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Quasi-geostrophic equations, nonlinear Bernstein
inequalities and α-stable processes

Diego Chamorro and Pierre Gilles Lemarié-Rieusset

Abstract. We prove some functional inequalities for the fractional dif-
ferentiation operator (−Δ)α through the formalism of semi-groups. This
gives us an estimate of the regularity of Marchand’s weak solutions for the
dissipative quasi–geostrophic equation.

1. Introduction

In this paper, we are interested in the regularity of weak solutions of the dissipative
quasi-geostrophic equation (QGα), a generalization of the quasi-geostrophic equa-
tion (QG) which is related to fluid mechanics, [13], and whose mathematical study
was initiated by Constantin, Majda and Tabak in 1994 ([5]). The quasi-geostrophic
equation (QG) describes the evolution of a function θ(t, x), t > 0, x ∈ R2, as

(1.1)

⎧⎪⎨
⎪⎩

∂tθ + �u.�∇θ = 0 ,

�u = (−R2θ,R1θ) ,

θ(0, .) = θ0 ,

where Ri is the Riesz transform, Ri =
∂i√−Δ

(so that the vector field �u is divergence-

free: div �u = 0).

Throughout the paper, we will denote
√−Δ by Λ (this is Calderón’s oper-

ator). For 0 < α ≤ 1, the dissipative quasi-geostrophic equation (QGα) is the
equation (QG) penalized by a dissipative term −Λ2αθ:

(1.2)

⎧⎪⎨
⎪⎩

∂tθ + �u.�∇θ = −Λ2αθ ,

�u = (−R2θ,R1θ) ,

θ(0, .) = θ0 .
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In order to deal with irregular solutions, we rewrite the advection term �u.�∇θ
as div(θ �u):

(1.3)

⎧⎪⎨
⎪⎩

∂tθ + div(θ �u) = −Λ2αθ ,

�u = (−R2θ,R1θ) ,

θ(0, .) = θ0 .

In 1995, Resnick [15] proved the existence of weak solutions of the equation (1.3)
for θ0 ∈ L2(R2); these solutions satisfy the inequality

(1.4) for t > 0, ‖θ(t, .)‖22 + 2

∫ t

0

∫
|Λαθ|2 dx ds ≤ ‖θ0‖22 ,

so that θ ∈ L∞
t L2 ∩ L2

t Ḣ
α, where Ḣα is a homogeneous Sobolev space.

In 2008, Marchand [12] studied the case of an initial value θ0 ∈ Lp; he proved the
existence of weak solutions to equation (1.3) when p ≥ 4/3. Moreover, when p ≥ 2,
Marchand’s solutions satisfy the inequality

(1.5) for t > 0, ‖θ(t, .)‖pp + p

∫ t

0

∫
θ|θ|p−2Λ2αθ dx ds ≤ ‖θ0‖pp ,

where the double integral gives a nonnegative contribution, as shown by Córdoba’s
inequality [6], [10]:

(1.6) 2

∫
|Λα(|θ|p/2)|2 dx ≤ p

∫
θ|θ|p−2Λ2αθ dx.

However, the regularity of Marchand’s solutions remained unclear.
In this paper, we will establish the regularity of Marchand’s solutions in terms

of a norm in a Besov space. More precisely, we shall establish a variant of Córdoba’s
inequality and get that, for 2 ≤ p < ∞ and 0 < α < 1,

(1.7) ‖θ‖p
Ḃ

2α/p,p
p

≤ Cp

∫
θ|θ|p−2Λ2αθ dx ;

and for 2 ≤ p < ∞,

(1.8) ‖θ‖p
Ḃ

2/p,∞
p

≤ Cp

∫
θ|θ|p−2(−Δ)θ dx ,

where Ḃ
2α/p,p
p and Ḃ

2/p,∞
p are homogeneous Besov spaces. Our method gives us a

new proof of a nonlinear Bernstein inequality given by Danchin [8]: for θ ∈ Lp(Rn)

such that its Fourier transform θ̂(ξ) is supported in the annulus 1/2 ≤ |ξ| ≤ 2, we
have, for 1 < p < ∞,

(1.9) A‖θ‖pp ≤ ‖�∇(|θ|p/2)‖22 ≤ B‖θ‖pp ,
where the constants A and B are positive and depend only on p and on the di-
mension n.
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We will mainly apply general results from the theory of semi-groups to the semi-
group e−tΛ2α

