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conformal invariants

Albert Baernstein II and Alexander Yu. Solynin

Dedicated to our friend Walter K. Hayman

Abstract. Let a1, . . . , aN be points on the unit circle T with aj = eiθj ,
where 0 = θ1 ≤ θ2 ≤ · · · ≤ θN = 2π. Let Ω = C \ {a1, . . . , aN} and
let Ω∗ be C with the n-th roots of unity removed. The maximal gap δ(Ω)
of Ω is defined by δ(Ω) = max{θj+1 − θj : 0 ≤ j ≤ N − 1}. How should
one choose a1, . . . , aN subject to the condition δ(Ω) ≤ 2π/n so that the
Poincaré metric λΩ(0) of Ω at the origin is as small as possible? In this
paper we answer this question by showing that λΩ(0) is minimal when
Ω = Ω∗. Several similar problems on the extremal values of the harmonic
measures and capacities are also discussed.

1. Introduction

Let T denote the unit circle |z| = 1 in the complex plane C. Write C = C ∪ {∞}.
Take an integer n ≥ 3 and let a1, . . . , an be points of T. Set Ω = C \ {a1, . . . , an},
and let λΩ denote the (density of) the Poincaré metric of Ω.

How should one choose a1, . . . , an to make λΩ(0) as large as possible? Making a
domain smaller makes its Poincaré metric larger, so making its complement larger
makes its Poincaré metric larger. This leads one to conjecture the inequality

λΩ(0) ≤ λΩ∗(0),

where
Ω∗ = C \ {e 2πij

n : 1 ≤ j ≤ n}.
In [19] it was proved that the inequality above indeed does hold. Thus, the

problem of maximizing λΩ(0) over all allowable a1, . . . , an has been solved.
There are various related extremal problems. For example, if we take Ω to be

C\{a1, . . . , an} instead ofC\{a1, . . . , an}, will the maximal λΩ(0) again be achieved

Mathematics Subject Classification (2010): Primary 30C; Secondary 31A.
Keywords: Comparison theorem, hyperbolic metric, harmonic measure, capacity.



92 A. Baernstein II and A.Yu. Solynin

when the a1, . . . , an are equally spaced on T? To the best of our knowledge, this
problem remains unsolved.

Here is another problem. Let a1, . . . , aN be points of T with aj = eiθj , where
0 = θ0 < θ1 ≤ · · · ≤ θN−1 ≤ θN = 2π. Then the θj generate a partition of [0, 2π].
Define the ordered N + 1-tuple Θ to be

Θ = (θ0, θ1, . . . , θN−1, θN ),

and define the maximal gap δ(Ω) of the partition by

δ(Ω) = max{θj+1 − θj : 0 ≤ j ≤ N − 1}.

Assume that

δ(Ω) ≤ 2π

n
.

Then N ≥ n, and when the aj are n equally spaced points on T, the gap constraint
is satisfied with equality. Define Ω = C \ {a1, . . . , aN}, and let again Ω∗ be C with
the n-th roots of unity removed.

Problem. How should one choose a1, . . . , aN so that λΩ(0) is as small as possible?

In this article we will solve this problem by showing that λΩ(0) is minimal when
Ω = Ω∗, that is, when N = n and the aj are equally spaced. This Poincaré metric
comparison theorem will be obtained as a consequence of more general results
involving PDEs of the form

Δu = γ(u) + f in Ω,

with boundary values

u = constant A on ∂Ω,

where γ is an increasing function on R, f is an n-fold symmetric function satisfying
a suitable monotonicity condition, and the open set Ω is n-fold symmetric. Here,
n-fold symmetry of Ω means that z ∈ Ω if and only if e

2πi
n z ∈ Ω and z ∈ Ω if

and only if z ∈ Ω. A function f is said to be n-fold symmetric if and only if
f(ze

2πi
n ) = f(z) and f(z) = f(z) for all relevant z.

In Theorem 1, we consider the case n = 1 and prove that u satisfies a mono-
tonicity condition on circles. Theorem 2 is like Theorem 1, but now all the relevant
objects are n-fold symmetric.

Theorem 3 is the main result of the paper. We start with an n-fold symmetric
function u satisfying the PDE, a partition Θ of [0, 2π] and an n-fold symmetric Ω.
We then define a new open set, called ΩΘ, and a new function uΘ defined on ΩΘ.
These new objects are called transplants of the originals via Θ. They are defined
in Section 3, after the proof of Theorem 2. It is proved in Theorem 3 that if
the maximal gap of Ω is less than or equal to 2π

n and if v is a function satisfying
Δv ≤ γ(v) + fΘ in ΩΘ and v ≥ A on ∂ΩΘ, then v ≥ uΘ in ΩΘ.

When Ω is not a bounded subset of C, we have to add some assumptions
involving the behavior of u at ∞.
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In Theorems 4–7, we use Theorem 3 to prove transplantation inequalities in-
volving harmonic measure, hyperbolic capacity, logarithmic capacity and Poincaré
metrics. The theorems have corollaries which give explicit estimates for these
conformal invariants. The result discussed above about minimizing λΩ(0) when
Ω = C \ {a1, . . . , aN} is a corollary to Theorem 7.

The results in this paper about Poincaré metrics are similar in spirit to the
results in [4].

2. A monotonicity theorem

Let Ω be be an open set in C which is circularly symmetric with respect to R+ =
{t ∈ R : 0 ≤ t <∞}. This means that 0 might or might not belong to Ω, and that
for each r > 0 the intersection of Ω with the circle |z| = r is either empty, the whole
circle, or a single arc of the form {reiθ : 0 ≤ |θ| < ϕ(r)}, where 0 < ϕ(r) ≤ π. For
short, we shall say simply that Ω is circularly symmetric. Also, set

K = C \ Ω, Ω+ = Ω ∩ {z ∈ C : Im z > 0}.

A function f on Ω is said to be symmetric decreasing if f(z) = f(z) for all z ∈ Ω,
and f(reiθ) is a decreasing (= nonincreasing) function of θ on the intersection of
the circle |z| = r with Ω+. Symmetric increasing functions are defined analogously.

Let now u : C → R be a function satisfying the following assumptions:

(a) u ∈ C2(Ω \ {0}), u ∈ C(C).

(b) Δu(z) = p(|z|)[γ(u(z)) + f(z)], z ∈ Ω \ {0}, where γ is a nonnegative
continuous increasing function on R, f is a nonnegative continuous symmet-
ric decreasing function on Ω, and p is a nonnegative continuous function
on [0,∞).

(c) u(z) = A, z ∈ K, where A is a finite real constant.

If Ω is unbounded, we assume also that

(d) lim supz→∞, z∈Ω u(z) ≤ A.

(e) There is a symmetric increasing function u0(re
iθ)), defined for sufficiently

large r and all θ, such that

lim
r→∞[u(reiθ)− u0(re

iθ)] = 0,

uniformly for θ ∈ [−π, π].

Theorem 1. Suppose that Ω is a circularly symmetric open set in C, and that the
function u satisfies conditions (a)–(e). Then u is symmetric increasing on C.

