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Assouad’s theorem with dimension
independent of the snowflaking

Assaf Naor and Ofer Neiman

Abstract. It is shown that for every K > 0 and ε ∈ (0, 1/2) there exist
N = N(K) ∈ N and D = D(K, ε) ∈ (1,∞) with the following properties.
For every metric space (X, d) with doubling constant at mostK, the metric
space (X, d1−ε) admits a bi-Lipschitz embedding into R

N with distortion
at most D. The classical Assouad embedding theorem makes the same
assertion, but with N → ∞ as ε → 0.

1. Introduction

In this paper all metric spaces are assumed to be separable and to contain at least
two points. Balls in metric spaces are always closed balls, i.e., for a metric space
(X, d), x ∈ X and r � 0, we denote B(x, r) = {y ∈ X : d(x, y) � r}. A metric
space (X, d) has doubling constant K ∈ (1,∞) if every ball in X can be covered by
at most K balls of half its radius, i.e., for every x ∈ X and r > 0 there exist A ⊆ X
with |A| � K such that B(x, r) ⊆ ⋃y∈AB(y, r/2). Note that since X contains at
least two points, necessarily K � 2. (X, d) is said to be a doubling metric space if
it has doubling constant K for some K ∈ (1,∞).

A metric space (X, d) embeds into a normed space (Y, ‖ · ‖) with distortion
D ∈ [1,∞] if there exists f : X → Y such that for all x, y ∈ X we have

d(x, y) � ‖f(x)− f(y)‖ � Dd(x, y).

When X embeds into Y with finite distortion we say that X admits a bi-Lipschitz
embedding into Y . The infimum over those D � 1 for which X embeds into Y
is denoted cY (X). When Y = �2 is infinite dimensional Hilbert space, we write
cY (X) = c2(X); this parameter is known in the literature as the Euclidean dis-
tortion of X . In what follows, when we refer to the space RN we always assume
that it is equipped with the standard Euclidean metric. A standard argument
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(see, e.g., Lemma 4.9 in [4]) shows that if Y is either �2 or RN , we have

(1.1) cY (X) = sup
{
cY (Z) : Z ⊆ X ∧ |Z| < ∞}.

If (X, d) is a metric space and α ∈ (0, 1] then (X, dα) is also a metric space,
known as the α-snowflake of X .

A major open problem of embedding theory is the bi-Lipschitz embeddabil-
ity problem in RN . This problem asks for an intrinsic characterization of those
separable metric spaces (X, d) that admit a bi-Lipschitz embedding into RN for
some N ∈ N. For a discussion of this important question, see for example the
works of Semmes [28], Lang–Plaut [20] and Heinonen [16]. An obvious restriction
on a metric space (X, d) that admits a bi-Lipschitz embedding into RN is that it
must be doubling. In this context, Assouad discovered in [4] the following funda-
mental embedding theorem (see also Heinonen’s book [15] for a nice exposition of
Assouad’s theorem).

Theorem 1.1 (Assouad’s embedding theorem). For every ε ∈ (0, 1) and K > 0,
there exist N = N(K, ε) ∈ N and D = D(K, ε) ∈ (1,∞) such that for every
separable metric space (X, d) with doubling constant K, the metric space

(
X, d1−ε

)
admits a bi-Lipschitz embedding into RN with distortion at most D.

Assouad’s theorem falls short of solving the bi-Lipschitz embeddability prob-
lem in RN , since it only achieves an embedding of the snowflaked metric space
(X, d1−ε). Nevertheless, as ε → 0 this metric space becomes closer and closer to the
original metric space (X, d). It is therefore of interest to investigate the behavior of
N(K, ε) and D(K, ε) as ε → 0. It turns out that necessarily limε→0 D(K, ε) = ∞,
due to the existence of doubling metric spaces that do not admit a bi-Lipschitz
embedding into R

N . The first known such example is the Heisenberg group,
equipped with the Carnot–Carathéodory metric: Semmes observed in [27] that
its bi-Lipschitz nonembeddability into RN is a consequence of Pansu’s differentia-
bility theorem [25]. Additional examples of non-Euclidean doubling spaces were
found by Laakso [19] and Bourdon–Pajot [7]; see the work of Cheeger [8] for a
unified treatment of these results.

It seems to be inherent to Assouad’s embedding method that we also have
limε→0 N(K, ε) = ∞. Note that if ε ∈ (0, 1/2) then the metric space (X, d1−ε) has
doubling constant K2, so there is no obvious obstruction to (X, d1−ε) admitting
a bi-Lipschitz embedding into RN for some N that is independent of ε ∈ (0, 1/2).
The issue that in Assouad’s theorem N depends on ε and is very large as ε → 0
was noted by many authors; this is mentioned, for example, in the works of David–
Toro [10] and Semmes [28] (where much more refined bounds on N are obtained
under additional assumptions). Assouad himself noticed this issue in [4], where
he showed that N can be taken to be independent of ε ∈ (0, 1/2) when X = R

(more generally, Assouad deals in [4] with X = [0, 1]k). The case of the “helix
snowflakes” (R, |x − y|1−ε) was studied by Kahane [17] and Talagrand [29], who
investigated the interplay between the dimension N and the distortion D (Kahane
studied only the case ε = 1

2 , and obtained sharp results. Talagrand’s work applies
to all ε ∈ (0, 1), but is not sharp).
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Here we show that in Assouad’s theorem one can take N to depend only on
the doubling constant K, but not on ε ∈ (0, 1/2).

Theorem 1.2. For every K > 0 there exists N = N(K) ∈ N, and for every
ε ∈ (0, 1/2) and K > 0 there exists D = D(K, ε) ∈ (1,∞), such that for every
separable metric space (X, d) with doubling constant K, the metric space

(
X, d1−ε

)
admits a bi-Lipschitz embedding into RN with distortion at most D.

Our argument yields the bounds N(K) � logK and D(K, ε) �
(
logK

ε

)2
. More

generally, for every δ ∈ (0, 1] our argument yields the bounds

(1.2) N(K) � logK

δ
and D(K, ε) �

( logK
ε

)1+δ

.

Here and in what follows, the symbols �,� indicate the corresponding inequalities
up to an absolute multiplicative factor.

In the rest of this introduction we will describe some additional results and
question related to the bi-Lipschitz embeddability problem in RN .