. This is a symmetric diffusion semi-group (in the sense of Stein [19]),
and we will use a representation of the semi-group as a barycentric mean of heat
kernels through a formula derived from the theory of α-stable processes [22]. For

instance, when α = 1, we have e−tΛ2

= etΔ (the heat kernel); for α = 1/2, we have
e−tΛ = Pt, the Poisson semi-group. In dimension 1, e−|ξ| is the Fourier transform
of 1

π
1

1+x2 ; we write

(1.10)
1

π

1

1 + x2
=

1

π

∫ ∞

0

e−σe−σx2

dσ =
1

2π

∫ ∞

0

e−
1
2σ e−

x2

2σ
dσ

σ2

and we get

(1.11) e−|ξ| =
1√
2π

∫ ∞

0

e−
1
2σ e−σ ξ2

2
dσ

σ3/2
,

and finally

(1.12) e−tΛ =
1√
2π

∫ ∞

0

e−
1
2σ eσ

t2

2 Δ dσ

σ3/2
.

We shall use a generalization of (1.12) to the case of e−tΛ2α

.

2. One-dimensional stable distributions

The aim of this section is to recall the useful following representation:

Proposition 2.1. For 0 < α < 1, there exists a probability measure dμα concen-
trated on [0,+∞) such that for all x ∈ R we have

(2.1) e−|x|2α =

∫ +∞

0

e−σx2

dμα(σ) .

Corollary 2.2. Let Λ =
√−Δ be the Calderón operator on Rn and let etΔ be

the heat kernel on R
n. Then the operator e−tΛ2α

(t ≥ 0, 0 < α < 1) may be
represented as

(2.2) e−tΛ2α

=

∫ +∞

0

eσt
1/αΔdμα(σ) .

Formula (2.1) is well known. See for instance Proposition 1.2.12 in [18]. Due
to a celebrated theorem of Bernstein, [2], it amounts to say that the function
x > 0 
→ e−|x|α is completely monotone, which is easily checked.

Formula (2.1) is linked to the theory of one-dimensional stable processes. The
probability density function dμ of a random variable X is called α-stable [22] if its
characteristic function χ(ξ) = E(eiXξ) =

∫
eixξ dμ(x) is of the form

(2.3) χ(ξ) =

{
eimξ−σα|ξ|α−iβσαξ|ξ|α−1 tan(πα/2) if α �= 1 ,

eimξ−σ|ξ|+iβσξ ln |ξ| if α = 1 .
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The admissible values for the parameters are: 0 < α ≤ 2 for the stability
index α, m ∈ R for the position parameter m, σ ≥ 0 for the scale parameter σ,
and −1 ≤ β ≤ 1 for the bias parameter β. We will write X ∼ Sα(m,σ, β).

For X ∼ Sα(0, σ, 1) with 0 < α < 1, the function χ is given by

χ(ξ) = e−σα|ξ|α(1+i sgn(ξ) tan(πα/2)).

If zα is the holomorphic function defined on C\R− as zα = |z|αeiαArg(z) where the
argument of z is taken in (−π, π), we have

(iξ)α = |ξ|αeiα sgn(ξ)π/2 = cos(απ/2)|ξ|α(1 + i sgn(ξ) tan(απ/2)).

Thus, when X ∼ Sα((cos(απ/2))
−1/α, 0, 1), we have χ(ξ) = e−(iξ)α . For z = η+ iξ

with η ≥ 0, we have |e−zα | = e−|z|α cos(αArg(z)) ≤ 1. The Paley–Wiener–Schwartz
theorem ensures that the probability density function dμα of X is supported on R+

and that, for z = ξ + iη with η ≥ 0, we have e(iz)
α

=
∫ +∞
0 eiσz dμα(σ). When

z = ix2, we obtain e−|x|2α =
∫ +∞
0 e−σx2

dμα(σ).

3. Diffusion semi-groups

In this section, we consider a symmetric diffusion semi-group as considered by
Stein in [19]:

Definition 3.1. A symmetric diffusion semi-group with infinitesimal generator L
is a family of operators (etL)t≥0 such that:

i) etL is self-adjoint for t ≥ 0.

ii) etL is the convolution operator with a probability density function pt(x)
(pt(x) ≥ 0 and

∫
pt(x) dx = 1).

iii) etLesL = e(t+s)L and, for f ∈ L2, limt→0+ ‖etLf − f‖2 = 0.

