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Gelfand–Tsetlin bases for spherical
monogenics in dimension 3

Sebastian Bock, Klaus Gürlebeck, Roman Lávička
and Vladimı́r Souček

Abstract. The main aim of this paper is to recall the notion of Gelfand–
Tsetlin bases (GT bases for short) and to use it for an explicit construction
of orthogonal bases for the spaces of spherical monogenics (i.e., homoge-
neous solutions of the Dirac or the generalized Cauchy–Riemann equation,
respectively) in dimension 3. In the paper, using the GT construction, we
obtain explicit orthogonal bases for spherical monogenics in dimension 3.
We compare them with those constructed by the first and the second au-
thor recently (by a direct analytic approach) and we show in addition that
the GT basis has the Appell property with respect to all three variables.
The last fact is quite important for future applications.

1. Introduction

The main aim of this paper is to discuss explicit constructions of orthogonal bases
for the spaces of spherical monogenics (i.e., homogeneous solutions of the Dirac or
the generalized Cauchy–Riemann equation, respectively), mainly in dimension 3.
The theory of solutions to the Dirac or to the Cauchy–Riemann operator can be
seen at the same time as a generalization of the (one-dimensional) complex function
theory as well as a refinement of harmonic analysis. Both function classes share
many properties with each other and are quite analogous to the complex case. The
theory for the solutions of the Cauchy–Riemann operator contains the concept of
hypercomplex derivability whereas in the case of the Dirac equation, due to the
full rotational invariance of the solutions, more tools from harmonic analysis are
directly applicable.

Constructing orthogonal bases for spaces of solutions of differential equations
is, in general, a difficult problem. We show in the first part of the paper that the
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approach formulated by Gelfand and Tsetlin makes a construction of orthogonal
bases easier in case of the Dirac equation.

The notion of a Gelfand–Tsetlin basis (GT basis) was formulated for irreducible
(finite dimensional) modules over a general classical simple Lie algebra g (see [27]
for the original paper, and [37] for a review paper with many further references).
The main problem solved in [27] was to write down matrices representing basis
elements of g with respect to the GT basis. In the case when an irreducible g-
module is realized explicitly (usually as a subspace of the space of solutions of
invariant differential equations), it is often possible to construct its GT basis in a
quite algorithmic way. The main advantage of GT bases for practical applications
is the fact that a GT basis is automatically orthogonal with respect to any invariant
inner product on the given irreducible module.

The problem of constructing basis functions in spaces of monogenic functions
has a long history. In the very beginning the task was to construct sufficiently many
concrete monogenic functions. Already the work of R. Fueter contains the idea to
consider a special kind of homogeneous monogenic polynomials as generalization
of the complex powers zn and to look for an analogue of the Taylor series expan-
sion. The result was a series expansion in Fueter polynomials [26]. The important
gain compared with the real Taylor series expansion for a real analytic function
was the possibility to express the increment of a quaternion-valued functions by
a hypercomplex increment of the arguments. Much later, in [8], these series were
reinvented and in [33] connected with the problem of hypercomplex derivability.
Finally, it was shown that for Clifford algebra valued functions the existence of a
local Taylor series expansion in the symmetric powers [33], hypercomplex deriv-
ability and monogenicity are equivalent, which is a very comfortable situation and
advantageous for the solution of more complicated differential equations by means
of monogenic functions. With the needs of numerical approximations, motivated
also by geometrical properties and invariance properties, a construction of simple
orthogonal systems of monogenic polynomials was needed. These problems were
connected with the idea of the Fischer decomposition (originally in the paper [25])
and with the so called Almansi decompositions (see the references in [35]). The
main disadvantage of the Fueter polynomials for numerical purposes was that they
are not orthogonal with respect to the L2-inner product. That is why it was not
possible to relate Taylor and Fourier expansions so easily as in the complex case,
i.e., to relate the local and the global behaviour of the functions. The first explicit
constructions of complete orthonormal polynomial systems in the important case
of dimension 3 were made by I. Cação [16], and the first and the second authors
and H. Malonek [14], [13], [15]. The main idea was the application of the Cauchy–
Riemann operator to an orthogonal system of spherical harmonics and an explicit
orthonormalization of the resulting system. These results were the basis for Fourier
expansions and related applications like the definition of a continuous operator of
monogenic primitivation in the L2-space of monogenic functions.

Furthermore, in [22] (pages 254–264) and [40], [42], [32], another construc-
tion of orthogonal bases for spherical monogenics even in all dimensions is ex-
plained. In particular, in [22] (Theorem 2.2.3, p. 315), the so-called Cauchy–
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Kovalevskaya (CK) method was developed. However, this method is not used
in [22] for a construction of orthogonal bases, although the construction is obvious
not only in dimension 3 but in an arbitrary dimension as we explain in Section 3.
Actually, in this paper we use the CK method to obtain an explicit construction
of the GT bases for spherical monogenics in dimension 3. In [31], the GT bases for
this case are obtained in quite a different way and, in particular, simple expressions
of elements of these bases in terms of the Legendre polynomials are given there.
By the way, the Cauchy–Kovalevskaya method is applicable in other settings as
well, see [11], [12], [9], [10] and [21]. Similar questions were also considered by
R. Delanghe for the Riesz system, see [19] and also [43], [38].

Looking back at the complex case we observe that the basis functions for Tay-
lor and Fourier expansions are principally the same; they are real multiples of
each other. An important property of this basis is the so-called Appell property
of the system {zn}n∈N with respect to the complex derivative. Originally, P. Ap-
pell introduced in [3] polynomials with the property that d

dx
Pn(x) = nPn−1(x).

This property makes it possible to differentiate and integrate power series expan-
sions easily, summand by summand, and to obtain immediately a series of the
same structure. Later on, Sheffer [39] invented generating functions to construct
Appell systems or Appell sequences, and depending on the interests of the authors
nowadays one or the other of these approaches is preferred.

The generalization of the Appell idea to monogenic polynomials (as solutions of
the Cauchy–Riemann equations) requires a correct understanding of the hypercom-
plex derivative (see [41], [36] and [29]). First Appell systems of paravector-valued
monogenic polynomials were constructed by H. Malonek et. al., [34], [23], [24].
These systems were orthogonal but not complete with respect to the L2-inner pro-
duct and it was observed that the system coincides also with a system of “special
monogenic functions” as constructed in [1] without mentioning the Appell pro-
perty. In [30] it was shown that the same Appell system can be obtained by the
Fueter–Sce extension of the complex Appell system {zn}n∈N. In [18], I. Cação and
H. Malonek constructed an orthogonal Appell basis in L2, equipped with the real
inner product, for the solutions of the Riesz system in dimension 3. Later, in a se-
ries of papers ([7], [6], [5]), the first and the second author construct an orthogonal
Appell basis of monogenic polynomials for the space of square integrable solutions
of the Cauchy–Riemann system in R3 (Moisil–Teodorescu system) with respect to
the quaternion-valued inner product. In [6], this system was used to approximate
solutions of the Lamé–Navier equations of linear elasticity theory.

Important for practical applications is also that this Appell system can be de-
fined recursively (see [5] and Theorem 5.4 below) and that it is not longer necessary
to start with spherical harmonics.

The question arises if this system is only one that fortunately could be con-
structed or if it is unique (in a certain sense). Because of the increasing number
of calculations, it becomes important to understand the general principle under-
lying the constructions to find a way to construct bases in all dimensions. First
results were obtained in [4], where a unified and explicit principle for construction
monogenic Appell bases in dimension 2, 3 and 4 was described.



