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Boundedness of the twisted paraproduct

Vjekoslav Kovač

Abstract. We prove Lp estimates for a two-dimensional bilinear operator
of paraproduct type. This result answers a question posed by Demeter
and Thiele.

1. Introduction and overview of results

Let us denote dyadic martingale averages and differences by

Ekf :=
∑

|I|=2−k

(
1
|I|

∫
I f

)
1I , Δkf := Ek+1f − Ekf ,

for every k ∈ Z, where the sum is taken over dyadic intervals I ⊆ R of length 2−k.
When we apply an operator in only one variable of a two-dimensional function, we
indicate it with a superscript. For instance,

(E
(1)
k F )(x, y) :=

(
EkF (·, y)

)
(x) .

The dyadic twisted paraproduct is defined as

(1.1) Td(F,G) :=
∑
k∈Z

(E
(1)
k F )(Δ

(2)
k G) .

In the continuous case, let Pϕ denote the Fourier multiplier with symbol ϕ̂, i.e.,

Pϕf := f ∗ ϕ .

Take two functions ϕ, ψ ∈ C1(R) satisfying1

(1.2) |ϕ(x)|, | ddxϕ(x)|, |ψ(x)|, |
d
dxψ(x)| � (1 + |x|)−3,

and
supp(ψ̂) ⊆

{
ξ ∈ R : 1

2 ≤|ξ| ≤ 2
}
.

Mathematics Subject Classification (2010): Primary 42B15; Secondary 42B20.
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1For two nonnegative quantities A and B, we write A � B if there exists an absolute constant
C ≥ 0 such that A ≤ CB, and we write A �P B if A ≤ CPB holds for some constant CP ≥ 0
depending on a parameter P . Finally, we write A ∼P B if both A �P B and B �P A.
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For every k ∈ Z, define ϕk(x) := 2kϕ(2kx) and ψk(x) := 2kψ(2kx). The
associated continuous twisted paraproduct is defined as

(1.3) Tc(F,G) :=
∑
k∈Z

(P(1)
ϕk
F ) (P

(2)
ψk
G) .

We are interested in strong-type estimates

(1.4) ‖T (F,G)‖Lpq/(p+q)(R2) �p,q ‖F‖Lp(R2) ‖G‖Lq(R2) ,

and weak-type estimates

(1.5) α
∣∣{(x, y) ∈ R

2 : |T (F,G)(x, y)| > α
}∣∣(p+q)/pq �p,q ‖F‖Lp(R2)‖G‖Lq(R2)

for (1.1) and (1.3). The exponent pq
p+q is mandated by scaling invariance. When

p = ∞ or q = ∞, we interpret it as q or p respectively.

The main result of the paper establishes (1.4) and (1.5) for certain ranges
of (p, q).

Theorem 1. (a) The operators Td and Tc satisfy the strong bound (1.4) if

1 < p, q <∞, 1
p +

1
q >

1
2 .

(b) Additionally, the operators Td and Tc satisfy the weak bound (1.5) when

p = 1, 1 ≤ q <∞ or q = 1, 1 ≤ p <∞ .

(c) The weak estimate (1.5) fails for p = ∞ or q = ∞ .

The name twisted paraproduct was suggested by Camil Muscalu because there is
a “twist” in the variables in which the convolutions (or the martingale projections)
are performed, as opposed to the case of the ordinary paraproduct. No bounds
on (1.1) or (1.3) were known prior to this work. A conditional result was shown
by Bernicot in [1], assuming boundedness in some range, and expanding the range
towards lower exponents using a fiberwise Calderón–Zygmund decomposition. We
repeat his argument in the dyadic setting in Section 5, for the purpose of extending
the boundedness region established in Sections 3 and 4.

Figure 1 depicts the range of exponents in Theorem 1. The shaded region
satisfies the strong estimate, while for two solid sides of the unit square we only
establish the weak estimates. The two dashed sides of the square represent expo-
nents for which we show that even the weak estimate fails. The white triangle in
the lower left corner is the region we do not tackle in this paper.

The proof of Theorem 1 is organized as follows. Sections 3 and 4 prove estimates
for Td in the interior of the triangle ABC. In Section 5 the remaining bounds for Td
are obtained. Section 6 establishes bounds for Tc by relating Tc to Td. Finally,
in Section 7 we discuss the counterexamples. In the closing section we sketch a
simpler proof for points D and E only.
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Figure 1. The range of exponents we discuss in this paper.

Several remarks. Before going into the proofs, we make several simple observa-
tions about Td. Note that Theorem 1 also gives estimates for a family of shifted
operators

(F,G) �→
∑
k∈Z

(E
(1)
k+k0

F )(Δ
(2)
k G)

uniformly in k0 ∈ Z, because the last sum can be rewritten as

D(2−k0 ,1) Td
(
D(2k0 ,1)F, D(2k0 ,1)G

)
.

Here D(a,1) denotes the non-isotropic dilation (D(a,1)F )(x, y) := F (a−1x, y).

If F and G are (say) compactly supported, then one can write

(1.6) Td(F,G) = FG−
∑
k∈Z

(Δ
(1)
k F ) (E

(2)
k+1G) .

Combining this with the previous remark and the fact that the pointwise prod-
uct FG satisfies Hölder’s inequality, we see that the set of estimates for Td(F,G)
is indeed symmetric under interchanging p and q, F and G. We use this fact to
shorten some of the exposition below.

Furthermore, Theorem 1 implies bounds on more general dyadic operators of
the following type:

(1.7)
∥∥∥∑
k∈Z

ck(E
(1)
k F )(Δ

(2)
k G)

∥∥∥
Lpq/(p+q)

�p,q ‖F‖Lp‖G‖Lq ,

for any numbers ck such that |ck| ≤ 1. Here we restrict ourselves to the interior

range 1 < p, q < ∞, 1
p + 1

q >
1
2 . One simply uses the known bound for Td(F, G̃)

with G̃ :=
∑

k∈Z
ckΔ

(2)
k G, and the dyadic Littlewood–Paley inequality in the

second variable. Note that the flexibility of having coefficients ck is implicit in the
definition of Tc, and indeed we will repeat a continuous variant of this argument
in Section 6.
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Some motivation. The one-dimensional bilinear Hilbert transform is an object
that motivated most of the modern multilinear time-frequency analysis. Lacey and
Thiele established its boundedness (in a certain range) in a pair of breakthrough
papers, [8] and [9]. Recently, Demeter and Thiele investigated its two-dimensional
analogue in [3]. For any two linear maps A,B : R2 → R2 they considered

TA,B(F,G)(x, y) := p.v.