1.1. The Lang–Plaut problem and snowflakes of the Heisenberg group

Despite major efforts by many mathematicians, the bi-Lipschitz embeddability
problem in R

N remains wide open. A variety of sufficient intrinsic conditions on a
metric space (X, d) are known which ensure that it admits a bi-Lipschitz embedding
in some Euclidean space RN , but these conditions are far from necessary.

A necessary condition for a metric space (X, d) to admit a bi-Lipschitz embed-
ding into some RN (in addition to being doubling) is that it admits a bi-Lipschitz
embedding into �2, i.e., its Euclidean distortion satisfies c2(X) < ∞. All the known
examples of doubling metric spaces that do not admit a bi-Lipschitz embedding
into any RN actually do not admit a bi-Lipschitz embedding into infinite dimen-
sional Hilbert space as well. This led Lang and Plaut (see Question 2.4 in [20]) to
ask the following question:

Question 1 (Lang–Plaut problem). Is it necessary and sufficient for a metric
space (X, d) to admit a bi-Lipschitz embedding into some RN that it is doubling
and it admits a bi-Lipschitz embedding into Hilbert space? Equivalently, does every
doubling subset of Hilbert space admit a bi-Lipschitz embedding into some RN?

By a simple argument (presented in Section 4), the Lang–Plaut problem can
be restated quantitatively as follows: Is it true that for every K > 0 there is
N = N(K) ∈ N and D = D(K) ∈ (1,∞) such that if X ⊆ �2 has doubling
constant K then cRN (X) � D?

One might argue whether or not a positive answer to the Lang–Plaut problem
would resolve the bi-Lipschitz embedding problem into RN , since it is not obvious
that the condition that X admits a bi-Lipschitz embedding into Hilbert space can
be restated in terms of the intrinsic geometry of X . However, it is possible to char-
acterize bi-Lipschitz embeddability into �2 in terms of a family of distance inequal-
ities, i.e., intrinsically, without using the word “embedding”. Indeed, as shown by
Linial, London and Rabinovich [23] (extending the corresponding classical result
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of Schoenberg [26] in the isometric category), c2(X) � D if and only if for all
n ∈ N, x1, . . . , xn ∈ X and every n × n symmetric positive semidefinite matrix
Q = (qij), all of whose rows sum to 0, the following inequality holds true:

(1.3)
n∑

i=1

n∑
j=1

max{qij , 0}d(xi, xj)
2 � D2

n∑
i=1

n∑
j=1

max{−qij , 0}d(xi, xj)
2.

Hence, a positive answer to the Lang–Plaut question would yield a characterization
of bi-Lipschitz embeddability into some RN in terms of the doubling condition,
and the family of distance inequalities (1.3). We believe that this would yield a
satisfactory answer to the bi-Lipschitz embeddability problem in RN , though there
does not seem to be evidence supporting a positive answer to the the Lang–Plaut
question.

A potential source of doubling subsets of Hilbert space that might yield a
counterexample to the Lang–Plaut problem is Assouad’s theorem itself. When
allowing embeddings into infinite dimensional Hilbert space rather than into RN ,
the asymptotics in terms of ε of D(K, ε) in Assouad’s theorem are known [21] (see
also [24]). Specifically, if (X, d) has doubling constant K then c2(X) � C(K)/

√
ε

for some C(K) ∈ (0,∞). This dependence on ε is sharp up to the value of C(K),
as shown in Remark 5.4 of [21].

If (X, d) has doubling constant K then the space (X, d1−ε) has doubling con-
stant bounded uniformly in ε ∈ (0, 1/2), but, in its C(K)/

√
ε-distortion embedding

into �2 it might have an image that is not a doubling subset of �2, with doubling
constant independent of ε, due to the large distortion. We therefore ask the fol-
lowing question:

Question 2. Is it true that for every K ∈ (1,∞) there exist a(K), b(K) ∈ (0,∞)
with the following property. If (X, d) has doubling constant K and ε ∈ (0, 1/2) then
there exists f : X → �2 such that a(K)

√
εd(x, y)1−ε � ‖f(x)− f(y)‖ � d(x, y)1−ε

for all x, y ∈ X, and f(X) ⊆ �2 has doubling constant b(K).

Observe that due to Theorem 1.2, with the explicit bounds stated in (1.2),
if we replaced in Question 2 the term

√
ε by ε1+δ for any δ ∈ (0, 1], then the

answer would be positive, and even the image of the embedding would be finite
dimensional with dimension depending only on K and δ.

In spite of the fact that we don’t know the answer to Question 2, we do know
that the answer is positive for the Heisenberg group. For n ∈ N, the nth Heisenberg
group Hn is Cn × R, equipped with the following group product:

(w, s) · (z, t) =
(
w + z, s+ t+ 2

n∑
j=1

	 (wjzj)
)

∀w = (w1, . . . , wn), z = (z1, . . . , zn) ∈ C
n, ∀s, t ∈ R.

Thus (0, 0) is the identity of Hn and for (z, t) ∈ Hn we have (z, t)−1 = (−z,−t).

The Koranyi norm on Hn is defined for (z, t) ∈ Hn by N0(z, t) =
4
√|z|4 + t2,

where |z|2 =
∑n

j=1 |zj |2. For g, h ∈ Hn we have N0(gh
−1) � N0(g) + N0(h)



Assouad’s theorem with dimension independent of the snowflaking 1127

(see [18], [9]). Thus dN0(g, h) = N0(h
−1g) is a left-invariant metric on Hn. One

can check that the Lebesgue measure is a Haar measure of Hn, and that (Hn, dN0)
has doubling constant eO(n).

In Section 4 we observe that a result of [22] implies the following statement:

Theorem 1.3. For every ε ∈ (0, 1/2), n ∈ N, there exists fε : Hn → �2 satisfying√
εdN0(x, y)

1−ε � ‖fε(x) − fε(y)‖ � dN0(x, y)
1−ε for all x, y ∈ Hn, and such that

fε(Hn) is a doubling subset of �2, with doubling constant eO(n).

We also show in Section 4 that Theorem 1.3 is sharp, even without the require-
ment that the image of Hn be doubling with constant independent of ε:

(1.4) c2
(
Hn, d

1−ε
N0

)
� 1√

ε
∀ ε ∈ (0, 1/2).

This raises the following question:

Question 3. Is it true that for every fixed N ∈ N we have

lim
ε→0

cRN

(
H1, d

1−ε
N0

)√
ε = ∞ ?