1168 S. Bock, K. Gürlebeck, R. Lávička and V. Souček

In low dimensions (3 or 4), it is quite common to consider quaternion valued
functions instead of spinor valued ones, and to replace complex vector spaces of
solutions with vector spaces over the skew field of real quaternions. Analyzing all
the mentioned concrete results on Appell systems of monogenic polynomials and
relating them to the case of the Dirac equation, it becomes apparent that there is
some general scheme in the background – the so-called Gelfand–Tsetlin bases. It
is possible to relate both pictures, and we shall do so below.

In this paper, we apply a general scheme of GT bases to the case of spherical
monogenics in dimension 3, and we write down explicit formulae for the corre-
sponding orthogonal GT bases in terms of spinor valued and quaternion valued
functions. The elements of the obtained bases can be easily renormalized to have
the Appell property. Actually, it turns out that such a requirement characterizes
the bases uniquely (see Theorem 5.1 below). We compare then the formulae ob-
tained for quaternion valued functions with those obtained by the first and the
second author in [7] and we show that they coincide.

A substantial new information obtained in the paper is the fact that the GT
basis for spinor valued monogenic polynomials has the important Appell property
not only for the last variable but with respect to all three variables. Hence partial
derivatives (with respect to all three variables) of a basis element are multiples of
other basis elements. In Section 6 (see Definition 6.2), we introduce the Taylor
series for L2-integrable monogenic functions. As a consequence of the generalized
Appell property (see Section 4, Remark 4.5), partial derivatives of the Taylor
expansion have a very simple form, the corresponding coefficients being given as
multiples of those of the original series. This makes it possible to compute partial
derivatives of a monogenic function using only coefficients in its Taylor series.

In Section 2, we start with a short summary of the notation needed to for-
mulate a general construction of the GT bases. In Section 3, we show that the
branching rules needed to perform the construction of the GT bases explicitly can
be realized using only classical tools of Clifford analysis, namely, the Fischer de-
composition and the Cauchy–Kovalevskaya extension. Actually, we just apply the
Cauchy–Kovalevskaya method developed already in Theorem 2.2.3, p. 315, of [22].
In the rest of the paper, we study properties of GT bases mainly in dimension 3.
A detailed study of GT bases in higher dimensions will be given in a subsequent
paper. An explicit construction of the GT bases in dimension 3 is written down
in Section 4; see Theorem 4.2 and Corollary 4.3. To do it, we use the Fischer
decomposition in dimension 2 in the same way as is done in higher dimensions.
Let us remark that the Fischer decomposition in dimension 2 (see Theorem 4.1)
is not usually considered in Clifford analysis and it has a slightly different form
than in higher dimensions. In particular, we show that the GT bases for spinor
valued spherical monogenics in dimension 3 possess a generalization of the Appell
property, that is, they possess an Appell property not only with respect to the last
real variable x3 but also with respect to the remaining complex variables z and z;
see Corollary 4.3. Finally, in Section 5, we introduce the quaternionic formulation
and we describe its relation to the spinor case. We reformulate the GT bases in
quaternionic language (see Theorem 5.1 and Corollary 5.2 below) and we show
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that the bases having the Appell property coincide with those constructed by the
first and the second author in [7] for the Cauchy–Riemann system. This system
has the Appell property with respect to the hypercomplex derivative on the basis
polynomials orthogonal to the hyperholomorphic constants and then with respect
to a complex derivative on the remaining basis functions. At the end of the paper
we present some applications of both approaches and construct new Taylor series
and Fourier series expansions, respectively.

2. Preliminaries

First we introduce some notation. Let (e1, . . . , em) be the standard basis of the
Euclidean space Rm and let Cm be the complex Clifford algebra generated by
the vectors e1, . . . , em such that e2j = −1 for j = 1, . . . ,m. As usual, we identify
a vector x = (x1, . . . , xm) ∈ Rm with the element x1e1 + · · · + xmem of Cm.
Recall that the Spin group Spin(m) is defined as the set of products of an even
number of unit vectors of Rm endowed with the Clifford multiplication. Now we
introduce the spaces of spherical monogenics. For a vector space V, we denote by
Pk(R

m, V ) the space of V -valued polynomials in Rm which are homogeneous of
degree k. Let S be a subspace of Cm invariant with respect to left multiplication
by elements of Spin(m). Then put

(2.1) Mk(R
m, S) =

{
P ∈ Pk(R

m, S) : ∂P = 0
}
,

where the Dirac operator ∂ in Rm is defined by

∂ = e1
∂

∂x1
+ · · ·+ em

∂

∂xm
.

It is well known that if S is a basic spinor representation of the group Spin(m)
then the space Mk(R

m, S) of spherical monogenics is an irreducible module under
the so-called L-action, defined by

[L(s)(P )](x) = s P (s−1xs), s ∈ Spin(m) and x = (x1, . . . , xm) ∈ R
m.

In this paper, we are interested in a construction of GT bases of spherical
monogenics. Let us recall briefly the concept of GT bases for the orthogonal case;
see [37], [27]. In what follows, we deal with complex representations of the Lie
algebra so(m) of the Spin group Spin(m). Let us consider a general irreducible
so(m)-module V (μm) with the highest weight μm. In the even dimensional case
m = 2n, the highest weight μm is a vector

μm = (λm,1, . . . , λm,n)

consisting entirely of integers or entirely of non-zero half integers which satisfy the
relation

(2.2) λm,1 ≥ λm,2 ≥ · · · ≥ λm,n−1 ≥ |λm,n|.
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In the odd dimensional case m = 2n+1, the vector μm = (λm,1, . . . , λm,n) satisfies
instead the condition

(2.3) λm,1 ≥ λm,2 ≥ · · · ≥ λm,n ≥ 0.

Furthermore, as is well known, the Lie algebra so(m) can be realized as the space
of bivectors of the Clifford algebra Cm. In what follows, we consider a chain of Lie
algebras

(2.4) so(m) ⊃ so(m− 1) ⊃ · · · ⊃ so(2) ,

where, for k = 2, . . . ,m,

so(k) =
〈{eij : 1 ≤ i < j ≤ k}〉.

Here eij = eiej and 〈M〉 stands for the span of a set M.
The key ingredient for the introduction of a GT basis is the following branch-

ing rule, well known in representation theory: As an so(m − 1)-module, the
given module V (μm) decomposes into a multiplicity free direct sum of irreducible
so(m− 1)-modules,

(2.5) V (μm) =
⊕
μm−1

V (μm, μm−1)

where the direct sum is taken over the highest weights μm−1 satisfying the con-
ditions (2.6) and (2.7) below. Moreover, it is well known that if the weight μm

consists entirely of non-zero half integers (or integers), then so do all the highest
weights μm−1. In the case when m = 2n, the direct sum (2.5) is taken over all the
highest weights μm−1 = (λm−1,1, . . . , λm−1,n−1) such that

(2.6) λm,1 ≥ λm−1,1 ≥ λm,2 ≥ · · · ≥ λm,n−1 ≥ λm−1,n−1 ≥ |λm,n|.
In the case when m = 2n + 1, the direct sum (2.5) is taken over all the highest
weights μm−1 = (λm−1,1, . . . , λm−1,n) such that

(2.7) λm,1 ≥ λm−1,1 ≥ λm,2 ≥ · · · ≥ λm,n−1 ≥ λm−1,n−1 ≥ λm,n ≥ |λm−1,n|.
Moreover, with respect to any given invariant inner product on the module V (μm),
the decomposition (2.5) is even orthogonal.

