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On the Morse–Sard property and level sets
of Sobolev and BV functions

Jean Bourgain, Mikhail V. Korobkov and Jan Kristensen

Abstract. We establish Luzin N and Morse–Sard properties for BV2

functions defined on open domains in the plane. Using these results we
prove that almost all level sets are finite disjoint unions of Lipschitz arcs
whose tangent vectors are of bounded variation. In the case of W2,1 func-
tions we strengthen the conclusion and show that almost all level sets
are finite disjoint unions of C1 arcs whose tangent vectors are absolutely
continuous along these arcs.

1. Introduction

For C2-smooth functions v : Ω → R that map an open subset Ω of R2 into R, the
classical Morse–Sard theorem [30], [37] (see also Brown [8] for a precursor and [16]
for a more general exposition) guarantees that the set of critical values is negligible
in the sense that

(1.1) L1(v(Zv)) = 0,

where L1 is the one-dimensional Lebesgue measure on R and Zv is the critical set
of v defined as Zv = {x ∈ Ω : ∇v(x) = 0}. Whitney demonstrated [38] that the
C2-smoothness condition in the above assertion cannot be dropped. Namely, he
constructed a C1-smooth function v : (0, 1)2 → R such that the set Zv of critical
points contains an arc on which v is not constant (subsequently called a Whitney
arc). However, some analogs of the Morse–Sard theorem remain valid for functions
lacking the required smoothness in the classical theorem. Although (1.1) may be
no longer valid then, Dubovitskĭı [14] obtained some results on the structure of the
level sets in the case of reduced smoothness (also see [5]).

Another direction of research was the generalization of the Morse–Sard theorem
to functions in Hölder and Sobolev spaces (for example, see [4], [5], [12], [17],
and [31]). In particular, we mention the work [12] of De Pascale (see also [17])
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where it was shown that (1.1) holds when v ∈ W2,p
loc(Ω) for p > 2. Note that in

this case v is C1-smooth by virtue of the Sobolev imbedding theorem, and so the
critical set is defined as usual.

We should mention that all the above mentioned papers in fact concern the
general multidimensional case and that we, for expository purposes and in line
with the results presented in this paper, only commented on the particular case
of real-valued functions defined on a plane domain. However, there are also some
results that only concern, or at least have so far only been established for this
particular case. For example, the following Morse–Sard-type theorem was obtained
by Pogorelov (see Chapter 9, Section 4 in [34]): For a C1 function v : Ω ⊂ R2 → R

defined on an open planar domain Ω, the equality (1.1) holds if for any linear
function � : R2 → R the sum v+ � satisfies the maximum principle (see also [19] for
another proof of this result). In particular, the equality (1.1) holds if the gradient
range ∇v(Ω) has no interior points (see [20] and [22] for a study of such functions
in the planar case and [21] for the multidimensional case).

In the paper [9] it was proved that for functions v ∈ W2,p
loc(R

2) with p > 1 there
are no Whitney arcs (see also [18] on the same subject in the context of Hölder
spaces, and [10] and [11] for further references and results on Whitney arcs).

Landis [27] proved that the equality (1.1) holds if v : Ω ⊂ R2 → R is a difference
of two convex functions (sometimes called a d.c. function), a result which answered
a question raised previously by Pogorelov. Pavlica and Zaj́ıček [32] presented a de-
tailed and modern proof of the result of Landis. Moreover, they proved in [32] that
the equality (1.1) holds more generally for Lipschitz functions of class BV2,loc(Ω),

where BV2,loc(Ω) is the space of functions v ∈ W1,1
loc(Ω) for which all partial (dis-

tributional) derivatives of the second order are signed Radon measures on Ω.

In this paper we extend the last result to the case of any BV2 function defined on
a planar domain (without the additional Lipschitz assumption, see Theorem 4.1).
Since such functions need not be everywhere differentiable one must pay special
attention to the definition of the critical set: it is known by work of Dorronsoro [13]
(see Lemma 4.2 below for a precise statement), that in general a function v ∈
BV2,loc(Ω) admits a continuous representative which is differentiable outside a
1-rectifiable set, and that has “half-space differentials” H1-almost everywhere. We
include in the critical set Zv the points x ∈ Ω such that one of the “half-space
differentials” is zero at x. As a consequence our critical set can be strictly larger
than the one defined in [32]. The precise definition of Zv is given at the beginning
of Section 3.

Our main result, contained in Theorem 3.1 and Corollary 3.2, is to establish
the Luzin N property with respect to H1 for BV2 functions on planar domains.
More precisely, we show that if v is BV2 on an open domain Ω ⊂ R2 with Lipschitz
boundary, then for any ε > 0 there exists δ > 0 such that for all subsets E ⊂ Ω with
1-dimensional Hausdorff content H1

∞(E) < δ we have L1(v(E)) < ε. In particular,
it follows that L1(v(E)) = 0 whenever H1(E) = 0. So the image of the exceptional
“bad” set, where neither the differential nor the half-space differentials are defined,
has zero Lebesgue measure. This ties in nicely with our definition of the critical
set and our version of the Morse–Sard result for BV2 functions on the plane.
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Finally, using these results we prove that almost all level sets of BV2 functions
defined on open domains in the plane, are finite disjoint unions of Lipschitz arcs
whose tangent vectors have bounded variations (Theorem 6.1 and Corollary 6.2).
In the W2,1 case we can strengthen the conclusions and show that almost all
level sets are finite disjoint unions of C1 arcs whose tangent vectors are absolutely
continuous functions (Theorem 5.1 and Corollary 5.2).

The results presented here have recently found some applications in fluid me-
chanics (see [23]–[25]).

After this work was completed we learned that [1] has also recently established
the Morse–Sard property for W2,1 functions on the plane.

When this paper was ready for publication, we obtained an n-dimensional ver-
sion of most of these results for v ∈ BVn(R

n), see [7].

Finally we wish to thank the referee for many useful comments that helped us
to improve the presentation.

2. Preliminaries

Throughout this paper Ω denotes an open subset of R2. By a domain we mean an
open connected set. For a general subset E ⊂ R

2, we let ClE stand for its closure,
IntE for its interior, and ∂E for its boundary.