A positive answer to Question 3 would imply a negative answer to the Lang–
Plaut problem, since otherwise there would be N ∈ N and D ∈ (1,∞) satisfying
cRN (fε(H1)) � D for all ε ∈ (0, 1/2), where fε is the Euclidean embedding of(
H1, d

1−ε
N0

)
from Theorem 1.3. This would yield the bound cRN

(
H1, d

1−ε
N0

)√
ε � D.

1.2. Previous work and an overview of the proof of Theorem 1.2

The classical proof of Assouad’s theorem [4] (see also [15]) yields the dimension
bound N(K, ε) � c(K)/εO(1). In [13], Gupta, Krauthgamer and Lee announced a
similar bound on N(K, ε) with a much better dependence of c(K) on K, yet the
same bound in terms of ε (the proof of this assertion of [13] has not appeared since
the 2003 announcement, and in particular the dependence on ε was not stated there
explicitly, but it seems to us that the proof technique suggested in [13] would lead to
this bound). A similar bound follows from the work of Har-Peled and Mendel [14],
who studied in addition embeddings into �N∞, yielding a 1 + δ distortion result.
The best previously known bound is due to Abraham, Bartal and Neiman [1], who
proved that N(K, ε) � c(K) log(1/ε). In the context of the Lang–Plaut problem,
Gottlieb and Krauthgamer [12], and Bartal, Recht and Schulman [6], proved that
if X ⊆ �2 has doubling constant K then for all δ ∈ (0, 1) the (1 − ε)-snowflake

of X embeds with distortion 1+δ into Rc(K,δ)/εO(1)

; the main point in these works,
however, is to obtain a 1 + δ distortion embedding, which is impossible in the
context of general doubling metric spaces that are not necessarily isometric to a
subset of �2.

Our proof of Theorem 1.2 builds heavily on the method of Abraham–Bartal–
Neiman [1]. In essence, our proof should be viewed as an optimization of the
argument of [1], which uses degrees of freedom that were available in the construc-
tion of [1], but has not been previously exploited. This requires subtle changes in
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in the proof of [1], and in particular we were surprised that such changes can lead
to a complete removal of the dependence on ε of the dimension N in Assouad’s
theorem. Though somewhat delicate, these changes are of a technical nature, and
the key conceptual ideas can be found in [1].

The proof of Theorem 1.2 is based on a construction of a distribution over
random embeddings, arising from a certain family of random multi-scale partitions
of the metric space (X, d). At every possible distance scale we provide a mapping
to R which is essentially the truncated distance to the “boundary” of the random
partition. We then combine all the possible scales into a single embedding into R,
using an idea of Assouad [4] which multiplies every scale by an appropriate factor
that enables us to control the total expansion over all scales. The lower bound on
the distance of the image of every pair of points in X will come from a single critical
scale. Instead of showing sufficient contribution for every pair, we first focus on
certain nets of the space at appropriate scales, showing that this suffices to prove
the desired lower bound on all pairs. The bulk of the proof consists of arguing that
not only the net pairs will have sufficient contribution, but that this will happen
with high probability (depending on ε), and with very few dependencies on other
net points. To show this we use, as in [1], a localization property of the “padding
event” of the random partitions: this event is stochastically independent of the
“far away” structure of the partition. The ball expected to be padded is very small
(which causes additional distortion), but on the other hand the padding probability
is high. The fact that the radius of our padded ball is small (as a function of ε)
forces us to define the original distance scales to be also functions of ε. Finally, to
argue that the desired lower bound happens for all pairs with positive probability,
even though the number of dimensions at our disposal is small, we use the Lovász
Local Lemma.

Acknowledgements. We are grateful to Tim Austin and Bruce Kleiner for help-
ful discussions.

2. Preliminaries

Due to (1.1), it suffices to prove Theorem 1.2 when X is finite, provided that the
resulting distortion D(K, ε) and the dimension N(K) do not depend on |X |. We
will therefore assume from now on that X is finite. This assumption is actually
not necessary for our argument, but it serves the role of allowing us to ignore
measurability issues that might arise in the random partitioning arguments.

For a partition P of X and x ∈ X let P (x) ∈ P be the set in P to which x
belongs. For s > 0 the partition P is called s-bounded if the diameter of P (x) is
at most s for all x ∈ X .

There is a canonical way to obtain partitions from balls. Given x1, . . . , xn ∈ X
and r1, . . . , rn ∈ (0,∞), define a partition P x1,...,xn

r1,...,rn of
⋃n

j=1 B(xj , rj) by

(2.1) P x1,...,xn
r1,...,rn

def
= {B(x1, r1)}

⋃{
B(xj , rj)�

j−1⋃
i=1

B(xi, ri)
}n

j=2
� {∅}.



Assouad’s theorem with dimension independent of the snowflaking 1129

In particular, given s > 0 the partition P x1,...,xn
r1,...,rn is an s-bounded partition of X

whenever {x1, . . . , xn} is an s/4-net of X and r1, . . . , rn ∈ [s/4, s/2].

As in [1], we will use random partitions of the form P x1,...,xn
r1,...,rn , where the radii

r1, . . . , rn are appropriately chosen random variables. We present the proofs of the
necessary properties of these partitions below, even though they follow from [1].
We do so since the argument of [1] is carried out in much greater generality be-
cause in [1] these methods are used for other purposes for which more general
constructions are needed. Our argument below is simpler than the proof in [1]
both because it deals with the special case that we need, but also because the
proof here is different from [1] (relying, of course, on the same ideas).

Lemma 2.1. Fix x ∈ X. For s > 0 and K > 1, let R be a random variable with
the following density:

(2.2) φs(r)
def
=

16K8 logK

s(K4 − 1)
K−16r/s1[s/4,s/2](r).

Then for every β > 0 and every y ∈ X we have

(2.3) P
[
B(x,R) ∩B(y, βs) /∈ {∅, B(y, βs)

}]
�
(
1−K−32β

) (
P [B(y, βs) ∩B(x,R) = ∅] + 1

K4 − 1

)
.

Proof. Fix x, y ∈ X and define

a
def
= min

z∈B(y,βs)
d(x, z) and b

def
= max

z∈B(y,βs)
d(x, z).

By the triangle inequality,

(2.4) b− a � 2βs.