∫
R2

F
(
(x, y)−A(s, t)

)
G
(
(x, y)−B(s, t)

)
K(s, t)dsdt,

where K : R2 \ {0, 0} → C is a Calderón–Zygmund kernel, i.e., K̂ is a symbol
satisfying

(1.8) |∂αK̂(ξ, η)| �α (ξ2 + η2)−|α|/2

for all derivatives ∂α up to some large unspecified order. In [3], the bound

‖TA,B(F,G)‖Lpq/(p+q)(R2) �A,B,p,q ‖F‖Lp(R2)‖G‖Lq(R2)

is proved in the range 2 < p, q < ∞, 1
p + 1

q >
1
2 , and for most cases depending

on A and B.
Some instances of A,B can be handled by an adaptation of the approach

from [8], [9], while some cases lead the authors of [3] to invent a “one-and-a-
half-dimensional” time-frequency analysis. At the other extreme, some instances
of A,B degenerate to the one-dimensional bilinear Hilbert transform or the point-
wise product. Up to the symmetry obtained by considering the adjoints, the only
case of A,B that is left unresolved in [3] is

(1.9) T (F,G)(x, y) := p.v.

∫
R2

F (x − s, y)G(x, y − t)K(s, t) ds dt .

This case was denoted “Case 6”, and as remarked there, it is largely degenerate but
still nontrivial, so the usual wave-packet decompositions proved to be ineffective.
It can also be viewed as the simplest example of higher-dimensional phenomena,
i.e., complications not visible from the perspective of multilinear analysis arising
in [8], [9], and even in quite general frameworks such as the ones in [12] or [2].

Theorem 1 establishes bounds on the twisted bilinear multiplier (1.9) for the
special case of the symbol

K̂(ξ, η) =
∑
k∈Z

ϕ̂(2−kξ) ψ̂(2−kη) ,

i.e., the kernel

K(s, t) =
∑
k∈Z

2kϕ(2ks) 2kψ(2kt) ,

with ϕ and ψ as in the introduction. A standard technique of “cone decomposition”
(see [16]) then addresses general kernels K.

Our approach is to first work with the dyadic variant (1.1), and then use the
square function introduced by Calderón and generalized by Jones, Seeger, and
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Wright in [7] to transfer to the continuous case. Also, we dualize and prefer to
consider the corresponding trilinear form

Λd(F,G,H) :=

∫
R2

Td(F,G)(x, y)H(x, y) dx dy .

Another reason why we call this object the twisted paraproduct is because the
functions F,G,H are entwined in such a way that the trilinear form Λd does not
split naturally into wavelet coefficients of each function separately, as it does for
the ordinary paraproduct. As a substitute we introduce forms encoding “entwined
wavelet coefficients”, reminiscent of the Gowers box norm, which plays an im-
portant role in the proof. These forms keep functions intertwined, and we never
attempt to break them but rather exploit their symmetries in an “induction on
scales” type of argument.

A difference from the classical theory is that we gradually separate the func-
tions F,G,H by repeated applications of the Cauchy–Schwarz inequality and a sort
of telescoping identity that switches between the two variables. This is opposed
to the usual approach to the ordinary paraproduct (even in the multiparame-
ter case [10], [11]), where the Cauchy–Schwarz inequality is applied at once, and
it immediately splits the form into governing operators like maximal and square
functions (or their hybrids). This dominating procedure requires four steps for Λd,
and generally finitely many steps for “more entwined” forms in higher dimensions,
which are very briefly discussed in the closing section.

There seems to be many other higher dimensional phenomena worth study-
ing. Another interesting two-dimensional object, more singular than the twisted
paraproduct is

p.v.

∫
R

F (x− t, y)G(x, y − t)
dt

t
.

Its boundedness is still an open problem. One also has to notice that the yet more
singular bi-parameter bilinear Hilbert transform

p.v.

∫
R2

F (x− s, y − t)G(x+ s, y + t)
ds

s

dt

t

does not satisfy any Lp estimates, as shown in [10].

Acknowledgement. The author would like to thank his advisor Prof. Christoph
Thiele for introducing him to the problem, and for his numerous suggestions on how
to improve the exposition. This and related work would not be possible without
his constant support and encouragement.

2. A few words on the notation

A dyadic interval is an interval of the form [2kl, 2k(l+1)), for some integers k and l.
For each dyadic interval I, we denote its left and right halves respectively by Ileft
and Iright. Dyadic squares and dyadic rectangles in R2 are defined in the obvious
way. For any dyadic interval I, denote the Haar scaling function by ϕd

I := |I|−1/21I
and the Haar wavelet by ψd

I := |I|−1/2(1Ileft − 1Iright).
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Martingale averages and differences can be alternatively written in the Haar
basis:

Ekf =
∑

|I|=2−k

(∫
R
fϕd

I

)
ϕd
I , Δkf =

∑
|I|=2−k

(∫
R
fψd

I

)
ψd
I .

In R2, every dyadic square Q partitions into four congruent dyadic squares that
are called children of Q, and conversely, Q is said to be their parent.

In all of the following except in Section 6, the considered functions are assumed
to be nonnegative dyadic step functions, i.e., positive finite linear combinations
of characteristic functions of dyadic rectangles. This reduction is achieved by
splitting into positive and negative, real and imaginary parts, and invoking density
arguments.

Let C denote the collection of all dyadic squares in R2. Note that Td and Λd

can be rewritten as sums over C:

Td(F,G)(x, y) =
∑

I×J∈C

∫
R2

F (u, y)G(x, v) ϕd
I (u)ϕ

d
I (x)ψ

d
J (v)ψ

d
J (y) du dv ,

Λd(F,G,H) =
∑

I×J∈C

∫
R4

F (u, y)G(x, v)H(x, y)

ϕd
I (u)ϕ

d
I (x)ψ

d
J (v)ψ

d
J (y) du dx dv dy .

In the subsequent discussion we will use a notion from additive combinatorics,
namely the Gowers box norm. It is a two-dimensional variant of a series of norms
introduced by Gowers in [4] and [5] to give quantitative bounds in Szemerédi’s
theorem, and was used by Shkredov in [13] to give bounds on sizes of sets that do
not contain two-dimensional corners. Its occurrence in [14] is the one we find the
most influential.

For any dyadic square Q = I × J we first define the Gowers box inner product
of four functions F1, F2, F3, F4 as

[F1, F2, F3, F4]�(Q) :=
1

|Q|2
∫
I

∫
I

∫
J

∫
J

F1(u, v)F2(x, v)F3(u, y)F4(x, y) du dx dv dy.

Then for any function F we define the Gowers box norm by2

‖F‖�(Q) := [F, F, F, F ]
1/4
�(Q).

