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Well-posedness and large deviation for
degenerate SDEs with Sobolev coefficients

Xicheng Zhang

Abstract. In this article we prove existence and uniqueness for degenerate
stochastic differential equations with Sobolev (possibly singular) drift and
diffusion coefficients in a generalized sense. In particular, our result covers
the classical DiPerna–Lions flows and we also obtain well-posedness for
degenerate Fokker–Planck equations with irregular coefficients. Moreover,
a large deviation principle of Freidlin–Wenzell type for this type of SDEs
is established.

1. Introduction

The celebrated DiPerna–Lions theory [10] says that if a vector field b ∈ W 1,1
loc (R

d)

has bounded divergence and b(x)
1+|x| ∈ L1(Rd) +L∞(Rd), then there exists a unique

regular Lagrangian flow for the ordinary differential equation (ODE) in Rd:

(1.1) dXt(x) = b(Xt(x))dt, X0(x) = x.

This theory was later extended to the case of BV vector field by Ambrosio [1]. Their
methods were based on the connection between ODEs and transport or continuity
equations. Recently, Crippa and De Lellis [9] developed a more direct argument to
treat this problem by using the Hardy–Littlewood maximal functions for b assumed
to be in W 1,p

loc (R
d) for some p > 1. Moreover, Cipriano and Cruzeiro [8] studied

the non-smooth flows associated to (1.1) when the exponential of the divergence
of b satisfies some Lp(Rd, μ)-type hypothesis, where μ is the standard Gaussian
measure on Rd. Such a theory has also been extended to the classical Wiener
space by Ambrosio and Figalli [2] (see also Fang and Luo [12]).

We now turn to the following Itô stochastic differential equation (SDE) in Rd:

(1.2) dXt(x) = b(Xt(x))dt + σ(Xt(x))dWt, X0(x) = x.
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Here b : Rd → Rd and σ : Rd → Rd×Rm are measurable functions, (Wt)t∈[0,1] is an
m-dimensional standard Brownian motion on the classical Wiener space (Ω,F , P ),
i.e., Ω is the space of all Rm-valued continuous functions on [0, 1], F is the asso-
ciated Borel σ-field, and P is the standard Wiener measure. For a generic point
ω ∈ Ω, Wt(ω) = ωt is the coordinate process. Let Ft be the natural Brownian
filtration generated by {Ws, s � t}.

In [14], Figalli has proved the well-posedness of martingale solutions for the
SDE (1.2) with Sobolev coefficients by studying the associated Fokker–Planck
equations. His strategy is similar to [1]. Recently, in [28] we gave a direct construc-
tion of the almost everywhere stochastic flow of (1.2) by using the same argument
as in Crippa and De Lellis [9]. Furthermore, through linearizing Brownian motion,
we also proved ([23]) a classical limit theorem that the solutions of ODE (1.1)
converge, in a generalized sense, to the solutions of a Stratonovich SDE. In the
papers [9], [28], and [23], the vector field b needs to be in W 1,q

loc (R
d) for some q > 1.

In the case of nondegenerate and regular diffusion coefficients, there have been nu-
merous results about the existence and uniqueness of strong solutions to SDE (1.2)
with singular drift b (cf. [30], [15], [18], [27], etc.).

The present work is a continuation of [28] and [23], and the main aims of this
paper are twofold: First, we try to relax the assumptions on the diffusion and drift
coefficients so that the diffusion coefficients can be discontinuous for Stratonovich
SDEs, b can be in W 1,1

loc (R
d), and the divergence of b can be polynomial growth.

Secondly, we prove a Freidlin–Wentzell large deviation principle for SDEs with
Sobolev coefficients.

In order to obtain a Freidlin–Wentzell large deviation estimate for the SDE (1.2)
with discontinuous coefficients, we shall employ the weak convergence method of
Dupuis and Ellis [11]. This method has proved to be very effective for various
stochastic systems (cf. [4], [6], [22], etc.), where the key point is to use the varia-
tional representation of certain exponential Brownian functionals (cf. [3] and [29])
to prove an equivalent Laplace principle.

This paper is organized as follows: In Section 2, we state our main results.
In Section 3, some preliminaries are given. In Section 4, the well-posedness the-
orems are proven. In Section 5, we shall prove a large deviation principle for the
SDE (1.2).

2. Statement of main results

Let M (Rd) be the total of all locally finite Borel measures on Rd. For p � 1 and

μ ∈ M (Rd), let Lp
μ = Lp

μ(R
d) be the usual Lp-space over (Rd, μ) and W p,k

loc (R
d)

the usual local Sobolev space. If μ = L (dx) is the Lebesgue measure, we simply
write Lp

μ =: Lp. For R > 0, by BR we denote the ball in Rd with center zero and
radius R.

First of all, we introduce the following general notion about μ-almost every-
where stochastic flow of SDE (1.2) (cf. [19], [28]):
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Definition 2.1. Let Xt(ω, x) be a Rd-valued measurable stochastic field on [0, 1]×
Ω × R

d. For μ ∈ M (Rd), we say X a μ-almost everywhere stochastic flow of the
SDE (1.2) corresponding to (b, σ) if

(A) for some p � 1, there exists a constant Kp > 0 such that for any nonnegative
measurable function ϕ ∈ Lp

μ(R
d),

sup
t∈[0,1]

E

∫
Rd

ϕ(Xt(x))μ(dx) � Kp‖ϕ‖Lp
μ
;(2.1)

(B) for μ-almost all x ∈ Rd, t �→ Xt(x) is a continuous (Ft)-adapted process
satisfying that∫ 1

0

|b(Xs(x))|ds +
∫ 1

0

|σ(Xs(x))|2ds < +∞, P − a.s., and

Xt(x) = x+

∫ t

0

b(Xs(x))ds +

∫ t

0

σ(Xs(x))dWs, ∀t ∈ [0, 1].

We first consider the Stratonovich SDE

dXt(x) = b(Xt(x))dt + σ(Xt(x)) ◦ dWt, X0(x) = x,

or its equivalent Itô form:

dXt(x) =
[
b+ 1

2σ
jl∂jσ

·l](Xt(x)) dt + σ(Xt(x)) dWt, X0(x) = x.

Here and below, we use the conventions that indices repeated in a product are
summed automatically, and all derivatives and divergence are taken in the distri-
butional sense. By definition, div σ·l := ∂iσ

il, l = 1, . . . ,m.
The following result extends Theorem 2.6 in [28] to the Stratonovich SDE.

Theorem 2.2. Assume that for some r ∈ [0,+∞),

(2.2)
|b|+ |∇σ|
1 + |x| , |σ| ∈ L∞(Bc

r), b ∈ W 1,1
loc (R

d), σ ∈ W 2,2
loc (R

d),

and for some ε ∈ (0, 1),

[div b]−, | div σ|, sup
|z|�ε

|σ(· − z)| · |∇ div σ| ∈ L∞(Rd).(2.3)

Then there exists a unique L -almost everywhere stochastic flow Xt(x) (in
the sense of Definition 2.1) corresponding to (bσ, σ) with p = 1 in (2.1), where
bσ = b+ 1

2σ
jl∂jσ

·l.

Remark 2.3. If div σ = div b = 0, then from the proof below, one can see that∫
Rd

ϕ(Xt(x)) dx =

∫
Rd

ϕ(x) dx a.s., ∀t ∈ [0, 1],

which means that the stochastic flow x �→ Xt(x) is incompressible. In this case, b
and σ in Theorem 2.2 only need to satisfy (2.2) and so are allowed to be singular
in a finite ball. If σ vanishes, our result covers the classical DiPerna–Lions flow.
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Our next aim is to relax the assumption [div b]− ∈ L∞(Rd) so that [div b]− can
have polynomial growth. We shall prove:

Theorem 2.4. Assume that, for some q > 1,

(2.4) |∇b|, |∇σ|2 ∈ Lq
loc(R

d),
|b|+ |σ|
1 + |x| ∈ L∞(Rd),

and there exist functions λ ∈ C2(Rd) and γ1, γ2, γ3 satisfying that for all small y
in Bε and all x ∈ Rd,

λ(x) � γ1(x− y), |∇λ(x)| � γ2(x− y), |∇2λ(x)| � γ3(x− y),(2.5)

such that for all p � 1,∫
Rd

exp
{
p
(
[div b]− + |b|γ2 + |σ|2(γ2

2 + γ3) + |∇σ|2
)
(x) + γ1(x)

}
dx < +∞.(2.6)

Let μ(dx) = eλ(x)dx. Then there exists a unique μ-almost everywhere stochastic
flow Xt(x) in the sense of Definition 2.1 corresponding to (b, σ) for any p > 1
in (2.1).