Hence,

P

[
B(x,R) ∩B(y, βs) /∈ {∅, B(y, βs)

}]
=

∫ b

max{a,s/4}
φs(r)dr

� K8

K4 − 1

(
K−16max{a,s/4}/s −K−16b/s

)
(2.4)

� K8

K4 − 1
K−16max{a,s/4}/s (1−K−32β

)
.(2.5)

Similarly,

P [B(y, βs) ∩B(x,R) = ∅] =
∫ s/2

max{a,s/4}
φs(r)dr(2.6)

=
K8

K4 − 1

(
K−16max{a,s/4}/s −K−8

)
.

The desired inequality (2.3) now follows from (2.5) and (2.6). �
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Lemma 2.2. Fix s > 0, K � 2. Assume that (X, d) has doubling constant at
most K. Let {x1, . . . , xn} ⊆ X be an s/4-net of X, and let R1, . . . , Rn be i.i.d.
random variables whose distribution is given by (2.2). Then, for every y ∈ X and
β ∈ (0, 1/40), we have

P

[
B(y, βs) ⊆ P x1,...,xn

R1,...,Rn
(y)
]
� K−64β.

Proof. For every j ∈ {1, . . . , n} consider the following event:

Aj
def
=
( j−1⋂

i=1

{B(xi, Ri) ∩B(y, βs)= ∅}
)⋂{

B(xj , Rj) ∩B(y, βs) /∈ {∅, B(y, βs)}
}
.

For Aj to occur we need in particular to have B(xj , Rj) ∩ B(y, βs) = ∅. Since
Rj , βs � s/2, this implies that j ∈ Jy, where

Jy
def
=
{
j ∈ {1, . . . , n} : xj ∈ B (y, s)

}
.

We can cover B(y, s) by at most K3 balls of radius s/8. Since {x1, . . . , xn} is an
s/4-net, each of these balls can contain at most one of the xi. Thus,

(2.7) |Jy| � K3.

We must have B(xj , Rj) ∩ B(y, βs) = ∅ for some j ∈ Jy, and therefore using the
independence of R1, . . . Rn we see that

(2.8) 1 =
∑
j∈Jy

P [B(xj , Rj) ∩B(y, βs) = ∅ ∧ B(xi, Ri) ∩B(y, βs) = ∅ ∀i < j]

=
∑
j∈Jy

( j−1∏
i=1

P [B(xi, Ri) ∩B(y, βs) = ∅]
)
P [B(xj , Rj) ∩B(y, βs) = ∅] .

Now, by the definition of the partition P x1,...,xn

R1,...,Rn
we have{

B(y, βs) ⊆ P x1,...,xn

R1,...,Rn
(x)
}
=
⋃
j∈Jy

Aj .

Thus, using the independence of R1, . . . Rn once more,

1− P

[
B(y, βs) ⊆ P x1,...,xn

R1,...,Rn
(x)
]
�
∑
j∈Jy

P [Aj ]

=
∑
j∈Jy

( j−1∏
i=1

P [B(xi, Ri) ∩B(y, βs) = ∅]
)

·P[B(xj , Rj) ∩B(y, βs) /∈ {∅, B(y, βs)} ]
(2.3)∧(2.8)

�
(
1−K−32β

)
+
(
1−K−32β

) |Jy|
K4 − 1

(2.7)

�
(
1−K−32β

) (
1 +

K3

K4 − 1

)
� 1−K−64β ,(2.9)
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where in (2.9) we used the fact that, since K � 2 and β < 1
40 , we have

K3

K4 − 1
� K−32β .

Indeed, this is equivalent to 32β � log(K−K−3)
logK . But the function K �→ log(K−K−3)

logK

is increasing on (1,∞), since its derivative is

4

(K5 −K) logK
+

log(K4/(K4 − 1))

K(logK)2
� 0.

Thus it suffices to check that 32β � log(2−2−3)
log 2 , which is true since β < 1

40 . �

3. The random embedding

Fix ε ∈ (0, 1/2), θ ∈ (0, 1) and K � 2. Write K = eγ , and define

(3.1) N
def
=
⌈cγ
θ

⌉
=
⌈c logK

θ

⌉
,

where c > 0 is a universal constant that will be determined later. It will also be
convenient to write

(3.2) τ
def
=

εθ

32γθ
.

Let (X, d) be a finite metric space whose doubling constant is at most K.
By normalization assume that diam(X) = 1. For every i ∈ N, let {xi

1, . . . , x
i
ni
}

be a 1
4τ

i/(1−ε)-net of X . For every i, k ∈ N and j ∈ {1, . . . , ni}, let Rk
ij be a

random variable whose density is φs, as given in (2.2), with s = τ i/(1−ε). We
will also use random variables {Uk

i (C) : i, k ∈ N, C ⊆ X}, each of which is
uniformly distributed on the interval [0, 1] (thus for each i, k ∈ N we have 2|X|

such random variables). Throughout the argument below it is assumed that the
random variables

(3.3)
{
Rk

ij : i, k ∈ N, j ∈ {1, . . . , ni}
}⋃{

Uk
i (C) : i, k ∈ N, C ⊆ X

}
are mutually independent and defined on some probability space (Ω,P).

We will now consider the random partitions

(3.4) P k
i

def
= P

xi
1,...,x

i
ni

Rk
i1,...,R

k
ini

,

where P
x1,...,xni

Rk
i1,...,R

k
ini

is defined as in (2.1). For i ∈ N and k ∈ {1, . . . , N} define a

random mapping fk
i : X → R by

(3.5) fk
i (x)

def
= Uk

i

(
P k
i (x)

) ·min
{
τ i, 64γτ−

iε
1−ε−1d

(
x,X � P k

i (x)
) }

.
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Finally, we define a random embedding F : X → RN as follows:

(3.6) F (x) =
(∑∞

i=1 f
1
i (x)√

N
, . . . ,

∑∞
i=1 f

N
i (x)√
N

)
∈ R

N .

Note that, by the definition of fk
i , the sums appearing in (3.6) converge geometri-

cally.

Although F is random, it satisfies the desired (1−ε)-Hölder condition determin-
istically. The randomness will enter when we prove that with positive probability
‖F (x)− F (y)‖2 satisfies the desired lower bound for all x, y ∈ X .