It is easy to prove the box Cauchy–Schwarz inequality:

(2.1) [F1, F2, F3, F4]�(Q) ≤ ‖F1‖�(Q) ‖F2‖�(Q) ‖F3‖�(Q) ‖F4‖�(Q) .

To see (2.1), one has to write |Q|2 [F1, F2, F3, F4]�(Q) as∫
I

∫
I

(∫
J

F1(u, v)F2(x, v)dv
)( ∫

J

F3(u, y)F4(x, y)dy
)
du dx ,

2If F (x, y) restricted to Q is discretized and viewed as a matrix, then ‖F‖�(Q) can be rec-

ognized as its (properly normalized) Schatten 4-norm, i.e., the �4 norm of the sequence of its
singular values. This comment gives yet one more immediate proof of inequality (2.2) below.
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and apply the ordinary Cauchy–Schwarz inequality in u, x ∈ I. Then one rewrites
the result as(∫

J

∫
J

( ∫
I

F1(u, v)F1(u, y)du
)( ∫

I

F2(x, v)F2(x, y)dx
)
dv dy

)1/2

·
(∫

J

∫
J

( ∫
I

F3(u, v)F3(u, y)du
)( ∫

I

F4(x, v)F4(x, y)dx
)
dv dy

)1/2

,

and applies the Cauchy–Schwarz inequality again, this time in v, y ∈ J . From here
it is also easily seen that ‖·‖�(Q) is really a norm on functions supported on Q. On
the other hand, a straightforward application of the (ordinary) Cauchy–Schwarz
inequality yields

(2.2) ‖F‖�(Q) ≤
( 1

|Q|

∫
Q

|F |2
)1/2

.

An alternative way to verify (2.2) is to notice that it is a special case of the strong
(12 ,

1
2 ,

1
2 ,

1
2 ) estimate for the quadrilinear form

(F1, F2, F3, F4) �→ |Q|2[F1, F2, F3, F4]�(Q) .

Since (12 ,
1
2 ,

1
2 ,

1
2 ) is in the convex hull of (1, 0, 0, 1) and (0, 1, 1, 0), we can use

complex interpolation, and it is enough to verify strong type estimates for the
latter points, which is trivial.

3. Telescoping identities over trees

A tree is a collection T of dyadic squares in R2 such that there exists QT ∈ T ,
called the root of T , satisfying Q ⊆ QT for every Q ∈ T . A tree T is said to
be convex if whenever Q1 ⊆ Q2 ⊆ Q3, and Q1, Q3 ∈ T , then also Q2 ∈ T . We
will only be working with finite convex trees. A leaf of T is a square that is
not contained in T , but its parent is. The family of leaves of T will be denoted
by L(T ). Notice that for every finite convex tree T , the squares in L(T ) partition
the root QT .

For any finite convex tree T we define the local variant of Λd that sums over
only the squares in T , i.e.,

ΛT (F,G,H) :=
∑

I×J∈T

∫
R4

F (u, y)G(x, v)H(x, y)

· ϕd
I (u)ϕ

d
I (x)ψ

d
J (v)ψ

d
J (y) du dx dv dy .

It turns out to be handy to also introduce a slightly more general quadrilinear
form:

Θ
(2)
T (F1, F2, F3, F4) :=

∑
I×J∈T

∫
R4

F1(u, v)F2(x, v)F3(u, y)F4(x, y)

· ϕd
I (u)ϕ

d
I (x)ψ

d
J (v)ψ

d
J (y) du dv dx dy ,



1150 V. Kovač

and its modified counterpart

Θ
(1)
T (F1, F2, F3, F4) :=

∑
I×J∈T

∑
j∈{left,right}

∫
R4

F1(u, v)F2(x, v)F3(u, y)F4(x, y)

· ψd
I (u)ψ

d
I (x)ϕ

d
Jj
(v)ϕd

Jj
(y) du dv dx dy .

Note that in Θ
(1)
T we actually sum over a certain collection of dyadic rectangles

whose horizontal side is twice longer than the vertical one. This is just a techni-
cality to make the arguments simpler at the cost of losing (geometric) symmetry.

Also observe that ΛT (F,G,H) can be recognized as Θ
(2)
T (1, G, F,H), where 1 is

the constant function on R2.
Let us also denote for any collection F of dyadic squares:

ΞF (F1, F2, F3, F4) :=
∑
Q∈F

|Q|
[
F1, F2, F3, F4

]
�(Q)

,(3.1)

or equivalently,

ΞF (F1, F2, F3, F4) =
∑

I×J∈F

∫
R4

F1(u, v)F2(x, v)F3(u, y)F4(x, y)

·ϕd
I (u)ϕ

d
I (x)ϕ

d
J (v)ϕ

d
J (y) du dv dx dy .(3.2)

The following lemma is the core of our method:

Lemma 2 (Telescoping identity). For any finite convex tree T with root QT we
have

Θ
(1)
T (F1, F2, F3, F4) + Θ

(2)
T (F1, F2, F3, F4)

= ΞL(T )(F1, F2, F3, F4)− Ξ{QT }(F1, F2, F3, F4) .

Proof. We first note that it is enough to verify the identity when T consists of only
one square, as in general the right hand side can be expanded into a telescoping
sum ∑

Q∈T

( ∑
˜Q is a child of Q

Ξ{ ˜Q} − Ξ{Q}

)
.

Here is where we use that T is convex, which means that each square Q ∈ T \{QT }
has all four children and the parent in T ∪ L(T ).

Second, observe that when T has only one square I × J , then using (3.2) the
identity reduces to showing∑
j∈{left,right}

ψd
I (u)ψ

d
I (x)ϕ

d
Jj
(v)ϕd

Jj
(y) + ϕd

I (u)ϕ
d
I (x)ψ

d
J (v)ψ

d
J (y)

=
∑

i,j∈{left,right}
ϕd
Ii(u)ϕ

d
Ii(x)ϕ

d
Jj
(v)ϕd

Jj
(y) − ϕd

I (u)ϕ
d
I (x)ϕ

d
J (v)ϕ

d
J (y) ,(3.3)
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multiplying by F1(u, v)F2(x, v)F3(u, y)F4(x, y) and finally integrating. By adding
and subtracting one extra term, equality (3.3) can be further rewritten as( ∑
j∈{left,right}

ϕd
Jj
(v)ϕd

Jj
(y)

)(
ϕd
I (u)ϕ

d
I (x) + ψd

I (u)ψ
d
I (x) −

∑
i∈{left,right}

ϕd
Ii(u)ϕ

d
Ii(x)

)

+ ϕd
I (u)ϕ

d
I (x)

(
ϕd
J (v)ϕ

d
J (y) + ψd

J(v)ψ
d
J (y)−

∑
j∈{left,right}

ϕd
Jj
(v)ϕd

Jj
(y)

)
= 0 .