Remark 2.5. In this theorem, assumptions (2.5) and (2.6) are a little bit compli-
cated. We now explain them by introducing two examples.

(1) Let λ(x) = −α log(1 + |x|2) for some α > d
2 . For all |y| � 1

2 and x ∈ Rd, we
have

λ(x) � −α log
(
1 + (|x− y| − |y|)2) � −α log

(
1 + 1

2 |x− y|2 − |y|2)
� −α log

(
3
4 + 1

2 |x− y|2) � −α log
(
1 + |x− y|2)+ α log 2 =: γ1(x − y),

and

|∇λ(x)| � 2α|x|
1 + |x|2 � 4α

1 + |x| �
8α

1 + |x− y| =: γ2(x− y),

|∇2λ(x)| � 6α

1 + |x|2 � 6α

1 + 1
2 |x− y|2 − |y|2 � 12α

1 + |x− y|2 =: γ3(x− y).

In this case, if b and σ have linear growth, then condition (2.6) reduces to∫
Rd

exp
{
p([div b]− + |∇σ|2)(x)}

(1 + |x|2)α dx < +∞, ∀p � 1.

(2) Let λ(x) = −|x|2α for some α � 1. For all |y| � 1
2 and x ∈ Rd, we have

λ(x) � −(|x− y| − |y|)2α � −(|x− y| − 1
2 )

2α � Cα − 1
2 |x− y|2α =: γ1(x− y),

and

|∇λ(x)| � 2α|x|2α−1 � 2α(|x− y|+ 1
2 )

2α−1 =: γ2(x− y),

|∇2λ(x)| � 4α2|x|2α−2 � 4α2(|x− y|+ 1
2 )

2α−2 =: γ3(x− y).
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In this case, if for some β ∈ [0, 1),

|b(x)|
1 + |x|β ,

|σ(x)|
(1 + |x|)β−α

∈ L∞(Rd),

then by Young’s inequality, condition (2.6) reduces to∫
Rd

exp
{
p([div b]− + |∇σ|2)(x) − 1

4 |x|2α
}
dx < +∞, ∀p � 1.

Remark 2.6. Recently, Fang–Luo–Thalmaier [13] also studied stochastic differ-
ential equations in the Gaussian space with Sobolev coefficients. However, our
result is more general than Theorem 1.3 in [13]. In particular, from the previous
example (1), one can see that condition 1.3 in Theorem 1.2 of [13] is not necessary.

As an easy consequence of Theorem 2.4 and Theorem 1.1 in [24], we have:

Corollary 2.7. Assume that b and σ are bounded measurable functions and for
some q > 1,

|∇b|, |∇σ|2 ∈ Lq
loc(R

d),

and (2.6) holds. Then for any probability density function φ with∫
Rd

φ(x)re(1−r)λ(x)dx < +∞,

where r > q
q−1 =: p, and λ(x) is from Theorem 2.4, there exists a unique distribu-

tion solution to the Fokker–Planck equation

∂tut = − div(but) +
1
2∂

2
ij

(
[σilσjl]ut

)
, u0 = φ,(2.7)

in the class

Mp :=
{
ut ∈ Lp

loc(R
d) : ut(x) � 0,

∫
Rd

ut(x) dx = 1,

sup
t∈[0,1]

∫
Rd

ut(x)
pe(1−p)λ(x) dx < +∞

}
.

Proof. Let X0 be an F0-measurable random variable with distribution φ(x)dx. It
is easy to see that Yt := Xt(X0) solves the SDE:

Yt = X0 +

∫ t

0

b(Ys)ds+

∫ t

0

σ(Ys)dWs.

Let μ(dx) = eλ(x)dx. Now for any ϕ ∈ C∞
c (Rd), by Hölder’s inequality, we have

Eϕ(Yt) = E(Eϕ(Xt(x))|x = X0) =

∫
Rd

Eϕ(Xt(x))φ(x) dx

�
( ∫

Rd

|Eϕ(Xt(x))| r
r−1μ(dx)

)1− 1
r
(∫

Rd

φ(x)e−rλ(x)μ(dx)
) 1

r

�
(
E

∫
Rd

|ϕ(Xt(x))| r
r−1μ(dx)

)1− 1
r
( ∫

Rd

φ(x)re(1−r)λ(x)dx
) 1

r � Cφ‖ϕ‖Lq
μ
.
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Hence, there exists a u ∈ Mp such that for any ϕ ∈ C∞
c (Rd) and t ∈ [0, 1],∫

Rd

ϕ(x)ut(x) dx = Eϕ(Yt) � Cφ‖ϕ‖Lq
μ
.

By Itô’s formula, it is easy to check that u is a distribution solution of (2.7). The
uniqueness follows from Theorem 1.1 in [24]. �

Remark 2.8. In Proposition 5 in [20] of Le Bris and Lions, the well-posedness of
equation (2.7) was shown in the following space:

{u ∈ L∞(0, 1; (L1 ∩ L∞)(Rd)), σt∇u ∈ L2(0, 1;L2(Rd))}.
Moreover, the conditions on b and σ are different.

Next, we consider Freidlin–Wentzell’s large deviation estimate for the SDE (1.2)
in the situation of Theorem 2.4. For ε ∈ (0, 1), let Xε,t(x) solve the following SDE
in the sense of Definition 2.1:

(2.8) dXε,t(x) = b(Xε,t(x)) dt+
√
εσ(Xε,t(x)) dWt, Xε,0(x) = x.

We need to fix another weighted measure ν(dx) = eρ(x)dx such that∫
Rd

|x|2pν(dx) < +∞, ∀p � 1.

Thus we can consider equation (2.8) as an infinite-dimensional stochastic equation
in the Banach space L2p

ν (Rd), p � 1:

Xε,t = Id +

∫ t

0

b(Xε,s) ds+
√
ε

∫ t

0

σ(Xε,s) dWs.

The large deviation result is stated as follows:

Theorem 2.9. Assume that b and σ satisfy the same assumptions as in The-
orem 2.4. Then the family of random variables (Xε)ε∈(0,1) taking values in the

space S := L2p
ν (Rd;C([0, 1];Rd)), p � 1, satisfies the large deviation principle.

More precisely, for any B ∈ B(S), we have

− inf
f∈Bo

I(f) � lim
ε→0

ε logP (Xε ∈ B) � lim
ε→0

ε logP (Xε ∈ B) � − inf
f∈B̄

I(f),

where I(f) := 1
2 inf{h∈L2(0,1): f=Xh} ‖h‖2L2, and Xh solves the equation

(2.9) Xt = Id +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs)hs ds.

Here the closure and interior are taken in S.

Remark 2.10. Although Corollary 2.7 and Theorem 2.9 are given under the
assumptions of Theorem 2.4, similar results also hold for Stratonovich SDEs in
the setting of Theorem 2.2.
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3. Preliminaries

3.1. Two estimates on regular stochastic flows

In this subsection, we assume that b, σ ∈ C∞
b (Rd) are bounded and have bounded

derivatives of all orders. In this case, it is well known that the SDE (1.2) defines a
C∞-diffeomorphism flowXt(x), x ∈ Rd, t ∈ [0, 1] (cf. [16], [17], [21]). We first recall
the following well known result about the Jacobian determinant (for example, see
Lemma 3.1 in [28]).

Lemma 3.1. For any t ∈ [0, 1] and x ∈ Rd, we have

det(∇Xt(x))(3.1)

= exp
{∫ t

0

div σ(Xs(x))dWs +

∫ t

0

[
div b− 1

2∂iσ
jl∂jσ

il
]
(Xs(x)) ds

}
,

and for any p � 1,

E | det(∇X−1
t (x))|p(3.2)

� exp
{
tp
(
‖[− div b+ 1

2∂iσ
jl∂jσ

il + σil∂2
ijσ

jl + p
2 | div σ|2]+‖∞

)}
.

Below, let λ be a C2-function on Rd and define

μ(dx) := eλ(x)dx.

