once we have:

Theorem 3.2. For any integer m ≥ 1, the Riesz transform with multiplier A2(λ)
m

H(λ)−
m
2 satisfies dimension-free estimates.

Proof. Writing

A2(λ)
mH(λ)−m/2 =

m−1∏
j=0

H(λ)j/2A2(λ)H(λ)−(j+1)/2 ,

we only need to treat multipliers of the form

H(λ)j/2A2(λ)H(λ)−(j+1)/2

for j ≥ 1, which we do using an induction argument. Recalling that

H(λ) =
1

2

n∑
j=1

(
Aj(λ)A

∗
j (λ) +A∗

j (λ)Aj(λ)
)

and the commutation relation

Aj(λ)Aj(λ)
∗ −A∗

j (λ)Aj(λ) = −4λI ,

we can show that
H(λ)Aj(λ) = Aj(λ)H(λ) + 4λAj(λ).

In view of this,

H(λ)j/2A2(λ)H(λ)−(j+1)/2 = H(λ)(j−2)/2H(λ)A2(λ)H(λ)−(j+1)/2

reduces to

H(λ)(j−2)/2A2(λ)H(λ)−(j−1)/2 + 4H(λ)(j−2)/2A2(λ)H(λ)−(j−1)/2λH(λ)−1.

If we can show that the operator with multiplier λH(λ)−1 satisfies dimension-free
estimates then we can use an induction on j to complete the proof of the above
theorem. Thus the proof is completed by proving the following result. �

Theorem 3.3. The multiplier λH(λ)−1 defines a singular integral operator on Hn

which satisfies dimension-free bounds on all Lp spaces, 1 < p < ∞.

Proof. The boundedness of this operator is well known; see Folland [5] and Stein [18].
Indeed, the above multiplier corresponds to TL−1, where T = ∂

∂t , and is given by
convolution with the kernel K(z, t) = Tϕ0(z, t), where

ϕ0(z, t) = cn(|z|4 + t2)−n/2
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is the fundamental solution for the sublaplacian found by Folland [5]. Here the
constant cn is given by

c−1
n = n(n+ 2)

∫
Hn

(1 + t2 + |z|4)−(n+4)/2|z|2dzdt.

It is clear that K(z, t) is an odd kernel which is homogeneous of degree (−2n− 2),
and hence defines a bounded operator on Lp(Hn), 1 < p < ∞. The norm of this
operator can be estimated using a result of Christ [2] as presented in Strichartz [20]
(Lemma 3.1). This shows that the norm on Lp is bounded by

Cp

∫
Cn

|K(z, 1)|dz ,

where Cp depends only on p. Thus we are left with proving the inequality

ncn

∫
Cn

(
1 + |z|4)−n/2−1

dz ≤ C

for some constant C independent of n. This follows from the next lemma. �

Lemma 3.4. There is a constant C independent of n such that

∫
Cn(1 + |z|4)−n/2−1dz

(n+ 2)
∫
Hn(1 + t2 + |z|4)−(n+4)/2|z|2dzdt ≤ C

for all values on n.

Proof. Integrating in polar coordinates, the above ratio reduces to

∫∞
0

(1 + r4)−n/2−1r2n−1dr

2(n+ 2)
∫∞
0

∫∞
0

(1 + t2 + r4)−(n+4)/2r2n+1drdt
.

By a simple change of variables the integral on the numerator can be seen to be
the beta integral

1

4

∫ ∞

0

(1 + t)−n/2−1 tn/2−1dt =
Γ(1) Γ(n/2)

4 Γ(n/2 + 1)
.

Similarly, the integral in the denominator becomes the product

(∫ ∞

0

(1 + t2)−3/2dt
)( ∫ ∞

0

(1 + u4)−(n+4)/2 u(2n+1)du
)
.