It remains to notice

ϕd
I (u)ϕ

d
I (x) + ψd

I (u)ψ
d
I (x)

= |I|−1
(
1Ileft(u) + 1Iright(u)

)(
1Ileft(x) + 1Iright(x)

)
+ |I|−1

(
1Ileft(u)− 1Iright(u)

)(
1Ileft(x) − 1Iright(x)

)
= 2|I|−11Ileft(u)1Ileft(x) + 2|I|−11Iright(u)1Iright(x)

= ϕd
Ileft

(u)ϕd
Ileft

(x) + ϕd
Iright

(u)ϕd
Iright

(x) ,

and analogously

ϕd
J (v)ϕ

d
J (y) + ψd

J (v)ψ
d
J (y) = ϕd

Jleft
(v)ϕd

Jleft
(y) + ϕd

Jright
(v)ϕd

Jright
(y) .

�

Let us remark that, since we assume F1, F2, F3, F4 ≥ 0, we have

Ξ{QT }(F1, F2, F3, F4) ≥ 0 ,

so tat the right hand side of the telescoping identity is less than or equal to
ΞL(T )(F1, F2, F3, F4). We will use this observation without further mention.

The next lemma will be used to gradually control the forms Θ
(1)
T , Θ

(2)
T .

Lemma 3 (Reduction inequalities).∣∣Θ(1)
T (F1, F2, F3, F4)

∣∣ ≤ Θ
(1)
T (F1, F1, F3, F3)

1/2 Θ
(1)
T (F2, F2, F4, F4)

1/2 ,∣∣Θ(2)
T (F1, F2, F3, F4)

∣∣ ≤ Θ
(2)
T (F1, F2, F1, F2)

1/2 Θ
(2)
T (F3, F4, F3, F4)

1/2 .

Proof. Rewrite Θ
(2)
T (F1, F2, F3, F4) as∑

I×J∈T

∫
R2

( ∫
R

F1(u, v)F2(x, v)ψ
d
J (v)dv

)
·
( ∫

R

F3(u, y)F4(x, y)ψ
d
J (y)dy

)
ϕd
I (u)ϕ

d
I (x) du dx ,

and apply the Cauchy–Schwarz inequality, first over (u, x) ∈ I × I, and then over

I × J ∈ T . The inequality for Θ
(1)
T is proved similarly. �
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Now we are ready to prove a local estimate, which will be “integrated” to a
global one in the next section.

Proposition 4 (Single tree estimate). For any finite convex tree T we have

(3.4)
∣∣Θ(2)

T (F1, F2, F3, F4)
∣∣ ≤ 2|QT |

4∏
j=1

max
Q∈L(T )

‖Fj‖�(Q) .

In particular,

(3.5)
∣∣ΛT (F,G,H)

∣∣ ≤ 2|QT |
(

max
Q∈L(T )

‖F‖�(Q)

)(
max

Q∈L(T )
‖G‖�(Q)

)(
max

Q∈L(T )
‖H‖�(Q)

)
.

Proof. The proof of (3.4) consists of several alternating applications of Lemmas 2
and 3. Start with four nonnegative functions3 G1, G2, G3 and G4, and normalize:

(3.6) max
Q∈L(T )

‖Gj‖�(Q) = 1 ,

for j = 1, 2, 3, 4, since the inequality is homogenous. By scale invariance, we may

also assume |QT | = 1. Observe that Θ
(2)
T (Gj , Gj , Gj , Gj) ≥ 0, since it can be

written as ∑
I×J∈T

∫
R2

(∫
R

Gj(u, y)Gj(x, y)ψ
d
J (y)dy

)2

ϕd
I (u)ϕ

d
I (x) dudx .

Thus, from the telescoping identity we get

Θ
(1)
T (Gj , Gj , Gj , Gj) ≤ ΞL(T )(Gj , Gj , Gj , Gj) ,

and then from (3.6), (3.1), and the fact that L(T ) partitions QT :

Θ
(1)
T (Gj , Gj , Gj , Gj) ≤ |QT | = 1 .

The reduction inequalities now also give∣∣Θ(1)
T (G1, G2, G1, G2)

∣∣ ≤ 1 ,(3.7) ∣∣Θ(1)
T (G3, G4, G3, G4)

∣∣ ≤ 1 .

Next, from (3.6), (2.1), and (3.1) one gets

(3.8) ΞL(T )(G1, G2, G1, G2) ≤ 1 ,

while Lemma 2 gives

Θ
(2)
T (G1, G2, G1, G2) ≤ ΞL(T )(G1, G2, G1, G2)− Θ

(1)
T (G1, G2, G1, G2) ,

and combining with (3.7), (3.8) yields

Θ
(2)
T (G1, G2, G1, G2) ≤ 2 .

Completely analogously,

Θ
(2)
T (G3, G4, G3, G4) ≤ 2 .

3We have changed the notation in the proof from Fj to Gj to avoid confusion, since Lemmas 2
and 3 will be applied for various choices of Fj .
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Θ
(1)
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�

Θ
(1)
T (G4, G4, G4, G4)

���
�
�
�

Θ
(2)
T (G1, G1, G1, G1) Θ

(2)
T (G3, G3, G3, G3)

Θ
(2)
T (G2, G2, G2, G2) Θ

(2)
T (G4, G4, G4, G4)

Figure 2. Schematic presentation of the proof of Proposition 4. A solid arrow denotes
an application of the reduction inequality, while a broken arrow denotes an application
of the telescoping identity.

By another application of Lemma 3 we end up with∣∣Θ(2)
T (G1, G2, G3, G4)

∣∣ ≤ 2 ,

and this establishes (3.4).
For the proof of (3.5) one has to substitute F1 = 1, F2 = G, F3 = F , and

F4 = H into (3.4). �

The above proof can be represented in the form of a tree diagram, as in Figure 2.
We inductively bound terms starting from the bottom and proceeding to the top.
The last row consists of nonnegative terms, allowing us to start the “induction”.
On every application of the telescoping identity we also get terms with ΞL(T ),
which we do not denote, and which are controlled by (3.6) and (2.1).