We write

Jt(ω, x) :=
(Xt(ω, ·))
μ(dx)

μ(dx)
, J −

t (ω, x) :=
(X−1

t (ω, ·))
μ(dx)
μ(dx)

,

which means that for any nonnegative measurable function ϕ on R
d,∫

Rd

ϕ(Xt(ω, x))μ(dx) =

∫
Rd

ϕ(x)Jt(ω, x)μ(dx),(3.3) ∫
Rd

ϕ(X−1
t (ω, x))μ(dx) =

∫
Rd

ϕ(x)J −
t (ω, x)μ(dx).(3.4)

It is easy to see that for almost all ω and all (t, x) ∈ [0, 1]× Rd,

Jt(ω, x) = [J −
t (ω,X−1

t (ω, x))]−1,(3.5)

and by Itô’s formula and (3.1),

J−
t (x) = eλ(Xt(x))−λ(x) det(∇Xt(x))(3.6)

= exp
{∫ t

0

Λσ
1 (Xs(x)) dWs +

∫ t

0

Λb,σ
2 (Xs(x)) ds

}
,

where Λσ
1 (x) :=

[
div σ + σi·∂iλ

]
(x) and

Λb,σ
2 (x) :=

[
div b+ bi∂iλ+ 1

2 (σ
ilσjl∂2

ijλ− ∂iσ
jl∂jσ

il)
]
(x).
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We now give an Lp estimate for Jt(x), that is crucial for Theorem 2.4 and is
inspired by [7] and [8].

Lemma 3.2. Assume that μ(Rd)<+∞. Then for any t∈ [0, 1] and p>1, we have

E

∫
Rd

|Jt(x)|pμ(dx)(3.7)

� μ(Rd)
p

p+1

(
sup

t∈[0,1]

∫
Rd

exp
{
tp3|Λσ

1 (x)|2 − tp2Λb,σ
2 (x)

}
μ(dx)

) 1
p+1

.

Proof. By (3.4) and (3.5), we have

E

∫
Rd

|Jt(x)|pμ(dx) = E

∫
Rd

|J −
t (x)|1−pμ(dx).(3.8)

Since for any α ∈ R,

t �→ exp
{
α

∫ t

0

Λσ
1 (Xs(x))dWs − α2

2

∫ t

0

|Λσ
1 (Xs(x))|2ds

}
is a continuous exponential martingale, by (3.6) and Hölder’s inequality, for any
α ∈ R and q > 1, we have

E |J −
t (x)|α �

(
E exp

{∫ t

0

[
q2α2

2(q−1) |Λσ
1 (Xs(x))|2 + αqΛb,σ

2 (Xs(x))
]
ds

}) 1
q

.

For notational simplicity, we write

φα,q(x) :=
q2α2

2(q−1) |Λσ
1 (x)|2 + αqΛb,σ

2 (x).

By Jensen’s inequality, we have

E

∫
Rd

|J −
t (x)|1−pμ(dx) �

∫
Rd

(
E e

∫
t
0
φ1−p,q(Xs(x))ds

) 1
q

μ(dx)

�
∫
Rd

(1
t

∫ t

0

E etφ1−p,q(Xs(x))ds
) 1

q

μ(dx)

� μ(Rd)1−
1
q

(1
t

∫ t

0

E

∫
Rd

etφ1−p,q(Xs(x))μ(dx)ds
) 1

q

(3.3)
= μ(Rd)1−

1
q

(1
t

∫ t

0

E

∫
Rd

etφ1−p,q(x)Js(x)μ(dx)ds
) 1

q

� μ(Rd)1−
1
q

( ∫
Rd

e
pt

p−1φ1−p,q(x)μ(dx)
) p−1

pq

[
sup

s∈[0,1]

E

∫
Rd

|Js(x)|pμ(dx)
] 1

pq

,

which together with (3.8) implies that

sup
s∈[0,1]

E

∫
Rd

|Js(x)|pμ(dx) � μ(Rd)
p(q−1)
pq−1

(
sup

t∈[0,1]

∫
Rd

e
pt

p−1φ1−p,q(x)μ(dx)
) p−1

pq−1

.

The proof is completed by simplifying the above expression with q = p. �
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Remark 3.3. From (3.7), one sees that by letting p ↓ 1,

E

∫
Rd

|Jt(x)|μ(dx) � μ(Rd)
1
2

( ∫
Rd

exp
{
|Λσ

1 (x)|2 + |Λb,σ
2 (x)|

}
μ(dx)

) 1
2

.

3.2. Two lemmas related to (2.1)

The following lemma will play a crucial role for taking limits below (cf. [28], [23]).

Lemma 3.4. Let μ∈M (Rd) and let (Xn)n∈N be a family of random fields on
Ω×R

d. Suppose that Xn converges to X for P ⊗ μ-almost all (ω, x), and that for
some p � 1, there is a constant Kp > 0 such that for any nonnegative measurable
function ϕ ∈ Lp

μ(R
d),

sup
n

E

∫
Rd

ϕ(Xn(x))μ(dx) � Kp‖ϕ‖Lp
μ
.(3.9)

Then we have:

(i) For any nonnegative measurable function ϕ ∈ Lp
μ(R

d),

E

∫
Rd

ϕ(X(x))μ(dx) � Kp‖ϕ‖Lp
μ
.(3.10)

(ii) If ϕn converges to ϕ in Lp
μ(R

d), then for any N > 0,

lim
n→∞E

∫
BN

|ϕn(Xn(x)) − ϕ(X(x))|μ(dx) = 0.(3.11)

Proof. (i) First, for any nonnegative continuous function ϕ ∈ Cc(R
d) with compact

support, by Fatou’s lemma and (3.9), we have

E

( ∫
Rd

ϕ(X(x))dx
)
� lim

n→∞
E

( ∫
Rd

ϕ(Xn(x))μ(dx)
)
� Kp‖ϕ‖Lp

μ
.

Let O ⊂ Rd be a bounded open set. Define

ϕn(x) := 1−
( 1

1 + distance(x,Oc)

)n

.

Then ϕn ∈ Cc(R
d) and for every x ∈ Rd,

ϕn(x) ↑ 1O(x) as n → ∞.

By the monotone convergence theorem, we find that (3.10) holds for ϕ = 1O.
We now extend (3.10) to the indicator function of any bounded Borel set.

Without loss of generality, we consider Borel sets in (0, 1]d, and define

C :=

{
A ∈ B((0, 1]d) : E

( ∫
Rd

1A(X(x))μ(dx)
)
� Kpμ(A)

1/p

}

and
A :=

{
A = Πd

i=1(αi, βi] : 0 < αi � βi � 1
}
.
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It is easy to see that C is a monotone class and A is a semi-algebra on (0, 1]d.
Let AΣf be the algebra generated by A through finite disjoint unions. Since
all open subsets of (0, 1]d belong to C , by another approximation, one finds that
AΣf ⊂ C . Hence, by the monotone class theorem,

B((0, 1]d) ⊃ C ⊃ σ(AΣf ) = B((0, 1]d).
Let ϕ be a bounded nonnegative measurable function on some bounded open

set O. By Lusin’s theorem, there exists a sequence of bounded continuous func-
tions ϕε with supports in O such that

‖ϕε‖∞ � ‖ϕ‖∞, lim
ε→0

μ(Aε) = 0,

where Aε := {x ∈ Rd : ϕ(x) �= ϕε(x)}. Hence,

E

( ∫
Rd

|ϕ− ϕε|(X(x))μ(dx)
)
� 2‖ϕ‖∞E

( ∫
Rd

1Aε(X(x))μ(dx)
)

� 2‖ϕ‖∞Kpμ(Aε)
1/p ε→0−→ 0.

For a general unbounded nonnegative measurable function ϕ on Rd, we can ap-
proximate it by the monotone convergence theorem again.

(ii) Let ϕm ∈ Cc(R
d) converge to ϕ in Lp

μ(R
d). By (3.9) and (3.10), we have

E

∫
BN

|ϕn(Xn(x)) − ϕ(X(x))|μ(dx)

� Kp‖ϕn − ϕ‖Lp
μ
+ E

∫
BN

|ϕ(Xn(x)) − ϕ(X(x))|μ(dx)

� Kp‖ϕn − ϕ‖Lp
μ
+ 2Kp‖ϕm − ϕ‖Lp

μ
+ E

∫
BN

|ϕm(Xn(x)) − ϕm(X(x))|μ(dx),

which converges to zero by first letting n → ∞ and then m → ∞. �

Let  � 0 be a smooth function in Rd with supp ⊂ B1 and
∫
Rd (x)dx = 1.