Of course, we can decompose further each module V (μm, μm−1) of the decom-
position (2.5) into irreducible so(m − 2)-modules V (μm, μm−1, μm−2) and so on.
Hence we end up with the decomposition of the given so(m)-module V (μm) into
irreducible so(2)-modules V (μ). Moreover, any such module V (μ) is uniquely de-
termined by the so-called Gelfand–Tsetlin pattern:

(2.8) μ = (μm, μm−1, . . . , μ2).

Here, μ as in (2.8) is called the Gelfand–Tsetlin pattern provided that each vec-
tor μj satisfies the conditions (2.2)–(2.7) (with m replaced by j) and the num-
bers λj,k are either all integers or all non-zero half integers. We denote by P (μm)
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the set of the Gelfand–Tsetlin patterns whose first term is the highest weight μm.
To summarize, we decompose the given module V (μm) into the direct sum of
irreducible so(2)-modules

(2.9) V (μm) =
⊕

μ∈P (μm)

V (μ).

Moreover, the decomposition (2.9) is obviously orthogonal. Let us note that the
decomposition (2.9) is uniquely specified by the choice of the chain of Lie subalge-
bras (2.4).

Since all submodules V (μ) are, in fact, one-dimensional we obtain easily an
orthogonal basis of V (μm) by taking a non-zero vector e(μ) from each module
V (μ). The orthogonal basis

E =
{
e(μ) : μ ∈ P (μm)

}
is then called a GT basis of the module V (μm). It is easily seen that, by the
definition, the vector e(μ) is uniquely determined by μ ∈ P (μm) up to a scalar
multiple.

3. The Cauchy–Kovalevskaya method

To construct a GT basis for the so(m)-module Mk(R
m, S) it is clear that we need

to describe quite explicitly the branching rule (2.5) for this module, that is, its
decomposition into irreducible so(m−1)-submodules. To this end we use only two
basic tools from Clifford analysis, namely, the Cauchy–Kovalevskaya extension
and the Fischer decomposition of spinor-valued polynomials. Actually, we just
apply the Cauchy–Kovalevskaya method developed already in [22] (Theorem 2.2.3,
page 315). We first state the Fischer decomposition, see [22], page 206.

Proposition 3.1. Let m ≥ 3 and let S be a spinor space of the Clifford algebra Cm,
that is, S is an irreducible (left) module over Cm. Then,

Pk(R
m, S) =

k⊕
j=0

xjMk−j(R
m, S).

Remark 3.2. An analogous decomposition is valid also in the dimension m = 2;
see Theorem 4.1 below for details.

Now we recall the Cauchy–Kovalevskaya extension. Let p be a k-homogeneous
polynomial in Rm which takes values in a spinor space S of Cm. Such a polynomial p
can be uniquely expressed as

p(x) =
k∑

j=0

pj(x) x
j
m ,

where pj is an S-valued polynomial in x = (x1, . . . , xm−1) ∈ Rm−1 which is homo-
geneous of degree k − j.
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Moreover, putting

∂ = e1
∂

∂x1
+ · · ·+ em−1

∂

∂xm−1
,

it is easy to see that the Dirac equation ∂p = 0 holds if and only if, for each
j = 0, . . . , k,

pj =
1

j
(em∂) pj−1 = · · · = 1

j!
(em∂)jp0.

In this case, we have therefore that

p(x) =

k∑
j=0

1

j!
(emxm∂)jp0(x) = (eemxm∂p0)(x).

Now it is easy to obtain the following result, see [22], page 152:

Proposition 3.3. Let S be a basic spinor representation of the group Spin(m).
Then the Cauchy–Kovalevskaya extension operator

CK = eemxm∂

is an so(m−1)-invariant isomorphism of the module Pk(R
m−1, S) onto the module

Mk(R
m, S).

As we explain later, to describe explicitly the branching rules in our situation
we need to understand the CK extension of particular terms in the Fischer de-
composition, that is, the CK extension of polynomials of the form xjp(x), with p
being a spherical monogenic. But first recall that the Gegenbauer polynomial Cν

j

is defined as

(3.1) Cν
j (z) =

[j/2]∑
i=0

(−1)i(ν)j−i

i!(j − 2i)!
(2z)j−2i with (ν)j = ν(ν + 1) · · · (ν + j − 1);

see page 302 of [2].

Lemma 3.4. Let j ∈ N0 and p ∈ Mk(R
m−1, S). Then we have that

CK((xem)jp(x)) = X(j)p(x) ,

where X(0) = 1 and, for j ∈ N, the polynomial X(j) = X
(j)
k is given by

X
(j)
k (x, xm) = μj

kr
j
(
C

m/2+k−1
j (

xm

r
) +

m+ 2k − 2

m+ 2k + j − 2
C

m/2+k
j−1 (

xm

r
)
xem
r

)

with r = (x2
1 + x2

2 + · · ·+ x2
m)1/2, μ2l

k = (−1)l
(
C

m/2+k−1
2l (0)

)−1
, and

μ2l+1
k = (−1)l

m+ 2k + 2l − 1

m+ 2k − 2

(
C

m/2+k
2l (0)

)−1
.
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Proof. In [22] (Theorem 2.2.1, page 312), the corresponding polynomial we denote

here by X̃
(j)
k is computed for the Cauchy–Riemann operator. Fortunately, there is

an obvious relation between these two polynomials. Namely, we have that

X
(j)
k (x, xm) =

⎧⎨
⎩

X̃
(j)
k (xem, xm), j even,

− X̃
(j)
k (xem, xm)em, j odd.

To complete the proof it is sufficient to use the explicit formula for the polyno-

mial X̃
(j)
k . �

At this moment we are ready to describe the decomposition of the so(m)-
module Mk(R

m, S) into irreducible so(m − 1)-submodules. We start with the
even dimensional case.

The even dimensional case. In the case when m = 2n, there is a unique
(up to equivalence) irreducible module Sm over Cm. As a Spin(m)-module, Sm is
reducible and decomposes into two inequivalent irreducible submodules

Sm = S+
m ⊕ S−

m.

Actually, S±
2n are the unique basic spinor representations of the group Spin(2n)

and, putting θ2n = (−i)ne1e2 · · · e2n, we have that

(3.2) S±
2n =

{
u ∈ S2n : θ2nu = ±u

}
.

Furthermore, as Spin(2n−1)-modules, S+
2n and S−

2n remain irreducible but become
equivalent to each other.

Let S be a basic spinor representation for Spin(2n), that is, S 	 S+
2n or S 	 S−

2n.
In either case, it is easy to see that Proposition 3.3 implies that

Mk(R
2n, S) = CK(Pk(R

2n−1, S).

Moreover, using Proposition 3.1, we get the following decomposition of the spaces
Pk(R

2n−1, S) into inequivalent irreducible so(2n− 1)-submodules:

Pk(R
2n−1, S) =

k⊕
j=0

(xe2n)
jMk−j(R

2n−1, S).

Finally, applying the CK extension to this decomposition and using Lemma 3.4,
we get obviously the next result, cf. [22], Theorem 2.2.3, page 315:

Theorem 3.5. Let n ≥ 2 and let S be a basic spinor representation for Spin(2n).
Then the so(2n)-module Mk(R

2n, S) decomposes into mutually inequivalent irre-
ducible so(2n− 1)-submodules as

Mk(R
2n, S) =

k⊕
j=0

X(j)Mk−j(R
2n−1, S).
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Of course, using Theorem 3.5, it is easy to construct GT bases in dimension 2n
once we know GT bases in dimension 2n− 1.