Theorem 1 is a variant of a theorem of A. Weitsman [22]. See also Lemma 9.8
of [11]. L. E. Fraenkel’s book [7] contains results like Theorem 1 involving Steiner
symmetrization.
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Proof of Theorem 1. Since γ, f and p are nonnegative, u is subharmonic in Ω\{0}.
Since u is continuous on C with u = A on K \ {0} and u satisfies assumption (d)
at ∞, it follows from the extended maximum principle [12], that u ≤ A everywhere
in C. Moreover, in each connected component of Ω, either u(z) < A for all z or
u ≡ A in that component. In the latter case u is constant in an annulus, disk, or
exterior disk containing the component and thus is symmetric increasing in that
annulus or disk. From now on, we shall assume that u(z) < A everywhere in Ω.

Let H denote the upper half plane Im z > 0 and write H = H ∪ R. Define a
function u∗ : H \ {0} → R by

u∗(reiθ) = inf
E

∫
E

u(reit) dt,

where the infimum is taken over all measurable sets E ⊂ [−π, π] with |E| = 2θ.
Here, |E| denotes the one-dimensional Lebesgue measure of E. Then for each z =
reiθ there exists a set E = E(z) with measure 2θ such that the infimum is attained.
We will call such an E a minimal set. For general functions h ∈ L1[−π, π], minimal
sets with |E| = 2θ have the form E = E1∪E2, where E1 = {t ∈ [−π, π] : h(t) < s}
and E2 is a subset of {t ∈ [−π, π] : h(t) = s}, chosen so that |E1|+ |E2| = 2θ.

For facts about u∗, see [11]. A key fact about u∗ for us is the inequality

(2.1)

∫ π

−π
u∗(reiθ + ρeiψ) dψ ≤

∫
E

dt

∫ π

−π
u(reit + ρeiψ) dψ.

Here, we assume that z = reiθ ∈ H is given, and that ρ is positive and suffi-
ciently small. This is inequality (9.5.10) of [11], where one may find a proof.

From (2.1) and
∫
E
u(reit) dt = u∗(reiθ), it follows that

(2.2)

∫ π

−π
[u∗(reiθ + ρeiψ)− u∗(reiθ)] dψ ≤

∫
E

dt

∫ π

−π
[u(reit + ρeiψ)− u(reit)]dψ.

Inequality (2.2) is valid for all reiθ ∈ H and all positive sufficiently small ρ.

Next, for real functions h in a plane domain D, define the “generalized Lapla-
cian” Δh by

(2.3) Δh(z) = lim inf
ρ→0

4ρ−2
{ 1

2π

∫ π

−π
h(z + ρeiψ) dψ − h(z)

}
, z ∈ D.

If h is C2 in a disk B(z, ρ0) and 0 < ρ < ρ0, then an application of Green’s
Theorem gives (see [21], or page 694 of [11])

(2.4)
1

2π

∫ π

−π
h(z + ρeiψ) dψ − h(z) =

1

2π

∫
|ζ|<ρ

Δh(z + ζ) log |ρ/ζ| |dζ|2.

From the continuity of Δh at z, it follows that the lim inf in (2.3) exists as a
limit, and that the generalized Laplacian of h at z equals the classical Laplacian
of h at z.
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Returning now to our function u, write Ω+ = Ω ∩ H, and take z = reiθ ∈ Ω+.
Then 0 < θ < ϕ(r). We are assuming that u < A in Ω, so that u(reit) < A on
|t| < ϕ(r) and u(reit) = A for ϕ(r) ≤ |t| ≤ π. Also, u is continuous. A simple
argument left to the reader shows existence of a minimal set E = E(z) which is
contained in [−ϕ(r) + ε, ϕ(r) − ε] for some ε > 0. Thus, there exists ρ0 > 0 such
that the set of ζ in C at distance ≤ ρ0 from the set rE is contained in Ω. Since
u ∈ C2(Ω), (2.2) and (2.4) imply that for ρ < ρ0,∫ π

−π
[u∗(reiθ + ρeiψ)− u∗(reiθ)] dψ ≤

∫
E

dt

∫
|ζ|<ρ

Δu(reit + ζ) log |ρ/ζ| dζ|2.

Divide both sides by ρ2. The integral with respect to |dζ|2 is a bounded function
of t ∈ E and ρ < ρ0. Thus, when ρ→ 0 we can move the limit on the right inside
the dt integral. This gives

(2.5) Δu∗(reiθ) ≤
∫
E

Δu(reit) dt, z ∈ Ω+.

Next, define U : H \ {0} → R by

U(reiθ) =

∫ θ

−θ
u(reit) dt.

Then U is continuous on H \ {0}, U ∈ C2(Ω+), and a short calculation shows that

(2.6) ΔU(z) =

∫ θ

−θ
Δu(reit) dt, z ∈ Ω+.

Define
w(z) = U(z)− u∗(z), z ∈ H \ {0}.

Then w is continuous on H \ {0}. Write E = E(z) = E(reiθ) and I = [−θ, θ].
Then from (2.5), (2.6) and the PDE satisfied by u, we obtain

Δw(z) ≥
∫
I

Δu(reit) dt−
∫
E

Δu(reit) dt

= p(r)

∫
I

γ(u(reit)) dt− p(r)

∫
E

γ(u(reit)) dt(2.7)

+ p(r)

∫
I

f(reit) dt− p(r)

∫
E

f(reit) dt.

Since f is symmetric decreasing, we have
∫
I f(re

it) dt − ∫
E f(re

it) dt ≥ 0.
Since γ is increasing and E is a minimal set for u, it follows that E is also a
minimal set for γ(u), so that

∫
I
γ(u(reit)) dt − ∫

E
γ(u(reit)) dt ≥ 0. Hence w is

subharmonic in Ω+.

Strictly speaking, our argument shows that w is a generalized subharmonic
function on Ω+. However, a theorem of Radó (see page 14 of [16]) shows that
generalized subharmonic functions coincide with ordinary subharmonic functions
(defined in terms of mean values.)
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Now take z = reiθ ∈ H with z �= 0 and z /∈ Ω+. Recall that ϕ(r) = ϕ is twice
the length of the intersection of Ω with the circle |z| = r. Thus ϕ(r) ≤ θ ≤ π.
Since u(reit) ≤ A for |t| ≤ ϕ(r) and u(reit) = A for |t| ≥ ϕ(r), it follows that
the interval I = [−θ, θ] is a minimal set. This implies u∗(reiθ) = U(reiθ), so that
w(z) = 0 for all z ∈ K \ {0} with z ∈ H.

From the continuity of u at z = 0, one easily checks that

lim
z→0

w(z) = 0.

If Ω is unbounded, then assumption (e) and the inequality
∫ θ
−θ u0(re

it) ≤∫
E
u0(re

it) dt when |E| = 2θ imply that

lim sup
z→∞, z∈H

w(z) ≤ 0.

We have shown that the continuous function w is subharmonic in Ω+, has
upper limit zero as z ∈ Ω+ approaches ∂Ω+, and has nonpositive upper limit as z
approaches ∞. By the maximum principle, w ≤ 0 in H. But the definitions of u∗
and U show that w ≥ 0. We conclude that u∗ = U in H, which, by a simple
argument, implies that u is symmetric increasing on C. �

3. A monotonicity theorem and a comparison theorem

It is convenient to revise our notation. In this section n will denote a positive
integer. K will denote a closed subset of C which is circularly symmetric with
respect to R+ and is contained in the closed sector

| arg z| ≤ π

n
.

Write E = K ∩ (0,∞). Then K has the form

{z = reiθ ∈ C : r ∈ E, |θ| ≤ ϕ(r)},
where ϕ is a lower semicontinuous function on E with values in [0, πn ]. We shall
refer to such K as circularly symmetric closed subsets of | arg z| ≤ π

n .