Lemma 3.1. For every x, y ∈ X we have

‖F (x)− F (y)‖2 � max
k∈{1,...,N}

∞∑
i=1

∣∣fk
i (x) − fk

i (y)
∣∣(3.7)

� γ(1+θ)(1−ε)

ε1+θ
d(x, y)1−ε �

( logK
ε

)1+θ

d(x, y)1−ε.

Proof. We first claim that for all i ∈ N and k ∈ {1, . . . , N} we have

(3.8)
∣∣fk

i (x) − fk
i (y)

∣∣ � min
{
τ i, 64γτ−

iε
1−ε−1d(x, y)

}
.

To verify (3.8) we may assume without loss of generality that fk
i (x) > fk

i (y). If
P k
i (x) = P k

i (y), then

fk
i (x)− fk

i (y) � fk
i (x) � min

{
τ i, 64γτ−

iε
1−ε−1d

(
x,X � P k

i (x)
) }

,

which is trivially bounded from above by the right hand side of (3.8) since we
have y ∈ X � P k

i (x). If P k
i (x) = P k

i (y) = C, then it cannot be the case that
fk
i (y) = Uk

i (C) τ i, since otherwise fk
i (x) � fk

i (y), contrary to our assumption.
We therefore necessarily have

fk
i (x)− fk

i (y) = fk
i (x) − 64Uk

i (C)γτ−
iε

1−ε−1d(y,X � C)(3.9)

� 64Uk
i (C)γτ−

iε
1−ε−1 (d(x,X � C)− d(y,X � C)) � 64γτ−

iε
1−ε−1d(x, y).

Since, by the definition (3.5), fk
i (x), f

k
i (y) ∈ [0, τ i], we also have fk

i (x)−fk
i (y) � τ i.

This, in conjunction with (3.9), concludes the proof of (3.8).

The first inequality of (3.7) is an immediate consequence of the definition (3.6).
As K = eγ , the third inequality in (3.7) is a trivial overestimate. Note also that
since for all z ∈ X we have ‖F (z)‖2 �

∑∞
i=1 τ

i � τ , the bound in the second

inequality of (3.7) holds true if d(x, y) > τ1+
1

1−ε /(64γ). We may therefore assume

that d(x, y) � τ1+
1

1−ε /(64γ). Let m ∈ N be the integer satisfying

(3.10)
τ

64γ
· τ m+1

1−ε < d(x, y) � τ

64γ
· τ m

1−ε .
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Then

‖F (x)− F (y)‖2 �
(

1

N

N∑
k=1

( ∞∑
i=1

∣∣fk
i (x) − fk

i (y)
∣∣ )2)1/2

� max
k∈{1,...,N}

∞∑
i=1

∣∣fk
i (x) − fk

i (y)
∣∣

(3.8)

� γ

τ
d(x, y)

m∑
i=1

τ−
iε

1−ε +

∞∑
i=m+1

τ i

(3.2)

� γ1+θ

εθ
d(x, y)

m∑
i=1

τ−
iε

1−ε +
∞∑

i=m+1

τ i.(3.11)

We estimate the two sums in (3.11) separately (recalling that 0 < ε, τ < 1/2):

(3.12)

m∑
i=1

τ−
iε

1−ε =
τ−

mε
1−ε − 1

1− τ
ε

1−ε
� 1

ε
τ−

mε
1−ε

(3.10)

� τε

εγεd(x, y)ε

(3.2)

� 1

εγ(1+θ)εd(x, y)ε
.

Similarly,

(3.13)

∞∑
i=m+1

τ i =
τm+1

1− τ

(3.10)

� γ1−ε

τ1−ε
d(x, y)1−ε

(3.2)

� γ(1+θ)(1−ε)

εθ
d(x, y)1−ε.

The desired bound (3.7) follows from substituting (3.12) and (3.13) into (3.11). �

3.1. The Hölder lower bound holds with positive probability

For every i ∈ N write

(3.14) δi
def
= τ

i+2
1−ε

( 4ε

c∗γ

) 1
1−ε

,

where c∗ is the implied universal constant in the final inequality of (3.7). Let Ni

be a δi-net of X .
Consider the following set:

(3.15) M
def
=
{
(i, u, v) ∈ N× Ni × Ni : τ

i
1−ε < d(u, v) � 3τ

i−1
1−ε

}
.

For every (i, u, v) ∈ M define G(i, u, v) ⊆ {1, . . . , N} as follows:

(3.16) G(i, u, v)
def
=
{
k ∈ {1, . . . , N} :

∣∣∣ ∞∑
j=1

fk
j (u)−

∞∑
j=1

fk
j (v)

∣∣∣ � τ i+1

2

}
.

For every (i, u, v) ∈ M let E(i, u, v) ⊆ Ω be the following event:

(3.17) E(i, u, v)
def
=
{
|G(i, u, v)| � N

2

}
,
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and consider the event E ⊆ Ω given by:

(3.18) E
def
=

⋂
(i,u,v)∈M

E(i, u, v).

The relevance of the event E is explained in the following lemma.

Lemma 3.2. If the event E occurs then for all x, y ∈ X we have

‖F (x)− F (y)‖2 �
( ε

logK

)2θ
d(x, y)1−ε.

Proof. Let i be the integer such that

(3.19) τ
i

1−ε < d(x, y) � τ
i−1
1−ε

Since Ni is a δi-net, where δi is given in (3.14), there exist u, v ∈ Ni such that

(3.20) max{d(u, x), d(v, y)} � τ
i+2
1−ε

( 4ε

c∗γ

) 1
1−ε

.

Assume that k ∈ G(i, u, v). By Lemma 3.1 we have

max

{∣∣∣ ∞∑
j=1

fk
j (u)−

∞∑
j=1

fk
j (x)

∣∣∣, ∣∣∣ ∞∑
j=1

fk
j (v)−

∞∑
j=1

fk
j (y)

∣∣∣}(3.21)

(3.7)∧(3.20)

� c∗
(γ
ε

)1+θ 4τ i+2ε

c∗γ
(3.2)
=

τ i+1

8
.

Since k ∈ G(i, u, v) it follows that

(3.22)
∣∣∣ ∞∑
j=1

fk
j (x) −

∞∑
j=1

fk
j (y)

∣∣∣ (3.16)∧(3.21)

� τ i+1

2
− 2 · τ

i+1

8
=

τ i+1

4
.