For ε > 0, set

ε(x) := ε−d(ε−1x).(3.12)

For a function b ∈ L1
loc(R

d), define

bε(x) := b ∗ ε(x) =
∫
Rd

b(y)ε(x− y)dy,(3.13)

and for any R > 0 and ϕ ∈ L1
loc(R

d),

MRϕ(x) := sup
0<s<R

−
∫
Bs

ϕ(x + y)dy,

where

−
∫
Bs

ϕ(x+ y)dy :=
1

|Bs|
∫
Bs

ϕ(x + y)dy.
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We have the following elementary estimate:

Lemma 3.5. Let b ∈ W 1,1
loc (R

d). Then there exists an L -null set A ⊂ Rd such
that for all x, y /∈ A,

|b(x) − b(y)| � 2d
∫ |x−y|

0

−
∫
Bs

|∇b|(x + z)dzds+ 2d
∫ |x−y|

0

−
∫
Bs

|∇b|(y + z)dzds.

In particular, for any R > 0 and x, y /∈ A with |x− y| � R,

|b(x)− b(y)| � 2d|x− y|(MR|∇b|(x) + (MR|∇b|(y)).(3.14)

Proof. Let bε(x) be defined by (3.13). For r > 0, let Π(dz) denote the surface
measure on the ball {z ∈ Rd : |z| = r}. Noting that

|bε(x) − bε(x+ z)| � |z|
∫ 1

0

|∇bε|(x+ sz)ds,

we have∫
|z|=r

|bε(x)− bε(x+ z)|Π(dz) � r

∫ 1

0

∫
|z|=r

|∇bε|(x+ sz)Π(dz)ds

= r

∫ 1

0

s1−d

∫
|z|=sr

|∇bε|(x + z)Π(dz)ds.

Hence, for any � > 0,∫
B�

|bε(x)− bε(x+ z)| dz =

∫ �

0

∫
|z|=r

|bε(x) − bε(x+ z)|Π(dz) dr

�
∫ �

0

r

∫ 1

0

s1−d

∫
|z|=sr

|∇bε|(x + z)Π(dz) ds dr

=

∫ 1

0

s−1−d

∫ s�

0

r

∫
|z|=r

|∇bε|(x+ z)Π(dz) dr ds

�
∫ 1

0

s−d�

∫
Bs�

|∇bε|(x+ z) dzds = �d
∫ �

0

s−d

∫
Bs

|∇bε|(x+ z) dzds.

For any x, y ∈ Rd, set � := |x− y|, then

|bε(x) − bε(y)| � −
∫
B�/2

|bε(x)− bε(
x+y
2 + z)|dz +−

∫
B�/2

|bε(y)− bε(
x+y
2 + z)|dz

� 2d −
∫
B�

|bε(x) − bε(x+ z)|dz + 2d −
∫
B�

|bε(y)− bε(y + z)|dz

� 2d
∫ �

0

−
∫
Bs

|∇bε|(x+ z)dzds+ 2d
∫ �

0

−
∫
Bs

|∇bε|(y + z)dz ds.(3.15)

Since for any R, � > 0,

lim
ε→0

∫ 1

0

∫
BR

|bε − b|(x) dxdt = 0
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and

lim
ε→0

∫ 1

0

∫
BR

(∫ �

0

−
∫
Bs

|∇(bε − b)|(x + z) dz ds
)
dxdt = 0,

we can take the limit ε → 0 in (3.15) and obtain the desired estimate. �

Lemma 3.6. Let b ∈ W 1,1
loc (R

d). There exists an L -null set A ⊂ R
d such that for

any δ, ε ∈ (0, 14 ), and all x, y ∈ Rd \A with |x− y| � √
δ,

|b(x)− b(y)|√|x− y|2 + δ2
� 2d(fδ,ε(x) + fδ,ε(y)),(3.16)

where

fδ,ε(x) := ε−d‖‖∞
∫
B1

|∇b|(x+ z) dz +
1

δ

∫ δ

0

−
∫
Bs

|∇b|(x+ z) dz ds

+

∫ √
δ

δ

1

s

(
−
∫
Bs

|∇(bε − b)|(x+ z)dz
)
ds,

and bε(x) = b ∗ ε(x) is the mollifying vector field. Moreover, for any R > 0,∫
BR

fδ,ε(x)dx � C,dε
−d‖∇b‖L1(BR+1) +

log δ−1

2
‖∇(bε − b)‖L1(BR+1),(3.17)

where C,d only depends on ‖‖∞ and d.

Proof. Set � := |x− y| � √
δ. By Lemma 3.5, we have

|b(x)−b(y)|√|x− y|2 + δ2
� 2d

(1
δ
∧ 1

�

)( ∫ �

0

−
∫
Bs

|∇b|(x+ z)dzds+

∫ �

0

−
∫
Bs

|∇b|(y + z)dzds
)
.

We make the following estimate:

(1
δ
∧ 1

�

) ∫ �

0

−
∫
Bs

|∇b|(x+ z) dz ds

� 1

δ

∫ δ

0

−
∫
Bs

|∇b|(x+ z) dz ds+
1�>δ

�

∫ �

δ

−
∫
Bs

|∇b|(x+ z) dz ds

� 1

δ

∫ δ

0

−
∫
Bs

|∇b|(x+ z) dz ds+
1

�

∫ �

δ

−
∫
Bs

|∇bε|(x+ z) dz ds

+
1�>δ

�

∫ �

δ

−
∫
Bs

|∇(bε − b)|(x+ z) dz ds

� 1

δ

∫ δ

0

−
∫
Bs

|∇b|(x+ z) dz ds+ sup
z∈B√

δ

|∇bε(x+ z)|

+

∫ √
δ

δ

1

s

(
−
∫
Bs

|∇(bε − b)|(x+ z)dz
)
ds.
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The estimate (3.16) now follows by noting that, provided that ε, δ < 1
4 ,

sup
z∈B√

δ

|∇bε|(x+ z) � ε−d‖‖∞
∫
B1

|∇b|(x+ z)dz

As for (3.17), by Fubini’s theorem, we have∫ 1

0

∫
BR

fδ,ε(x)dxds � ε−d‖‖∞
∫
BR

∫
B1

|∇b|(x+ z)dzdx+

∫ 1

0

∫
BR+1

|∇b|(z)dzdt

+

∫ √
δ

δ

1

s
ds

∫ 1

0

∫
BR+1

|∇(bε − b)|(z)dzdt

� (ε−d‖‖∞|B1|+ 1)

∫ 1

0

∫
BR+1

|∇b|(z)dzdt

+ log
( 1√

δ

) ∫ 1

0

∫
BR+1

|∇(bε − b)|(z)dzdt.

The proof is complete. �

We also recall the following well known result (cf. [26]):

Lemma 3.7. For any p > 1, there exists Cd,p > 0 such that for any N,R > 0 and
ϕ ∈ Lp

loc(R
d), ∫

BN

(MRϕ(x))
pdx � Cd,p

∫
BN+R

|ϕ(x)|pdx.(3.18)

3.3. An abstract criterion for the Laplace principle

LetH be the Cameron–Martin space over the classical Wiener space, the space of all
absolutely continuous functions from [0, 1] to Rd, which is isomorphic to L2(0, 1;Rd)
through the mapping h �→ ∫ ·

0
hsds. Below, we always regard H as L2(0, 1;Rd). For

M > 0, set
DM := {h ∈ H : ‖h‖H � M}

and

AM :=

{
h : [0, 1] → H is a simple and (Ft)-adapted

process, and for almost all ω, h(·, ω) ∈ DM

}
.(3.19)

We equip DM with the topology of weak convergence in H so that DM becomes a
compact Polish space. Let S be a Polish space. A function I : S → [0,∞] is given.

Definition 3.8. The function I is called a rate function if for every a < ∞, the
set {f ∈ S : I(f) � a} is compact in S.

Let {Zε : Ω → S, ε ∈ (0, 1)} be a family of measurable mappings. Assume that
there is a measurable map Z0 : H → S such that
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(LD)1 For any M > 0, if a family {hε, ε ∈ (0, 1)} ⊂ AM (as random variables in
DM ) converges in distribution to h ∈ AM , then for some subsequence εk,
Zεk

( ·+ 1√
εk

∫ ·
0
hεk
s (·)ds) converges in distribution to Z0(h) in S.

(LD)2 For any M > 0, if {hn, n ∈ N} ⊂ DM converges weakly to h ∈ H, then for
some subsequence hnk

, Z0(hnk
) converges to Z0(h) in S.

For each f ∈ S, define

I(f) :=
1

2
inf

{h∈H: f=Z0(h)}
‖h‖2H,(3.20)

where inf ∅ = ∞ by convention. Then under (LD)2, I(f) is a rate function.

We recall the following result due to [5] (see also Theorem 4.4 in [29]).