For a distribution T on Ω denote by DiT , i = 1, 2, the distributional par-
tial derivatives of T , and write DT = (D1T,D2T ). For signed or vector-valued
Radon measures μ we denote by ‖μ‖ the total variation measure of μ (in fact,
we shall encounter measures valued in R2 and in R2×2 and in both cases we
use the standard Euclidean norms). The space BV(Ω) is as usual defined as
consisting of those functions f ∈ L1(Ω) whose distributional partial derivatives
Dif are Radon measures with ‖Dif‖(Ω) < ∞ (for detailed definitions see [15]).
As a consequence of the Radon–Nikodym theorem we have for any f ∈ BV(Ω)
the polar decomposition of the distributional derivative Df(E) =

∫
E ν d‖Df‖,

where ν : Ω → S1 is a Borel vector field valued in the unit sphere S1 ⊂ R2,
and ‖Df‖ is the total variation measure of Df . The Radon–Nikodym deriva-
tive of Df with respect to the Lebesgue measure L2 is denoted by ∇f . The norm
is ‖f‖BV(Ω) = ‖f‖L1(Ω) + ‖Df‖(Ω), and we write ‖v‖BV instead of ‖v‖BV(R2).

Our main results concern functions belonging to the space BV2(Ω) defined as
those functions v ∈ L1(Ω) such that D1v, D2v ∈ BV(Ω). We use the norm

‖v‖BV2(Ω) = ‖v‖L1(Ω) + ‖∇v‖L1(Ω) + ‖D2v‖(Ω)

on BV2(Ω). Also functions in the Sobolev spaces W1,1(Ω) = {f ∈ L1(Ω) : Dif ∈
L1(Ω), i = 1, 2}, W2,1(Ω) = {v ∈ L1(Ω) : Dif ∈ W1,1(Ω), i = 1, 2} play promi-
nent roles in our results.

It is known that each function v ∈ BV2(Ω) has a continuous representative.
We emphasize this fact together with an estimate that will be often used in the
following results.
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Lemma 2.1. Let v ∈ BV2(Ω). Then v has a continuous representative (again
denoted by v), and there exists a constant c (not depending on v or Ω) such that
for any ball B(x, r) ⊂ Ω the estimate

(2.1) sup
y∈B(x,r)

∣∣∣ v(y)− v(x) − (y − x) · −
∫
B(x,r)

∇v(z) dz
∣∣∣ ≤ c ‖D2v‖(B(x, r))

holds.

Here and in the sequel, B(x, r) denotes the open ball with center x and radius r,
B(x, r) = {z ∈ R2 : |z − x| < r}.

Proof. The existence of a continuous representative for v follows from Remark 2
of §1.4.5 in [28] (see also [35]). Because of coordinate invariance it is sufficient to
prove the estimate (2.1) for the case Ω = B(0, 1) = B(x, r). Furthermore we may
assume v ∈ C∞(Ω). By results of §1.1.15 in [28] for any u ∈ W2,1(Ω) the estimate

(2.2) sup
y∈Ω

|u(y)| ≤ c(p)
(
p(u) + ‖D2u‖(Ω)),

holds, where p(·) is any continuous seminorm in W2,1(Ω) such that p(g) = 0 ⇔
g = 0 for all first-order polynomials g. Clearly

p(u) = |u(0)|+
∣∣∣−
∫
Ω

∇u(z) dz
∣∣∣

is a continuous seminorm satisfying the above conditions. Now if we take

u(y) = v(y)− v(0)− y · −
∫
Ω

∇v(z) dz,

then p(u) = 0 and the inequality (2.2) turns into the estimate (2.1). �

In the sequel we shall always select the continuous representative when dis-
cussing BV2 functions.

In the following lemma, and for the remainder of the paper, we understand by
an interval a closed square I = [a, a+l]×[b, b+l] with sides parallel to the coordinate
axes. Furthermore we write �(I) = l for its sidelength and I◦ = (a, a+ l)× (b, b+ l)
for its interior. Of course, the analog of the estimate (2.1) is valid if we replace
the balls B(x, r) by the corresponding intervals. In particular, we have:

Corollary 2.2. Let v ∈ BV2(Ω). Then for any interval I = [a, a+ l]× [b, b+ l] ⊂ Ω
the estimate

(2.3) osc
I
(v) ≤ C

(
‖D2v‖(I◦) + 1

�(I)

∫
I

|∇v|
)

holds, where C does not depend on v or I.
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By Lk(F ) we denote the outer Lebesgue measure of a set F ⊂ Rk. Denote byH1

and H1
∞ the 1-dimensional Hausdorff measure, Hausdorff content, respectively: for

any F ⊂Rk, H1(F ) = limα↘0 H1
α(F ) = supα>0 H1

α(F ), where for each 0 < α ≤ ∞,

H1
α(F ) = inf

{ ∞∑
i=1

diamFi : diamFi ≤ α, F ⊂
∞⋃
i=1

Fi

}
.

It is well known that the equalities H1(F ) = H1
∞(F ) = L1(F ) hold for any sub-

set F ⊂ R, whereas the set functions H1 and H1∞ are distinct in higher dimensions.
For a Lebesgue measurable set F ⊂ R

2 and a point x ∈ R
2 we write

D(F, x) = lim sup
r→0+

L2(F ∩B(x, r))

L2(B(x, r))
, D(F, x) = lim inf

r→0+

L2(F ∩B(x, r))

L2(B(x, r))
,

IntM F = {x : D(F, x) = 1}, ClM F = {x : D(F, x) > 0}, ∂MF = ClM F\IntM F.

Finally recall that for any function f ∈ BV(U), where U is an open set in R2, the
coarea formula

‖Df‖(U) =

∫ +∞

−∞
H1

(
U ∩ ∂M{f ≤ t})dt

holds (see for instance §5.5 in [15]).

3. On images of sets of small capacities under BV2 functions
on the plane

The main result of this section is the following Luzin N property that we establish
for BV2 functions:

Theorem 3.1. Let v ∈ BV2(R
2). Then for any ε > 0 there exists δ > 0 such that

for any set E ⊂ R2, if H1∞(E) < δ then L1(v(E)) < ε.

Since balls are extension domains for BV2, Theorem 3.1 implies the following
assertion:

Corollary 3.2. If v ∈ BV2,loc(Ω), E ⊂ Ω and H1(E) = 0, then L1(v(E)) = 0.

For the remainder of this section we fix a function v ∈ BV2(R
2). To prove

Theorem 3.1 we need some preliminary lemmas that we turn to next. The first is
an immediate consequence of Corollary 2.2.

Corollary 3.3. For each interval I ⊂ R2 of sidelength �(I) we have

(3.1) L1(v(I)) ≤ C
(
‖D2v‖(I◦) + 1

�(I)

∫
I

|∇v|
)
,

where C does not depend on v or I.
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The total variation measure in (3.1) is estimated by use of the following:

Lemma 3.4. For any ε > 0 there exists δ > 0 such that, for any open set U ⊂ R2,
if H1∞(U) < δ then ‖D2v‖(U) < ε.