Define

Kn =
n−1⋃
j=0

e
2πij
n K,

where eiθK denotes rotation of K through an angle θ about the origin.
For a given K, write

Ωn = C \Kn.

Then Kn is an n-fold symmetric closed set and Ωn is an n-fold symmetric open

set. If K intersects a circle |z| = r then Kn contains all the points z = re
2πij
n . If

ϕ(r) = π
n , then Kn is the whole circle |z| = r, and Ωn will be disconnected unless

its intersection with at least one of the sets |z| < r or |z| > r is empty.
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Let now u : C → R be a function satisfying the following assumptions:

(aa) u ∈ C2(Ωn \ {0}), u ∈ C(C).

(bb) Δu(z) = γ(u(z)) + f(z), z ∈ Ωn \ {0}, where γ is a nonnegative continuous
increasing function on R and f is a nonnegative continuous n-fold symmetric
function on Ωn which is increasing on 0 ≤ θ ≤ π

n for each fixed r.

(cc) u(z) = A, z ∈ Kn, where A is a finite real constant.

If Ωn is unbounded, we assume also that

(dd) lim supz→∞, z∈Ωn
u(z) ≤ A.

(ee) There is an n-fold symmetric function u0(re
iθ)), defined for sufficiently large

r and all θ, such that u0 is decreasing on 0 ≤ arg z ≤ π
n and

lim
r→∞[u(reiθ)− u0(re

iθ)] = 0,

uniformly for θ ∈ [−π, π].
Theorem 2. Suppose that Ωn and Kn are as above, and that the function u
satisfies conditions (aa)–(ee). Then u is n-fold symmetric on C and u is decreasing
in the sector 0 ≤ θ ≤ π

n for each fixed r.

Proof. Define w(z) = u(e
2πi
n z)− u(z). Then w is continuous on C, w = 0 on Kn,

and, by condition (ee), w(z) → 0 as z → ∞. Suppose that w is somewhere
positive. Then there exists z0 ∈ Ωn such that w(z0) = maxC w > 0. There is a
neighborhood D of z0 in which w > 0. Using the symmetry of f , we have

Δw(z) = Δu(e
2πi
n z)−Δu(z) = γ(u(e

2πi
n z))− γ(u(z)), z ∈ D.

Since γ is increasing, it follows that w is subharmonic in D. Since w achieves its
maximum in D, w must be constant in D. Let D1 be the connected component
of Ωn which contains z0 and D2 be the subset of D1 on which w = w(z0). The
argument just given shows that D2 is an open set. Continuity of w implies that D2

is also a relatively closed subset of D1. Thus, D2 = D1, so that w ≡ w(z0) in D1.
But w = 0 on ∂D1, so we have a contradiction. We conclude that w ≤ 0 in C.
By the same argument, w ≥ 0 in C, so that u(ze

2πi
n ) = u(z) everywhere in C.

A similar argument shows that u(z) = u(z) everywhere in C. We have shown
that u is n-fold symmetric in C.

To prove the monotonicity statement, define the function ũ on C and the open
set Ω̃ by

ũ(z) = u(e
iπ
n z1/n), Ω̃ = {z ∈ C : e

iπ
n z1/n ∈ Ωn}.

Then Ω̃ is circularly symmetric, like the open sets in Section 2. The symmetry
properties of u imply that ũ is well defined, continuous and has the same smooth-
ness properties as u. Moreover, setting p(t) = 1

n2 t
2
n−2, it follows that ũ, in Ω̃,

satisfies the PDE

Δũ(z) = p(|z|)Δu(e πi
n z1/n) = γ(ũ(z)) + f̃(z),
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where f̃(z) = f(e
iπ
n z1/n). Thus, ũ satisfies hypothesis (b) of Theorem 1. It is

easy to verify that the other hypotheses are also satisfied. Thus, ũ is symmetric
increasing on C. This implies that u is decreasing on 0 ≤ arg z ≤ π

n . �

Next, for a positive integer N we denote by Θ a partition of the interval [0, 2π]
into N subintervals. More formally, Θ denotes an ordered N + 1 tuple: Θ =
(θ0, . . . , θN ), where 0 = θ0 < θ1 ≤ · · · ≤ θN = 2π. Define also

δ(Θ) = max
1≤k≤N

θk − θk−1.

We shall call δ(Θ) the maximal gap of the partition Θ. When N = n and each
θk = 2πk

n , we will denote the corresponding partition by Θ∗ and call it the uniform
(n-fold) partition.

For a circularly symmetric closed subset K of | arg z| ≤ π
n and partition Θ of

[0, 2π] define sets KΘ and ΩΘ by

KΘ =

N⋃
k=1

eiθkK, ΩΘ = C \KΘ.

In particular,
KΘ∗ = Kn

is the union of n equally spaced copies of K.
Let g be an n-fold symmetric continuous function defined on C. Recall that

this means that g(z) = g(z) and g(ze
2πi
n ) = g(z) for every z ∈ C. Let Θ be a

partition with

(3.1) δ(Θ) ≤ 2π

n
.

Then N ≥ n. We will call this inequality the maximal gap inequality.
Define the function gΘ on C as follows: Take z = reiθ ∈ C with z �= 0 and

0 ≤ θ ≤ 2π. Then θk−1 < θ ≤ θk for some k ∈ {1, . . . , N}. For fixed k, let m be
the midpoint of the interval [θk−1, θk]. If θk−1 ≤ θ ≤ m, define

gΘ(re
iθ) = g(rei(θ−θk−1)),

and if m ≤ θ ≤ θk, define

gΘ(re
iθ) = g(rei(θ−θk)).

Define gΘ(0) = g(0).

The symmetries of g imply that gΘ is well defined and continuous on C. If g is
symmetric decreasing on |θ| ≤ π

n then gΘ decreases on [θk−1,m] and increases on
[m, θk]. Moreover, gΘ(re

iθk−1) = gΘ(re
iθk ) = g(r). Thus, g and gΘ have the same

maxima on circles |z| = r, but g will in general have smaller minima than gΘ.
If g is symmetric increasing the statements above change in a straightforward

way. For example, g and gΘ have the same minima on circles |z| = r, but g has
larger maxima.

We shall call KΘ,ΩΘ and gΘ the transplants of K,Ω and g with respect to Θ.
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With K and Θ as above, suppose that v ∈ C2(ΩΘ) is a function satisfying

(3.2) Δv ≤ γ(v) + fΘ, in ΩΘ,

and

(3.3) lim inf
z→∂ΩΘ

v(z) ≥ A,

where γ, f and A are as in (bb) and (cc).
Here now is our comparison theorem.

Theorem 3. Let u and v satisfy assumptions (aa)–(ee) and (3.2), (3.3), respec-
tively. If Ω is unbounded, assume also that at least one of the following inequalities
holds:

lim sup
z→∞,z∈ΩΘ

(uΩΘ(z)− v(z)) ≤ 0 , or(3.4)

lim sup
z→∞,z∈ΩΘ

(uΩΘ(z)− v(z)) < sup
z∈ΩΘ

(uΩΘ(z)− v(z)) .

Then

(3.5) uΩΘ(z) ≤ v(z), for all z ∈ ΩΘ.

If also γ is locally Lipschitz on R and equality occurs in (3.5) at some point
z0 ∈ ΩΘ, then, up to a rotation of ΩΘ, v coincides with u in the connected compo-
nent of ΩΘ which contains z0.