Since we are assuming that the event E occurs, the lower bound (3.22) holds for
at least N/2 values of k ∈ {1, . . . , N}. Thus, by the definition of F ,

‖F (x)− F (y)‖2 � τ i+1
(3.2)∧(3.19)

�
( ε
γ

)2θ
d(x, y)1−ε. �

Due to Lemma 3.1 and Lemma 3.2, Theorem 1.2 will be proven (with the
bounds claimed in (1.2), with δ = 3θ), once we establish the following lemma.

Lemma 3.3. We have P[E] > 0, provided c in (3.1) is a large enough universal
constant.

The key tool used in the proof of Lemma 3.3 is the Lovász Local Lemma [11].
The variant of this lemma that is stated below is not the same as the classical
formulation of the Lovász Local Lemma, but it is a consequence of it, as explained
in [1], where a more general statement is needed. For more information on the
Lovász Local Lemma and some of its striking applications, see for example the
survey of Alon [2].
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Lemma 3.4 (Lovász Local Lemma). Fix q ∈ (0, 1) and d ∈ N. Let A1,A2, . . .An

be measurable sets in some probability space (Ω,P). Let G = (V,EG) be a graph
on the vertex set V = {A1,A2, . . .An} with maximal degree d. Let

ρ : {A1,A2, . . .An} → N

be a mapping that satisfies the condition

{Ai,Aj} ∈ EG =⇒ ρ(Ai) = ρ(Aj).

Assume that for any i ∈ {1, . . . , n} we have

P

[ ⋂
j∈Q

(Ω�Aj) ∩ Ai

]
� q P

[ ⋂
j∈Q

(Ω�Aj)

]

for all
Q ⊆ {j ∈ {1, . . . , n} : {Ai,Aj} /∈ EG ∧ ρ(Ai) � ρ(Aj)} .

Assume also that

(3.23) eq(d+ 1) � 1.

Then

P

[ n⋂
i=1

(Ω�Ai)

]
> 0

To use Lemma 3.4 we proceed as follows. For (i, u, v) ∈ M consider the follow-
ing random subset of {1, . . . , k}:

(3.24) L(i, u, v)
def
=

{
k ∈ {1, . . . , N} :

∣∣∣ i∑
j=1

fk
j (u)−

i∑
j=1

fk
j (v)

∣∣∣ � 2τ i+1

}
.

For (i, u, v) ∈ M and k ∈ {1, . . . , N} define the following event:

(3.25) S(i, u, v, k)
def
= {k ∈ L(i, u, v)}.

Finally, we also define the following event for all (i, u, v) ∈ M :

(3.26) T (i, u, v)
def
=
{
|L(i, u, v)| � N

2

}
.

Lemma 3.5. For all (i, u, v) ∈ M we have T (i, u, v) ⊆ E(i, u, v).

Proof. Using (3.8) we see that for all k ∈ {1, . . . , N},

(3.27)
∣∣∣ ∞∑
j=i+1

fk
j (u)−

∞∑
j=i+1

fk
j (v)

∣∣∣ � ∞∑
j=i+1

τ j � 3

2
τ i+1.
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Hence, if k ∈ L(i, u, v) then

∣∣∣ ∞∑
j=1

fk
j (u)−

∞∑
j=1

fk
j (v)

∣∣∣ � ∣∣∣ i∑
j=1

fk
j (u)−

i∑
j=1

fk
j (v)

∣∣∣− ∣∣∣ ∞∑
j=i+1

fk
j (u)−

∞∑
j=i+1

fk
j (v)

∣∣∣
(3.24)∧(3.27)

� τ i+1

2
.

This means that L(i, u, v) ⊆ G(i, u, v), and hence

|L(i, u, v)| � N

2
=⇒ |G(i, u, v)| � N

2
.

�

Before proceeding with the proof of Lemma 3.3, it is beneficial for us to intro-
duce some notation related to the random partitions that are used in the definition
of the embedding F . For i ∈ N and k ∈ {1, . . . , N} the partition P k

i was defined
in (3.4), where {xi

1, . . . , x
i
ni
} is a fixed 1

4τ
i/(1−ε)-net of X , and Rk

i1, . . . , R
k
ini

are

i.i.d. random variables whose density is φs as given in (2.2), with s = τ i/(1−ε). For
every y ∈ X define

(3.28) J(i, y)
def
=
{
j ∈ {1, . . . , ni} : d

(
y, xi

j

)
� 2τ

i
1−ε
}
.

We will consider the following random variable:

(3.29) j(i, k, y)
def
= min

{
j ∈ J(i, y) : y ∈ B

(
xi
j , R

k
ij

)}
.

To see that j(i, k, y) is well defined, note that since {xi
1, . . . , x

i
ni
} is a 1

4τ
i/(1−ε)-net

of X and Rk
i1, . . . , R

k
ini

� 1
4τ

i/(1−ε), there must be some j ∈ {1, . . . , N} for which

y ∈ B
(
xi
j , R

k
ij

)
, and since Rk

ij � 1
2τ

i/(1−ε) necessarily j ∈ J(i, y).

From the definition (2.1) we see that

(3.30) P k
i (y) = B

(
xi
j(i,k,y), R

k
ij(i,k,y)

)
�

j(i,k,y)−1⋃
�=1

B
(
xi
�, R

k
i�

)
.

But note that if there exists z ∈ B
(
xi
�, R

k
i�

) ∩B
(
xi
j(i,k,y), R

k
ij(i,k,y)

)
then

d(xi
�, y) � d(xi

�, z) + d
(
z, xi

j(i,k,y)

)
+ d
(
xi
j(i,k,y), y

)
� Rk

i� + 2Rk
ij(i,k,y) � 2τ

i
1−ε ,

implying that � ∈ J(i, y) . It follows from this that (3.30) can be rewritten as
follows:

(3.31) P k
i (y) = B

(
xi
j(i,k,y), R

k
ij(i,k,y)

)
�

⋃
�∈J(i,y)∩{1,...,j(i,k,y)−1}

B
(
xi
�, R

k
i�

)
.

To continue with our plan to use Lemma 3.4, we define a graph H = (V,EH),

where V
def
= {T (i, u, v) : (i, u, v) ∈ M}, and a mapping ρ : V → N, as follows:

{T (i, u, v), T (i′, u′, v′)} ∈ EH ⇐⇒ i = i′ ∧ d ({u, v}, {u′, v′}) � 4τ
i

1−ε ,(3.32)

ρ(T (i, u, v)) = i.(3.33)



Assouad’s theorem with dimension independent of the snowflaking 1137

Lemma 3.6. The maximal degree of H is at most Kc∗∗(log logK+log(1/ε)), where
c∗∗ ∈ (0,∞) is a universal constant.