Corollary 3.6. Let B2n−1
j (S) be GT bases of the modules Mj(R

2n−1, S) for all
j = 0, . . . , k. Then we have that the set

B2n
k (S) =

k⋃
j=0

X(j)B2n−1
k−j (S)

is a GT basis of the module Mk(R
2n, S). Here the polynomial X(j) is defined as

in Lemma 3.4 and, of course, we put

X(j)B2n−1
k−j (S) =

{
X(j)p | p ∈ B2n−1

k−j (S)
}
.

Now we are going to deal with the odd dimensional case.

The odd dimensional case. In the case when m = 2n + 1, there are just
two different irreducible Cm-modules (equivalent to) S±

m+1. On the other hand,
there exists only a unique basic spinor representation S of the group Spin(m).
In particular, as Spin(m)-modules, the modules S±

m+1 are both equivalent to S.
Moreover, S can be viewed also as an irreducible C2n-module, that is, S 	 S2n.
As we know (see (3.2)), we have therefore that S = S+ ⊕ S−, where

S± =
{
u ∈ S : θ2nu = ±u

}
are both irreducible Spin(2n)-modules.

Furthermore, according to Proposition 3.3, we have that

Mk(R
m, S) = CK(Pk(R

m−1, S)).

By Proposition 3.1, we can easily obtain the following decomposition of the space
Pk(R

m−1, S) into inequivalent irreducible so(m− 1)-submodules:

Pk(R
m−1, S) =

k⊕
j=0

(xem)jMk−j(R
m−1, S+)⊕ (xem)jMk−j(R

m−1, S−).

Applying the CK extension to this decomposition together with Lemma 3.4 gives
the following result, cf. [22], Theorem 2.2.3, page 315:

Theorem 3.7. Let n ≥ 2 and let S stand for a basic spinor representation of
Spin(2n+1). Then the so(2n+1)-module Mk(R

2n+1, S) decomposes into inequiv-
alent irreducible so(2n)-submodules as follows:

Mk(R
2n+1, S) =

k⊕
j=0

X(j)Mk−j(R
2n, S+)⊕X(j)Mk−j(R

2n, S−).
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Corollary 3.8. Let B2n
j (S±) be GT bases of the modules Mj(R

2n, S±) for all
j = 0, . . . , k. Then we have that the set

B2n+1
k (S) =

k⋃
j=0

X(j)B2n
k−j(S

+) ∪X(j)B2n
k−j(S

−)

is a GT basis of the module Mk(R
2n+1, S). Here the polynomial X(j) is defined as

in Lemma 3.4.

To summarize, Corollaries 3.6 and 3.8 tell us that GT bases for spherical mono-
genics can be obtained inductively. Indeed, whenever we know GT bases in dimen-
sion m− 1 we can easily construct GT bases in dimension m.

4. Gelfand–Tsetlin bases in dimension 3

In this section, we construct explicitly GT bases for spinor valued spherical mono-
genics in dimension 3. First we recall a realization of basic spinor representa-
tions S±

2n.

Basic spinor representations S±
2n. For j = 1, . . . , n, put

wj =
1

2
(e2j−1 + ie2j), wj =

1

2
(−e2j−1 + ie2j), and Ij = wjwj .

Then I1, . . . , In are mutually commuting idempotent elements in C2n. Moreover,
I = I1I2 · · · In is a primitive idempotent in C2n, and

S2n = C2nI

is a minimal left ideal in C2n. Putting W = 〈w1, . . . , wn〉, we have that

S2n = Λ(W )I, S+
2n = Λ+(W )I and S−

2n = Λ−(W ) , I

where Λ(W ) is the exterior algebra over W with the even part Λ+(W ) and the
odd part Λ−(W ). See pages 114–118 of [22] for details.

Furthermore, it is well known that, for each u ∈ C2n, there is a unique complex
number [u]0 such that IuI = [u]0I and that an inner product on S2n is given by

(4.1) (s, t) = [uv]0 for s = uI, and t = vI, with u, v ∈ C2n.

Here, for each Clifford number u ∈ Cm, u stands for its Clifford conjugate. See
pages 120–125 of [22] for details.

In the next paragraph, we introduce invariant inner products on the spin mod-
ules of spherical monogenics.



1176 S. Bock, K. Gürlebeck, R. Lávička and V. Souček

Invariant inner products. Let us remark that on each (finite-dimensional)
irreducible representation of Spin(m) there exists an invariant inner product and,
in addition, that the invariant inner product is determined uniquely up to a positive
multiple. In what follows, we recall two well known realizations of the invariant
inner product on the module Mk(R

m, S), namely, the L2-inner product and the
Fischer inner product. For P,Q ∈ Mk(R

m, S), we define the L2-inner product
of P and Q as

(4.2) (P,Q)1 =

∫
Bm

(P,Q) dλm ,

where Bm is the unit ball in Rm and dλm is the Lebesgue measure in Rm.
Now we introduce the Fischer inner product. Each P ∈ Pk(R

m, S) is of the
form

P (x) =
∑
|α|=k

aαx
α ,

where the sum is taken over all multi-indexes α = (α1, . . . , αm) of Nm
0 with |α| =

α1 + · · · + αm = k, all coefficients aα belong to S and xα = xα1
1 · · ·xαm

m . For
P,Q ∈ Pk(R

m, S), we define the Fischer inner product of P and Q as

(4.3) (P,Q)2 =
∑
|α|=k

α! (aα, bα) ,

where α! = α1! · · ·αm!, P (x) =
∑

aαx
α, and Q(x) =

∑
bαx

α. It is easily seen that

(P,Q)2 =
[(

P
( ∂

∂x

)
Q
)
(0)

]
0

with P
( ∂

∂x

)
=

∑
|α|=k

aα
∂|α|

∂xα
.

Here ∂|α|/∂xα = (∂α1/∂xα1
1 ) · · · (∂αm/∂xαm

m ) as usual.

Fischer decompositions in the dimension m = 2. As we have remarked in
the introduction, the Fischer decomposition in dimension 2 is not usually consid-
ered in Clifford analysis and it has a slightly different form than in higher dimen-
sions. In this case, we have that so(2) = 〈e12〉, S = S2 = 〈I1, w1I1〉, S+ = 〈I1〉,
and S− = 〈w1I1〉, with

I1 =
1

2
(1 − ie12) and w1I1 =

1

2
(e1 + ie2).

Each s ∈ S is of the form s = s+I1 + s−w1I1 for some complex numbers s±.
We write s = (s+, s−). Let us remark that each P ∈ Pk(R

2, S) can be expressed
as P = (P+, P−) for some complex valued k-homogeneous polynomials P± in
variables z = x1 + ix2 and z = x1 − ix2. Furthermore, the action of so(2) on the
space Pk(R

2, S) is given by

dL(e12/2) =
d

dt
L(exp(te12/2))|t=0 =

e12
2

+ x2
∂

∂x1
− x1

∂

∂x2
.

Put L12 = dL(e12/2). Now it is easy to show the next result.
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Theorem 4.1. Let M2,±
j = Mj(R

2, S±) for each j = 0, . . . , k. Then we have that

M2,+
j = 〈(zj , 0)〉, M2,−

j = 〈(0, zj)〉,

Pk(R
2, S+) =

k⊕
j=0

zjM2,+
k−j and Pk(R

2, S−) =
k⊕

j=0

zjM2,−
k−j .

In addition, for each j = 0, . . . , k, the so(2)-modules zjM2,+
k−j and zjM2,−

k−j are

both irreducible with the highest weights k + 1
2 − 2j and −k − 1

2 + 2j, respectively.