Theorem 3.9. Under (LD)1 and (LD)2, {Zε, ε ∈ (0, 1)} satisfies the Laplace
principle with the rate function I(f) given by (3.20). More precisely, for each real
bounded continuous function g on S:

lim
ε→0

ε logE
(
exp

[
− g(Zε)

ε

])
= − inf

f∈S

{g(f) + I(f)}.(3.21)

In particular, the family {Zε, ε ∈ (0, 1)} satisfies the large deviation principle in
(S,B(S)) with the rate function I(f).

4. Proofs of Theorems 2.2 and 2.4

We first establish the following key stability estimate:

Lemma 4.1. Assume that for some q � 1,

b, b̂ ∈ Lq
loc(R

d), |∇b| ∈ Lq
loc(R

d) and σ, σ̂ ∈ L2q
loc(R

d), |∇σ| ∈ L2q
loc(R

d).

Let μ(dx) = eλ(x)dx with λ ∈ C(Rd). Let Xt(x) and X̂t(x) be two μ-almost

everywhere stochastic flows of (1.2) corresponding to (b, σ) and (b̂, σ̂) in the sense
of Definition 2.1 with p = q in (2.1). Then for any N,R > 1, there exist constants
C1, C2, C3 > 0 such that for all η, δ, ε ∈ (0, 1),

E

∫
BN

(
sup

t∈[0,1]

|Xt(x) − X̂t(x)|2 ∧ 1
)
μ(dx)

� η +
2μ(BN )

Rη
E

∫
BN

(
sup

t∈[0,1]

|Xt(x)| ∨ |X̂t(x)|
)
μ(dx)

+
C1(ε

−d1q=1 + 1q>1)

η log δ−1
+

C2

η
‖∇(bε − b)‖L1(BR+1)1q=1

+
C3

ηδ log(4δ)−1

(
‖b− b̂‖Lq(BR) + ‖σ − σ̂‖L2q(BR)

)
,

where bε(x) = b ∗ ε(x), C1 = C(R,N, ‖∇b‖Lq(BR+1), ‖∇σ‖L2q(BR+1),Kq, λ), and
C2 = C3 = C(R,N,Kq, λ). Here, Kq is from (2.1).
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Proof. For δ > 0, let ξδ : R+ → R+ be a smooth function with 0 � ξ′δ(s) � 1,
0 � ξ′′δ (s) � 4

δ and

ξδ(s) =

{
s, s ∈ [0, δ/4],

δ/2, s ∈ [δ,∞).

By elementary calculations, we have

s � 2ξδ(s), s ∈ [0, δ].(4.1)

Set
Zt(ω, x) := Xt(ω, x)− X̂t(ω, x)

and
Φδ(ω, x) := sup

t∈[0,1]

ξδ(|Zt(ω, x)|2) = ξδ

(
sup

t∈[0,1]

|Zt(ω, x)|2
)
.

We divide the proof into two steps.

Step 1. In this step we prove that for any N,R > 1, there exist constants
C1, C2, C3 > 0 as in the statement of the lemma such that for all δ, ε ∈ (0, 1),

E

∫
BN∩GR

log
(Φδ(x)

δ2
+ 1

)
μ(dx) � C1ε

−d + C2 log δ
−1

∫
BR+1

|∇(bε − b)|(z)dz

+
C3

δ

(
‖b− b̂‖Lq(BR) + ‖σ − σ̂‖L2q(BR)

)
,(4.2)

where
GR(ω) :=

{
x ∈ R

d : sup
t∈[0,1]

|Xt(ω, x)| ∨ |X̂t(ω, x)| � R
}
.

Noticing that for μ-almost all x ∈ Rd and all t ∈ [0, 1]

Zt(x) =

∫ t

0

(b(Xs(x)) − b̂(X̂s(x))) ds +

∫ t

0

(σ(Xs(x)) − σ̂(X̂s(x))) dWs,

by Itô’s formula, we have

log
( ξδ(|Zt(x)|2)

δ2
+ 1

)

= 2

∫ t

0

ξ′δ(|Zs(x)|2)〈Zs(x), b(Xs(x)) − b̂(X̂s(x))〉
ξδ(|Zs(x)|2) + δ2

ds

+ 2

∫ t

0

ξ′δ(|Zs(x)|2)〈Zs(x), (σ(Xs(x)) − σ̂(X̂s(x)))dWs〉
ξδ(|Zs(x)|2) + δ2

+

∫ t

0

ξ′δ(|Zs(x)|2)‖σ(Xs(x)) − σ̂(X̂s(x))‖2
ξδ(|Zs(x)|2) + δ2

ds

+ 2

∫ t

0

ξ′′δ (|Zs(x)|2)|(σ(Xs(x)) − σ̂(X̂s(x)))
t · Zs(x)|2

ξδ(|Zs(x)|2) + δ2
ds

− 2

∫ t

0

(ξ′δ(|Zs(x)|2))2|(σ(Xs(x)) − σ̂(X̂s(x)))
t · Zs(x)|2

(ξδ(|Zs(x)|2) + δ2)2
ds

=: I1(t, x) + I2(t, x) + I3(t, x) + I4(t, x) + I5(t, x).
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Since I5(t, x) is negative, we can drop it. For I1(t, x), by (4.1), we have

sup
t∈[0,1]

|I1(t, x)| � 4

∫ 1

0

|b(Xs(x)) − b(X̂s(x))| · 1|Zs(x)|�
√
δ√|Zs(x)|2 + δ2
ds

+
2

δ

∫ 1

0

|b(X̂s(x)) − b̂(X̂s(x))| ds
=: I11(x) + I12(x).

Noting that

GR(ω) ⊂ {x : |Xt(ω, x)| � R} ∩ {x : |X̂t(ω, x)| � R}, ∀t ∈ [0, 1],

by (2.1), we have

E

∫
GR

|I12(x)|μ(dx) � 2

δ
E

∫ 1

0

∫
Rd

|1BR(b − b̂)|(X̂s(x))μ(dx)ds

� 2Kq

δ
‖1BR(b − b̂)‖Lq

μ
� Cq,R,λ

δ
‖b− b̂‖Lq(BR).(4.3)

For I11(x), if q = 1, by Lemma 3.6, we have

E

∫
GR

|I11(x)|μ(dx) � 2d+2
E

∫ 1

0

∫
GR

[fδ,ε(Xs(x)) + fδ,ε(X̂s(x))]μ(dx)ds

� Cd

∫
BR

fδ,ε(x)μ(dx) � Cd,R,λ

∫
BR

fδ,ε(x)dx

� Cd,R,λ,

(
ε−d‖∇b‖L1(BR+1) + log δ−1‖∇(bε − b)‖L1(BR+1)

)
;(4.4)

if q > 1, by Lemma 3.7, we have

E

∫
GR

|I11(x)|μ(dx) � C E

∫ 1

0

∫
GR

(M√
δ|∇b|(Xs(x)) +M√

δ|∇b|(X̂s(x)))μ(dx)ds

� C
( ∫

BR

(M√
δ|∇b|(x))qμ(dx)

)1/q

� C‖∇b‖Lq(BR+1).(4.5)

For I2(t, x), set

τR(ω, x) := inf
{
t ∈ [0, 1] : |Xt(ω, x)| ∨ X̂t(ω, x) > R

}
,

then

GR(ω) = {x : τR(ω, x) = 1}.
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By Burkholder’s inequality, Fubini’s theorem and (4.1), we have

E

∫
BN∩GR

sup
t∈[0,1]

|I2(t, x)|μ(dx)

�
∫
BN

E

(
sup

t∈[0,τR(x)]

∣∣∣∣∣
∫ t

0

ξ′δ(|Zs(x)|2)〈Zs(x), (σ(Xs(x)) − σ̂(X̂s(x)))dWs〉
ξδ(|Zs(x)|2) + δ2

∣∣∣∣∣
)
μ(dx)

� C

∫
BN

E

[ ∫ τR(x)

0

(ξ′δ(|Zs(x)|2))2|Zs(x)|2|σ(Xs(x)) − σ̂(X̂s(x))|2
(ξδ(|Zs(x)|2) + δ2)2

ds

] 1
2

μ(dx)

� Cμ(BN )
1
2

[
E

∫ 1

0

∫
BN∩GR

|σ(Xs(x))− σ̂(X̂s(x))|2 · 1|Zs(x)|�
√
δ

|Zs(x)|2 + δ2
μ(dx)ds

] 1
2

.