4. Proving the estimate in the local L2 case

In this section we show the bound

(4.1) |Λd(F,G,H)| �p,q,r ‖F‖Lp‖G‖Lq‖H‖Lr

for 1
p + 1

q + 1
r = 1, 2 < p, q, r < ∞. By duality we get (1.4) for Td in the range

2 < p, q <∞, 1
p +

1
q >

1
2 . The following material has become fairly standard, and

indeed we follow closely ideas from [15], although in a much simpler setting.
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Let us fix dyadic step functions F,G,H : R2 → [0,∞), none of them iden-
tically 0. To make all arguments finite, in this section we restrict ourselves to
considering only dyadic squares Q satisfying |Q| ≥ 2−2N for some (large) fixed
positive integer N . Since our bounds will be independent of N , letting N → ∞
handles the whole collection C.

We organize the family of dyadic squares in the following way. For any k ∈ Z

we define the collection

PFk :=
{
Q : 2k ≤ sup

Q′⊇Q
‖F‖�(Q′) < 2k+1

}
,

and let MF
k denote the family of maximal squares in PFk with respect to set inclu-

sion. The collections PGk , MG
k , PHk , MH

k are defined analogously. Furthermore,
for any triple of integers k1, k2, k3 we set

Pk1,k2,k3 := PFk1 ∩ PGk2 ∩ PHk3 ,

and let Mk1,k2,k3 denote the family of maximal squares in Pk1,k2,k3 .
For each Q ∈ Mk1,k2,k3 note that

TQ :=
{
Q̃ ∈ Pk1,k2,k3 : Q̃ ⊆ Q

}
is a finite convex tree with root Q, and that for different Q the corresponding
trees TQ occupy disjoint regions in R2. These trees decompose the collection
Pk1,k2,k3 , for each individual choice of k1, k2, k3.

We apply Proposition 4 to each of the trees TQ. Consider any leaf Q̃ ∈ L(TQ),
and denote its parent by Q′. From Q′ ∈ TQ ⊆ Pk1,k2,k3 we get

1
2‖F‖�(˜Q) ≤ ‖F‖�(Q′) < 2k1+1 .

Thus, ‖F‖
�(˜Q) � 2k1 , and similarly ‖G‖

�( ˜Q) � 2k2 , and ‖H‖
�(˜Q) � 2k3 , so the

“single tree estimate” (3.5) implies∣∣ΛTQ(F,G,H)
∣∣ � 2k1+k2+k3 |Q| .

We split Λd into a sum of ΛTQ over all k1, k2, k3 ∈ Z and all Q ∈ Mk1,k2,k3 . In
order to finish the proof of (4.1), it remains to show

(4.2)
∑

k1,k2,k3∈Z

2k1+k2+k3
∑

Q∈Mk1,k2,k3

|Q| �p,q,r ‖F‖Lp‖G‖Lq‖H‖Lr .

The trick from [15] is to observe that for any fixed triple k1, k2, k3 ∈ Z, squares
in MF

k1
cover squares in Mk1,k2,k3 , and the latter are disjoint. The same is true

for MG
k2

and MH
k3
. Thus, it suffices to prove∑

k1,k2,k3∈Z

2k1+k2+k3 min
( ∑
Q∈MF

k1

|Q|,
∑

Q∈MG
k2

|Q|,
∑

Q∈MH
k3

|Q|
)

�p,q,r ‖F‖Lp‖G‖Lq‖H‖Lr .(4.3)
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Consider the following version of the dyadic maximal function:

M2F := sup
Q∈C

( 1

|Q|

∫
Q

|F |2
)1/2

1Q .

For each Q ∈ MF
k , from (2.2) and ‖F‖�(Q) ≥ 2k we have Q ⊆ {M2F ≥ 2k}, and

by disjointness, ∑
Q∈MF

k

|Q| ≤ |{M2F ≥ 2k}| .

Also note that ∑
k∈Z

2pk|{M2F ≥ 2k}| ∼p ‖M2F‖pLp �p ‖F‖pLp ,

because M2 is bounded on Lp(R2) for 2 < p <∞. Therefore,

(4.4)
∑
k∈Z

2pk
∑

Q∈MF
k

|Q| �p ‖F‖pLp ,

and completely analogously we get∑
k∈Z

2qk
∑

Q∈MG
k

|Q| �q ‖G‖qLq ,
∑
k∈Z

2rk
∑

Q∈MH
k

|Q| �r ‖H‖rLr .

A purely algebraic “integration lemma” stated and proved in [15] deduces (4.3)
from these three estimates. The idea is to split the sum in (4.3) into three parts,
depending on which of the numbers

2pk1

‖F‖pLp

,
2qk2

‖G‖qLq

,
2rk3

‖H‖rLr

is the largest. For instance, the part of the sum over

S1 :=
{
(k1, k2, k3) ∈ Z

3 : 2pk1

‖F‖p
Lp

≥ 2qk2

‖G‖q
Lq
, 2pk1

‖F‖p
Lp

≥ 2rk3

‖H‖r
Lr

}
is controlled as

∑
k1∈Z

2pk1

‖F‖pLp

( ∑
Q∈MF

k1

|Q|
) ∑
k2, k3 ∈ Z

(k1, k2, k3) ∈ S1

(
2qk2/‖G‖qLq

2pk1/‖F‖pLp

) 1
q
(
2rk3/‖H‖rLr

2pk1/‖F‖pLp

) 1
r

�p,q,r 1 ,

which follows from (4.4) and by summing two convergent geometric series with
their largest terms at most 1, and ratios equal to 1

2 .
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5. Extending the range of exponents

The extension of the main estimate to the range p ≤ 2 or q ≤ 2 follows from the
conditional result of Bernicot, [1]. Here we repeat his argument in the dyadic case,
where it is a bit simpler. His idea is to use the one-dimensional Calderón–Zygmund
decomposition in each fiber F (·, y) or G(x, ·).

We start with an estimate obtained in the previous section:

(5.1) ‖Td(F,G)‖Lpq/(p+q),∞ ≤ ‖Td(F,G)‖Lpq/(p+q) �p,q ‖F‖Lp‖G‖Lq ,

for some 2 < p, q <∞, 1
p +

1
q >

1
2 . If we prove the weak estimate

‖Td(F,G)‖Lp/(p+1),∞ �p,q ‖F‖Lp‖G‖L1 ,(5.2)

then Td will be bounded in the whole range of Theorem 1, by real interpolation
of multilinear operators, as stated for instance in [6] or [16]. We first cover the
case p > 2, q ≤ 2, then use (1.6) for p ≤ 2, q > 2, and finally repeat the argument
to tackle the case p, q ≤ 2.

By homogeneity we may assume ‖F‖Lp = ‖G‖L1 = 1. For each x ∈ R denote
by Jx the collection of all maximal dyadic intervals J with the property

1

|J |

∫
J

|G(x, y)| dy > 1 .

Furthermore, set

E :=
⋃
x∈R

⋃
J∈Jx

({x} × J) .