We then have

iv) Lf = limt→0
1
t (e

tLf − f) on a dense subspace of L2.

v) ∂te
tLf = L(etLf).

For classical results on such semi-groups, we refer to the survey of Bakry [1].
A crucial result is that, for a convex function φ, we have Jensen’s inequality

(3.1) φ(etLf) ≤ etLφ(f) ,

and, by looking at the derivatives of both terms at t = 0,

(3.2) φ′(f)Lf ≤ L(φf).

When φ(t) = t2, we get 2fL(f) ≤ L(f2): this is the positivity of the square field
operator

(3.3) Γ(f, g) =
1

2
(L(f, g)− fL(g)− gL(f)) .
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For φ(t) = |t|γ with γ > 1, we find γf |f |γ−2L(f) ≤ L(|f |γ). For γ = p/2 with
2 < p < +∞, we multiply the inequality by |f |p/2 and we integrate. We thus get

(3.4) p

∫
f |f |p−2 Lf dx ≤ 2

∫
|f |p/2L(|f |p/2) dx = −2

∫
|√−L(|f |p/2)|2 dx.

We are now going to generalize (3.4) by taking into account the sign of f in
the RHS of the inequality:

Theorem 3.2. Let (etL)t≥0 be a symmetric diffusion semi-group. Then:

i) For 2 ≤ p < +∞, we have the inequality

(3.5) p

∫
f |f |p−2L(f) dx≤

∫
f |f | p2−1L(f |f | p2−1) dx= −

∫
|√−L(f |f | p2−1)|2 dx.

ii) For 1 ≤ p ≤ 2, we have the inequality

(3.6) 4

∫
f |f | p2−1L(f |f | p2−1) dx=−4

∫
|√−L(f |f | p2−1)|2 dx≤p

∫
f |f |p−2L(f) dx ,

where, moreover, p
∫
f |f |p−2L(f) dx ≤ 0.

Proof. We use the convex function φ(t) = |t|, and we find sgn(f) L(f) ≤ L(|f |),
hence fL(f) ≤ |f |L(|f |). We decompose f into f = f+ − f− with f+ = f+|f |

2 ,
and we get

(3.7) f+L(f−) + f−L(f+) ≥ 0

Integrating (3.7) and using the self-adjointness of L gives
∫
f+L(f−) dx ≥ 0.

The case of f+ and f− approximating two Dirac masses at separate points gives
then that the distribution kernel K of L satisfies K(x, y) ≥ 0 away from the
diagonal x = y, and we get finally that

(3.8) f+L(f−) =
∫
x �=y

K(x, y)f+(x)f−(y) dy ≥ 0 ,

and similarly f−L(f+) ≥ 0. In particular, we get that, for 1 ≤ p < +∞, we have

(3.9)

∫
(f+)p−1L(f−) + (f−)p−1L(f+) dx ≥ 0 .

On the other hand, we have that t 
→ ‖etL‖pp is nonincreasing, so that (by looking
at the derivative at t = 0) we have p

∫
f |f |p−2Lf dx ≤ 0. This inequality together

with (3.9) gives

2

∫
(f+)p−1L(f+)+(f−)p−1L(f−)dx ≤

∫
f |f |p−2L(f)dx

≤
∫
(f+)p−1L(f+)+(f−)p−1L(f−)dx ,(3.10)
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and, similarly, we have for g = f |f | p2−1, g+ = (f+)p/2 and g− = (f−)p/2,

(3.11) 2

∫
g+L(g+) + g−L(g−) dx ≤

∫
g L(g) dx ≤

∫
g+L(g+) + g−L(g−) dx.

When p ≥ 2, we write ‖etLf+‖pp ≤ ‖etL(g+)‖22 and we get (by looking at the
derivative at t = 0) that p

∫
(f+)p−1L(f+) dx ≤ 2

∫
g+L(g+) dx; we have the same

inequality for f− and g−. Thus, (3.10) and (3.11) give (3.5).