As before, ∫ ∞

0

(1 + t2)−3/2 dt =
Γ(1/2) Γ(1)

2 Γ(3/2)

and ∫ ∞

0

(1 + u4)−(n+4)/2 u(2n+1) du =
Γ(3/2) Γ((n+ 1)/2)

4 Γ((n+ 4)/2)
.
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Thus the ratio of the two integrals is given by

Γ(n/2)

4 Γ(n/2 + 1)

8 Γ(n/2 + 2)

Γ(1/2) Γ((n+ 1)/2)
.

Simplifying this we see that the ratio in the lemma is given by

π−1/2 Γ(n/2)

Γ((n+ 1)/2)

which is clearly a bounded function of n. �

4. Riesz transforms for Hermite and Laguerre expansions

In this section we consider Riesz transforms associated to Hermite and Laguerre
expansions. First we can deduce Theorem 1.3 from the corresponding result for
the reduced Heisenberg group. We fix λ = 1 and simply write W and G instead
of W1 and G1. Consider the Weyl multiplier TP defined by

W (TP f) = W (f)G(P )H−(p+q)/2 ,

where P ∈ Hp,q. The Weyl multipliers can be considered as higher order Riesz
transforms for the special Hermite operator. Recall that the special Hermite op-
erator L is defined by L(eitf(z)) = eitLf(z). The spectral decomposition of this
operator is given by

Lf = (2π)−n
∞∑
k=0

f × ϕn−1
k ,

where ϕn−1
k (z) are Laguerre functions of type (n− 1) and × stands for the twisted

convolution:

f × g(z) =

∫
Cn

f(z − w) g(w) e
i
2�(z·w̄) dw.

When P (z) = zj (resp. z̄j) it follows from the work of Geller that G(P ) = Aj

(resp. G(P ) = A∗
j ), and hence Tzj = Zj(1)L

−1/2 and Tz̄j = Zj(1))L
−1/2 are the

Riesz transforms for the special Hermite expansions. More generally if P (z) =∑
|α|=p,|β|=q cα,βz

αz̄β then G(P ) is obtained by replacing zj and z̄j by Aj and A∗
j ,

respectively. Though the following result can be deduced from results on the
reduced Heisenberg group by considering functions of the form eitf(z) we can give
a simple direct proof based on the Hecke–Bochner formula for the Weyl transform.

Theorem 4.1. For every P ∈ Hp,q, the Riesz transforms TP are bounded on
Lp(Cn), 1 < p < ∞, and are also weak type (1, 1). The first order Riesz transforms
satisfy dimension-free bounds.

Proof. The proof is very similar to the one given in [21] for the cases P (z) = zj and
P (z) = z̄j . Hence we will only give a sketch of the proof. From the Hecke–Bochner
formula for the special Hermite projections (see Geller [6] and [23]) it follows that

G(P )Pk = cn(p, q)W
(
Pϕn+p+q−1

k−p

)
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(see 2.6.22 in [23]), and hence

G(P )H−(p+q)/2 = cn(p, q)W (PKm) ,

where m = p+ q and Km is the kernel defined by

Km(z) =

∞∑
k=0

(2k + 2p+ n)−m/2 ϕn+p+q−1
k (z).

On the other hand, using the relations

W (Zjf) = W (f)Aj , W (Z̄jf) = W (f)A∗
j

we can obtain
W (L−m/2P (Z, Z̄)f) = W (f)G(P )H−m/2 ,

so that a comparison with the above formula shows that

L−m/2P (Z, Z̄)f(z) = f × (PKm)(z).

The kernel Km can be expressed in terms of the heat kernel for L on Cn+p+q and
hence estimated. It turns out that L−m/2P (Z, Z̄) is an oscillatory singular integral
operator. Hence, by the results of Ricci–Stein [16] and Chanillo–Christ [1], it is
bounded on Lp(Cn) for 1 < p < ∞ and of weak type (1,1). By considering the
adjoint we get the desired result. �

We now deduce some results for Riesz transforms associated to multiple La-
guerre expansions. In terms of special Hermite functions the spectral decomposi-
tion of L takes the form

f(z) =
∑
α,β

(f,Φα,β)Φα,β(z).