By our qualitative assumptions on G, the set E is simply a finite union of dyadic
rectangles. Using the disjointness of the J ∈ Jx,

(5.3) |E| =
∫
R

∑
J∈Jx

|J | dx ≤
∫
R

( ∑
J∈Jx

∫
J

|G(x, y)| dy
)
dx ≤ 1 .

Next, we define “the good part” of G by

G̃(x, y) :=

{ 1
|J|

∫
J G(x, v)dv, for y ∈ J ∈ Jx
G(x, y), for (x, y) �∈ E

By the construction of Jx we have ‖G̃‖L∞ ≤ 2, and from ‖G̃‖L1 ≤ 1 we also

get ‖G̃‖Lq ≤ 2, so using the known estimate (5.1) we obtain

(5.4)
∣∣{(x, y) : |Td(F, G̃)(x, y)| > 1

}∣∣ �p,q 1 .

As the last ingredient, we show that

(5.5)
(∫

R

(
G(x, v)−G̃(x, v)

)
ψd
J′(v)dv

)
ψd
J′(y) = 0
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for every J ′ ∈ D, whenever (x, y) �∈ E. Since G(x, ·) − G̃(x, ·) is supported on⋃
J∈Jx

J , this in turn will follow from

(5.6)
( ∫

R

(
G(x, v)−G̃(x, v)

)
ψd
J′(v)1J (v) dv

)
ψd
J′(y) = 0

for every J ∈ Jx. In order to verify (5.6) it is enough to consider J ∩ J ′ �= ∅
and y ∈ J ′, and since y �∈ J , we conclude that J is strictly contained in J ′. In
this case ψd

J′(v)1J(v) = ±|J ′|−1/21J(v), so we only have to observe
∫
J

(
G(x, v)−

G̃(x, v)
)
dv = 0, by the definition of G̃.

Equation (5.5) immediately gives Td(F,G−G̃)(x, y) = 0 for (x, y) �∈ E, so{
(x, y) : |Td(F,G)(x, y)| > 1

}
⊆ E ∪

{
(x, y) : |Td(F, G̃)(x, y)| > 1

}
,

and then, from (5.3) and (5.4),∣∣{(x, y) : |Td(F,G)(x, y)| > 1
}∣∣ �p,q 1 .

This establishes (5.2) by dyadic scaling.

6. Transition to the continuous case

Now we turn to the task of proving strong estimates for Tc in the range from
part (a) of Theorem 1:

‖Tc(F,G)‖Lpq/(p+q) �p,q ‖F‖Lp‖G‖Lq

for 1 < p, q < ∞, 1
p + 1

q >
1
2 . In order to get the boundary weak estimates, one

can proceed as in [1].
Let ϕ and ψ be as in the Introduction. If

∫
R
ϕ = 0, then Tc(F,G) is domi-

nated by (∑
k∈Z

|P(1)
ϕk
F |2

)1/2(∑
k∈Z

|P(2)
ψk
G|2

)1/2

,

and it is enough to use bounds for the two square functions. Otherwise, we have
0 < |

∫
R
ϕ| � 1 , so let us normalize

∫
R
ϕ = 1.

A tool that comes in very handy here is the square function appearing in the
work of Calderón and generalized by Jones, Seeger, and Wright [7]. It effectively
compares convolutions to martingale averages, allowing us to make the transition
easily.

Proposition 5 ([7]). Let ϕ be a function satisfying (1.2) and
∫
R
ϕ = 1. The square

function

SJSW,ϕf :=
(∑
k∈Z

∣∣Pϕk
f − Ekf

∣∣2)1/2

is bounded from Lp(R) to Lp(R) for 1 < p < ∞, with a constant depending only
on p.
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Let φ be a nonnegative C∞ function such that φ̂(ξ) = 1 for |ξ| ≤ 2−0.6, and

φ̂(ξ) = 0 for |ξ| ≥ 2−0.4. We regard it as fixed, so we do not keep track of the
dependence of the constants on φ. For any a ∈ R define φa, ϑa, ρa by

φ̂a(ξ) := φ̂(2−aξ) ,

ϑ̂a(ξ) := φ̂(2−a−1ξ)− φ̂(2−aξ) = φ̂a+1(ξ) − φ̂a(ξ) ,

ρ̂a(ξ) := φ̂(2−a−0.6ξ)− φ̂(2−a−0.5ξ) ,

so that in particular

ϑ̂a = 1 on supp(ρ̂a) ,(6.1) ∑20
i=−20 ρ̂k+0.1i = 1 on supp(ψ̂k) ,(6.2) ∑20
i=−20 ρ̂k+0.1i = 0 on supp(ψ̂k′) if |k′ − k| ≥ 10 .(6.3)

We first use Proposition 5 to obtain bounds for a special case of our continuous
twisted paraproduct:

(6.4) Tϕ,ϑ,b(F,G) :=
∑
k∈Z

(P(1)
ϕk
F ) (P

(2)
ϑk+b

G) ,

where b ∈ R is a fixed parameter. The constants can depend on b, as later b
will take only finitely many concrete values. Since we have already established
estimates for (1.1), it is enough to bound their difference:

(6.5)
∥∥Tϕ,ϑ,b(F,G) − Td(F,G)

∥∥
Lpq/(p+q) �p,q,b ‖F‖Lp ‖G‖Lq .

We introduce a mixed-type operator

Taux,b(F,G) :=
∑
k∈Z

(E
(1)
k F ) (P

(2)
ϑk+b

G) .

Using the Cauchy–Schwarz inequality in k ∈ Z, one gets

∣∣Tϕ,ϑ,b(F,G) − Taux,b(F,G)
∣∣ ≤

(∑
k∈Z

∣∣P(1)
ϕk
F − E

(1)
k F

∣∣2)1/2(∑
k∈Z

∣∣P(2)
ϑk+b

G
∣∣2)1/2

.

The first term on the right hand side is S(1)
JSW,ϕF , while the second term is the

ordinary square function in the second variable, as
∫
R
ϑb = 0. Next, one can

rewrite Taux,b and Td as

Taux,b(F,G) = FG−
∑
k∈Z

(Δ
(1)
k F )(P

(2)
φk+1+b

G) ,

Td(F,G) = FG−
∑
k∈Z

(Δ
(1)
k F )(E

(2)
k+1G) .
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Subtracting and using the Cauchy–Schwarz inequality in k ∈ Z, this time we obtain∣∣Taux,b(F,G) − Td(F,G)
∣∣ ≤

(∑
k∈Z

∣∣Δ(1)
k F

∣∣2)1/2(∑
k∈Z

∣∣P(2)
φk+b

G− E
(2)
k G

∣∣2)1/2

.