As the treatment of I1(t, x), by Lemma 3.7, we can prove that

E

∫
BN∩GR

sup
t∈[0,1]

|I2(t, x)|μ(dx) � C‖∇σ‖L2q(BR+1) +
C

δ
‖σ − σ̂‖L2q(BR),(4.6)

and similarly,

E

∫
BN∩GR

sup
t∈[0,1]

|I3(t, x)|μ(dx) � C‖∇σ‖L2q(BR+1) +
C

δ
‖σ − σ̂‖L2q(BR),(4.7)

E

∫
BN∩GR

sup
t∈[0,1]

|I4(t, x)|μ(dx) � C‖∇σ‖L2q(BR+1) +
C

δ
‖σ − σ̂‖L2q(BR).(4.8)

Combining (4.3)–(4.8), we obtain (4.2).

Step 2. Notice that
s ∧ 1 � ξ4(s) � 2, s � 0.

By definition of Φδ, it is enough to prove the estimate for E
∫
BN

Φ4(x)μ(dx). For
any η > 0, we have

E

∫
BN

Φ4(x)μ(dx) � η + μ(BN ) P
{∫

BN

Φ4(x)μ(dx) � η
}

(4.9)

� η + μ(BN ) P
{∫

BN∩Gc
R

Φ4(x)μ(dx) �
η

2

}

+ μ(BN ) P
{∫

BN∩GR

Φ4(x)μ(dx) �
η

2

}
.

In view of Φ4(x) � 2, by Chebyshev’s inequality, we have

P
{∫

BN∩Gc
R

Φ4(x)μ(dx) �
η

2

}
� P

{
μ(BN ∩Gc

R) �
η

4

}
� 4

η
Eμ(BN ∩Gc

R)

� 4

Rη
E

∫
BN

(
sup

t∈[0,1]

|Xt(x)| ∨ |X̂t(x)|
)
μ(dx).(4.10)
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Set now

Ψδ(x) := log
(Φδ(x)

δ2
+ 1

)
.

Notice that if Ψδ(x) � log(4δ)−1, then Φδ(x) � δ
4 , and so Φ4(x) � δ

4 by definition.
Hence, for any δ < η

μ(BN ) , we have

P
{∫

BN∩GR

Φ4(x)μ(dx) �
η

2

}
(4.11)

� P
{∫

BN∩GR

Φ4(x) · 1{Ψδ(x)>log (4δ)−1}μ(dx) �
η

4

}

+ P
{∫

BN∩GR

Φ4(x) · 1{Ψδ(x)�log (4δ)−1}μ(dx) �
η

4

}

� P
{∫

BN∩GR

Ψδ(x)μ(dx) �
η log (4δ)−1

8

}
+ 0

� 8

η log (4δ)−1
E

∫
BN∩GR

Ψδ(x)μ(dx).

The result now follows by combining (4.2), (4.9), (4.10) and (4.11). �

Let χ ∈ C∞(Rd) be a nonnegative cutoff function with

(4.12) ‖χ‖∞ � 1, χ(x) =

{
1, |x| � 1,

0, |x| � 2.

Set χn(x) := χ(x/n) and define

bn := b ∗ ρn · χn, σn := σ ∗ ρn · χn,(4.13)

where ρn = 1/n is the mollifier given by (3.12).

We are now in a position to give the proofs of Theorems 2.2 and 2.4.

Proof of Theorem 2.2. Let bn and σn be defined by (4.13). Let Xn
t (x) be the

solution of the Stratonovich SDE

Xn
t (x) = x+

∫ t

0

bn(X
n
s (x)) ds +

∫ t

0

σn(X
n
s (x)) ◦ dWs

= x+

∫ t

0

b̃n(X
n
s (x)) ds +

∫ t

0

σn(X
n
s (x)) dWs,

where

b̃n := bn +
1

2
σjl
n ∂jσ

·l
n .

We divide the proof into three steps.
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Step 1. By Lemma 3.1 and the properties of the convolution operator, for all
x ∈ R

d and t ∈ [0, 1], we have

E | det(∇[Xn
t (x)]

−1)|
� exp

{
‖[− div b̃n + 1

2∂iσ
jl
n ∂jσ

il
n + σil

n∂
2
ijσ

jl
n + 1

2 | div σn|2]+‖∞
}

= exp
{
‖[− div bn + 1

2σ
il
n∂

2
ijσ

jl
n + 1

2 | div σn|2]+‖∞
}

� exp
{
‖[div bn]−‖∞ + 1

2‖|σn| · |∇ div σn|‖∞ + 1
2‖ div σn‖2∞

}
.

Noticing that

div bn = ∂iχn(b
i ∗ ρn) + (div b ∗ ρn)χn,

σil
n∂

2
ijσ

jl
n = (σij ∗ ρn)[(∂2

ijσ ∗ ρn)χn + 2(∂iσ ∗ ρn)∂jχn + (σ ∗ ρn)∂2
ijχn],

by (2.2), the definition of χn, and elementary calculus, for n > 2(1ε ∨ r), where r
is from (2.2), we find

‖[div bn]−‖∞ � C + ‖[div b]−‖∞,

‖|σn| · |∇ div σn|‖∞ � C +
∥∥ sup

|z|�ε

|σ(· − z)| · |∇ div σ|∥∥∞,

‖ div σn‖2∞ � C + ‖ div σ‖2∞.

Here and below, C is independent of n. Thus,

sup
n∈N

sup
(t,x)∈[0,1]×Rd

E | det(∇[Xn
t (x)]

−1)| < +∞.

Hence, for any nonnegative measurable function ϕ ∈ L1(Rd),

sup
t∈[0,1]

E

∫
Rd

ϕ(Xn
t (x))dx(4.14)

= sup
t∈[0,1]

E

∫
Rd

ϕ(x) · | det(∇[Xn
t (x)]

−1)|dx � K‖ϕ‖L1.

Step 2. In this step we prove that for any N > 0,

sup
n∈N

E

∫
BN

sup
t∈[0,1]

|Xn
t (x)|2dx < +∞.(4.15)

Set

gt(x) := E

(
sup

s∈[0,t]

|Xn
s (x)|2

)
.
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By Itô’s formula, Burkholder’s inequality, and Young’s inequality, we have

gt(x) � |x|2 + 2E

∫ t

0

|Xn
s (x)| · |b̃n(Xn

s (x))|ds + E

∫ t

0

‖σn(X
n
s (x))‖2ds

+ C E

( ∫ t

0

|Xn
s (x)|2 · ‖σn(X

n
s (x))‖2 ds

)1/2

� |x|2 + 2E

∫ t

0

|Xn
s (x)| · |b̃n(Xn

s (x))| · (1|Xn
s (x)|�r + 1|Xn

s (x)|>r) ds

+ E

∫ t

0

‖σn(X
n
s (x))‖2ds+ C E

(
sup

s∈[0,t]

|Xn
s (x)|

[ ∫ t

0

‖σn(X
n
s (x))‖2ds

]1/2)

� |x|2 + 2rE

∫ t

0

|b̃n(Xn
s (x))| · 1|Xn

s (x)|�r ds+ Cr E

∫ t

0

(1 + |Xn
s (x)|2) ds

+
1

2
gt(x) + C E

∫ t

0

‖σn(X
n
s (x))‖2 ds,

where r is from (2.2) and we have used (2.2) in the last step. Hence,

gt(x) � 2|x|2 + 4rE

∫ t

0

|b̃n(Xn
s (x))| · 1|Xn

s (x)|�r ds

+ 2Cr

∫ t

0

(1 + gs(x))ds + C E

∫ t

0

‖σn(X
n
s (x))‖2ds.

By Gronwall’s inequality, we obtain that

g1(x) � Cr

(
|x|2 + E

∫ 1

0

|b̃n(Xn
s (x))| · 1|Xn

s (x)|�rds+ E

∫ 1

0

‖σn(X
n
s (x))‖2ds

)
.

Now, by (4.14) and (2.2), we have

E

∫
BN

gt(x)dx � CN,r + Cr‖b̃n‖L1(Br) + CN,r(‖σn‖2L∞(Bc
r)
+ ‖σn‖2L2(Br)

)

� CN,r+Cr‖bn‖L1(Br) +Cr‖σn‖L2(Br)‖∇σn‖L2(Br) +CN,r(‖σ‖2L∞(Bc
r)
+‖σ‖2L2(Br)

)

� CN,r + Cr‖b‖L1(Br) + Cr‖σ‖L2(Br)‖∇σ‖L2(Br) + CN,r(‖σ‖2L∞(Bc
r)
+ ‖σ‖2L2(Br)

),

which gives (4.15).