Proof. Let P ∈ Pk(R
2, S) and P = (P+, P−). Write

∂

∂z
=

1

2

( ∂

∂x1
− i

∂

∂x2

)
and

∂

∂z
=

1

2

( ∂

∂x1
+ i

∂

∂x2

)
.

Since e1P = (−P−, P+), e12P = (iP+,−iP−) and ∂ = e1(
∂
∂x1

− e12
∂
∂x2

) we have
that

∂P = 2
(
− ∂P−

∂z
,
∂P+

∂z

)
.

Assume now that P is S+-valued, that is, P = (P+, 0) and

P+(z, z) =
k∑

j=0

ajz
jzk−j (aj ∈ C).

Obviously, ∂P = 0 if and only if P+ = akz
k. Hence it remains to show that the

module zjM2,+
k−j has the highest weight k+ 1

2 − 2j. This follows from the fact that
weights are just eigenvalues of the operator H = −iL12, and

H((zjzk−j , 0)) = (k +
1

2
− 2j)(zjzk−j , 0).

For S−-valued polynomials, an analogous proof works. �

The decompositions of the spaces P+
k = Pk(R

2, S+) are depicted in columns
of Figure 1. In this diagram, we write zjzk for (zjzk, 0). Moreover, all irreducible
submodules with the same highest weight are contained in the row labeled by this
highest weight.

Of course, an analogous diagram can be created for S−-valued polynomials.
However, in this case, the labels of the rows of the diagram are shifted. In partic-
ular, the row beginning with 〈1〉 is labeled by −1/2.

GT bases for the dimension m = 3. In this paragraph, we obtain explicit
formulae for the GT bases of spinor valued spherical monogenics in dimension 3.
In this case, we have that S 	 S±

4 , so(3) = 〈e12, e23, e31〉 and so(2) = 〈e12〉.
Furthermore, the action of so(3) on the space Pk(R

3, S) is given by

Lij = dL(eij/2) =
eij
2

+ xj
∂

∂xi
− xi

∂

∂xj
(i �= j).
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P+
0 P+

1 P+
2 P+

3 P+
4

7
2 〈z3〉 · · ·

5
2 〈z2〉 〈zz3〉

3
2 〈z〉 〈zz2〉 · · ·

1
2 〈1〉 〈zz〉 〈z2z2〉

− 1
2 〈z〉 〈z2z〉 · · ·

− 3
2 〈z2〉 〈z3z〉

− 5
2 〈z3〉 · · ·

Figure 1. The decomposition of the modules P+
k = Pk(R

2, S+).

As an so(2)-module, the module S is reducible and decomposes into two inequiv-
alent irreducible submodules S = S+ ⊕ S−, with

S± =
{
u ∈ S : −ie12 u = ±u

}
.

Let v± be generators of S±, that is, S± = 〈v±〉. We can construct a GT basis in
this case using Proposition 3.3 and Theorem 4.1.

Theorem 4.2. For each k ∈ N0, the polynomials

fk
2j = ex3e3∂

( zjzk−j

j!(k − j)!
v+

)
and

fk
2j+1 = ex3e3∂

( zjzk−j

j!(k − j)!
v−

)
, j = 0, . . . , k

form a GT basis of the irreducible so(3)-module Mk(R
3, S). Moreover, for each

j = 0, . . . , 2k + 1, the polynomial fk
j is a weight vector with the weight k + 1

2 − j.

That is, putting H = −iL12, we have that Hfk
j = (k + 1

2 − j)fk
j .
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It is not difficult to express the GT bases from Theorem 4.2 even more explicitly.
To do this we identify the space S with C

2. Indeed, each s ∈ S is of the form

s = s+v+ + s−v−

for some complex numbers s+ and s−. We write s = (s+, s−) for short. For the sake
of explicitness, we limit ourselves to the cases S = S+

4 and S = S−
4 . In the former

case, we put v+ = I and v− = w1w2I. In the latter case, we put v+ = w2I and
v− = w1I. In these cases, explicit formulae for GT-bases are given in Corollary 4.3
below.

Corollary 4.3. Let {fk,±
0 , . . . , fk,±

2k+1} be the GT bases of Mk(R
3, S±

4 ) defined in
Theorem 4.2.

(a) For each k ∈ N0 and j = 0, . . . , k, we have that

fk,±
2j = (pkj ,∓qkj ) and fk,±

2j+1 = (±qkj+1, p
k
j )

where

pkj (z, z, x3) =

min(j,k−j)∑
s=0

(−1)s
(2x3)

2s zj−s zk−j−s

(2s)!(j − s)!(k − j − s)!
and

qkj (z, z, x3) =

min(j−1,k−j)∑
s=0

(−1)s
(2x3)

2s+1 zj−1−s zk−j−s

(2s+ 1)!(j − 1− s)!(k − j − s)!
.

Here qk0 = 0 = qkk+1.

(b) Moreover, for each k ∈ N, we have that

∂fk,±
j

∂x3
=

{ ∓(−1)j2 fk−1,±
j−1 , j = 1, . . . , 2k;

0, j = 0, 2k + 1;

∂fk,±
j

∂z
=

{
fk−1,±
j−2 , j = 2, . . . , 2k + 1;

0, j = 0, 1;

∂fk,±
j

∂z
=

{
fk−1,±
j , j = 0, . . . , 2k − 1;

0, j = 2k, 2k + 1.

(c) Finally, for k ∈ N0 and j = 0, . . . , 2k + 1, we have that

fk,±
2k+1−j = (−1)j(fk,±

j )∗

where s∗ = (−s2, s1) for each s = (s1, s2) ∈ S.

Proof. Let S = S±
4 . Obviously, we have that

e3∂P = e31
∂P

∂x1
+ e32

∂P

∂x2
= ±2

(∂P2

∂z
,−∂P1

∂z

)
.
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Putting P k
j =

(
zjzk−j

j!(k−j)! , 0
)
and Qk

j =
(
0, zjzk−j

j!(k−j)!

)
, we get thus that

(e3∂)
2sP k

j = (−1)s22sP k−2s
j−s , (e3∂)

2sQk
j = (−1)s22sQk−2s

j−s ,

(e3∂)
2s+1P k

j = ∓(−1)s22s+1Q
k−(2s+1)
j−s−1 , (e3∂)

2s+1Qk
j = ±(−1)s22s+1P

k−(2s+1)
j−s .

Using these relations it is easy to obtain the explicit formulae for fk,±
j . Obviously,

the statements (b) and (c) can be verified directly using these explicit formulæ.
On the other hand, the property (b) follows also from the following formula:

∂

∂x3
(ex3e3∂P ) = ex3e3∂(e3∂P )

and from the fact that the derivatives ∂/∂z and ∂/∂z both commute with the CK
extension operator ex3e3∂ . �

Remark 4.4. It is easy to express the elements fk,±
j of the GT bases from Coro-

llary 4.3 in terms of hypergeometric series 2F1 or Jacobi polynomials, see pages 64
and 99 of [2]. Indeed, we have that

pkj = 2F1

(
− j,−k + j,

1

2
;− x2

3

|z|2
) zjzk−j

j!(k − j)!
,

qkj = 2F1

(
− j + 1,−k + j,

3

2
;− x2

3

|z|2
) 2x3 zj−1zk−j

(j − 1)!(k − j)!
.

Here |z|2 = zz and the hypergeometric series 2F1(a, b, c; y) is given by

2F1(a, b, c; y) =

∞∑
s=0

(a)s(b)s
(c)ss!

ys.