In particular, if 0 ∈ Ω then v(0) ≥ u(0), and the equality statement is in force.
Another way to write the conclusion (3.5) for reiθ ∈ ΩΘ is

u(rei(θ−θk−1)) ≤ v(reiθ), u(rei(θ−θk) ≤ v(reiθ)

for every r ≥ 0, k = 1, . . . , N , where the first inequality holds for θ ∈ [θk−1,m]
and the second for θ ∈ [m, θk]. Recall that m = 1

2 (θk−1 + θk).

Proof of Theorem 3. For brevity, write

U(z) = uΘ(z).

Take z0 = r0e
iψ0 ∈ ΩΘ \ {0}, and take k with θk−1 ≤ ψ0 ≤ θk. Suppose that

ψ0 ∈ [θk−1,m). Set
α = e−iθk−1 .

From the definition of U , it follows that

U(z) = u(αz), hence ΔU(z) = Δu(αz)

for all z in some neighborhood of z0. Similarly, if ψ0 ∈ (m, θk], then

U(z) = u(βz), hence ΔU(z) = Δu(βz)

for all z in some neighborhood of z0, where β = e−iθk .
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Suppose now that ψ0 = m. Then U is Lipschitz in neighborhoods of z0 but
need not be C1. Thus, ΔU need not exist in the classical sense. As in Section 2,
we work with the generalized Laplacian of U , which is defined, when z = reiθ, by

ΔU(z) = lim inf
ρ→0+

4

ρ2

( 1

2π

∫ 2π

0

U(z + ρei(θ+ϕ)) dϕ− U(z)
)
.

For z0 = r0e
im, it follows from the monotonicity and symmetry properties of u

in Theorem 2 that
U(z0 + ζ) ≥ u(α(z0 + ζ))

for all ζ in some neighborhhood of 0, with equality for ζ = 0. Taking ζ = ρei(θ+ϕ),
we deduce that ΔU(z0) ≥ Δu(αz0). Summing up, we have shown that for every
z0 ∈ ΩΘ \ {0}, we have

(3.6) ΔU(z0) ≥ Δu(αz0) or ΔU(z0) ≥ Δu(βz0)

according as ψ0 ∈ [θk−1,m] or ψ0 ∈ [m, θk], respectively.
Furthermore, if 0 ∈ Ω it is easy to show that the mean value of U over small

circles |z| = r is greater than or equal to the mean value of u. Thus,

ΔU(0) ≥ Δu(0).

Combined with (3.6) and assumption (b) on u, we obtain for all z ∈ ΩΘ,

(3.7) ΔU(z) ≥ γ(U(z)) + fΘ(z).

Next, let w = U − v. We want to prove that w ≤ 0 in ΩΘ. This is essentially a
special case of Theorem 10.1 in [8]. For the reader’s convenience, we shall supply
a proof.

From (3.7) and (3.2), it follows that for all z ∈ ΩΘ,

(3.8) Δw(z) = ΔU(z)−Δv(z) ≥ γ(U(z))− γ(v(z)).

Suppose that the open set Ω+ := {z ∈ ΩΘ : w(z) > 0} is not empty. Then
since γ is an increasing function, it follows from (3.8) that Δw ≥ 0 on Ω+, so that
w is a generalized subharmonic function on Ω+. By [16] (see page 14), w is an
ordinary subharmonic function on Ω+.

If ζ ∈ ∂Ω+, then either ζ ∈ ΩΘ, so that w(ζ) = 0, or ζ ∈ ∂ΩΘ, so that u(ζ) = A
and v(ζ) ≥ A. So if Ω is bounded then lim supw(z) ≤ 0 when z → ∂Ω+. By the
maximum principle, w ≤ 0 in Ω+. This contradicts the definition of Ω+, so we
must indeed have w ≤ 0 in ΩΘ. If Ω is unbounded, then with the aid of (3.4), we
see again that w ≤ 0 in ΩΘ. This proves the inequality (3.5) in Theorem 3.

Proof of strict inequality. We continue to let w = U − v, where now we know that
w ≤ 0 in ΩΘ. We need to show that in each connected component Ω̂ of ΩΘ, either
w(z) < 0 for every z ∈ Ω̂ or else w ≡ 0 in Ω̂.

Since U and v are continuous on ΩΘ, to prove our assertion, it will suffice to
show that for each disk D with D ⊂ ΩΘ, either w < 0 everywhere in D, or w = 0
everywhere in D.
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Define h : D → R by

h(z) = −γ(U(z))− γ(v(z))

U(z)− v(z)
, when U(z) �= v(z),

and
h(z) = 0, when u(z) = V (z).

Since U and v are bounded on D and γ is Lipschitz on [−a, a] for each a ∈ R,
it follows that h is bounded on D. Also, γ is increasing, so h ≤ 0 in D. Finally,
by (3.8), w satisfies in D the differential inequality

(3.9) Δw(z) + h(z)w(z) ≥ 0.

For w ∈ C2(D), Theorem 6 in page 64 of [15] implies that for solutions w
of (3.9), either w(z) < 0 for all z ∈ D or w(z) = 0 for all z ∈ D. Perusal of the
proof of Theorem 6 shows that the same conclusion holds when w is continuous
in D and the Δ in (3.9) is the generalized Laplacian. The proof of our Theorem 3
is complete. �

4. Application to harmonic measure

By ω(z, γ,D) we shall denote the harmonic measure of a boundary set γ ⊂ ∂D
with respect to an open set D evaluated at z ∈ D.

Let
DR = {z : |z| < R}, TR = {z : |z| = R},

and let

Sn(R) = {z : |z| < R, | arg z| < π/n}, σn(R) = {z : |z| = R, | arg z| < π/n} ,
with Sn = Sn(1) and σn = σn(1), n ≥ 2. As in Section 3, for a compact set K in
the closure of Sn and a partition Θ of [0, 2π], let

DΘ = D \KΘ .

Recall that (DΘ)z0 denotes the connected component of DΘ which contains the
point z0.

Theorem 4. Let K be a circularly symmetric compact subset of Sn ∪ σn with
n ≥ 2 and let Θ be a partition of [0, 2π]. If the maximal gap δ(Θ) is ≤ 2π/n, then
for reit ∈ DΘ,

(4.1)
ω(reit,T, DΘ) ≤ ω(rei(t−θk−1),T, DΘ∗), if θk−1 ≤ t ≤ (θk + θk−1)/2,

ω(reit,T, DΘ) ≤ ω(rei(θk−t),T, DΘ∗), if (θk + θk−1)/2 ≤ t ≤ θk.

In particular, if 0 ∈ DΘ∗, then

(4.2) ω(0,T, DΘ) ≤ ω(0,T, DΘ∗).

If z0 ∈ DΘ, if (DΘ)z0 is regular for the Dirichlet problem, and if 0 <
ω(z0,T, DΘ) < 1, then equality occurs in (4.1) at z0 ∈ DΘ or in (4.2) at z0 = 0 if
and only if (DΘ)z0 coincides with the corresponding connected component of DΘ∗ .
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Proof. Assume first that DΘ∗ is regular for the Dirichlet problem and that K is a
compact subset of Sn. Then DΘ is also regular. Indeed, DΘ is constructed in such
a way that for each point z0 ∈ ∂DΘ and every sufficiently small ε > 0 there are a
point z1 ∈ ∂DΘ∗ and real number α such that the set eiα (∂DΘ ∩ {z : |z − z0| < ε})
is contained in the set ∂DΘ∗ ∩ {z : |z − z1| < ε}. In other words, the set ∂DΘ is
“thicker” at its point z0 than the set ∂DΘ at its point z1. Since z1 is regular for
the Dirichlet problem the latter implies that z0 is also regular.