The first term on the right hand side is just the dyadic square function in the first

variable, while the second term is S(2)
JSW,φb

G. The estimate (6.5) now follows from
Proposition 5 and bounds on the two common square functions.

Actually, we need a paraproduct “sparser” than the one in (6.4):

(6.6) T 10Z
ϕ,ρ,b,l(F,G) :=

∑
j∈Z

(P(1)
ϕ10j+l

F ) (P(2)
ρ10j+l+b

G) ,

for any l = 0, 1, . . . , 9. To see that (6.6) is bounded too, we define

G̃b,l :=
∑
j∈Z

P(2)
ρ10j+l+b

G .

Notice that because of (6.1) we have

P
(2)
ϑk+b

G̃b,l =

{
P
(2)
ρ10j+l+b G for k = 10j + l ∈ 10Z+ l ,

0 for k ∈ Z, k �∈ 10Z+ l ,

and the Littlewood–Paley inequality gives

‖G̃b,l‖Lq �q,b,l ‖G‖Lq .

It remains to write
T 10Z
ϕ,ρ,b,l(F,G) = Tϕ,ϑ,b(F, G̃b,l) ,

and use the boundedness of (6.4).

Finally, we tackle the original operator (1.3). The following computation is
possible because of (6.2) and (6.3):

∑
k∈Z

ϕ̂k(ξ) ψ̂k(η) =

9∑
l=0

∑
j∈Z

ϕ̂10j+l(ξ) ψ̂10j+l(η)

=
9∑
l=0

20∑
i=−20

∑
j∈Z

ϕ̂10j+l(ξ) ρ̂10j+l+0.1i(η) ψ̂10j+l(η)

=
9∑
l=0

20∑
i=−20

∑
j∈Z

ϕ̂10j+l(ξ) ρ̂10j+l+0.1i(η) Ψ̂l(η)

Above we have set Ψl :=
∑

m∈Z
ψ10m+l. This “symbol identity” leads us to

(6.7) Tc(F,G) =

9∑
l=0

20∑
i=−20

T 10Z
ϕ, ρ, 0.1i, l(F,P

(2)
Ψl
G) .
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Since ψ̂ has compact support and |ψ̂(η)|, | ddη ψ̂(η)| � 1 by (1.2), scaling gives

|Ψ̂l(η)| � 1,
∣∣ d
dη Ψ̂l(η)

∣∣ � |η|−1, and thus the Hörmander–Mikhlin multiplier theo-

rem (in one variable) implies ∥∥P(2)
Ψl
G
∥∥
Lq �q,l ‖G‖Lq .

It remains to use (6.7) and the boundedness of (6.6).

7. Endpoint counterexamples

We give the arguments in the dyadic setting, the continuous case being similar.
First we show that Td does not map boundedly

L∞(R2)× Lq(R2) → Lq,∞(R2)

for 1 ≤ q <∞. Take G to be

G(x, y) := 1[0,2−n)(x)

n∑
k=1

Rk(y) ,

for some positive integer n, where Rk denotes the k-th Rademacher function4

on [0, 1), i.e.,

Rk :=
∑

J⊆[0,1), |J|=2−k+1

(1Jleft
− 1Jright

) .

Recall Khintchine’s inequality, which can be formulated as:∥∥∥ n∑
k=1

ckRk

∥∥∥
Lq

∼q
( n∑
k=1

|ck|2
)1/2

, for 0 < q <∞ ,

giving us ‖G‖Lq ∼q 2−n/qn1/2. Observe that

(Δ
(2)
k G)(x, y) = 1[0,2−n)(x)Rk+1(y), for k = 0, 1, . . . , n−1 .

We choose F supported in the unit square [0, 1)2 and defined by

F (x, y) :=

{
2Rj(y)−Rj+1(y) for x ∈ [2−j, 2−j+1), j = 1, . . . , n−1 ,

Rn(y) for x ∈ [0, 2−n+1) .

Note that ‖F‖L∞ ≤ 3 and (E
(1)
k F )(x, y) = Rk+1(y) for x ∈ [0, 2−n), k =

0, 1, . . . , n− 1. Since the output function is now simply Td(F,G) = n1[0,2−n)×[0,1),
we have

‖Td(F,G)‖Lq,∞

‖F‖L∞‖G‖Lq

�q
2−n/qn

2−n/qn1/2
= n1/2 ,

which shows unboundedness.
4 Linear combinations of Rademacher functions

∑
k ckRk(t) are dyadic analogues of lacunary

trigonometric series
∑

k cke
i2kt.
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The remaining estimate ‖Td(F,G)‖L∞ � ‖F‖L∞‖G‖L∞ is even easier to dis-
prove. For a positive integer n, take

F (x, y) :=

{
1 for x ∈

⋃n−1
j=0 [2

−2j−1, 2−2j), y ∈ [0, 1) ,

0 otherwise,

and G(x, y) := F (y, x). It is easy to see that |Td(F,G)(x, y)| ∼ n on the square
(x, y) ∈ [0, 2−2n)2.

8. Closing remarks

The primary purpose of the decomposition into trees in Section 4 is for proving
the estimate for a larger range of exponents. If one is content with just having
estimates in some nontrivial range, then a simpler proof can be given. Using
Lemma 3,

|Λd(F,G,H)| ≤ Θ
(2)
C (1, G,1, G)1/2 Θ

(2)
C (F,H, F,H)1/2 ,(8.1) ∣∣Θ(1)

C (F,H, F,H)
∣∣ ≤ Θ

(1)
C (F, F, F, F )1/2 Θ

(1)
C (H,H,H,H)1/2 .(8.2)

If in Lemma 2 one lets a single tree T exhaust the family of all dyadic squares,
then the telescoping identity becomes simply

Θ
(1)
C (F1, F2, F3, F4) + Θ

(2)
C (F1, F2, F3, F4) =

∫
R2

F1F2F3F4 .

Particular instances of this equality are:

Θ
(2)
C (F,H, F,H) = ‖FH‖2L2 −Θ

(1)
C (F,H, F,H) ,(8.3)

Θ
(2)
C (1, G,1, G) = ‖G‖2L2 −Θ

(1)
C (1, G,1, G) = ‖G‖2L2 ,(8.4)

Θ
(1)
C (F, F, F, F ) = ‖F‖4L4 −Θ

(2)
C (F, F, F, F ) ≤ ‖F‖4L4 ,(8.5)

Θ
(1)
C (H,H,H,H) = ‖H‖4L4 −Θ

(2)
C (H,H,H,H) ≤ ‖H‖4L4 .(8.6)

Combining (8.1)–(8.6) one ends up with

|Λd(F,G,H)| ≤ ‖G‖L2

(
‖FH‖2L2 + ‖F‖2L4‖H‖2L4

)1/2

,

which establishes the estimate for (p, q, r) = (4, 2, 4). By symmetry one also gets
the point (p, q, r) = (2, 4, 4), and then uses interpolation and the method from
Section 5. However, that way we would leave out the larger part of the Banach
triangle, including the “central” point (p, q, r) = (3, 3, 3).