When p ≤ 2, we write ‖etLg+‖22 ≤ ‖etL(f+)‖pp and get that 2
∫
g+L(g+) dx

≤ p
∫
(f+)p−1L(f+) dx; we have the same inequality for f− and g−. Thus, (3.10)

and (3.11) give (3.6). �

4. A. and D. Córdoba’s inequality and Besov norms

The semi-group (e−tΛ2α

)t≥0 is a symmetric diffusion semi-group on Rn. The posi-
tivity of its kernel is a consequence of the positivity of the heat kernel etΔ and of the
representation formula given by Corollary 2.2. Thus, Córdoba’s inequality (1.6) is
just a special case of inequality (3.4). In this section, we shall apply Theorem 3.2

(generalization of (3.4)) to the semi-group (e−tΛ2α

)t≥0. Our application will be
based on the following easy lemma:

Lemma 4.1. Let 0 < γ ≤ 1. Then for all a and b in R we have

(4.1)
∣∣a |a|γ−1 − b |b|γ−1

∣∣ ≤ 2|a− b|γ

Proof. This is obvious if ab < 0: if uv < 0 then max(|u|, |v|) ≤ |u − v| ≤
2max(|u|, |v|). If ab ≥ 0, we use the fact that dγ(x, y) = |x−y|γ is a distance on R

and we write |dγ(a, 0)− dγ(b, 0)| ≤ dγ(a, b)|. �

We may now prove the following extension of Córdoba’s inequality, using norms
in homogeneous Sobolev and Besov spaces:

Theorem 4.2. (A) Let 0 < α < 1 and 2 ≤ p < +∞. Then there is a positive
constant cα,p,n > 0 such that

(4.2)

cα,p,n‖f‖p
Ḃ

2α/p,p
p

≤ ‖f |f | p2−1‖2
Ḣα =

∫
|Λα(f |f | p2−1)|2 dx

≤ p

∫
f |f |p−2Λ2α(f) dx .

(B) Let 2 ≤ p < +∞. Then there is a positive constant cp,n > 0 such that

(4.3)

cp,n‖f‖p
Ḃ

2α/p,∞
p

≤ ‖f |f | p2−1‖2
Ḣ1 =

∫
|�∇(f |f | p2−1)|2 dx

≤ p

∫
f |f |p−2(−Δf) dx .
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(C) Let 0 < α < 1 and max(1, 2α) < p < 2. Then there is a positive constant
Cα,p,n > 0 such that

(4.4)
0 ≤ p

∫
f |f |p−2Λ2α(f) dx ≤ 4‖f |f | p2−1‖2

Ḣα = 4

∫
|Λα(f |f | p2−1)|2 dx

≤ Cα,p,n‖f‖p
Ḃ

2α/p,p
p

.

Proof. First, we will apply Theorem 3.2 to the symmetric diffusion semi-group
(e−tΛ2α

)t≥0 : (3.5) gives the RHS inequalities in (4.2) and (4.3), while (3.6) gives
the LHS inequality in (4.4). Thus, the proof of Theorem 4.2 is reduced to a
comparison between a Besov norm and a Sobolev norm.

Besov norms may be defined in various (more or less) equivalent ways. We
shall use the characterization of Besov spaces through moduli of continuity. For
β ∈ (0, 1) and 1 ≤ p < ∞, the norms of Ḃβ,p

p may be defined as

(4.5)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖f‖Ḃβ,p
p

=
(∫ ∫ |f(x)− f(y)|p

|x− y|n+pβ
dx dy

) 1
p

and

‖f‖Ḃβ,∞
p

= sup
h∈Rn, h �=0

‖f(x)− f(x+ h)‖p
|h|β

Moreover, we have Ḣα = Ḃα,2
2 . Thus, the Sobolev norm ‖f‖Ḣα is equivalent, for

α ∈ (0, 1), to ‖f‖Ḃα,2
2

=
√∫ ∫ |f(x)−f(y)|2

|x−y|n+2α dx dy. For α = 1, the Sobolev norm

‖f‖Ḣ1 is equivalent to suph∈Rn, h �=0
‖f(x)−f(x+h)‖2

|h| .

To finish the proof, we use Lemma 4.1. For p ≥ 2, we take γ = 2/p, a =
f(x)|f(x)| p2−1, and b = f(y)|f(y)| p2−1, and we get

(4.6) |f(x)− f(y)|p ≤ 2p
∣∣f(x) |f(x)| p2−1 − f(y) |f(y)| p2−1

∣∣2
Using (4.6) and (4.5), we then get the LHS inequalities of (4.2) and (4.3).