In Figure 2, structural properties of the GT basis in this case are shown. In
the k-th column of Figure 2, the decomposition of the so(3)-module

Mk = Mk(R
3, S)

into irreducible so(2)-submodules can be found. Moreover, all irreducible so(2)-
submodules with the same highest weight are contained in the row labeled by this
highest weight. By Theorem 4.2, it is easy to see that Figure 2 is, in an obvious
sense, composed of the diagrams for S+ and S−-valued polynomials in R2 (see
Figure 1). By Corollary 4.3, we know that the application of the derivative ∂/∂x3

to the elements of the GT basis shifts the given row to the left, the derivative ∂/∂z
moves them diagonally downward, and ∂/∂z, diagonally upward. In other words,
the GT bases in this case possess an Appell property not only with respect to
the last real variable x3 but also with respect to the complex variables z and z.
Moreover, the upper triangle in Figure 2 is mapped onto the lower one by the
transformation (·)∗.
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M0 M1 M2 · · ·

5
2 〈f2

0 〉
∂
∂z

����
��
��
��

3
2 〈f1

0 〉

����
��
��
��

〈f2
1 〉��

����
��
��
��

· · ·

1
2 〈f0

0 〉 〈f1
1 〉

∂
∂x3��

����
��
��
��

〈f2
2 〉��

����������

����
��
��
��

− 1
2 〈f0

1 〉 〈f1
2 〉∂

∂x3

��

����������

〈f2
3 〉��

����
��
��
��

����������

· · ·

− 3
2 〈f1

3 〉

����������

〈f2
4 〉��

����������

− 5
2 〈f2

5 〉
∂
∂z

����������

· · ·

Figure 2. The decomposition of the modules Mk = Mk(R
3, S)

Remark 4.5. Let S = S±
4 . It is not difficult to find non-zero constants dk,±j such

that the polynomials f̂k
j = dk,±j fk,±

j satisfy the following properties:

(4.4) f̂k
0 = zkv+, f̂k

2k+1 = zkv− and
∂f̂k

j

∂x3
=

{
k f̂k−1

j−1 , j = 1, . . . , 2k;

0, j = 0, 2k + 1.

Indeed, it is necessary and sufficient to put, for each j = 0, . . . , k,

dk,±j = (∓1)j(−1)(j+1)j/2 2−j k! and dk,±2k+1−j = (−1)jdkj .

Moreover, we have obviously that

(4.5) f̂k
2k+1−j = (f̂k

j )
∗,

∂f̂k
j

∂z
= ak,±j f̂k−1

j−2 and
∂f̂k

j

∂z
= bk,±j f̂k−1

j ,

where the constants ak,±j and bk,±j are given by

ak,±j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, j = 0, 1;

− 1
4k, 2 ≤ j ≤ k;

∓ 1
2k, j = k + 1;

k, k + 2 ≤ j ≤ 2k + 1;

bk,±j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k, 0 ≤ j ≤ k − 1;

± 1
2k, j = k;

− 1
4k, k + 1 ≤ j ≤ 2k − 1;

0, j = 2k, 2k + 1



1182 S. Bock, K. Gürlebeck, R. Lávička and V. Souček

Furthermore, by the definition of GT bases and their structural properties shown
in Figure 2, it is clear that, for k ∈ N0, the sets{

f̂k
j | j = 0, . . . , 2k + 1

}
are the GT bases of the modules Mk(R

3, S), uniquely determined by the prop-
erty (4.4) and the condition that, for j = 0, . . . , 2k + 1,

Hf̂k
j =

(
k +

1

2
− j

)
f̂k
j , with H = −iL12.

5. Quaternion valued polynomials in R3

In this section, we reformulate the GT bases obtained in the previous section for
quaternion valued spherical monogenics.

Quaternionic formulation. In what follows, H stands for the skew field of real
quaternions q with the imaginary units i1, i2 and i3, that is,

i21 = i22 = i23 = i1i2i3 = −1 and q = q0 + q1i1 + q2i2 + q3i3, (q0, q1, q2, q3) ∈ R
4.

For a quaternion q, put q = q0 − q1i1 − q2i2 − q3i3. We realize H as the subalgebra
of complex 2× 2 matrices of the form

(5.1) q =

(
q0 + iq3 −q2 + iq1
q2 + iq1 q0 − iq3

)
.

In particular, we have that

i1 =

(
0 i
i 0

)
, i2 =

(
0 −1
1 0

)
and i3 =

(
i 0
0 −i

)
.

If s = (q0 + iq3, q2 + iq1) ∈ C2, then we write q(s) for the quaternion q as in (5.1).
For s = (s1, s2) ∈ C2, q(s) is thus the 2× 2 matrix which has s as the first column
and s∗ = (−s2, s1) as the second one. It is easy to see that q(s) i2 = q(s∗) and that

q(s) = Re s1 + i1 Im s2 + i2Re s2 + i3 Im s1 ,

where, for a complex number z, we write Re z for its real part and Im z for its
imaginary part.

Furthermore, we identify so(3) with 〈i1, i2, i3〉 as follows: e12 	 i3, e23 	 i1
and e31 	 i2. Then we realize the basic spinor representation S as the space C2 of
column vectors

s =

(
q0 + iq3
q2 + iq1

)
.

Here the action of so(3) on S is given by the matrix multiplication on the left.



Gelfand–Tsetlin bases 1183

Now we are interested in quaternion valued polynomials Q = Q(y) in the
variable y = (y0, y1, y2) of R

3. Let us denote by Mk(R
3,H) the space of H-valued

k-homogeneous polynomials Q satisfying the Cauchy–Riemann equation DQ = 0
with

D =
∂

∂y0
+ i1

∂

∂y1
+ i2

∂

∂y2
.

We can consider naturally Mk(R
3,H) as a right H-linear Hilbert space with the

H-valued inner product

(Q,R)H =

∫
S2

QR dσ.

Moreover, we can identify Mk(R
3,H) with the so(3)-module Mk(R

3, S) we have
studied in the previous paragraph as follows. Let P = P (x) be an S-valued poly-
nomial in the variable x = (x1, x2, x3) of R

3. We define a corresponding H-valued
polynomial Q(P ) in R3 by

(5.2) Q(P )(y0, y1, y2) = q(P )(−y2, y1, y0).

Then it is easy to see that Q(P ) ∈ Mk(R
3,H) if and only if

i1
∂P

∂x1
+ i2

∂P

∂x2
+ i3

∂P

∂x3
= 0,

that is, P ∈ Mk(R
3, S). In addition, for each P,R ∈ Mk(R

3, S), we have that

(5.3) (Q(P ), Q(R))H = q((P,R)1, (P
∗, R)1) ,

where (·, ·)1 is the complex valued inner product defined as in (4.2). Using the iden-
tification (5.2) and Theorem 4.2, we obtain easily orthogonal bases of quaternion
valued spherical monogenics.

Theorem 5.1. For each k ∈ N0, there exists an orthogonal basis

(5.4) {gkj | j = 0, . . . , k}
of the right H-linear Hilbert space Mk(R

3,H) such that:

(i) For j = 0, . . . , k, let hk
j and hk

2k+1−j be the first and the second column of

the (matrix valued ) polynomial gkj , respectively. Then, for each j = 0, . . . 2k + 1,
we have that

(5.5) Hhk
j =

(
k +

1

2
− j

)
hk
j , with H = −i

(i3
2
+ y2

∂

∂y1
− y1

∂

∂y2

)
.