Proof. Given (i, u, v) ∈ M , we need to bound the number of (i, u′, v′) ∈ M sat-
isfying d ({u, v}, {u′, v′}) � 4τ i/(1−ε). We may assume that d (u, u′) � 4τ i/(1−ε).
Recall that from the definition of M in (3.15) we know that d(u, v), d(u′, v′) �
3τ (i−1)/(1−ε). Hence the points v, u′, v′ are all in the ballB of radius r=4τ(i−1)/(1−ε)

centered at u, implying that the number of (i, u′, v′) as above is at most |B ∩Ni|2.
Since (X, d) is K-doubling, B can be covered by at most K1+log2(2r/δi) balls of ra-
dius δi/2, each of which contains at most one point from the δi-net Ni (recall (3.14)
for the definition of δi). Hence, the maximal degree of H is at most

K4+2 log2(r/δi) = KO(log logK+log(1/ε)). �

Lemma 3.7. For every (i, u, v) ∈ M and for every

(3.34) Q ⊆
{
(i′, u′, v′) ∈ M : i � i′ ∧ {T (i, u, v), T (i′, u′, v′)} /∈ EH

}
,

we have

(3.35) P

[ ⋂
(i′,u′,v′)∈Q

T (i′, v′, u′)� T (i, u, v)

]

�
( ε

logK

)θN/2

P

[ ⋂
(i′,u′,v′)∈Q

T (i′, v′, u′)
]
.

Proof. Denote

W
def
=

⋂
(i′,u′,v′)∈Q

T (i′, v′, u′).

Consider the following subsets X ,Y of the random variables given in (3.3):

X
def
=
{
Rk

i′j : i′ ∈ {1, . . . , i− 1}, j ∈ {1, . . . , ni′}, k ∈ {1, . . . , N}
}

⋃{
Uk
i′(C) : i′ ∈ {1, . . . , i− 1}, k ∈ {1, . . . , N}, C ⊆ X

}
,

Y
def
=
{
Rk

ij : j ∈ {1, . . . , ni}� J(i, u), k ∈ {1, . . . , N}
}

⋃{
Uk
i (C) : k ∈ {1, . . . , N}, C ⊆ X �B

(
u, 2τ i/(1−ε)

)}
.

The event W depends only on the variables X ∪Y . Indeed, for (i′, u′, v′) ∈ Q with
i′ < i, it follows from the definitions (3.26), (3.24), (3.5) that the event T (i′, u′, v′)
depends only on the variables X . If (i, u′, v′) ∈ Q and {T (i, u, v), T (i, u′, v′)} /∈ EH

then it follows from (3.32) that d(u′, u), d(v′, u) > 4τ i/(1−ε). Since the diameters
of P k

i (u
′) and P k

i (v
′) are at most τ i/(1−ε), it follows that

P k
i (u

′), P k
i (v

′) ⊆ X �B
(
u, 2τ i/(1−ε)

)
,
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and hence Uk
i (P

k
i (u

′)), Uk
i (P

k
i (v

′)) ∈ Y . Similarly, J(i, u) ∩ J(i, u′) = ∅ and
J(i, u)∩J(i, v′) = ∅, and hence from the identity (3.31) we know that P k

i (u
′), P k

i (v
′)

depend only on the variables Y . These observations, combined with the defini-
tion (3.5), imply that fk

i (u
′), fk

i (v
′) depend only on the variables Y , and from the

definitions (3.26) and (3.24) we conclude that the event T (i, u′, v′) depends only
on the variables X ∪ Y , as required.

Recalling the definitions (3.24), (3.25), and (3.26), it follows from the above
argument that

(3.36) P [W ∩ T (i, u, v)] =

∫
W

P

[ N∑
k=1

1S(i,u,v,k) �
N

2

∣∣∣X ∪ Y

]
dP.

To estimate the right hand side of (3.36), for each k ∈ {1, . . . , n} consider the
event

(3.37) Zk
def
= S(i, u, v, k) ∩

{
B
(
u,

τ

64γ
τ

i
1−ε

)
⊆ P k

i (u)
}
.

From (3.36) we then see that

(3.38) P [W ∩ T (i, u, v)] �
∫
W

P

[ N∑
k=1

1Zk
� N

2

∣∣∣X ∪ Y

]
dP.

An application of Lemma 2.2 with β = τ
64γ yields the estimate

(3.39) P

[
B
(
u,

τ

64γ
τ

i
1−ε

)
⊆ P k

i (u)

]
� K−τ/γ = e−τ .

Moreover, it follows from the definition (3.5) that if B
(
u, τ

64γ τ
i

1−ε
) ⊆ P k

i (u) then

we have fk
i (u) = Uk

i

(
P k
i (u)

)
τ i. Hence, recalling the definition (3.25), we see that

(3.40) Zk =
{
B
(
u,

τ

64γ
τ

i
1−ε

)
⊆ P k

i (u)
}

⋂{∣∣∣ i−1∑
j=1

(
fk
j (u)− fk

j (v)
)
+ Uk

i

(
P k
i (u)

)
τ i − fk

i (v)
∣∣∣ � 2τ i+1

}
.

From the identity (3.31) we see that the event
{
B
(
u, τ

64γ τ
i

1−ε

) ⊆ P k
i (u)

}
is inde-

pendent of X ∪ Y . Thus, denoting a
def
= τ−i

∑i−1
j=1

(
fk
j (u)− fk

j (v)
) − τ−ifk

i (v),
we have

p
def
= P

[
Zk

∣∣∣X ∪ Y
]

(3.41)

(3.40)
= P

[
B

(
u,

τ

64γ
τ

i
1−ε

)
⊆ P k

i (u)

]

·P
[
Uk
i

(
P k
i (u)

)
/∈ (a− 2τ, a+ 2τ)

∣∣∣X ∪ Y
]

(3.39)

� e−τ (1− 4τ)(3.42)

� 1− 5τ,(3.43)
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where in (3.42) we used the fact that since d(u, v) > τ i/(1−ε) (by the defini-
tion (3.15) of M), and diam(P k

i (u)) � τ i/(1−ε), we have P k
i (u) = P k

i (v), and
therefore the random variable Uk

i (P
k
i (u)), which is uniformly distributed on [0, 1],

is independent of a and X ∪ Y .
Since after fixing the values of X ∪Y , the events Z1, . . . , ZN are independent,

the Chernoff bound (see Theorem A.1.12 in [3]) implies that

(3.44) P

[ N∑
k=1

1Zk
� N

2

∣∣∣X ∪ Y

]
= 1− P

[ N∑
k=1

1Ω�Zk
>

N

2

∣∣∣X ∪ Y

]
(3.41)

� 1−
(
ep−

1
2

√
2(1− p)

)N (3.43)

� 1− (10eτ)N/2.