Take u(z) = 1 − ω(z,T, DΘ∗) and v(z) = 1 − ω(z,T, DΘ). Extend u to C by
setting u = 1 on KΘ∗ and u = 0 on the complement of the unit disk. Extend v
analogously. Then u and v are continuous on C. The other hypotheses of Theo-
rem 3 are also satisfied. Taking A = 1 and γ = f = 0, we obtain the inequalities
stated in Theorem 4.

To prove the inequalities without the restrictions, one may use an approxi-
mation argument as follows. Assume first that K is a compact subset of Sn but
DΘ∗ is not necessarily regular. Approximate K with a sequence of compact sets
Kj = {z : dist (z,K) ≤ 1/j}, j = 1, 2, . . . Then Kj is circularly symmetric and

Kj → K as j → ∞. Let Dj
Θ∗ and Dj

Θ be open sets constructed as above for the

compact set Kj with j sufficiently large. It is well known that Dj
Θ∗ and Dj

Θ are
regular for the Dirichlet problem and

(4.3) ω(z,T, Dj
Θ∗) → ω(z,T, DΘ∗) and ω(z,T, Dj

Θ) → ω(z,T, DΘ) as j → ∞.

Since Dj
Θ∗ is regular for the Dirichlet problem and Kj ⊂ Sn for all j sufficiently

large we conclude that inequalities (4.1) and (4.2) hold with D replaced by Dj .
The latter together with (4.3) implies that (4.1) and (4.2) hold for the setD as well.

If K ⊂ Sn ∪ σn, then we approximate K with a sequence of compact sets
Kj = {z ∈ K : |z| ≤ 1 − 1

j }, j = 2, 3, . . . Then, arguing as above, we obtain the

inequalities (4.1) and (4.2).

Finally, the uniqueness statement in Theorem 4 follows from the uniqueness
statement in Theorem 3. �

Theorem 4 expresses an intuitively obvious observation: if we keep the circum-
ference of a round stove at constant temperature and place cooling screens of the
same shape along some smaller concentric circle in such a way that the maximal
gap between the centers of the screens is ≤ 2π/n, then the temperature at the
center of the stove will be maximal when the gaps between the screens are as large
as possible.

Now we give an explicit upper bound for the harmonic measure in terms of the
logarithmic measure

∫
E
dr
r of the circular projection E of K onto R+.

Corollary 1. Under the assumptions of Theorem 4, let 0 ∈ DΘ and let
∫
E
dr
r =

− log ρ for some 0 < ρ < 1, where E = K ∩ R+. Then

(4.4) ω(0,T, DΘ) ≤ 2

π
arctan

2ρn/2

1− ρn

with equality if and only if K = [ρ, 1] and KΘ = KΘ∗.
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Inequality (4.4) easily follows from (4.2) and a generalization of Beurling’s
“shove theorem” for n evenly spaced radii given by M. Essèn and K. Haliste [6].
It complements V.N. Dubinin’s solution to Gonchar’s problem (see Theorem 2.14
of [5]), which says that for K = [ρ, 1], for any partition Θ of [0, 2π] into n subsets
and for any integer n ≥ 2, we have

ω(0,T, DΘ) ≥ 2

π
arctan

2ρn/2

1− ρn
.

A generalization of Gonchar’s problem was studied by Baernstein [3], who
showed that for every 0 < r < 1 and every increasing convex function Φ: [0, 1] → R

the inequality

(4.5)

∫ 2π

0

Φ(ω(reiθ,T, D(Θn)) dθ ≥
∫ 2π

0

Φ(ω(reiθ ,T, D(Θ∗
n)) dθ

holds for n = 2, 3 and for D(Θn) and D(Θ∗
n) associated with any compact set

K ⊂ (0, 1]. In particular,the inequality

(4.6) ω(0,T, D(Θn)) ≥ ω(0,T, D(Θ∗
n))

holds for every compact set K ⊂ (0, 1] and n = 2, 3.

It was conjectured in [3] that (4.5) and (4.6) remain valid for all n ≥ 4. As far as
we know, no progress has been made on these problems except for [20], where (4.6)
was proved for all positive integers n when K = [r1, r2] and 0 < r1 < r2 ≤ 1.

5. Application to hyperbolic capacity

For R > 0, let E be a compact subset of the disk DR. The open set

D = DR \ E,
the compact set E, and the unbounded closed set C \DR form a condenser, in the
sense of Chapter 4 of [10]. The capacity cap(E,D) of the condenser can be defined
to be

cap (E,D) =

∫
D

|∇ω(z)|2 dx dy.
where ω(z) is the harmonic measure

ω(z) = ω(z,TR, D).

The open set D need not be connected. There is, however, a unique connected
component D′ of D which contains TR in its boundary.

An argument with Green’s formula gives

cap (E,D) =

∫ 2π

0

∂ω

∂r
(Reiθ)Rdθ.

When R = 1, we call cap (E,D) the hyperbolic capacity of E, and denote it by
caphE.
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Let us resume now our notations KΘ, etc. In the theorem below, D′
Θ∗ is the

connected component of DΘ∗ whose boundary contains the unit circle T. Recall
that for partitions Θ = {θ0, . . . , θN} we always take θ0 = 0 and θN = 2π.

Theorem 5. Let K be a circularly symmetric compact set in Sn \ T with n ≥ 2
and let Θ be a partition of [0, 2π]. If the maximal gap δ(Θ) is ≤ 2π/n, then

(5.1) caphKΘ ≥ caphKΘ∗ .

If D′
Θ∗ is regular for the Dirichlet problem, then equality occurs in (5.1) if and

only if D′
Θ = D′

Θ∗.

Proof. Let
ω∗(z) = ω(z,T, DΘ∗), ω(z) = ω(z,T, DΘ).

Then

(5.2) caphKΘ =

∫ 2π

0

∂ω

∂r
(eiθ) d θ, and caphKΘ∗ =

∫ 2π

0

∂ω∗

∂r
(eiθ) dθ.

In the discussion to follow, we assume that r ∈ (0, 1) is sufficiently close to 1 so
that Tr ⊂ D′

Θ∗ . Also, we write mk = 1
2 (θk−1 + θk). Then Theorem 4 implies that

ω(reit) ≤ ω∗(rei(t−θk−1))

when t is such that θk−1 ≤ t ≤ mk, while if mk ≤ t ≤ θk then the t − θk−1 is
changed to θk − t. Since ω = ω∗ ≡ 1 on T, it follows that

∂ω

∂r
(eit) ≥ ∂ω∗

∂r
(ei(t−θk−1))

when t is such that θk−1 ≤ t ≤ mk, with the same change as before when mk ≤
t ≤ θk. From this inequality, we deduce that

(5.3)

∫ 2π

0

∂ω

∂r
(eit) dt ≥ 2

N∑
k=1

∫ θk−θk−1
2

0

∂ω∗

∂r
(eit) dt.