When f is a polyradial function, i.e., f(σz) = f(z) for all diagonal matrices σ
in U(n), the special Hermite expansion of f reduces to a multiple Laguerre expan-
sion. More generally, when f is a polyradial function the special Hermite expansion
of g(z) = zmf(z) where m ∈ Nn takes the form

g(z) =
∑
α

(∫
Cn

g(z)Φα,α+m(w)dw
)
Φα,α+m(z).

Indeed, we have the formula (see Theorem 1.3.5 in [21])

Φα,α+m(z) = (2π)−n/2
( α!

(α+m)!

)1/2

2−|m|/2(−i)|m|zm
n∏

j=1

ϕmj
αj

(zj) ,

and hence in the expansion only the term (g,Φα,α+m) survives. Note that

( ∫
Cn

g(z)Φα,α+m(w)dw
)
Φα,α+m(z)

= (2π)−n α!

(α+m)!

(z
2

)m ( ∫
Cn

f(w)

n∏
j=1

ϕmj
αj

(wj)|wj |2mj+1dw
) n∏

j=1

ϕmj
αj

(zj).
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We now define multiple Laguerre functions of type m by

Ψm
α (r) =

( 2−|m|α!
(α+m)!

)1/2 n∏
j=1

ϕmj
αj

(rj) ,

where r = (rj), rj ≥ 0. Here ϕ
mj
αj (rj) stands for ϕ

mj
αj (zj) with |zj| = rj . These

functions form an orthonormal basis for L2(Rn
+, dμm), where

dμm(r) =

n∏
j=1

r
2mj+1
j drj .

The multiple Laguerre expansion of type m of a function f ∈ L2(Rn
+, dμm) is

related to the special Hermite expansion of g(z) = zmf(r), rj = |zj |. Indeed,∑
α

(g,Φα,α+m)Φα,α+m(z) = zm
∑
α

(f,Ψm
α )Ψm

α (r).

Consider the Riesz transform Tz̄j = Zj(1)L
−1/2 applied to the function g. Since

Zj(1)Φα,β = i(2αj)
1/2Φα−ej ,β ,

it follows that

Tz̄jg(z) = i
∑
α

(2αj)
1/2(2|α|+ n)−1/2(g,Φα,α+m)Φα−ej ,α+m(z) ,

which can be expressed in terms of f as

Tz̄jg(z) = izm+ej
∑
α

(2αj)
1/2(2|α|+ n)−1/2(f,Ψm

α )Ψ
m+ej
α−ej (r).

Thus we have (with rj = |zj|)

Tz̄jg(z) = izm
zj
|zj |Rj,mf(r) ,

where
Rj,mf(r) = rj

∑
α

(2αj)
1/2 (2|α|+ n)−1/2 (f,Ψm

α )Ψ
m+ej
α−ej (r)

are the Riesz transforms associated to Laguerre expansions of type m. These trans-
forms have been studied by Nowak and Stempak [14] and [15]. From the above
relation we obtain:

Theorem 4.2. The Laguerre–Riesz transforms Rj,m are bounded on Lp(Rn
+, dμm)

if and only if the Tz̄j satisfy the weighted norm inequality

∫
Cn

|Tz̄jg(z)|p
n∏

j=1

|zj|mj(2−p)dz ≤ C

∫
Cn

|g(z)|p
n∏

j=1

|zj |mj(2−p) dz

for all functions g which are m-homogeneous, i.e., g(z) = zmf(z), where f is
polyradial.
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When m = 0, we do have the boundedness of Tz̄j on Lp(Cn), 1 < p < ∞, and
hence the Riesz transforms Rj,0 are all bounded on Lp(Rn

+, dμm). For general m,
we can use the result of [14] which says that Rj,m are bounded on Lp(Rn

+, dμm) to
obtain the following result:

Corollary 4.3. For any m ∈ Nn we have the weighted norm inequality

∫
Cn

|Tz̄jg(z)|p
n∏

j=1

|zj |mj(2−p)dz ≤ C

∫
Cn

|g(z)|p
n∏

j=1

|zj |mj(2−p)dz

for all m-homogeneous g ∈ Lp(Cn), 1 < p < ∞.