(ii) We have that

∂gkj
∂y0

=

{
kgk−1

j−1 , j = 1, . . . , k;

0, j = 0.

(iii) For each k ∈ N0, we have that gk0 = (y1 − i3y2)
k.

Moreover, the polynomials gkj are determined uniquely by the conditions (i), (ii)
and (iii).
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In addition, for each k ∈ N0, the polynomials

hk
0 , hk

1 , . . . , h
k
2k+1

form a GT basis of the so(3)-module M̃k(R
3, S) of S-valued k-homogeneous poly-

nomials h in R
3 satisfying the Cauchy–Riemann equation Dh = 0. Moreover, the

polynomials hk
j are determined uniquely by the condition (5.5), by the Appell prop-

erty

(5.6)
∂hk

j

∂y0
=

{
khk−1

j−1 , j = 1, . . . , 2k;

0, j = 0, 2k + 1;

and by the condition that hk
0 = (uk, 0) and hk

2k+1 = (0, uk), with u = y1 + iy2 and
u = y1 − iy2.

Proof. (a) We first construct GT bases of S-valued monogenic polynomials in R3

by applying Theorem 4.2. Indeed, for P ∈ Mk(R
3, S), we have that

i2
∂P

∂x1
− i1

∂P

∂x2
= 2

(
− ∂P2

∂z
,
∂P1

∂z

)
.

As in the proof of Corollary 4.3, we get easily that the set{
fk,−
0 , . . . , fk,−

2k+1

}
is a GT basis of Mk(R

3, S).

(b) For each k ∈ N0 and j = 0, . . . , 2k + 1, put

ĥk
j (y0, y1, y2) = (fk,−

j )(−y2, y1, y0).

Obviously, the set {
ĥk
j | j = 0, . . . , 2k + 1

}
is a GT basis of the module M̃k(R

3, S). It is easy to see that

ĥk
2j = (−1)k−jik(pkj ,−iqkj ) and ĥk

2j+1 = (−1)k−jik(−iqkj+1, p
k
j ) ,

where pkj = pkj (u, u, y0) and qkj = qkj (u, u, y0) are defined as in Corollary 4.3.

(c) We can find non-zero complex numbers ckj ∈ C such that the polynomials

hk
j = ckj ĥ

k
j satisfy, in addition, condition (5.6), hk

0 = (uk, 0), hk
2k+1 = (0, uk) and

hk
2k+1−j = (hk

j )
∗. Indeed, for each k ∈ N0, put ck0 = ikk!. Moreover, it is easy to

see that
∂ĥk

j

∂y0
= (−1)j 2ĥk−1

j−1 .

This implies that we need to have ckj = (−1)j2−1kck−1
j−1 . Hence we are forced to

put, for each j = 0, . . . , k,

ckj = (−1)(j+1)j/2 2−j k! ik−j and ck2k+1−j = (−1)jckj .
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(d) Finally, for each k ∈ N0 and j = 0, . . . , k, define an H-valued polynomial gkj
corresponding to the S-valued polynomial hk

j by

gkj = q(hk
j ).

By (c) and (5.3), we have that the set{
gkj | j = 0, . . . , k

}
is orthogonal with respect to the H-valued inner product (·, ·)H. Actually, this set
is, in fact, a basis of the right H-linear Hilbert space Mk(R

3,H) because

gkj i2 = q(hk
j ) i2 = q((hk

j )
∗) = q(hk

2k+1−j).

Obviously, the conditions (i), (ii) and (iii) are satisfied.

(e) Since weight vectors of the operator H are determined uniquely up to non-zero
multiples the construction gives also the uniqueness of the bases satisfying the
conditions (i), (ii) and (iii). �

From the proof of Theorem 5.1 we get easily the next result:

Corollary 5.2. Let the set {gkj | j = 0, . . . , k} be the orthogonal basis of the right

H-linear Hilbert space Mk(R
3,H) as in Theorem 5.1. Then, for each j = 0, . . . , k,

we have that

gkj =

{
(−1)l k! 2−j(Re pkl − i1 Re q

k
l + i2 Im qkl + i3 Im pkl ), j = 2l;

(−1)l k! 2−j(Re qkl+1 + i1 Re p
k
l − i2 Im pkl + i3 Im qkl+1), j = 2l+ 1.

Here u = y1+ iy2, u = y1− iy2 and pkj = pkj (u, u, y0), q
k
j = qkj (u, u, y0) are complex

polynomials defined as in Corollary 4.3.

Remark 5.3. In [31], the GT bases for this case are obtained in quite a different
way. In particular, the elements gkj of these bases are expressed in terms of the
Legendre polynomials as follows. Using spherical coordinates,

y0 = r cos θ, y1 = r sin θ cosϕ, y2 = r sin θ sinϕ ,

with 0 ≤ r, −π ≤ ϕ ≤ π and 0 ≤ θ ≤ π, we have that

gkj (r, θ, ϕ) = (k!/j!)(−2)k−jrk
(
gkj,0 + gkj,1 i1 + gkj,2 i2 + gkj,3 i3

)
,

where

gkj,0 = P j−k
k (cos θ) cos(j − k)ϕ, gkj,1 = −jP j−k−1

k (cos θ) cos(j − k − 1)ϕ,

gkj,2 = jP j−k−1
k (cos θ) sin(j − k − 1)ϕ, gkj,3 = P j−k

k (cos θ) sin(j − k)ϕ.

Here, P 0
k is the k-th Legendre polynomial and P l

k are its associated Legendre
functions.

In the last paragraph, we show that the GT bases obtained for quaternion
valued spherical monogenics coincide with those constructed by the first and the
second author in [7].



1186 S. Bock, K. Gürlebeck, R. Lávička and V. Souček

Identification of the bases. Condition (ii) of Theorem 5.1 tells us that the
monogenic polynomials gkj form an Appell system. In [6] and in Theorem 7.2
of [7], an orthogonal Appell system of quaternion valued spherical monogenics
has been constructed quite explicitly from an orthogonal system of real valued
spherical harmonics. Further, in [6] and [5], very compact recursion formulae have
been obtained for the elements of the Appell basis. From these recursion formulae
it is already apparent that the wanted Appell system can be constructed without
starting with spherical harmonics. These results are summarized in the following
theorem:

Theorem 5.4 ([6], [7], [5]). The system of inner solid spherical monogenics{
Al

n : l = 0, . . . , n
}
n∈N0

,

where, for each n ∈ N and l = 0, . . . , n, the elements are given by the two-step
recurrence formula

(5.7) Al
n+1 =

n+ 1

2(n− l + 1)(n+ l + 2)

[(
(2n+ 3)y + (2n+ 1)ȳ

)
Al

n − 2n yyAl
n−1

]
,

with

Al
l+1 =

1

4

[
(2l + 3)y + (2l + 1)ȳ

]
Al

l and Al
l = (y1 − i3y2)

l ,

is an orthogonal Appell basis in L2(B3,H) ∩ kerD such that, for each n ∈ N,

D0A
l
n =

{
nAl

n−1, l = 0, . . . , n− 1
0, l = n

and
DCA

n
n = nAn−1

n−1

hold. Here, y := y0 + i1y1 + i2y2 denotes the reduced quaternion. The Cauchy–
Riemann operators used are defined by

D0 :=
1

2

( ∂

∂y0
− i1

∂

∂y1
− i2

∂

∂y2

)
and DC :=

1

2

( ∂

∂y1
+ i3

∂

∂y2

)
.