For p < 2, we take γ = p/2, a = f(x) and b = f(y), and we get

(4.7) |f(x)|f(x)| p2−1 − f(y)|f(y)| p2−1|2 ≤ 4|f(x)− f(y)|p .
Using (4.7) and (4.5), for 2α/p < 1, we then get the RHS inequality of (4.4). �

5. Frequency gaps

Let 1 < p < +∞ and let f ∈ Lp(Rn) be such that the Fourier transform f̂ has no

low frequency: f̂(ξ) = 0 for |ξ| ≤ A. Then it is well known that the norm of etΔf
decays exponentially:

(5.1) ‖etΔf‖p ≤ 1

cp
e−cptA

2 ‖f‖p

(see for instance Chemin [3]). But (5.1) contains no information for small t’s: if

t ≤ A−2 1
cp

ln 1
cp

we have ‖etΔf‖p ≤ ‖f‖p and 1 ≤ 1
cp
e−cptA

2

.
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In this section, we want to prove a more precise estimate:

(5.2) ‖etΔf‖p ≤ e−cptA
2‖f‖p .

We begin with two classical lemmas:

Lemma 5.1. (A) Let 1 ≤ p ≤ +∞ and let g ∈ Lp(Rn) be such that the Fourier
transform ĝ has no low frequency: ĝ(ξ) = 0 for |ξ| ≤ A. Then, for 1 ≤ j ≤ n,

‖∂j

Δ g‖p ≤ cA−1‖g‖p.
(B) Let 1 ≤ p ≤ +∞ and let f ∈ Lp(Rn) be such that the Fourier transform f̂

has no low frequency: f̂(ξ) = 0 for |ξ| ≤ A. Then ‖f‖p ≤ cA−1‖�∇f‖p.
(C) Let 1 ≤ p ≤ +∞ and let f ∈ Lp(Rn) be such that the Fourier transform f̂

has no low frequency: f̂(ξ) = 0 for |ξ| ≤ A. Then there exists Fj ∈ Lp such that
f =

∑n
j=1 ∂jFj, with ‖Fj‖p ≤ cA−1‖f‖p.

Proof. (A) is obvious: if ω ∈ D(Rn) is equal to 1 on the ball B(0, 1/4) and to 0

outside from the ball B(0, 1/2), then the function kj whose Fourier transform k̂j is

equal to k̂j(ξ) = − iξj
‖ξ‖2 (1−ω(ξ)) satisfies kj ∈ L1. We have

∂j

Δ g = An−1kj(Ax)∗g,
so that ‖∂j

Δ g‖p ≤ A−1‖kj‖1‖g‖p.
For (B) and (C), we just write f = −∑n

j=1
∂j

Δ ∂jf = −∑n
j=1 ∂j

∂j

Δ f . �

The following lemma can be found in [11]:

Lemma 5.2. Let 1 < p < +∞ and let f be a C1 function. If f ∈ W 2,p(Rn), then
we have

(5.3) −
∫

f |f |p−2Δf dx = (p− 1)

∫
f(x) �=0

|�∇f |2 |f |p−2 dx

Proof. For p ≥ 2, this is obvious. f |f |p−2 is C1 and ∂j(f |f |p−2) = (p−1)|f |p−2∂jf .
Thus, (5.3) is a direct consequence of integration by parts.

For 1 < p < 2, we approximate f |f |p−2 by gε = f |f2 + ε2| p−2
2 with ε > 0. By

dominated convergence, we have − ∫
f |f |p−2Δf dx = limε→0

∫
gε(−Δf) dx. We

have ∂j(gε) = ∂jf |f2+ ε2| p−2
2 (1+(p−2) f2

f2+ε2 ). We consider ω ∈ D(Rn) such that

0 ≤ ω ≤ 1 and ω = 1 on B(0, 1). Then we have

(5.4)

−
∫

∂2
j fgε = lim

R→+∞

∫
∂jf (ω(x/R)∂jgε +

1

R
∂jω(x/R)gε) dx

=

∫
|∂jf |2|f2 + ε2| p−2

2

(
1 + (p− 2)

f2

f2 + ε2

)
dx

since | ∫ |∂jf 1
R∂jω(x/R)gε dx| ≤ R−1‖∂jω‖∞‖f‖pW 2,p (and thus goes to 0 as R

goes to +∞), and since ∂jf∂jgε ≥ 0 (note that p − 1 ≤ 1 + (p − 2) f2

x2+ε2 ≤ 1),

so that we may apply monotone convergence to
∫
∂jf∂jgεω(x/R) dx. We may
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restrict the domain of the integral on the RHS of (5.4) to the set of x such that
f(x) �= 0, since the set of x such that f(x) = 0 and ∂jf(x) �= 0 has Lebesgue
measure 0. Thus, we have

(5.5) −
∫
f |f |p−2Δf dx = lim

ε→0+

∫
f(x) �=0

|�∇f |2 |f2+ ε2| p−2
2

(
1+(p−2)

f2

f2 + ε2

)
dx .