From Theorem 2, it follows that ω∗ is n-fold symmetric on circles Tr and is
increasing on 0 ≤ θ ≤ π

n for fixed r. It follows that ∂ω∗
∂r is n-fold symmetric and

is decreasing on 0 ≤ θ ≤ π
n . By assumption, θk − θk−1 ≤ 2π

n for each k. Thus, for
1 ≤ k ≤ N , we see that

(5.4) 2

∫ θk−θk−1
2

0

∂ω∗

∂r
(eit) dt ≥

∫ θk

θk−1

∂ω∗

∂r
(eit) dt.

Summing (5.4) from 1 to N and using (5.3), we obtain

(5.5)

∫ 2π

0

∂ω

∂r
(eit) dt ≥

∫ 2π

0

∂ω∗

∂r
(eit) dt.

With (5.2), this proves the inequality statement in Theorem 5.

To obtain the equality statement, note first that if D′
Θ = D′

Θ∗ then ω∗ = ω, so
that (5.1) holds with equality.
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To prove the converse, we make the following claim: If D′
Θ∗ is not an annulus,

then ∂ω∗
∂r (eit) is is a strictly decreasing function of t on the interval [0, πn ].

If D′
Θ∗ is an annulus then it is not hard to see that D′

Ω is the same annulus, and
thus (5.1) holds with equality. Let us assume, then, that D′

Θ∗ is not an annulus,
and assume also that the claim is true.

We argue by contraposition. Suppose that the setsD′
Θ∗ andD′

Θ do not coincide.
Then, by an argument left to the reader, we must haveN ≥ n+1 and θk−θk−1 <

2π
n

for some k ∈ {0, 1, . . . , n − 1}. Denote the smallest such k also by k. Then
θj =

2πj
n for 0 ≤ j < k, hence mk can not be one of the points 2πj

n with 0 ≤ j ≤
n− 1. It follows that strict inequality holds in (5.4), and hence also holds in (5.5).
By (5.2), we have strict inequality in (5.1). This completes the proof of Theorem 5,
modulo the claim.

To prove the claim, first observe that ω∗(eit) is non increasing on [0, πn ], by

Theorem 2. Thus, ∂ω
∗

∂r (eit) is nondecreasing on [0, πn ]. If the claim is false, there

are points 0 < t1 < t2 <
π
n such that ∂ω∗

∂r (eit) is a constant c on [t1, t2]. Hopf’s
Lemma (see page 65 in [15]) implies that c > 0. Take an open disk U with center
on the unit circle whose intersection with the unit circle is contained in the shorter
arc γ from eit1 to eit2 and whose intersection with D is contained in D′

Θ∗ . By
the Schwarz Reflection Principle, ω∗ has a harmonic extension to U . Let ω̃ be a
conjugate harmonic function for ω in U . Define

h(z) = ω∗(z) + iω̃(z)− c log z, z ∈ U,

where log z = log r + iθ, with z = reiθ and 0 < θ < π
n . Then h is holomorphic

in U . Let u = Reh. Since ω∗ is constant on T, a simple calculation shows that
∂u
∂θ = 0 on γ ∩ U . Similarly, from ∂ω

∂r = c on γ, it follows that ∂u
∂r = 0 on γ ∩ U .

Thus, ∇u = 0 on γ∩U , which implies that h′ = 0 on γ∩U , which implies that h is
a constant b in U . From the definition of h and fact that ω∗ = 1 on T, one deduces
that Re b = 1 and that

ω∗(z) = 1 + c log r, z ∈ U.

Since U ∩ D is a nonempty open subset of the connected open set D′
Θ∗ , the

equation above still holds for all z ∈ D′
Θ∗ . It follows that D′

Θ∗ must be an annulus.
The claim is proved. �

6. Application to logarithmic capacity

The logarithmic capacity, capK, of a compact set K ⊂ C is defined by

(6.1) − log capK = lim
z→∞(g(z)− log |z|),

where g(z) denotes Green’s function of the unbounded component of C \K having
singularity at z = ∞. See [17] or [12] for background. The logarithmic capacity can
be characterize in purely geometrical terms as Fekete’s transfinite diameter d(E).
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Precisely, we have

(6.2) capK = d(E) := lim
n→∞ max

z1,...,zn∈K

( ∏
1≤k<j≤n

|zj − zk|
) 2

n(n−1)

.

Another useful fact about the logarithmic capacity is the following principle of
symmetrization which goes back to G. Pólya and G. Szegö [14]:

Theorem A. Let K ⊂ C be a compact set and let E∗ denote either the Steiner
symmetrization of E with respect to the real axis or the circular symmetrization
of E with respect to the positive real axis. Then

(6.3) capK∗ ≤ capK.

If the unbounded component of C \K is regular for the Dirichlet problem, then
equality occurs in (6.3) if and only if K∗ coincides with K up to a translation in
the vertical direction in case of the Steiner symmetrization or up to rotation about
the origin in case of the circular symmetrization.

The inequality for the transfinite diameters, which is equivalent to (6.3), can be
found in [14]. As concerns the uniqueness assertion of Theorem A, it is well known
to experts but we could not find a precise reference. There are several ways to
prove this. For instance, one may use the uniqueness assertion of the polarization
comparison theorem for Green’s functions; see Theorem 1 in [18].

Theorem 6. Let K be a circularly symmetric compact set in the closure of Sn(∞)
with n ≥ 2 and let Θ be a partition of [0, 2π]. If the maximal gap δ(Θ) is ≤ 2π/n,
then

(6.4) capKΘ ≥ capKΘ∗ .

If D′
Θ∗ is regular for the Dirichlet problem, then equality occurs in (6.4) if and

only if D′
Θ = D′

Θ∗.

Proof 1. Scaling the condensers (KΘ, R) and (KΘ∗ , R) and applying Theorem 5,
we find that

(6.5) cap (KΘ, R) ≥ cap(KΘ∗ , R)

for all sufficiently large R > 0.
By an asymptotic formula for the logarithmic capacity (or, equivalently, for the

inner radius of a domain), see Section 4.8.2 in [10], we have

− 1

2π
log capKΘ =

1

cap(KΘ, R)
− 1

2π
logR+ o(1) as R → ∞

and

− 1

2π
log capKΘ∗ =

1

Cap(KΘ∗ , R
)− 1

2π
logR+ o(1) as R→ ∞.

This together with (6.5) implies (6.4).
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We will not analyze the cases of equality in (6.4) along these lines (although
this is possible) because we give below a second proof of inequality (6.4), where
analysis of the cases of equality is easier.

Proof 2. Let g and g∗ denote Green’s functions of the domains D′
Θ and D′

Θ∗ ,
respectively, each with pole at z = ∞. Then g∗(Reiθ) satisfies the symmetry
conditions (ee) and for large R > 0 strictly increases on 0 ≤ θ ≤ π/n unless D′

Θ∗ is
the exterior of a disk centered at z = 0; see Proposition 5 and its corollary in [2].

Assume that DΘ and D′
Θ∗ are regular for the Dirichlet problem. Extend g

and g∗ to C by setting g = 0 outside D′
Θ and g∗ = 0 outside D′

Θ∗ . Then g and g∗

are continuous in C, and −g∗ satisfies the hypotheses (aa), (bb), (cc) and (dd)
which the function u satisfies in Theorem 3, with γ = f = A = 0. The argument
in the proof of Theorem 3, see (3.8), shows that −g∗Θ is subharmonic in DΘ. Let
w = g∗Θ−g. Then, since g is harmonic inD′

Θ, we see that w is superharmonic inD′
Θ.