Substituting (3.44) into (3.38) shows that

P [W ∩ T (i, u, v)] �
(
1− (30τ)N/2

)
P[W ]

(3.2)

�
(
1−

(
ε

logK

)θN/2
)
P[W ],

which is the same statement as (3.35). �

Proof of Lemma 3.3. By Lemma 3.5 we have

P[E] � P

[ ⋂
(i,u,v)∈M

T (i, u, v)

]
.

Hence, due to Lemma 3.6 and Lemma 3.7, Lemma 3.3 will follow from Lemma 3.4
if the condition corresponding to (3.23) holds, i.e.,

e
( ε

logK

)θN/2(
KO(log logK+log(1/ε)) + 1

)
� 1.

This holds provided the constant c in the definition (3.1) of N is large enough. �

4. Snowflakes of the Heisenberg group

As promised in the introduction, we first argue that a positive answer to the
qualitative version of the Lang–Plaut question, as appearing in Question 1, implies
its quantitative variant, i.e., that for every K > 0 there is N = N(K) ∈ N

and D = D(K) ∈ (1,∞) such that if X ⊆ �2 has doubling constant K then
cRN (X) � D. Indeed, if not then there would be some K > 0 and a sequence
{Xn}∞n=1 of subsets of �2 with doubling constant K and satisfying cRn(Xn) > n.
By (1.1) there are finite subsets Fn ⊆ Xn with cRn(Fn) > n, and by translation
and rescaling we may assume that 0 ∈ Fn and that Fn is contained in the ball
of �2 centered at 0 of radius 1. Let Y ⊆ �2 × R be given by Y =

⋃∞
n=1 Fn × {4n}.

One checks that Y has doubling constant O(K), and clearly all the Fn embed
into Y isometrically. By the assumed positive answer to the Lang–Plaut problem
it follows that cRN (Fn) � D for some N ∈ N and D ∈ (1,∞), contradicting the
fact that cRN (Fn) > n for n � N .
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Proof of Theorem 1.3. For θ > 0 define δθ : Hn → Hn by δθ(z, t) = (θz, θ2t). Note
that for every measurable A ⊆ Hn = C

n × R we have vol(δθ(A)) = θ2n+2vol(A).
For p ∈ [1, 2) and (z, t) ∈ Hn define

Mp(z, t)
def
= 4
√
|z|4 + t2

(
cos
(p
2
arccos

( |z|2√|z|4 + t2

)))1/p

.

It was shown in [22] that Mp(xy
−1) � Mp(x)+Mp(y) for all x, y ∈ Hn. There-

fore dMp(x, y) = Mp(y
−1x) is a left-invariant metric on Hn. It was also shown

in [22] that
√
1− p

2N0(x) � Mp(x) � N0(x) for all x ∈ Hn, and there exists

f : Hn → �2 satisfying ‖f(x) − f(y)‖ = dMp(x, y)
p/2 for all x, y ∈ Hn. Setting

p = 2(1− ε), we see that for all distinct x, y ∈ Hn we have

‖f(x)− f(y)‖
dN0(x, y)

1−ε
=
(dMp(x, y)

dN0(x, y)

)p/2
∈ [ε(1−ε)/2, 1

] ⊆ [
√
ε, 1].

For x ∈ Hn and r > 0 denote Bp(x, r) = {y ∈ Hn : dMp(x, y)
p/2 � r}.

Note that Bp(0, r) = δ22/p(Bp(0, r/2)), since for every θ > 0 and x, y ∈ Hn we

have dMp (δθ(x), δθ(y)) = θdMp(x, y). Hence, by left-invariance of d
p/2
Mp

and the

Lebesgue measure vol(·), for all x ∈ Hn and r > 0 we have

vol(Bp(x, r)) = 24(n+1)/pvol(Bp(x, r/2)).

This implies that
(
Hn, d

p/2
Mp

)
=
(
Hn, d

1−ε
Mp

)
, and hence also its isometric copy

f(Hn) ⊆ �2 has doubling constant 28(n+1)/p � 216(n+1). �

We end with the proof of the distortion lower bound (1.4). Suppose f : H1 → �2
satisfies

(4.1) dN0(x, y)
1−ε � ‖f(x)− f(y)‖ � DdN0(x, y)

1−ε ∀ x, y ∈ H1.

Our goal is to prove that D � 1/
√
ε. Write a = (1, 0) ∈ H1, b = (i, 0) ∈ H1 and

c = aba−1b−1 = (0,−4). Writing

Bm =
{
(u + iv, t) ∈ H1 : u, v, t ∈ Z ∧ N0(u+ iv, t) � m

}
,

it follows from [5] that there exists a universal constant C > 0 such that, for all
m ∈ N, we have

(4.2)
∑

x∈Bm

m2∑
k=1

∥∥f(xck)− f(x)
∥∥2

k2
�
∑

x∈BCm

(‖f(xa)− f(x)‖2 + ‖f(xb)− f(x)‖2) .
Note that for all x ∈ H1 we have dN0(xa, x) = N0(a) = 1 and dN0(xb, x) = 1.
Moreover, for all k ∈ N and x ∈ H1 we have

dN0(xc
k, x) = N0(c

k) = N0(0,−4k) = 2
√
k.
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Hence, using (4.1) and the fact that the cardinality of Bm is bounded above and
below by universal multiples of m4, inequality (4.2) becomes

D2 �
m2∑
k=1

N0(c
k)2(1−ε)

k2
�

m2∑
k=1

1

k1+ε
.

Letting m tend to ∞ we deduce that D2 �
∑∞

k=1
1

k1+ε � 1
ε , as required. �
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