Proof. This is a consequence of the coarea formula and the following fact: if F ⊂ R2

is a Borel set with H1(F ) < ∞, then for any decreasing sequence of open sets
Uj ⊃ Uj+1 such that H1

∞(Uj) → 0 the convergence H1(F ∩ Uj) → 0 holds (see
Theorem 1 (iv) of §1.1.1 in [15]). We leave the details to the interested reader. �

Lemma 3.5. For each f ∈ BV(R2) and for any ε > 0 there exists a pair of
functions f0, f1 ∈ BV(R2) such that

f = f0 + f1 with ‖f0‖L∞ ≤ K and ‖f1‖BV < ε,

where K = K(ε, f).

Proof. The proof is similar to the proof of Theorem 3 of §5.9 in [15]. Let K > 0
and denote

f0(x) = max{min{f(x),K},−K} , f1(x) = f(x)− f0(x).

Obviously ‖f1‖L1 < 1
2ε0 for sufficiently large K. By the lattice property of BV we

have f0, f1 ∈ BV(R2), and so we can use the coarea formula to compute

‖Df1‖(R2) =

∫
t: |t|>K

H1
(
∂M{f ≤ t})dt.

It follows that ‖f1‖BV < ε0 for sufficiently large K. �

We apply Lemma 3.5 componentwise to get:

Corollary 3.6. Let v ∈ BV2(R
2). For any ε > 0 there exist vector functions f0,

f1 ∈ BV(R2,R2) such that

(3.2) ∇v = f0 + f1 with ‖f0‖L∞ ≤ K and ‖f1‖BV < ε,

where K = K(ε,∇v).

The next result is an approximation result. Related results have appeared
before in the literature, however, it appears that our result is somewhat more
explicit.

Lemma 3.7 (see also [6]). Denote by C the collection of all functions of the form

ϕ =
1

H1(∂Ω)
1Ω,

where Ω is a bounded domain in R2 with a C∞ smooth boundary ∂Ω, and 1Ω its
indicator function. If f ∈ BV(R2) and

(3.3) ‖Df‖(R2) ≤ 1,
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then there exists a sequence of functions fn : R
2 → R such that fn → f point-

wise almost everywhere and each function fn is a convex combination of functions
from C ∪ (−C).
Proof. We may assume without loss of generality that

(3.4) f ≥ 0, ‖Df‖(R2) < 1,

see for instance the proof of Lemma 3.5. Since each function from BV(R2) can
be approximated strictly in BV by functions from C∞

0 (R2) (see §5.2.2 in [15]), we
may also assume without loss of generality that

(3.5) f ∈ C∞
0 (R2), supp f ⊂ B(0, R), f(R2) ⊂ [0,M).

By the classical Morse–Sard Theorem the set D = ∇f
({x ∈ R2 : det∇2f(x) = 0})

is L2 negligible, and hence we can in particular find z ∈ R2, arbitrarily close to 0,
such that z /∈ D. Notice that then all critical points of x �→ f(x)− z · x are Morse
regular: if ∇f(x) = z then det∇2f(x) �= 0. It follows that the critical points for
f(x)− z ·x are isolated points in B(0, R), and hence that there are at most finitely
many. It is then clear that we can find c ∈ R, arbitrarily close to 0, such that all
the critical values of x �→ f(x)− z · x− c are irrational numbers.

Thus by considering perturbations of the above form we find, for a given δ ∈
(0, 1), C∞ functions fδ satisfying the three conditions:

(i)
‖∇fδ‖L1(B(0,R)) < 1.

(ii)
sup

x∈B(0,R)

|f(x) − fδ(x)| < δ , ‖∇f −∇fδ‖L1(B(0,R)) < δ.

(iii) All the critical values of the function fδ are irrational numbers and they are
regular in the sense of Morse theory.

Let t > δ be a rational number. Then by (iii), (3.5), and the Implicit Function
Theorem we can decompose the preimage as

{x ∈ B(0, R) : fδ(x) > t} =

mt⋃
i=1

Ωi,

where mt ∈ N, each Ωi = Ωt
i is a bounded C∞ smooth domain, and

(3.6)

mt⋃
i=1

∂Ωi = {x ∈ B(0, R) : fδ(x) = t}, (ClΩi)∩ClΩj = ∅, ClΩi ⊂ B(0, R)

for 1 ≤ i, j ≤ mt and i �= j. We remark that mt < ∞ since ∇fδ �= 0 on the level
set {x ∈ B(0, R) : fδ(x) = t}.

Next we define the function h : [δ,M ] → R by the formula

h(t) = H1({x ∈ B(0, R) : fδ(x) = t}).
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It is easy to check (by elementary calculus) that h(t) is continuous on [δ,M ]
(because of our assumption (iii) ). In particular, the function h is Riemann in-
tegrable on [δ,M ], so that with tj = j

k , Jk = {j ∈ N : kδ < j < kM} we have
convergence of the Riemann sums:

∑
j∈Jk

1

k
h(tj) →

∫ M

δ

h(t) dt as k → ∞.

By (i) and the coarea formula,

∫ M

δ

h(t) dt < 1,

so we may take k ∈ N so large that k > 2/δ and

(3.7)
∑
j∈Jk

1

k
h(tj) < 1.

We fix such a value for k, and write mtj = mj , Ω
tj
i = Ωj

i and

{x ∈ B(0, R) : fδ(x) > tj} =

mj⋃
i=1

Ωj
i ,

where Ω
tj
i are the sets described above. Put

fk =
∑
j∈Jk

mj∑
i=1

1

k
1Ωj

i

and note that by construction

(3.8) ‖f − fk‖L∞(B(0,R)) < 3δ +
2

k
< 4δ.

Finally we write

(3.9) fk =
∑
j∈Jk

mj∑
i=1

αij

1Ωi
j

H1(∂Ωi
j)
, with αij =

H1(∂Ωi
j)

k
,

where, by (3.6) and (3.7),
∑
j∈Jk

mj∑
i=1

αij < 1.

From (ii), (3.8) and (3.9) we arrive at the required assertion. �

Definition 3.8. Let μ be a positive measure on R2. We say that μ has property (∗)
if μ is absolutely continuous with respect to Lebesgue measure and

(3.10) μ(I) ≤ �(I)

for any interval I ⊂ R
2.
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The following result could also be deduced from Theorem 5.12.4 in [39] and
from §1.4.3 in [28], but for the convenience of the reader we give an elementary
direct proof based on Lemma 3.7.

Lemma 3.9. If f ∈ BV(R2) and μ has property (∗), then

(3.11)
∣∣∣
∫

fdμ
∣∣∣ ≤ C ‖Df‖(R2),

where C does not depend on μ or f .