Moreover ε 
→ |r2+ ε2| p−2
2 is nonincreasing function of ε ∈ [0,+∞) and we may

apply again monotone convergence to see that

(5.6) lim
ε→0

∫
f(x) �=0

|∂jf |2|f2 + ε2| p−2
2 dx =

∫
f(x) �=0

|∂jf |2|f |p−2 dx .

The inequality |�∇f |2 |f2 + ε2| p−2
2 (1 + (p− 2) f2

f2+ε2 ) ≥ (p− 1)|�∇f |2 |f2 + ε2| p−2
2 ,

together with (5.5) and (5.6), gives us that the limit in (5.6) is finite. The inequality

|�∇f |2 |f2 + ε2| p−2
2 (1 + (p − 2) f2

f2+ε2 ) ≤ |�∇f |2 |f2 + ε2| p−2
2 , together with (5.5),

gives us, by dominated convergence, the equality (5.3). �

We may now prove our theorem on frequency gaps:

Theorem 5.3. Let 1 < p < +∞ and let f ∈ Lp(Rn) be such that the Fourier

transform f̂ has no low frequency: f̂(ξ) = 0 for |ξ| ≤ A. Then:

(A) If f ∈ W 2,p, we have the inequality

(5.7) cp‖f‖pp ≤ A−2p

∫
f |f |p−2(−Δf) dx ,

where the constant cp > 0 depends only on n and p.

(B) We have the inequality, for all t ≥ 0,

(5.8) ‖etΔf‖p ≤ e−cpA
2t‖f‖p ,

where the constant cp > 0 depends only on n and p.

(C) For 0 < α < 1 and t ≥ 0, we have the inequality

(5.9) ‖e−tΛ2α

f‖p ≤ e−cα,pA
2αt‖f‖p ,

where the constant cα,p > 0 depends only on n, α and p.

Proof. We may assume (by a density argument) that f is smooth. In order to
prove (A), we shall consider separately the cases p ≥ 2 and p < 2.

Case p ≥ 2. We use Lemma 5.1 and write f =
∑n

j=1 ∂jFj . Then we have

(5.10) ‖f‖pp =
n∑

j=1

∫
∂jFj f |f |p−2 dx = −(p− 1)

n∑
j=1

∫
∂jfFj |f |p−2 dx ,
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and by Cauchy–Schwarz,

(5.11) ‖f‖pp ≤ (p− 1)
( ∫

|�∇f |2|f |p−2 dx
)1/2 (∫ ∑

j

|Fj |2|f |p−2 dx
)1/2

We conclude with Lemma 5.1 (C) and Lemma 5.2.

Case p < 2. We use Lemma 5.1 (B) and write ‖f‖p ≤ cA−1‖�∇f‖p. Moreover,

when computing the integral
∫ |�∇f |p dx, we may restrict the domain of integration

to the set of x such that f(x) �= 0. Then we use Hölder’s inequality to get

(5.12)

∫
|�∇f |p dx ≤

(∫
f(x) �=0

|�∇f |2|f |p−2 dx
)p/2( ∫

f(x) �=0

|f |p dx
)1−p/2

,

and we conclude with Lemma 5.1 (B) and Lemma 5.2.

Thus, (A) is proved. (B) is a direct consequence of (A): the derivative ofH(t) =
‖etΔf‖pp is equal to p

∫
etΔf |etΔf |p−2Δ(etΔf) dx, and the the derivative of K(t) =

e−cpA
2t‖f‖pp is −cpA

2e−cpA
2t‖f‖pp. (A) gives that H ′(t) ≤ −cpA

2H(t); thus, we

get, for J(t) = H(t)−K(t), J ′(t) ≤ −cpA
2J(t) and J(t) ≤ J(0)e−cpA

2t = 0. Thus,
H(t) ≤ K(t) and (B) is proved.