Step 3. Noting that, for n > R+ 1,

‖∇bn‖L1(BR+1) � ‖∇b‖L1(BR+1), ‖∇σn‖L2(BR+1) � ‖∇σ‖L2(BR+1),

by (4.14), (4.15) and Lemma 4.1, we have that for any δ, η, ε ∈ (0, 1),

E

∫
BN

(
sup

t∈[0,1]

|Xn
t (x) −Xm

t (x)|2 ∧ 1
)
dx

� η +
C(N, r)

Rη
+

C2

η
‖∇(bn ∗ ε − bn)‖L1(BR+1) +

C1ε
−d

η log δ−1

+
C3

ηδ log δ−1

(‖bn − bm‖L1(BR) + ‖σn − σm‖L2(BR)

)
,
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where C1, C2 and C3 are independent of n, ε and δ. We take limits in the following
order: n,m → ∞, δ → 0, ε → 0, R → ∞, η → 0. We then find

lim
n,m→∞E

∫
BN

(
sup

t∈[0,1]

|Xn
t (x) −Xm

t (x)|2 ∧ 1
)
dx = 0,

which together with (4.15) gives further that for any p ∈ [1, 2),

lim
n,m→∞E

∫
BN

(
sup

t∈[0,1]

|Xn
t (x)−Xm

t (x)|p
)
dx = 0.

Therefore, there exists a continuous Ft-adapted stochastic field Xt(x) such that
for any N > 0 and p ∈ [1, 2),

lim
n→∞E

∫
BN

(
sup

t∈[0,1]

|Xn
t (x) −Xt(x)|p

)
dx = 0.

In particular, there exists a subsequence still denoted by n such that for P ⊗ μ-
almost all (ω, x),

lim
n→∞ sup

t∈[0,1]

|Xn
t (ω, x)−Xt(ω, x)| = 0.

Condition (A) in Definition 2.1 now follows by (4.14) and (i) of Lemma 3.4. For
verifying (B) in Definition 2.1, it suffices to prove that for any N > 0 and s ∈ [0, 1],

lim
n→∞E

∫
BN

|bn(Xn
s (x)) − b(Xs(x))| dx = 0,(4.16)

lim
n→∞E

∫
BN

|(σjl
n ∂jσ

il
n )(X

n
s (x)) − (σjl∂jσ

il)(Xs(x))| dx = 0,(4.17)

lim
n→∞E

∫
BN

|σn(X
n
s (x))− σ(Xs(x))|2 dx = 0.(4.18)

We only prove (4.16). The others are analogous. We make the following decom-
position:∫

BN

|bn(Xn
s (x)) − b(Xs(x))|dx �

∫
BN

|bnχm − bχm|(Xn
s (x))|dx

+

∫
BN

|bn(1− χm)|(Xn
s (x))dx +

∫
BN

|b(1− χm)|(Xs(x))dx =: Inm1 + Inm2 + Im3 .

For fixed m ∈ N, by (ii) of Lemma 3.4, we have

lim
n→∞E Inm1 = 0.(4.19)

On the other hand, for m > r, we have

Inm2 � C

∫
BN

(1 + |Xn
s (x)|) · 1|Xn

s (x)|�mdx � C

m

∫
BN

(1 + |Xn
s (x)|2)dx,

which together with (4.15) yields

lim
m→∞ sup

n
E Inm2 = 0.(4.20)
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Similarly,

lim
m→∞E Im3 = 0.(4.21)

Combining (4.19), (4.20) and (4.21), we get (4.16). The proof is thus complete. �

Proof of Theorem 2.4. Let bn and σn be defined by (4.13). Since b and σ have
linear growth, we have

|bn(x)| + |σn(x)| � C(1 + |x|),
where C is independent of n. It is then standard to prove that for any p � 1,

sup
n∈N

E

(
sup

t∈[0,1]

|Xn
t (x)|2p

)
< +∞.

Note that
∂jσ

il
n = ∂jσ

il ∗ ρn · χn + σil
n · ∂jχn,

and by the linear growth of σ

|σn · ∇χn| �
C 1n�|x|�2n

n

∫
Rd

(1 + |x− y|)ρn(y)dy � C.

By Jensen’s inequality and (2.5), for n � 1
ε , we have

|Λσn
1 |2 = | div σn + σi·

n∂iλ|2
� C

(| div σ|2 ∗ ρn + |σ|2 ∗ ρn · |∇λ|2 + 1
)
� C

(|∇σ|2 + |σ|2γ2
2

) ∗ ρn + C

and

−Λbn,σn

2 = −
[
div bn + bin∂iλ+

1

2
(σil

nσ
jl
n ∂

2
ijλ− ∂iσ

jl
n ∂jσ

il
n )

]
� C

[
[div b]− ∗ ρn + |b| ∗ ρn|∇λ|+ (|σ| ∗ ρn)2|∇2λ|+ (|∇σ| ∗ ρn)2) + 1

]
� C

[
[div b]− + |b|γ2 + |σ|2γ3 + |∇σ|2

]
∗ ρn + C.

Hence, for all t ∈ [0, 1] and p > 1, by Lemma 3.2 and Jensen’s inequality again,

E

∫
Rd

|J n
t (x)|pμ(dx) � CN sup

t∈[0,1]

∫
Rd

exp
{
tp3|Λσn

3 (x)|2 − tp2Λbn,σn

2 (x)
}
μ(dx)

� CN

∫
Rd

eC
(
[div b]−+|b|γ2+|σ|2(γ2

2+γ3)+|∇σ|2
)
∗ρn(x) · eλ(x)dx

� CN

∫
Rd

e

[
C
(
[div b]−+|b|γ2+|σ|2(γ2

2+γ3)+|∇σ|2
)
+γ1

]
∗ρn(x)dx

� CN

∫
Rd

eC
(
[div b]−+|b|γ2+|σ|2(γ2

2+γ3)+|∇σ|2
)
+γ1 ∗ ρn(x)dx

= CN

∫
Rd

e

[
C
(
[div b]−+|b|γ2+|σ|2(γ2

2+γ3)+|∇σ|2
)
+γ1

]
(x)dx < +∞.
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Thus, by (3.3) and Hölder’s inequality, we obtain that for any p > 1,

E

∫
Rd

ϕ(Xn
t (x))μ(dx) = E

∫
Rd

ϕ(x)J n
t (x)μ(dx)

� ‖ϕ‖Lp
μ

(
E

∫
Rd

|J n
t (x)| p

p−1μ(dx)
)1− 1

p � C.

The rest of the proof is the same as that of Step 3 in the proof of Theorem 2.2. �

5. Proof of Theorem 2.9

For proving Theorem 2.9, our task is to check (LD)1 and (LD)2. By the infinite-
dimensional Yamada–Watanabe theorem (cf. [25]), there exists a measurable func-
tional

Φε : Ω → S = L2p
ν (Rd;C([0, 1];Rd)), p � 1,

such that

Xε,t(ω, x) = Φε(ω)(t, x).

For ε ∈ (0, 1), let hε ∈ AM , where AM is defined by (3.19). By Girsanov’s theorem,
one sees that

Xε
t (ω, x) = Φε

(
W·(ω) +

1√
ε

∫ ·

0

hε
s(ω)ds

)
(t, x)

solves the controlled equation:

dXε
t (x) = b(Xε

t (x))dt + σ(Xε
t (x))h

ε
tdt+

√
εσ(Xε

t (x))dWt, Xε
0(x) = x.

For h ∈ AM , let Xh
t (x) solve equation (2.9). We have:

Lemma 5.1. (i) For any p � 1 and h ∈ AM ,

E

(
sup

t∈[0,1]

|Xh
t (x)|2p

)
+ sup

ε∈(0,1)

E

(
sup

t∈[0,1]

|Xε
t (x)|2p

)
� C(1 + |x|2p).

(ii) For any p > 1, hε ∈ AM and nonnegative function ϕ ∈ Lp
μ(R

d),

E

∫
BN

ϕ(Xε
t (x))μ(dx) � CN,M‖ϕ‖Lp

μ
.

Proof. (i) It follows in a standard way from the linear growth of b and σ.

(ii) Define bn and σn by (4.13). Consider the following SDE:

dXε,n
t (x) = bn(X

ε,n
t (x))dt + σn(X

ε,n
t (x))hε

tdt+
√
εσn(X

ε,n
t (x))dWt,

Xε,n
0 (x) = x.