Proof. In view of Lemma 3.7 and the Fatou lemma (note that μ is absolutely
continuous with respect to Lebesgue measure), it is sufficient to bound

∫
ϕdμ for

functions of the special form

ϕ =
1

H1(∂Ω)
1Ω,

where Ω is a bounded domain in R2 with a smooth boundary ∂Ω. Obviously
Ω ⊂ I, where I is an interval with sidelength �(I) ∼ diamΩ ≤ H1(∂Ω). Hence
from property (∗), ∫

ϕdμ ≤ μ(I)

H1(∂Ω)
� μ(I)

�(I)
< C,

as required. �

Since |∇f | ∈ BV(R2) and ‖D|∇f |‖ ≤ ‖D2f‖ as measures when f ∈ BV2(R
2),

we infer the

Corollary 3.10. If f ∈ BV2(R
2) and μ is a measure with property (∗), then

(3.12)

∫
|∇f | dμ ≤ C‖D2f‖(R2),

where C does not depend on μ or f .

By a dyadic interval we understand a square of the form [ k
2m , k+1

2m ]× [ l
2m , l+1

2m ],
where k, l and m are integers. The following assertion is straightforward, and
hence we omit its proof here.

Lemma 3.11. For any bounded set F ⊂ R2 there exist dyadic intervals I1, . . . , I4
such that F ⊂ I1 ∪ · · · ∪ I4 and �(I1) = · · · = �(I4) ≤ 2 diamF .

Proof of Theorem 3.1. Fix ε > 0 and let E ⊂ R2 be a set with H1
∞(E) < δ,

where δ > 0 will be specified below. By virtue of Corollary 3.6 we can find a
decomposition ∇v = f0 + f1, where ‖f0‖L∞ ≤ K = K(ε,∇v) and ‖f1‖BV < ε.
In view of Lemma 3.11 we can find a collection {Iα} of dyadic intervals satisfying

E ⊂
⋃

Iα
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and

(3.13)
∑
α

�(Iα) < 16δ < 1
K+1ε,

where we imposed our first condition on δ. Define

F =
{
J : J ⊂ R

2 dyadic interval;
∑
Iα⊂J

�(Iα) ≥ �(J)
}
.

Thus Iα ∈ F for each α. Denote by F∗ = {Jβ} the collection of maximal elements
of F . Clearly

(3.14) E ⊂
⋃
α

Iα ⊂
⋃
β

Jβ ,

and since dyadic intervals are either disjoint or contained in one another, the {Jβ}
are mutually disjoint. It follows that

(3.15)
∑
β

�(Jβ) ≤
∑
β

∑
Iα⊂Jβ

�(Iα) ≤
∑
α

�(Iα) <
1

K+1ε.

Observe also that for any dyadic interval Q ⊂ R
2,

(3.16)
∑

Jβ⊂Q

�(Jβ) ≤
∑
Iα⊂Q

�(Iα) ≤ 2�(Q).

We used here that if Jβ ⊂ Q for some β, then either Jβ = Q or Q �∈ F (because Jβ
is maximal); in both cases (3.16) holds. Define the measure μ by

(3.17) μ =
(∑

β

1

�(Jβ)
1Jβ

)
L2.

Claim. 1
48 μ has property (∗).

Indeed, for a dyadic interval Q, write

μ(Q) =
∑

Jβ⊂Q

�(Jβ) +
∑

Q⊂Jβ

�(Q)2

�(Jβ)
≤ 3�(Q),

where we have used (3.16) and the fact that Q ⊂ Jβ for at most one β. Then for
any interval I we have the estimate μ(I) ≤ 48�(I) (see Lemma 3.11). This proves
the claim.

Now return to L1
(
v(E)

)
. From (3.14) we get

v(E) ⊂
⋃
β

v(Jβ).

In addition to the condition in (3.13) we now decrease δ > 0 further so that, using
Lemma 3.4 and inequality (3.15), we may assume

(3.18)
∑
β

‖D2v‖(J◦
β) < ε.
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By Corollaries 3.3, 3.6 and 3.9 we estimate as follows:

∑
β

L1(v(Jβ)) ≤ C
∑
β

‖D2v‖(J◦
β) + C

∑
β

1

�(Jβ)

∫
Jβ

|∇v|

≤ Cε+ C K
K+1ε+ C

∑
β

1

�(Jβ)

∫
Jβ

|f1|

= C′ε+ C

∫
|f1| dμ ≤ C′′ε.

Since ε > 0 was arbitrary, the proof of Theorem 3.1 is complete. �

4. Morse–Sard theorem in BV2

Before stating the main result of this section we shall define our notion of critical
set for a function v ∈ BV2,loc(Ω), where Ω ⊂ R2 is an open set. First we let
for ε > 0,

Eε = {x ∈ Ω : |∇v(x)| ≤ ε},
and note that ClM Eε does not depend on the particular representative we use
for ∇v when defining Eε. Define

Z0v = Ω ∩
( ⋂

ε>0

ClM Eε

)
,

and

Z1v = {x ∈ Ω : v is differentiable at x and v′(x) = 0},
where in Z1v we refer to the continuous representative of v (see also Lemma 4.2
below). The critical set for v is the union Zv = Z0v ∪ Z1v.

Theorem 4.1. Suppose v ∈ BV2,loc(Ω), where Ω is an open subset of R2. Then
L1(v(Zv)) = 0.

The proof of Theorem 4.1 splits into a number of lemmas. We require the follow-
ing result due to Dorronsoro [13] about differentiability properties of BV2 functions.

Lemma 4.2 (see [13], Theorems B and 1). Suppose that v ∈ BV2,loc(Ω), where Ω
is an open subset of R2. Then we can choose a Borel representative of ∇v such
that there exist a decomposition Ω = Kv ∪ Gv ∪ Av and mappings λ : Ω → R2,
μ : Ω → R2, and ν : Kv → S1 with the following properties:

(i) H1(Av) = 0.

(ii) Kv =
⋃

i Ki as an at most countable disjoint union, where each Ki is a
compact subset of some C1 curve Li. Moreover, ν(x) is perpendicular to Li

at x if x ∈ Ki.



12 J. Bourgain, M. V. Korobkov and J. Kristensen

(iii) For all x ∈ Gv, ∇v(x) = λ(x) = μ(x) and, as r ↘ 0,

−
∫
B(x,r)

|∇v(z)−∇v(x)|2 dz → 0, sup
y∈B(x,r)

r−1|v(y)−v(x)−(y−x)·∇v(x)| → 0,

and hence v is in particular differentiable at x.