Finally, (C) is a consequence of (B) and of the representation formulae (2.1)
and (2.2):

(5.13)
‖e−tΛ2α

f‖p ≤
∫ ∞

0

‖eσt1/αΔf‖pp dμα(σ) ≤
∫ ∞

0

e−cpA
2σt1/α‖f‖p dμα(σ)

= e−(cpA
2t1/α)α‖f‖p = e−cαpA

2αt‖f‖p .
Thus, (C) is proved. �

6. Band limited functions

In this section, we shall estimate the decay of ‖e−tΛ2α

f‖p by below:

Theorem 6.1. Let 1 < p < +∞ and let f ∈ Lp(Rn) be such that the Fourier

transform f̂ has no high frequency: f̂(ξ) = 0 for |ξ| ≥ A. Then:

(A) For 0 < α ≤ 1, we have the inequality

(6.1) A−2αp

∫
f |f |p−2Λ2αf dx ≤ cα,p ‖f‖pp ,

where the constant cα,p > 0 depends only on n and p.

(B) For 0 < α < 1 and t ≥ 0, we have the inequality

(6.2) ‖e−tΛ2α

f‖p ≥ e−cα,pA
2αt‖f‖p ,

where the constant cα,p > 0 depends only on n, α and p.

Proof. The case p ≥ 2 is easy. The Bernstein inequalities give us that ‖Λ2α(θ)‖p ≤
cA2α‖θ‖p, and thus (6.1) is obvious.
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When p < 2, we use Theorem 3.2 (equation (3.6)) (or the LHS of Theorem 4.2,
equation (4.4), which is valid for 1 < p < 2), and get that

(6.3) p

∫
f |f |p−2Λ2α(f) dx ≤ 4‖f |f | p2−1‖2

Ḣα ≤ 4‖f‖(1−α)p/2
p ‖�∇(f |f | p2−1)‖2α2 .

We approximate f |f | p−2
2 by gε = f |f2 + ε2| p−2

4 , with ε > 0. We have ∂jgε =

∂jf |f2 + ε2| p−2
4

(
1 + p−2

2
f2

f2+ε2

)
. We have that

(6.4)

‖�∇gε‖22 =
∫
f(x) �=0

|�∇f |2|f2 + ε2| p−2
2 (1 +

p− 2

2

f2

f2 + ε2
)2 dx

−−→
ε>0

(p− 1)2
∫
f(x) �=0

|�∇f |2 |f |p−2 dx .

We use Lemma 5.2 to get that the limit in (6.4) is finite. Thus, we get that
�∇(f |f | p2−1) ∈ L2 and that (using Bernstein’s inequality)

(6.5) ‖�∇(f |f | p2−1)‖22 = −(p− 1)

∫
f |f |p−2Δf dx ≤ cA2‖f‖pp .

Thus (A) is proved.

(B) is a direct consequence of (A): the derivative of H(t) = ‖e−tΛ2α

f‖pp is

equal to −p
∫
e−tΛ2α

f |e−tΛ2α

f |p−2Λ2α(e−tΛ2α

f) dx, and the derivative of K(t) =

e−cα,pA
2t‖f‖pp is −cα,pA

2e−cα,pA
2t‖f‖pp. (A) gives that H ′(t) ≥ −cα,pA

2H(t); thus,
we get, for J(t) = H(t) − K(t),the inequalities J ′(t) ≥ −cα,pA

2J(t) and J(t) ≥
J(0)e−cpA

2t = 0. Thus, H(t) ≥ K(t), and (B) is proved. �

7. Danchin’s inequality

In this section, we shall discuss the nonlinear Bernstein inequality given by Danchin
in [8] and [9]: for θ ∈ Lp(Rn) such that its Fourier transform θ̂(ξ) is supported in
the annulus 1/2 ≤ |ξ| ≤ 2, we have, for 1 < p < ∞,

(7.1) A‖θ‖pp ≤ ‖�∇(|θ|p/2)‖22 ≤ B‖θ‖pp ,
where the constants A and B are positive and depend only on p and on the dimen-
sion n. Danchin [8] proved it for p ∈ 2N∗, then Planchon [14] proved it for p ≥ 2,
and finally Danchin gave a proof for p > 1 in [9]. We shall use our previous results
to prove it and generalize it:

Theorem 7.1. Let 1 < p < +∞. Let θ ∈ Lp(Rn) be such that its Fourier trans-

form θ̂(ξ) is supported in the annulus 1/2 ≤ |ξ| ≤ 2. Then, for 0 < α ≤ 1,
we have

(7.2) A‖θ‖pp ≤ ‖Λα(θ|θ|p/2−1)‖22 ≤ B‖θ‖pp ,
where the constants A and B are positive and depend only on p, on α, and on the
dimension n.
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Proof. Due to the spectral localization of θ, we have

(7.3) ‖θ‖p ∼ ‖θ‖
Ḃ

2α/p,p
p

∼ ‖θ‖
Ḃ

2α/p,∞
p

.