48 X. Zhang

From the proofs of Lemma 3.2 and Theorem 2.4, one can see that for any p > 1
and ϕ ∈ Lp

μ(R
d),

E

∫
BN

ϕ(Xε,n
t (x))μ(dx) � CN,M‖ϕ‖Lp

μ
,

where CN,M is independent of ε. Now taking the limit n → ∞ gives the result (see
Lemma 3.4). �

Set

wε
t (x) :=

∫ t

0

σ(Xh
s (x))(h

ε
s − hs)ds.(5.1)

Lemma 5.2. Suppose that hε converges weakly to h a.s. in DM . Then for any
p � 1, we have

lim
ε→0

E

∫
BN

sup
t∈[0,1]

|wε
t (x)|2p dx = 0.

Proof. For fixed (ω, x), let us first prove that

lim
ε→0

sup
t∈[0,1]

|wε
t (ω, x)| = 0.(5.2)

By the weak convergence of hε· (ω) to h·(ω), one sees that, for fixed t ∈ [0, 1],

lim
ε→0

wε
t (ω, x) = lim

ε→0

∫ t

0

σ(Xh
s (ω, x))(h

ε
s(ω)− hs(ω))ds = 0.

Since for t′ < t

|wε
t (ω, x)− wε

t′(ω, x)| �
∫ t

t′
|σ(Xh

s (ω, x))(h
ε
s(ω)− hs(ω))| ds

� 2M
(∫ t

t′
|σ(Xh

s (ω, x))|2ds
) 1

2 → 0,

uniformly in ε as |t− t′| → 0, we immediately have (5.2). In view of

sup
t∈[0,1]

|wε
t (x)|2p � CM,p

∫ 1

0

|σ(Xh
s (x))|2pds,

the desired limit now follows by the dominated convergence theorem and (5.2). �

Lemma 5.3. Suppose that hε converges weakly to h a.s. in DM . Then for some
subsequence εk, X

εk converges to Xh in probability in the space S, where Xh solves
equation (2.9).

Proof. Set
Zε
t (x) := Xε

t (x)−Xh
t (x).
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By Itô’s formula, for any δ > 0, we have

log
( |Zε

t (x)|2
δ2

+ 1
)
= 2

∫ t

0

〈Zε
s (x), b(X

ε
s (x)) − b(Xh

s (x))〉
|Zε

s (x)|2 + δ2
ds

+ 2

∫ t

0

〈Zε
s (x), (σ(X

ε
s (x)) − σ(Xh

s (x)))h
ε
s〉

|Zε
s (x)|2 + δ2

ds

+ 2

∫ t

0

〈Zε
s (x), σ(X

h
s (x))(h

ε
s − hs)〉

|Zε
s (x)|2 + δ2

ds

+ 2
√
ε

∫ t

0

〈Zε
s (x), σ(X

ε
s (x))dWs〉

|Zε
s (x)|2 + δ2

+ ε

∫ t

0

‖σ(Xε
s (x))‖2

|Zε
s (x)|2 + δ2

ds− 2ε

∫ t

0

|(σ(Xε
s (x)))

t · Zε
s (x)|2

(|Zε
s (x)|2 + δ2)2

ds

=: Iε1(t, x) + Iε2(t, x) + Iε3(t, x) + Iε4 (t, x) + Iε5 (t, x) + Iε6 (t, x).

We want to prove that for any N,R > 0,

E

∫
BN∩Gε

R

log
(supt∈[0,1] |Zε

t (x)|2
δ2

+ 1
)
μ(dx) � C1 +

C2(ε)

δ
,(5.3)

where C1 is independent of ε and δ, C2(ε) → 0 as ε → 0, and

Gε
R(ω) :=

{
x ∈ R

d : sup
t∈[0,1]

|Xε
t (ω, x)| ∨ |Xh

t (ω, x)| � R
}
.

First of all, Iε6(t, x) is negative so can be dropped. By Lemmas 3.7 and 5.1, as in
the proof of Lemma 4.1, it is easy to see that

E

∫
BN∩Gε

R

sup
t∈[0,1]

(|Iε1 (t, x)| + Iε2(t, x)|)μ(dx) � C1.

Moreover, by Burkholder’s inequality, we also have

E

∫
BN∩Gε

R

sup
t∈[0,1]

(|Iε4 (t, x)|+ Iε5 (t, x)|)μ(dx) �
Cε

δ2
.

We now deal with the hard term Iε3 (t, x). Set

ξ(x) :=
x

|x|2 + δ2
.

Recalling (5.1), we have

Iε3 (t, x) = 2

∫ t

0

〈ξ(Zε
s (x)), dw

ε
s(x)〉 = 2〈ξ(Zε

t (x)), w
ε
t (x)〉− 2

∫ t

0

〈wε
s(x), dξ(Z

ε
s (x))〉.

By Itô’s formula, we have

dξ(Zε
t (x)) = ∇ξ(Zε

t (x))(b(X
ε
t (x))− b(Xh

t (x)))dt +∇ξ(Zε
t (x))(σ(X

ε
t (x))h

ε
t

− σ(Xh
t (x))ht)dt+

ε

2
∂2
ijξ(Z

ε
t (x))σ

il(Xε
t (x))σ

jl(Xε
t (x))dt

+
√
ε∇ξ(Zε

t (x))σ(X
ε
t (x))dWt.
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Hence,

Iε3 (t, x) = 2〈ξ(Zε
t (x)), w

ε
t (x)〉 − 2

∫ t

0

〈∇ξ(Zε
s (x))(b(X

ε
s (x))− b(Xh

s (x))), w
ε
s(x)〉ds

− 2

∫ t

0

〈∇ξ(Zε
s (x))(σ(X

ε
s (x))h

ε
s − σ(Xh

s (x))hs), w
ε
s(x)〉ds

− ε

∫ t

0

〈∂2
ijξ(Z

ε
s (x))σ

il(Xε
s (x))σ

jl(Xε
s (x)), w

ε
s(x)〉ds

− 2
√
ε

∫ t

0

〈∇ξ(Zε
s (x))σ(X

ε
s (x))dWs, w

ε
s(x)〉

=: Iε31(t, x) + Iε32(t, x) + Iε33(t, x) + Iε34(t, x) + Iε35(t, x).

Noticing that

∂iξ
k(x) =

1i=k

|x|2 + δ2
− 2xixk

(|x|2 + δ2)2

and

∂2
ijξ

k(x) = − 2 · 1i=kx
j

(|x|2 + δ2)2
+

4xixjxk

(|x|2 + δ2)3
,

we have

|ξ(x)| � 1

δ
, |∇ξ(x)| � 2

δ2
, |∇2ξ(x)| � 6

δ3
.

Using Lemma 5.2, as above, one finds that

E

∫
BN∩Gε

R

sup
t∈[0,1]

|Iε3(t, x)|μ(dx) �
C(ε)

δ3
,

where C(ε) → 0 as ε → 0.
Combining the above estimates, we obtain (5.3). Thus, by (5.3) and Lemma 5.1,

as in Step 2 in the proof of Lemma 4.1, there exists a subsequence εk such that for
P ⊗ μ-almost all (ω, x)

sup
t∈[0,1]

|Xεk
t (ω, x)−Xh

t (ω, x)| → 0, as k → ∞.

Using (i) of Lemma 5.1, there exists another subsequence ε′k such that Xε′k con-
verges to Xh in probability in the space S. �

Proof of Theorem 2.9. Let hε be a sequence in AM converging to h in distribution.
Since DM is compact and the law of W is tight, {hε,W} is tight in DM × Ω by
the definition of tightness. Without loss of generality, we assume that the law of
{hε,W} weakly converges to some P on DM ×Ω. Then the law of h is just P(·,Ω).
By Skorokhod’s representation theorem, there are a probability space (Ω̃, F̃ , P̃ ),
and random elements {h̃ε, W̃ ε} and {h̃, W̃} in DM × Ω such that

(1) (h̃ε, W̃ ε) a.s. converges to (h̃, W̃ );

(2) (h̃ε, W̃ ε) has the same law as (hε,W );

(3) The law of {h̃, W̃} is P, and the law of h is the same as that of h̃.
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Using Lemma 5.3, we get for some subsequence εk,

Φεk

(
W̃ εk· +

1√
εk

∫ ·

0

h̃εk
s ds

)
→ X h̃, in probability.

From this, we derive

Φεk

(
W· +

1√
εk

∫ ·

0

hεk
s ds

)
→ Xh, in distribution.

Thus, (LD)1 holds. (LD)2 can be simply verified as in Lemma 5.3. �
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