(iv) For all x ∈ Kv,

lim
r↘0

−
∫
B+(x,r)

|∇v(z)− λ(x)|2 dz = 0, lim
r↘0

−
∫
B−(x,r)

|∇v(z)− μ(x)|2 dz = 0,

sup
y∈B+(x,r)

r−1|v(y)− v(x) − (y − x) · λ(x)| → 0 as r ↘ 0,

sup
y∈B−(x,r)

r−1|v(y)− v(x)− (y − x) · μ(x)| → 0 as r ↘ 0,

where
B+(x, r) = {y ∈ B(x, r) : (y − x) · ν(x) > 0},
B−(x, r) = {y ∈ B(x, r) : (y − x) · ν(x) < 0}.

Observe that with our definition of the critical set Zv the following inclusion
holds:

Zv ⊃ {x ∈ Gv : ∇v(x) = 0} ∪ {x ∈ Kv : μ(x) = 0 or λ(x) = 0}.
The next result, which is due to Ambrosio, Caselles, Masnou and Morel, con-

cerns a measure theoretic notion of connectedness for sets of finite perimeter. In
its statement we write A = B (modH1) for two subsets A, B ⊂ R2 when their
symmetric difference is H1-negligible, that is, when H1((A \B) ∪ (B \A)) = 0.

Lemma 4.3 ([3]). For any Lebesgue measurable set F ⊂ R2 with H1(∂MF ) < ∞
there is a finite or countable family {Fi}i∈I and a set T ⊂ R2 with the following
properties:

(i) The Fi are measurable sets, L2(Fi) > 0, H1(∂MFi) < ∞.

(ii) F =
⋃
i∈I

Fi, and Fi ∩ Fj = ∅ for i �= j.

(iii) (∂MFi) ∩ (∂MFj) = ∅ (modH1) for i �= j.

(iv) ∂MF =
⋃
i∈I

∂MFi (modH1), so in particular, H1(∂MF ) =
∑
i∈I

H1(∂MFi).

(v) H1
(
IntM F \

( ⋃
i∈I

IntM Fi

))
= 0.

(vi) H1(T ) = 0.

(vii) For any set L with H1(L) = 0 and for any x, y ∈ IntM Fi \ (T ∪L) and δ > 0
there exists a rectifiable curve Γ ⊂ (IntM Fi) \ (T ∪ L) joining x to y so that

H1(Γ) ≤ |x− y|+H1(∂MFi) + δ.

Proof. See Proposition 3, Theorems 1 and 8 (together with the subsequent remark)
from [3]. �
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Lemma 4.4. If the set F in Lemma 4.3 is bounded, then we can reformulate the
property (vii) in the following way:

(vii’) for any set L with H1(L) = 0 and for any x, y ∈ (IntM Fi) \ (T ∪ L) and
δ > 0 there exists a rectifiable curve Γ ⊂ (IntM Fi) \ (T ∪ L) joining x to y
so that

H1(Γ) ≤ 2H1(∂MFi) + δ.

Proof. See Lemma 4.2 in [32]. �

Since the assertion of Theorem 4.1 has a local nature, for the remainder of the
section we may assume without loss of generality that Ω = B(0, 1) and v ∈ BV2(Ω).
Moreover, because of the Sobolev Extension Theorem we may assume that v is
defined on all of R2 and v ∈ BV2(R

2). (However, we will calculate the critical set Zv

and the corresponding sets Eε by the above formulas with respect to Ω = B(0, 1).)

Lemma 4.5. Suppose H1(∂MEε) < ∞. Let Ei
ε be the sets from Lemmas 4.3–4.4

applying to F = Eε. Then diam(v(ClM Ei
ε)) ≤ 2εH1(∂MEi

ε).

Proof. The proof is based on Lemmas 4.2 and 4.4. First we apply Lemma 4.4 with
F = Eε ⊂ B(0, 1) and take L = Av, where Av is the set defined in Lemma 4.2.
Accordingly, given δ > 0 and points x, y ∈ IntM Ei

ε \ (T ∪ Av) we can find a
rectifiable curve Γ ⊂ IntM Ei

ε \ (T ∪ Av) joining x to y with

H1(Γ) ≤ 2H1(∂MEi
ε) + δ.

Now Γ ∩ Av = ∅, so Γ ⊂ Gv ∪Kv by Lemma 4.2. If z ∈ Gv ∩ IntM Ei
ε, then v is

differentiable at z and |∇v(z)| ≤ ε. If z ∈ Kv ∩ IntM Ei
ε, then we check that the

mappings λ, μ defined in Lemma 4.2 satisfy |λ(z)|, |μ(z)| ≤ ε. From (iii) and (iv)
of Lemma 4.2, we deduce that the restriction v|Γ is ε-Lipschitz, and hence

(4.1) |v(x) − v(y)| ≤ 2εH1(∂MEi
ε) + εδ.

Because T ∪ Av is negligible, (IntM Ei
ε) \ (T ∪ Av) is dense in IntM Ei

ε, and using
that almost all points are density points we conclude that Cl

(
IntM Ei

ε\(T ∪Av)
) ⊃

ClM Ei
ε. Since v is continuous, (4.1) then easily yields the assertion of the lemma.

�

Lemma 4.6. For any ε > 0 the inequality H1(v(ClM Eε)) ≤ 2εH1(∂MEε) holds.

Proof. Suppose H1(∂MEε) < ∞. From properties (iv)–(v) of Lemma 4.3 we have
ClM Eε =

⋃
i∈I

ClM Ei
ε ( mod H1). So from Corollary 3.2 we obtain

H1(v(ClM Eε)) ≤
∑
i∈I

H1(v(ClM Ei
ε)) ≤ 2ε

∑
i∈I

H1(∂MEi
ε) = 2εH1(∂MEε),

where the last equality follows from property (iv) of Lemma 4.3. �
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Corollary 4.7. For any ε > 0 we have the estimate

(4.2) H1(v(ClM Eε)) ≤ 2ε
[H1(B(0, 1) ∩ ∂MEε) +H1(∂B(0, 1))

]
.

Corollary 4.8. The convergence

(4.3) H1(v(ClM Eε)) → 0 as ε ↘ 0

holds.

Proof. This follows from Corollary 4.7 and the coarea formula (see also the proof
of Proposition 4.3 in [32]). �

Obviously the last corollary, together with Lemma 4.2 and Corollary 3.2, imply
the statement of Theorem 4.1.