Moreover, w = 0 on C \D′
Θ, since g and gΘ each have this property. Furthermore,

limz→∞ w(z) exists and is finite. It follows that w has a superharmonic extension
to the domain D′

Θ ∪∞.
By the strong minimum principle, either w(∞) > 0 or w ≡ 0 in C. So by (5.1),

we have
capKΘ ≥ capKΘ∗

with equality if and only if w ≡ 0 on C.
If D′

Θ = D′
Θ∗ the Green functions are equal, so that capKΘ = capKΘ∗ .

Conversely, if the two capacities are equal, then w(∞) = 0, so that g = g∗Θ, and
hence g∗Θ is harmonic in D′

Θ. If D
′
Θ is the exterior of a disk centered at the origin,

it is easy to see directly that D′
Θ = D′

Θ∗ . If D′
Θ does not equal D′

Θ∗ then from the
harmonicity of g∗ at ∞ one sees that for all large r, g∗(reiθ), is strictly increasing
for 0 ≤ θ ≤ π

n . If θk − θk−1 <
2π
n for some k, then the definition of g∗Θ shows that

∂g∗Θ
∂θ has a discontinuity at θ = mk. This violates harmonicity, so it must be true
that the partition Θ equals Θ∗, from which it follows that D′

Θ = D′
Θ∗ . �

Theorem 6 leads to some explicit lower bounds for the logarithmic capacity.
With K as in Theorem 6 and l ∈ R+, define

E = K ∩ R+, Il = [0, l],

and write meas (E) for the linear measure of E.

Corollary 2. Under the assumptions of Theorem 6, suppose that meas (E) = l > 0.
Then

(6.6) capKΘ ≥ cap (Il)Θ∗ = 4−1/nl,

with equality if and only if K = Il and KΘ = KΘ∗.

Proof. By Theorem 6, we have

(6.7) capKΘ ≥ capKΘ∗

with equality if and only if D′
Θ coincides with D′

Θ∗ .
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Since the logarithmic capacity is a monotone set function, we have

(6.8) capKΘ∗ ≥ capEΘ∗ .

If K is regular for the Dirichlet problem, then equality occurs in (6.8) if and only
if K = E.

Now inequality (6.6), together with the statement on the equality cases, follows
from (6.7), (6.8) and Lemma 1 below. �

Lemma 1. Let E be a compact set in R+ such that meas (E) = l > 0, and set
Il = [0, l]. Then

(6.9) capEΘ∗ ≥ cap (Il)Θ∗ .

If E is regular for the Dirichlet problem, then equality occurs in (6.9) if and
only if E = Il.

Proof. In the case n = 1, the set Il coincides with the Steiner symmetrization of E
with respect to the vertical line {z : Re z = l/2} and in the case n = 2, (Il)Θ∗

coincides with the Steiner symmetrization of EΘ∗ with respect to the imaginary
axis. Thus, for n = 1, 2, Lemma 1 follows from Theorem A.

Suppose now n ≥ 3. Let

E1 = EΘ∗ , E2 = (Il)Θ∗ , E3 = {rn ∈ R+ : r ∈ E}, E4 = {rn ∈ R+ : r ∈ Il},
and let gj be the Green function with pole at ∞ for C \ Ej , for 1 ≤ j ≤ 4. Then

g1(z) =
1

n
g3(z

n), g2(z) =
1

n
g4(z

n), z ∈ C.

Using our definition of capacity, it follows that

capE1 = (capE3)
1/n, capE2 = (capE4)

1/n.

Now

meas(E3) =

∫
E3

ds =

∫
E

nrn−1 dr, meas(E4) =

∫
Il

nrn−1 dr = ln.

Since r → rn−1 is an increasing function on [0,∞) < ∞, an easy argument with
integrals shows that meas(E3) > meas(E4) unless meas(E \ Il) = 0. Since E is
compact and meas(E) = l the latter equality implies that E ⊃ Il.

By a well-known inequality (see, e.g., page 138 in [17]), we also have cap (E3) ≥
1
4meas(E3), with equality when E3 is replaced by E4. Combining these inequalities,
we obtain

capE3 > capE4 =
1

4
ln

unless E ⊃ Il and meas (E \ Il) = 0.
In the remaining case when E ⊃ Il, E �= Il, and meas(E \ Il) = 0 we assume

that E is regular for the Dirichlet problem. Then by the maximum principle for
subharmonic functions, g2(z)−g1(z) > 0 for all z ∈ C\(Il)Θ∗ . Using our definition
of the logarithmic capacity, it follows that cap (E1) > cap (E2). This completes
the proof. �
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For any n ≥ 1, the inequality (6.9) is in fact known for the much more general
case where we replace the uniform partition Θ∗ with any partition Θ of the interval
[0, 2π] into n disjoint subintervals; see Lemma 3 in [1].

7. Application to the Poincaré metric

We shall consider now another conformal invariant, the Poincaré metric, with
constant curvature −4, of a domain D ⊂ C. If the complement C \ D contains
at least three points then D has the unit disc D as its universal covering surface.
If Π : D → D is a universal covering map, the Poincaré metric λD for D is given by

λD(Π(z))|Π′(z)| = 1/(1− |z|2), where z ∈ D, w = Π(z).

The Poincaré metric can also be characterized as the maximal solution of the
equation

Δ logλ = 4λ2

in D; see [22]. For further results on the Poincaré metric and its applications we
refer to Chapter 9 of [11].

Theorem 7. Let K be a circularly symmetric compact set in the closure of Sn(∞)
in C, let n ≥ 2 and let Θ be a partition. If KΘ∗ contains at least three points and
if δ(Θ) ≤ 2π/n, then for reit ∈ Ω(ΘN ), we have

(7.1)
λΩΘ(re

it) ≥ λΩΘ∗ (re
i(t−θk−1)), if θk−1 ≤ t ≤ (θk + θk−1)/2,

λΩΘ(re
it) ≥ λΩΘ∗ (re

i(θk−t)), if (θk + θk−1)/2 ≤ t ≤ θk.

In particular, if 0 ∈ ΩΘ then

(7.2) λΩΘ(0) ≥ λΩΘ∗ (0).

Equality occurs in (7.1) at some point z0 ∈ ΩΘ or in (7.2) at z0 = 0 if and
only if the connected component (ΩΘ)z0 coincides with the corresponding connected
component of ΩΘ∗ .

Proof. If (ΩΘ∗)z0 is a disk, the exterior of a disk, or an annulus centered at z = 0,
then (ΩΘ)z0 ⊂ (ΩΘ∗)z0 and the conclusions of the theorem are obvious. If (ΩΘ∗)z0
is one of those domains then ΩΘ = ΩΘ∗ . So, we may exclude these cases from
further consideration.

For a fixed r > 0, λΩΘ∗ (re
iθ) strictly decreases in ϕ(r) < θ < π/n. To prove

this, one may use, as in Theorem 2, the non-univalent change of variables ζ = zn.
Then, applying polarization as in the proof of Theorem 13 in [18], we obtain the
desired monotonicity.