Since the Riesz transforms Tz̄j are (oscillatory) singular integral operators, it
is natural to expect that they will satisfy weighted norm inequalities provided the
weight comes from the Ap class. In the above inequality, the weight function

w(z) =

n∏
j=1

|zj|mj(2−p)

belongs to Ap only if

2
(
1− 1

2 +mj

)
< p < 2

(
1 +

1

mj

)
.

Thus for functions with certain homogeneity we can expect weighted norm inequal-
ities under weaker assumptions. It would be interesting to characterise all weight
functions for which the Riesz transforms TP satisfy weighted norm inequalities.
We plan to return to this problem in the future.

Interchanging the roles of Tz̄j and Rj,m and using Theorem 4.1, we obtain the
following:

Corollary 4.4. For any m ∈ Nn we have the weighted norm inequality

∫
Rn

+

|Rj,mf(r)|p
n∏

j=1

|rj |mj(p−2)dμm ≤ Cp

∫
Rn

+

|f(r)|p
n∏

j=1

|rj |mj(p−2)dμm

for all f ∈ Lp(Rn
+), 1 < p < ∞, where Cp is independent of n and m.

It would be interesting to see if such dimension-free, type-free estimates are true
for general multiple Laguerre expansions of type m studied by [14], where the mj ’s
are not necessarily integers. Riesz transforms for multiple Laguerre expansions
of a different kind have been studied by Gutiérrez et al. in [7]. When the mj ’s
are half integers, they have shown that the Riesz transforms satisfy dimension-free
bounds.
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[11] Lohoué, N. and Varopoulos, N. T.: Remarques sur les transformees de Riesz sur
les groupes de Lie nilpotents. C.R. Acad. Sci. Paris Ser. I Math. 301 (1985), no. 11,
559–560.

[12] F. Lust-Piquard: Dimension free estimates for Riesz transforms associated to the
harmonic oscillator on R

d. Potential Anal. 24 (2006), no. 1, 47–62.

[13] Mauceri, G.: The Weyl transform and bounded operators on Lp(Rn). J. Funct.
Anal. 39 (1980), no. 3, 408–429.

[14] Nowak, A. and Stempak, K.: Riesz transforms for multi-dimensional Laguerre
function expansions. Adv. Math. 215 (2007), no. 2, 642–678.

[15] Nowak, A. and Stempak, K.: Riesz transforms and conjugacy for Laguerre ex-
pansions of Hermite type. J. Funct Anal. 244 (2007), no. 2, 399–433.

[16] Ricci, F. and Stein, E.M.: Harmonic analysis on nilpotent groups and singular
integrals. I. Oscillatory integrals. J. Funct. Anal. 73 (1987), no. 1, 179–194.

[17] Stein, E.M.: Singular integrals and differentiability properties of functions. Prince-
ton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.

[18] Stein, E.M.: Harmonic analysis: real variable methods, orthogonality and oscilla-
tory integrals. Princeton Mathematical Series 43, Monographs in Harmonic Analy-
sis III, Princeton University Press, Princeton, NJ, 1993.

[19] Stein, E.M. and Weiss, G.: Introduction to Fourier analysis on euclidean spaces.
Princeton Mathematical Series 32, Princeton University Press, Princeton, NJ, 1971.

[20] Strichartz, R. S.: Lp harmonic analysis and Radon transforms on the Heisenberg
group. J. Funct. Anal. 96 (1991), no. 2, 350–406.



1108 P.K. Sanjay and S. Thangavelu

[21] Thangavelu, S.: Lectures on Hermite and Laguerre expansions. Mathematical
Notes 42, Princeton University Press, Princeton, NJ, 1993.

[22] Thangavelu, S.: Harmonic analysis on the Heisenberg group. Progress in Mathe-
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