Starting from the single tree estimate (3.4) and adjusting the arguments from
Section 4 in an obvious way, we also obtain estimates for an even more “entwined”
form:

Θ
(2)
C (F1, F2, F3, F4) =

∑
I×J∈C

∫
R4

F1(u, v)F2(x, v)F3(u, y)F4(x, y)

·ϕd
I (u)ϕ

d
I (x)ψ

d
J (v)ψ

d
J (y) du dv dx dy .
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The bound we get is∣∣Θ(2)
C (F1, F2, F3, F4)

∣∣ �p1,p2,p3,p4
4∏
j=1

‖Fj‖Lpj ,

whenever 1
p1
+ 1
p2
+ 1
p3
+ 1
p4

= 1, 2 < p1, p2, p3, p4 <∞. This time we do not know
of any arguments from the Calderón–Zygmund theory that could help expand the
range of exponents.

Let us conclude with several words on a straightforward generalization of the
method presented in Sections 3 and 4 to higher dimensions. For notational sim-
plicity we only state the result in R3.

Theorem 6. For any S ⊆ {0, 1, . . . , 7} we define a multilinear form ΛS, acting
on |S| functions Fj : R3 → C by

ΛS
(
(Fj)j∈S

)
:=

∑
Q

∫
R6

∏
j∈S

Fj
(
xj11 , x

j2
2 , x

j3
3

)
ϕd
I1(x

0
1)ϕ

d
I1 (x

1
1)

· ϕd
I2(x

0
2)ϕ

d
I2(x

1
2)ψ

d
I3 (x

0
3)ψ

d
I3(x

1
3) dx

0
1 dx

1
1 dx

0
2 dx

1
2 dx

0
3 dx

1
3 ,

where Q = I1× I2× I3 is a dyadic cube, and j = j1+2j2+4j3, j1, j2, j3 ∈ {0, 1}.
Then ΛS satisfies the bound∣∣ΛS((Fj)j∈S)∣∣ �(pj)j∈S

∏
j∈S

‖Fj‖Lpj (R3) ,

whenever the exponents (pj)j∈S are such that
∑
j∈S

1
pj

= 1, and 4 < pj <∞ for

every j ∈ S.

The result is nontrivial only when |S| ≥ 5. We sketch a proof of Theorem 6,
which uses the same ingredients as before.

Dyadic cubes Q = I1 × I2 × I3 ⊆ R3 are again organized into families of trees.

For each tree T we define the three local forms Θ
(1)
T , Θ

(2)
T , Θ

(3)
T . For instance,

Θ
(1)
T (F0, . . . , F7) :=

∑
Q∈T

∫
R6

7∏
j=0

Fj
(
xj11 , x

j2
2 , x

j3
3

) ∑
α,β∈{left,right}

ψd
I1(x

0
1)ψ

d
I1(x

1
1)

· ϕd
I2,α(x

0
2)ϕ

d
I2,α(x

1
2)ϕ

d
I3,β

(x03)ϕ
d
I3,β

(x13) dx
0
1 dx

1
1 dx

0
2 dx

1
2 dx

0
3 dx

1
3 .

The form ΞF is defined analogously, with [·]�(Q) replaced by the three-dimensional
Gowers box inner product:

[F0, . . . , F7]�3(Q) := E

( 7∏
j=0

Fj
(
xj11 , x

j2
2 , x

j3
3

)∣∣∣ x01, x11∈I1, x02, x12∈I2, x03, x13∈I3),
in the probabilistic notation. However, the inequality (2.2) has to be replaced with

‖F‖�3(Q) ≤
( 1

|Q|

∫
Q

|F |4
)1/4

,

which is the reason why the range of exponents is severely restricted.
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Θ
(3)
T (F0, F1, F2, F3, F4, F5, F6, F7)

�� ������
�����

�����
�����

��

Θ
(3)
T (F0, F1, F2, F3, F0, F1, F2, F3)

���
�
�

�������������
Θ

(3)
T (F4, F5, F6, F7, F4, F5, F6, F7)

Θ
(1)
T (F0, F1, F2, F3, F0, F1, F2, F3)

�� ������
�����

�����
�����

��
Θ

(2)
T (F0, F1, F2, F3, F0, F1, F2, F3)

Θ
(1)
T (F0, F0, F2, F2, F0, F0, F2, F2)

���
�
�

�������������
Θ

(1)
T (F1, F1, F3, F3, F1, F1, F3, F3)

Θ
(2)
T (F0, F0, F2, F2, F0, F0, F2, F2)

�� ������
�����

�����
�����

��
Θ

(3)
T (F0, F0, F2, F2, F0, F0, F2, F2) ≥ 0

Θ
(2)
T (F0, F0, F0, F0, F0, F0, F0, F0)

���
�
�

�������������
Θ

(2)
T (F2, F2, F2, F2, F2, F2, F2, F2)

Θ
(1)
T (F0, F0, F0, F0, F0, F0, F0, F0) ≥ 0 Θ

(3)
T (F0, F0, F0, F0, F0, F0, F0, F0) ≥ 0

Figure 3. The proof of the single tree estimate in R
3. A solid arrow denotes an appli-

cation of the Cauchy–Schwarz inequality, while a broken arrow denotes an application of
identity (8.7).

The telescoping identity now has three terms on the left hand side:

(8.7) Θ
(1)
T +Θ

(2)
T +Θ

(3)
T = ΞL(T ) − Ξ{QT } .

The proof of the single tree estimate is inductive, with alternating applications
of the identity (8.7) and the Cauchy–Schwarz inequality. The telescoping identity
reduces the problem of controlling a particular “theta-term”

Θ(i)(Fk0 , . . . , Fk7 )

to bounding two other theta-terms. If either of the latter is nonnegative, it can be
ignored. On the other hand, any term that is not nonnegative can be estimated,
using an analogue of Lemma 3, by two nonnegative terms with a smaller number
of different functions involved. The induction starts with theta-terms containing
only one function, Θ(i)(Fk, . . . , Fk), but these are obviously nonnegative.

Figure 3 presents these steps in the form of a tree-diagram. We draw essentially
different branches only, i.e., omit the ones that can be treated by analogy.
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