Next we approximate ΩΘ∗ by a sequence of n-fold symmetric open sets (ΩΘ∗)j =
{z : λΩΘ∗ (z) < j}, j ≥ 1. Then Kj = {C \ Ωj : | arg z| ≤ π/n} is a circularly sym-
metric compact set in C. Let (Kj)Θ and (Ωj)Θ denote the transplants of Kj , as
defined just before the statement of Theorem 3. Let λNj denote the Poincaré met-
ric of (Ωj)Θ. Since (Ωj)Θ ⊂ (Ωj+1)Θ for j ≥ 1 and ∪∞

j=1(Ωj)Θ = ΩΘ, λNj → λΩΘ

uniformly in the spherical metric on compact subsets of ΩΘ, see [13] or [22].
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Suppose that ΩΘ∗ is a bounded subset of C. Then for (ΩΘ∗)j and (Ωj)Θ with j
sufficiently large, the hypotheses of Theorem 3 are satisfied, with u = log λΩΘ∗ ,
A = j, v = log λNj , and B = ∞. The conclusions of Theorem 3 as j → ∞ then
yield (7.1) and (7.2).

Suppose now that ΩΘ∗ is unbounded. As in the proof of Theorem 3, consider
the function w = U − v with U(z) = uΘ(z) and u and v defined above. Suppose
that the open set Ω+ := {z ∈ (Ωj)Θ : w(z) > 0} is not empty. If Ω+ is bounded,
then arguing as in the proof of Theorem 3 we will get a contradiction with our
assumption Ω+ �= ∅. So we must indeed have w ≤ 0 in (Ωj)Θ in this case. If Ω+

is unbounded and there is a finite point ζ in the closure of Ω+ such that

sup
z∈Ω+

w(z) = lim sup
z→ζ

w(z) > 0,

then our argument in the proof of Theorem 3 remains valid and we again conclude
that w ≤ 0 in the case under consideration.

It remains to consider the case when Ω+ is unbounded and

(7.3) sup
z∈Ω+

w(z) = lim sup
z→∞

w(z) > 0.

To discuss this case, we change variables via z �→ 1/z. Then we consider sets

(Ω̂j)Θ = {z : z−1 ∈ (Ωj)Θ}, (Ω̂Θ∗)j = {z : z−1 ∈ (ΩΘ∗)j}, and Ω̂+={z : z−1 ∈ Ω+}.
Let λ̂Nj and λ̂(ΩΘ∗ )j denote the Poincaré metrics of (Ω̂j)Θ and (Ω̂Θ∗)j , respectively.
Using the well known formula for the change in the Poincaré metric under confor-
mal mapping (see Theorem 9.10 in [11]), we obtain

(7.4) λNj(z
−1) = |z|2λ̂Nj(z), λ(ΩΘ∗ )j (z

−1) = |z|2λ̂(ΩΘ∗ )j (z), z �= 0,∞,

Let Û be the function on (Ω̂j)Θ defined for the partition Θ and function û =

log λ̂(ΩΘ∗ )j as in Section 3. Let v̂(z) = log λ̂Nj(z), ŵ(z) = Û(z)− v̂(z). Using (7.4),
we find that ŵ(z) = w(z−1), where w = U − v is defined above in this proof.

Suppose that ∞ ∈ Ω+. Then 0 ∈ Ω̂+. In this case, as we have shown in the
proof of Theorem 3, the function ŵ cannot take its maximal value at z = 0 unless ŵ
is constant on the corresponding connected component of Ω̂+. Since ŵ(0) is finite
and ŵ(z) → −∞ as z approaches to the boundary of such connected component,

we conclude that ŵ cannot be constant and therefore the sets Ω̂+ and Ω+ must be
empty in this case.

If 0 ∈ ∂Ω̂+, then using the boundary conditions for Û and v̂, we find that

lim sup
z→∞

w(z) = lim sup
z→0

ŵ(z) = A−B = −∞.

Since lim supz→0 ŵ(z) = lim supz→∞ w(z), the latter contradicts our assump-

tion (7.3). This contradiction implies that the set Ω̂+ is empty and therefore
the set Ω+ is empty as well.

We have proved that w ≤ 0 on ΩΘ. As in the proof of Theorem 3, w satisfies for
suitable h a differential inequality Δw+ hw ≥ 0. Using again the maximum prin-
ciple as in the proof of Theorem 3, we obtain the equality statement in Theorem 7.
The proof is complete. �
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Theorem 7 implies sharp lower bounds for the Poincaré metric of domains
obtained by removing finitely many points on the unit circle from C or C. Let
Θ = (θ0, . . . , θN ) be a partition of [0, 2π]. Set ak = eiθk , and define

C(a1, . . . , aN ) = C \ {a1, . . . , aN}, C(a1, . . . , aN ) = C \ {a1, . . . , aN}.

Set ek = e
2πik
n , for 1 ≤ k ≤ n.

Corollary 3. If δ(ΘN ) ≤ 2π/n, then

λ
C(a1 ,...,aN )

(0) ≥ λ
C(e1,...,en)

(0) =
Γ(1− 1

n )Γ(
1
2 + 1

n )

Γ(1 + 1
n )Γ(

1
2 − 1

n )
, n ≥ 3,(7.5)

λC(a1,...,aN )(0) ≥ λC(e1,...,en)(0) = 4−1/nΓ(1− 1
2n )Γ(

1
2 + 1

2n )

Γ(1 + 1
2n )Γ(

1
2 − 1

2n )
, n ≥ 2.(7.6)

Equality occurs in (7.5) or (7.6) if and only if C(a1, . . . , aN ) coincides with
C(e1, . . . , en) or C(a1, . . . , aN) coincides with C(e1, . . . , en), respectively.

To obtain the explicit expressions on the right hand sides see, e.g., page 86
in [9]. To obtain the inequalities, apply Theorem 7 taking the compact set K to
be K = {1} for (7.5), and K = {1,∞} for (7.6).

As noted in the introduction, inequality (7.5) complements Theorem 4 in [19],
which says that for every partition Θ with a fixed number n of punctures, we have

λ
C(a1,...,an)

(0) ≤ λ
C(e1,...,en)

(0) =
Γ(1− 1

n )Γ(
1
2 + 1

n )

Γ(1 + 1
n )Γ(

1
2 − 1

n )
, n ≥ 3,

with equality only for the case of equally spaced points. The question about
existence of a counterpart for inequality (7.6) remains open.

For our last example, take a number ρ ∈ (0, 1). Let K be the union of the line
segment [ρ, 1] with the set {z ∈ C : |z| ≥ 1, | arg z| ≤ π/n}. Then the domain ΩΘ∗

is the unit disk minus the equally spaced line segments ek[ρ, 1], where 1 ≤ k ≤ n.
The domain ΩΘ is the open unit disk from which N rays connecting the unit circle
with the circle |z| = ρ have been removed.

Corollary 4. With the situation above, if Θ is a partition of [0, 2π] with δ(Θ) ≤
2π/n, then

λΩΘ(0) ≥ λΩΘ∗ (0) =
(1 + ρn)2/n

41/nρ

with equality if and only if K = [ρ, 1] and ΩΘ = Ω(Θ∗).

The domains ΩΘ are simply connected. Thus, one can calculate their Poincaré
metrics in terms of derivatives of conformal maps from the unit disk. We invite
the reader to use this fact to verify the equality on the right hand side above.
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[16] Radó, T.: Subharmonic functions. Chelsea, New York, 1949.

[17] Ransford, T.: Potential theory in the complex plane. London Mathematical Soci-
ety Student Texts 28, Cambridge University Press, Cambridge, 1995.

[18] Solynin, A.Yu.: Functional inequalities via polarization. Algebra i Analiz 8 (1996),
no. 6, 148–185. English transl. in St. Petersburg Math. J. 8 (1997), no. 6, 1015–1038.

[19] Solynin, A.Yu.: Radial projection and the Poincaré metric. Zap. Nauchn. Sem.
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