The case p ≥ 2 is easy: (7.3) and Theorem 4.2 give that A‖θ‖pp ≤ ‖Λα(θ|θ|p/2−1)‖22.
On the other hand, the Bernstein inequalities give us that ‖Λ2α(θ)‖p ≤ Bp−1‖θ‖p
so that, using Theorem 4.2 again, we have ‖Λα(θ|θ|p/2−1)‖22 ≤ p

∫
θ|θ|p−2Λ2α(θ) dx

≤ B‖θ‖pp.
When p ≤ 2, we use Theorem 5.3. We have ‖e−tΛ2α

f‖pp ≤ e−cα,pt‖f‖pp. Looking
at the derivatives at t = 0 (and using Theorem 4.2), we get

(7.4) cα,p‖f‖pp ≤ p

∫
f |f |p−2Λ2αf dx ≤ 4

∫
|Λα(f |f | p2−1)|2 dx .

On the other hand, (6.3) and (6.5) give us the converse inequality. �

Remark. Theorem 7.1 has been proved for p ≥ 2 by Wu in [21], and Chen, Miao
and Zhang in [4].

8. Lie groups of polynomial growth

Since our method is mainly based on the use of symmetric diffusion semigroups,
our results may be adapted to various settings. In this section, we consider a
connected Lie group G and its Lie algebra G, generated from a set of left-invariant
vector fields (Xi)1≤i≤N (in the sense of Hörmander: G is generated by the fields Xi

and their successive Lie brackets). We consider dx a left-invariant Haar measure
on G.

We have a Carnot–Carathéodory metric ρ(x, y) = |y−1.x|G on G associated
to the vector fields Xi, [7]. We write B(x, r) for the radius r > 0 ball centered
at x ∈ G, and V (r) for the volume of the ball, V (r) =

∫
|y|G<r

dy. The volume

obeys to two dimensional orders: for r < 1, we have ard ≤ V (r) ≤ brd for some
local dimension d > 0 and positive constants a, b; for r ≥ 1, either V has a finite
dimensional behaviour, arD ≤ V (r) ≤ brD for some D > 0 (the dimension at
infinity), or V grows exponentially, ear ≤ V (r) ≤ ebr. In the first case, G is called
a group with polynomial growth (versus exponential growth in the second case).

The sublaplacian on G is the operator J = −∑N
i=1 X

2
i . We define the convolu-

tion on G by f ∗ h(x) = ∫
G
f(xy−1)h(y) dy =

∫
G
f(y)h(y−1x) dy. Then (e−tJ )t≥0

is a semi-group of positive self-adjoint convolution operators on G, so that the
theory of symmetric diffusion semigroups can be applied.

We can define Sobolev and Besov spaces on G, [20]. When p = 2, the Besov
space Ḃs,2

2 coincides with the Sobolev space Ḣs = D(J s/2) (normed by ‖f‖Ḣs =
‖J s/2f‖2). It is easy to check that Saka’s characterization of Besov spaces [16] on
stratified Lie groups can be extended to the setting of Lie groups with polynomial
growth. More precisely, L. Saloff-Coste [17] proved the following result:
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Proposition 8.1. Let G be a connected Lie group with polynomial growth. For
0 < s < 1 and 1 ≤ p < +∞, the norm of the Besov space Ḃs,p

p is equivalent to

(8.1) ‖f‖Ḃs,p
p

=
( ∫∫ |f(x.y)− f(y)|p

|y|spG V (|y|G) dx dy
)1/p

Now, a direct adaptation of Theorem 4.2 gives:

Theorem 8.2. Let J be the sublaplacian operator on a connected Lie group G
with polynomial growth. Let 0 < α < 1 and 2 ≤ p < +∞. Then there is a positive
constant cα,p,G > 0 such that

(8.2)

cα,p,G‖f‖p
Ḃ

2α/p,p
p

≤ ‖f |f | p2−1‖2
Ḣα =

∫
|J α/2(f |f | p2−1)|2 dx

≤ p

∫
f |f |p−2J α(f) dx .
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