5. Application to the level sets of W2,1 functions

By a cycle we mean a set which is homeomorphic to the unit circle S1. The purpose
of this section is to prove the following result:

Theorem 5.1. Suppose v ∈ W2,1(R2). Then for almost all y ∈ R the preimage
v−1(y) is a finite disjoint family of C1 cycles Sj, j = 1, . . . , N(y). Moreover,
the tangent vector to each Sj is an absolutely continuous function of the natural
parameter of Sj.

This means, in particular, that for each Sj there exists a C1 diffeomorphism
γ : S1 � s �→ γ(s) ∈ Sj . Further, the last assertion of the theorem means that the
components of the tangent vector to Sj (more precisely, the components of ∇v)
are absolute continuous functions of the variable s.

Invoking extension theorems for Sobolev functions (see, for example, [28] and
the references therein), we obtain the following:

Corollary 5.2. Suppose Ω ⊂ R2 is a bounded domain with a Lipschitz boundary
and v ∈ W2,1(Ω). Then for almost all y ∈ R the preimage v−1(y) is a finite disjoint
family of C1 curves Γj, j = 1, . . . , N(y). Each Γj is a cycle in Ω or it is a simple
arc with endpoints on ∂Ω (in the latter case, Γj is transverse to ∂Ω). Moreover,
the tangent vector to each Γj is an absolutely continuous function of the natural
parameter of Γj.

For the remainder of the section we fix a function v ∈ W2,1(R2). Now the setKv

from Lemma 4.2 is empty (since ∇v ∈ W1,1 and W1,1 mappings cannot have jump
discontinuities, see also the proofs in [13]). We therefore have the following result:

Lemma 5.3 (see also Theorem 1 of §4.8 in [15]). We can choose a Borel repre-
sentative of ∇v such that there exists a set Av ⊂ R2 with the following properties:

(i) H1(Av) = 0.
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(ii) For each fixed x ∈ R2 \Av we have as r ↘ 0,

−
∫
B(x,r)

|∇v(z)−∇v(x)|2 dz → 0, sup
y∈B(x,r)

r−1|v(y)−v(x)−(y−x)·∇v(x)| → 0,

and hence v is in particular differentiable at x.

(iii) For any ε > 0 there exists an open set U ⊂ R2 such that Cap1(U) < ε,
Av ⊂ U , and ∇v is continuous relative to R2 \ U .

Further we fix the above representative of ∇v. Here (see, for example, §4.7
in [15]) Cap1 denotes the 1-capacity defined for any set E ⊂ R2 as

Cap1(E) = inf
f

‖∇f‖L1,

where the infimum is taken over all f ∈ L2(R2) with Df ∈ L1(R2) and so that
f ≥ 1 almost everywhere in an open neighborhood of E. The 1-capacity has the
following known simple description.

Lemma 5.4 (see the proof of Theorem 3 from §5.6.3 in [15]). There is a constant
C0 > 0 such that for any set E ⊂ R2 the following inequalities hold:

1

C0
H1

∞(E) ≤ Cap1(E) ≤ C0H1
∞(E).

Lemma 5.5. For any ε > 0 there exists an open set U ⊂ R2 and a function
g ∈ C1(R2) such that Cap1(U) < ε, Av ⊂ U and v = g, ∇v = ∇g on R2 \ U .

Proof. Denote

Aδ,ρ = {x ∈ R
n : ∃r ∈ (0, ρ] so that 1

r‖D2v‖(B(x, r)) ≥ δ}.
Using Vitali’s covering theorem and that ‖D2v‖ is absolutely continuous with
respect to L2 (recall that v is W2,1) it is easy to prove that for each fixed δ > 0,

(5.1) Cap1(Aδ,ρ) → 0 as ρ ↘ 0.

So we can choose a sequence ρj > 0 such that

(5.2) Cap1(A 1
j ,ρj

) ≤ 2−j

holds. Denoting

Ak =
⋃
j≥k

A 1
j ,ρj

,

we have

(5.3) Cap1(Ak) ≤ 2−k+1;

and for all k ∈ N, α > 0 there exists rk,α > 0 such that for all x ∈ R2 \ Ak,
r ∈ (0, rk,α) we have

(5.4)
1

r
‖D2v‖(B(x, r)) < α.
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It follows from the proof of Theorem 1 from §4.8 in [15] that there exists a
sequence of mappings fi ∈ C∞

0 (R2,R2) such that for the sets
(5.5)

Bi =
{
x ∈ R

n : ∃ r > 0 −
∫
B(x,r)

|∇v(z)− fi(z)| dz > 2−i
}
, Fk = Av ∪

( ∞⋃
j=k

Bj

)
,

where Av is the set from Lemma 5.3, we have

Cap1(Fk) → 0 as k → ∞,

and for all x ∈ R2 \ Fk and i ≥ k,

(5.6) |fi(x)−∇v(x)| ≤ 2−i.

From the above formulas, by direct calculation for all x ∈ R2 \ Fk, i ≥ k, and
r > 0 we have∣∣∣∇v(x) −−

∫
B(x,r)

∇v(z) dz
∣∣∣ ≤ |∇v(x) − fi(x)| +−

∫
B(x,r)

|∇v(z)− fi(x)| dz

≤ 2−i+1 + ωfi(r),(5.7)

where ωfi(r) = max|z−x|≤r |fi(z)− fi(x)| is the modulus of continuity of fi. Take
a sequence of open sets Uk ⊃ Fk ∪ Ak such that

(5.8) Cap1 Uk → 0 as k → ∞.

Then from the formulas (5.4), (5.6)–(5.7) and Lemma 2.1 we obtain that there
exists a function ω : (0,+∞) → (0,+∞) such that ω(δ) → 0 as δ ↘ 0 and for all
k ∈ N and for any pair x, y ∈ R

2 \ Uk the estimates

|v(x) − v(y)| ≤ ω(|x− y|),
|∇v(x) −∇v(y)| ≤ ω(|x− y|),

|v(y)− v(x)− (y − x) · ∇v(x)| ≤ ω(|x− y|)|x− y|
hold. Then the assertion of Lemma 5.5 follows from the last estimates, the conver-
gence (5.8), and from the classical Whitney extension theorem (see, for example,
Theorem 1 of §6.5 in [15]). �

Using Theorems 3.1 and 4.1, and Lemma 5.4, we can reformulate the last lemma
in the following way:

Corollary 5.6. For any ε > 0 there exist an open set V ⊂ R and a function
g ∈ C1(R2) such that H1

∞(V ) < ε, v(Av) ⊂ V , and v = g, ∇v = ∇g �= 0 on
v−1(R \ V ).

The inclusion v ∈ W2,1(R2) and Corollary 2.2 easily imply the following state-
ment:

Lemma 5.7. For any ε > 0 there exists Rε ∈ (0,+∞) such that |v(x)| < ε for all
x ∈ R2 \B(0, Rε).