At this point, let us comment on some structural properties of the Appell sys-
tem (5.7) coming from an analytical point of view. Firstly, the two-step recurrence
formulae relate Appell polynomials of different degree n; however, the index l is
fixed. Referring to Figure 3, this structurally means that the elements of the
(l + 1)-th column are recursively generated by the initial elements Al

l, which in
fact belong to the subset of the so-called hyperholomorphic constants. Such gen-
eralized constants are characterized in a quite natural way: A function f is called
a hyperholomorphic constant if f belongs to the function space f ∈ kerD (the
space of monogenic solutions to the Moisil–Teodorescu system), and vanishes after
(hypercomplex) derivation. In this context, we refer again to [33] and [29], wherein
the authors have proved that the operator D0 = 1

2D corresponds to the concept
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Figure 3. Structural properties of the orthogonal Appell basis Al
n.

of the hypercomplex derivative. Thus a hyperholomorphic constant is analogously
characterized as in the complex one-dimensional case by f ∈ kerD0 ∩ kerD.

Secondly, Figure 3 further illustrates the action of the differential operators
on the Appell basis (5.7). Precisely, the application of the hypercomplex deriva-
tive D0 to an arbitrary Appell polynomial Al

n causes a shift of the degree in a fixed
column l whereas the application of the lower dimensional (complex) derivative DC

causes a shift of the degree as well as a shift of the column. Here, it should be
emphasized that the action of the differential operator DC is restricted to the set of
hyperholomorphic constants and thus, referring to Figure 3, maps along the upper
diagonal. As a consequence, one can conclude that for an arbitrary Appell polyno-
mial Al

n, l = 0, . . . , n, n ∈ N0 of the system (5.7), first the (n− l)-fold application
of D0 and afterwards the l-fold application of DC yields

D l
C
D

n−l

0 Al
n = n! .

This property essentially enables the definition of a new Taylor series expansion
(see Section 6) in terms of the Appell set (5.7) first introduced in [6], [7]. Finally,
it is easy to see that the system from Theorem 5.4 satisfies the conditions (i), (ii)
and (iii) of Theorem 5.1. Hence using the GT approach and Theorem 5.1 based

on it, it is possible to show that gkj = Ak−j
k for all k, j.
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6. Orthogonal power series expansions

In view of practical applications of the basis, in [6], [7], the latter basis in particular
was used to define a new Taylor series expansion which is a direct consequence of
the Appell property of the basis:

Definition 6.1 (Taylor series in L2(B3,H) ∩ kerD). Let f ∈ L2(B3,H) ∩ kerD.
The series representation

(6.1) f :=

∞∑
n=0

n∑
l=0

Al
ntn,l, with tn,l =

1

n!
D l

C
D

n−l

0 f(y)
∣∣∣
y=0

is called the generalized Taylor series in L2(B3,H) ∩ kerD. The notations D
k

0

and D k
C
indicate the k-fold application of the corresponding differential operators

(k ∈ N) and the corresponding identity operator (k = 0), respectively.

We observe that the Taylor coefficients are given by successive applications of
the hypercomplex derivative D0 to the principal part of the monogenic function
and the “complex” derivative DC to the “constant” part (the subset of hyperholo-
morphic constants) of the monogenic function. This Taylor series expansion meets
exactly the concept of hypercomplex derivability and improves Fueter’s approach
which is based on partial derivatives with respect to the real variables x1 and x2.

Similarly, in case of spinor valued functions, using again the Appell property
of the corresponding GT basis (see Remark 4.5 at the end of Section 4), we can
define the following Taylor series expansion:

Definition 6.2 (Taylor series in L2(B3, S)∩ker ∂). Let f ∈ L2(B3, S)∩ker ∂. The
series representation

(6.2) f =

∞∑
k=0

2k+1∑
j=0

tkj f̂k
j

with the complex coefficients tkj such that

tkj v+ =
1

k!

∂kf(x)

∂xj
3 ∂zk−j

∣∣∣
x=0

for j = 0, . . . , k;

tkj v− =
1

k!

∂kf(x)

∂x2k+1−j
3 ∂zj−k−1

∣∣∣
x=0

for j = k + 1, . . . , 2k + 1.

is called the generalized Taylor series in L2(B3, S) ∩ ker ∂.

Let us note that the partial derivatives ∂/∂x3, ∂/∂z and ∂/∂z commute with
each other.

It is interesting to compare the Taylor series from Definitions 6.1 and 6.2.
In both cases, the basis is orthogonal and the corresponding coefficients can be
expressed using (linear combinations of) partial derivatives of the corresponding
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function. The derivatives used in the two cases look different but they are trivially
related (at least for monogenic functions) to each other. In the formulation using
spinor valued functions, the Appell property is true even with respect to all three
variables. Hence in this case application of any of the three basic derivatives maps
any basis element to a multiple of another basis element. For quaternion valued
functions, this is not the case.

Applying a simple normalization (see, i.e., [6], [7]) to each element (5.7) of the
Appell basis, explicitly given by the relation

(6.3) ϕl
n,H =

1

2l+1 n!

√
(2n+ 3) (n− l)! (n+ l + 1)!

π
Al

n, l = 0, . . . , n, n ∈ N0,

yields directly:

Corollary 6.3 ([6], [7]). The system of inner solid spherical monogenics

(6.4)
{
ϕl
n,H : l = 0, . . . , n

}
n∈N0

is an orthonormal basis in L2(B3,H) ∩ kerD.

Using the orthogonality and the completeness of the orthonormal system (6.4),
we can state the Fourier series expansion in L2(B3,H) ∩ kerD.

Corollary 6.4 (Fourier series in L2(B3,H) ∩ kerD). Let f ∈ L2(B3,H) ∩ kerD.
Then f can be uniquely represented in terms of the orthonormal system (6.4),
that is:

(6.5) f :=

∞∑
n=0

n∑
l=0

ϕl
n,H αn,l, with αn,l =

∫
B3

ϕl
n,H f dλ3.

Here it should be emphasized that in contrast to the complex case the order
of ϕl

n,H and f in the inner products has to be respected. As a direct consequence
of relation (6.3) and the orthogonality of both series expansions, each Fourier
coefficient (6.5) of a function f ∈ L2(B3,H) ∩ kerD can be explicitly expressed in
terms of the corresponding Taylor coefficient (6.1) and vice versa by

αn,l = 2l+1

√
π

(2n+ 3) (n− l)! (n+ l + 1)!
D l

C
D

n−l

0 f(x)
∣∣∣
x=0

,

where l = 0, . . . , n and n ∈ N0. This important analytic property of the series
expansions is analogous to the complex one-dimensional case.
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[31] Lávička, R.: Canonical bases for sl(2,C)-modules of spherical monogenics in di-
mension 3. Arch. Math. (Brno) 46 (2010), no. 5, 339–349.
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[38] Morais, J.: Approximation by homogeneous polynomial solutions of the Riesz sys-
tem in R

3. PhD thesis, Bauhaus-University, Weimar, 2009.

[39] Sheffer, M.: Note on Appell polynomials. Bull. Amer. Math. Soc. 51 (1945),
739–744.

[40] Sommen, F.: Spingroups and spherical means. III. Rend. Circ. Mat. Palermo (2)
Suppl. No. 21 (1989), 295–323.

[41] Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85 (1979),
no. 2, 199–225.

[42] Van Lancker, P.: Spherical monogenics: an algebraic approach. Adv. Appl. Clif-
ford Algebr. 19 (2009), no. 2, 467–496.
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Roman Lávička: Mathematical Institute, Charles University, Sokolovská 83, 186 75
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