The Morse–Sard property and level sets 17

Proof of Theorem 5.1. Fix arbitrary ε > 0. Take the corresponding set V and
the function g ∈ C1(R2) from Corollary 5.6. Let 0 �= y ∈ v(R2) \ V . Denote
Fv = v−1(y) and Fg = g−1(y). We assert the following properties of these sets:

(i) Fv is a compact set;

(ii) Fv ⊂ Fg;

(iii) ∇v = ∇g �= 0 on Fv;

(iv) The function v is differentiable (in the classical sense) at each x ∈ Fv, and
the classical derivative coincides with ∇v(x).

Indeed, (i) follows from Lemma 5.7, (ii)–(iii) follow from Corollary 5.6, and (iv)
follows from Lemma 5.3 and from the condition v(Av) ⊂ V of Corollary 5.6.

We require one more property of these sets:

(v) For any x0 ∈ Fv there exists r > 0 such that Fv ∩B(x0, r) = Fg ∩B(x0, r).

Indeed, take any point x0 ∈ Fv and suppose the claim (v) is false. Then there exists
a sequence of points Fg \ Fv � xi → x0. Denote by Ix the straight line segment of
length r with center at x and parallel to the vector ∇v(x0) = ∇g(x0). Evidently,
for sufficiently small r > 0 the equality Ix∩Fg = {x} holds for any x ∈ Fg∩B(x0, r).
Then, by construction, Ixi ∩ Fv = ∅ for sufficiently large i. Hence for sufficiently
large i either v > y on Ixi or v < y on Ixi . For definiteness, suppose v > y on Ixi

for all i ∈ N. In the limit we obtain the inequality v ≥ y = v(x0) on Ix0 . However,
this last assertion contradicts (iv). This contradiction finishes the proof of (v).

Obviously, (i)–(v) imply that the set Fv = v−1(y) is a compact one-dimensional
C1-smooth manifold (without boundary). In other words, v−1(y) is a finite disjoint
family of C1 cycles Sj , j = 1, . . . , N(y).

To prove the last statement of Theorem 5.1, note that, by well known property
of Sobolev functions, ∇v is an absolutely continuous R

2-valued function along
almost all coordinate lines. Clearly, if ∇g(x0) �= 0, then there exists a C1-smooth
coordinate transformation of a neighborhood of x0 such that the level sets of g in
this neighborhood are transformed into lines parallel to one of the coordinate axes.
Using the invariance of Sobolev spaces under smooth coordinate transformations
(see §1.1.7 in [28]), we obtain the last assertion of Theorem 5.1. �

6. Application to the level sets of BV2 functions

The main goal of this section is to prove the following result:

Theorem 6.1. Suppose v ∈ BV2(R
2). Then for almost all y ∈ R the preimage

v−1(y) is a finite disjoint family of Lipschitz cycles Sj, j = 1, . . . , N(y). Moreover,
the variation of the tangent vector to each Sj (i.e., the integral curvature of Sj) is
finite.

Corollary 6.2. Suppose Ω is a bounded domain in R2 with a Lipschitz boundary
and v ∈ BV2(Ω). Then for almost all y ∈ R the preimage v−1(y) is a finite
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disjoint family of Lipschitz curves Γj, j = 1, . . . , N(y). Each Γj is a cycle in Ω or
it is a simple arc with endpoints on ∂Ω (in the last case Γj is transverse to ∂Ω).
Moreover, the variation of the tangent vector to Γj (i.e., the integral curvature
of Γj) is finite.

Curves of this kind are often called curves of finite turn, and they have been
systematically studied in [2] and [36].

For the remainder of the section we fix a function v ∈ BV2(R
2). Let Av, Kv,

μ(x), λ(x), and ν(x) be as defined in Lemma 4.2.

Lemma 6.3. For almost all y ∈ v(R2) the following assertions are true:

(i) v−1(y) ∩Av = ∅.
(ii) For all x ∈ v−1(y), λ(x) �= 0 �= μ(x).

(iii) For all x ∈ v−1(y)∩Kv, both vectors λ(x) and μ(x) are not parallel to ν(x).

(iv) The intersection v−1(y) ∩Kv is at most countable.

(v) H1(v−1(y)) < ∞.

Proof. The lemma is merely a combination of some of the previous results and
standard facts. Thus we only provide a brief sketch:

(i) follows from Theorem 3.2.

(ii) follows from Theorem 4.1.

(iii) follows from the classical one-dimensional version of the Sard Theorem applied
to the restriction v|Li (see assertions (ii) and (iv) of Lemma 4.2).

(iv) follows from (iii).

(v) follows from the coarea formula. �

By connectedness (without additional terms) we mean connectedness in the
sense of general topology.

Lemma 6.4 (see, for example, Lemma 2.2 in [20]). Let Ω ⊂ R2 be a domain that
is homeomorphic to the unit disc and let G ⊂ Ω be a subdomain of Ω. Then for
each connected component Ωi of the open set Ω \ClG, the intersection Ω ∩ ∂Ωi is
connected.

Lemma 6.5 (see, for example, Lemma 3 in [3]). Suppose K is a compact connected
set in R2 and H1(K) < ∞. Then K is arcwise connected.

By arc we mean a set which is homeomorphic to an interval of the straight line.

Lemma 6.6. For any y ∈ R satisfying (i)–(v) of Lemma 6.3, for any x ∈ v−1(y),
and for all sufficiently small r > 0, the connected component K � x of the set
B(x, r) ∩ v−1(y) contains an arc J � x with endpoints on ∂B(x, r). Moreover, the
arc J intersects at least two connected components of the set B(x, r)∩v−1(y)\{x}.
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Proof. We may assume without loss of generality that x = 0, v(x) = 0, and the
vector ν(x) (from Lemmas 4.2 and 6.3) is vertical: ν(x) = (0, 1). Let L be the
intersection of the open ball B(0, r) with the horizontal axis: L = {(t, 0): t ∈
(−r, r)}. Denote by A,C the endpoints of the segment L: A = (r, 0), C = (−r, 0).
If r > 0 is sufficiently small, then by the differentiability properties recorded in
Lemmas 4.2 and 6.3 we infer that the function v is strictly monotone on L. For
definiteness assume that v(t, 0) > 0 for t ∈ (0, r] and v(t, 0) < 0 for t ∈ [−r, 0).
In particular, v(A) > 0 > v(C). Let Ω+ = {(t, s) ∈ B(0, r) : s > 0} and Ω− =
{(t, s) ∈ B(0, r) : s < 0}. Denote by G the connected component of the open set
{z ∈ Ω+ : v(z) > 0} such that A ∈ ∂G, and by Ω1 the connected component of
the open set Ω+ \ ClG such that C ∈ ∂Ω1. Put K+ = Cl(Ω+ ∩ ∂Ω1). Obviously
0 ∈ K+, v ≡ 0 on K+, and K+∩(∂Ω+)\ClΩ− �= ∅. Let D+ ∈ K+∩(∂Ω+)\ClΩ−.
By Lemma 6.4 the set K+ is compact and connected, and by (v) of Lemma 6.3 also
H1(K+) < ∞. Then by Lemma 6.5 there exists an arc J+ ⊂ K+ joining 0 to D+.
Because L ∩ v−1(0) = {0} we have equality J+ ∩ClΩ− = {0}. Analogously, there
exists a point D− ∈ (∂Ω−) \ ClΩ+ and an arc J− ⊂ Cl(Ω− ∩ v−1(0)) joining 0
to D− so that J− ∩ ClΩ+ = {0}. Now J = J+ ∪ J− is the required arc. �

Lemma 6.7. For any y ∈ R satisfying (i)–(v) of Lemma 6.3 and for any connected
component C of v−1(y) there exists a cycle S ⊂ C. Moreover, if there is only one
cycle S ⊂ C, then S = C.

Proof. To prove the first statement we let J1 be a maximal open arc (the latter
means it is homeomorphic to the interval (0, 1)) in C. Such an arc exists by
Lemma 6.6. Furthermore it follows from (v) of Lemma 6.3 that the inequality
H1(J1) < ∞ holds. So the arc J1 has endpoints; denote them by x and y. If x = y,
then there is nothing to prove. The same applies for the case x ∈ J1. If x �= y
and x /∈ J1 we can continue the arc J1 through x by virtue of Lemma 6.6. This
contradiction establishes the existence of a cycle S ⊂ C.

To prove the second statement, suppose that z ∈ C \ S. Take a maximal open
arc J2 in C containing z. By the above arguments this arc generates a cycle S2 �= S
such that S2 ⊂ C. �

Corollary 6.8. There exists an at most countable set Z ⊂ R such that for any
y ∈ R \ Z satisfying (i)–(v) of Lemma 6.3 all connected components C of v−1(y)
are cycles.

Proof. Suppose y ∈ R satisfies (i)–(v) of Lemma 6.3 and a connected component
C of v−1(y) is not a cycle. Then by Lemma 6.7 the set R2 \C has more than two
connected components. By results of [26] (see also [29] and [33]) this is possible
only for at most countably many values of y. �

We need the following maximal inequality and its corollary:

Lemma 6.9 (see, for example, Lemma 1 of §4.8 in [15]). There exists a constant
C5 > 0 such that the following estimate holds for all t > 0 and v ∈ BV2(R

2):

Cap1

({
x ∈ R

2 : sup
r>0

−
∫
B(x,r)

|∇v(y)| dy ≥ t
}) ≤ C5

1

t
‖D2v‖(R2).



20 J. Bourgain, M. V. Korobkov and J. Kristensen

In view of Lemma 4.2 (iii) we deduce:

Corollary 6.10. For all t > 0 the following estimate holds:

Cap1({x ∈ Gv : |∇v(x)| > t}) ≤ C5
1

t
‖D2v‖(R2).

Lemma 6.11. For any ε > 0 there exist a compact set Fε ⊂ v(R2) and constants
δ1, δ2 > 0 such that L1(v(R2) \Fε) < ε and for all y ∈ Fε the preimage v−1(y) has
the properties (i)–(v) in Lemma 6.3 and additionally:

(vi) For all x ∈ v−1(y) ∩Gv the estimates δ1 > |∇v(x)| > δ2 hold.

(vii) Each connected component of the set v−1(y) is a cycle.

Proof. In view of Lemma 6.3 we can choose Fε so that (i)–(v) are satisfied for all
y ∈ Fε. Property (vi) follows from Theorem 3.1, Lemma 5.4 and Corollaries 4.8
and 6.10. Finally, we obtain property (vii) by use of Corollary 6.8. �

Proof of Theorem 6.1. Fix an ε > 0 and take the set Fε from Lemma 6.11. From
the above results we have that for each y ∈ Fε,

v−1(y) =

N(y)⋃
j=1

Sj(y),

where Sj(y) are cycles and N(y) ∈ N ∪ {+∞}.
Take a sequence of functions vi ∈ C∞(R2) ∩W2,1(R2) that converges strictly

to v in BV2(R
2). In particular, we can assume

∇vi(x) → ∇v(x) pointwise for all x ∈ Gv,(6.1)

‖D2vi‖(R2) =

∫
R2

|D2vi(x)| dx ≤ 2‖D2v‖(R2).(6.2)

By the coarea formula,

∫
v−1(Fε)

|∇v(x)| · |D2vi(x)| dx =

∫
Fε

N(y)∑
j=1

∫
Sj(y)

|D2vi(x)| dH1 dy ≤ 2δ1‖D2v‖(R2),

where the last estimate follows from condition (vi) of Lemma 6.11. Consequently
there exists a constant C7 such that

(6.3)

∫
Fε

N(y)∑
j=1

Var(∇vi, Sj(y)) dy ≤ C7,

where Var(∇vi, Sj(y)) is the variation of ∇vi on Sj(y).
From (6.1) and Lemma 6.11 (viz. the properties (i) and (iv) of Lemma 6.3) it

is easy to deduce that

(6.4) Var(∇v, Sj(y)) ≤ lim inf
i→∞

Var(∇vi, Sj(y)),
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and consequently,

(6.5)

N(y)∑
j=1

Var(∇v, Sj(y)) ≤ lim inf
i→∞

N(y)∑
j=1

Var(∇vi, Sj(y))

for y ∈ Fε. Then, by Fatou’s lemma,

(6.6)

∫
Fε

N(y)∑
j=1

Var(∇v, Sj(y)) dy ≤ lim inf
i→∞

∫
Fε

N(y)∑
j=1

Var(∇vi, Sj(y)) dy ≤ C7.

Let τ denote the tangent vector to Sj(y). By straightforward geometric consider-
ations and the bounds in Lemma 6.11 (vi) we have

(6.7) 2π ≤ Var(τ, Sj(y)) ≤ δ1
(δ2)2

Var(∇v, Sj(y))

for 1 ≤ j ≤ N(y) and y ∈ Fε. From the last two formulas we deduce that

N(y) < ∞ and

N(y)∑
j=1

Var(τ, Sj(y)) < ∞

for L1 almost all y ∈ Fε. �
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