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Regularizations of general

singular integral operators

Constanze Liaw and Sergei Treil

Abstract. In the theory of singular integral operators significant effort
is often required to rigorously define such an operator. This is due to
the fact that the kernels of such operators are not locally integrable on
the diagonal s = t, so the integral formally defining the operator T or its
bilinear form 〈Tf, g〉 is not well defined (the integrand in not in L1) even
for “nice” f and g. However, since the kernel only has singularities on the
“diagonal” s = t, the bilinear form 〈Tf, g〉 is well defined, say, for bounded
compactly supported functions with separated supports.

One of the standard ways to interpret the boundedness of a singular
integral operators is to consider the regularized kernel

Kε(s, t) = K(s, t)m((s− t)/ε),

where the cut-off function m is 0 in a neighborhood of the origin, so the
integral operators Tε with kernel Kε are well defined (at least on a dense
set). Then instead of asking about the boundedness of the operator T ,
which is not well defined, one can ask about uniform boundedness (in ε)
of the regularized operators Tε.

For the standard regularizations one usually considers truncated oper-
ators Tε with m(s) = 1

[1,∞)
(|s|), although smooth cut-off functions were

also considered in the literature.
The main result of the paper is that for a wide class of singular integral

operators (including the classical Calderón–Zygmund operators in nonho-
mogeneous two weight settings), the so called restricted Lp boundedness,
i.e., the uniform estimate

|〈Tf, g〉| ≤ C ‖f‖p ‖g‖p′
for bounded compactly supported f and g with separated supports implies
the uniform Lp-boundedness of regularized operators Tε for any reasonable
choice of smooth cut-off functionm. For example, anym∈C∞(RN),m ≡ 0
in a neighborhood of 0, and such that 1 − m is compactly supported
would work.
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If the kernel K satisfies some additional assumptions (which are sat-
isfied for classical singular integral operators like the Hilbert transform,
Cauchy transform, Ahlfors–Beurling transform, and generalized Riesz trans-
forms), then the restricted Lp boundedness also implies the uniform Lp

boundedness of the classical truncated operators Tε (m(s) = 1
[1,∞)

(|s|)).

1. Introduction

1.1. Preliminaries

Generally, a singular integral operator is understood as an operator T on L2(μ)
(or on Lp(μ)) that is given formally by

(1.1) Tf(s) =

∫
K(s, t)f(t) dμ(t),

where the kernel K(s, t) is singular near s = t, i.e., K(s, · ) and K( · , t) are not
in L1

loc near the singularity. This means that the above integral is not defined even
for the simplest functions f (which explains the word formally above), and the
question of how to interpret this expression immediately arises.

In simple cases the interpretation is quite easy. For example, if T is the classical
Hilbert transform on the real line (K(s, t) = π−1(s − t)−1, μ is the Lebesgue
measure on R), it is an easy exercise to show that for a compactly supported
smooth function f the integral (1.1) exists in the sense of principal value, i.e., that

(1.2) lim
α→0+

∫
|s−t|>α

f(t)

s− t
dt

exists (for all s, provided that f is C1 and compactly supported). Thus, the opera-
tor T is well defined on a dense set, and if one proves L2 (or Lp) bounds on this set,
the operator extends by continuity to all L2 (resp. Lp). For the Hilbert transform
the Lp estimates are a classical and well known result, so the Hilbert transform is
a well defined bounded operator in Lp, p ∈ (1,∞).1

Such a näıve approach also works for other “nice” classical singular integral
operators, like Riesz transforms in Rn. However, the situation becomes more
complicated if one considers more general measures and/or kernels: the existence
of principal values in such situations is far from trivial, and usually requires a lot
of effort.

So, given a (formal) singular integral operator, how can one define it and inves-
tigate whether it is bounded in Lp? One of the standard approaches in the general
situation is to consider truncated operators Tε,

(1.3) Tεf(s) =

∫
|s−t|>ε

K(s, t)f(t)dμ(t) ,

1It is also known, although significantly harder to prove, that the principal value (1.2) exists
a.e. for all compactly supported L1 functions f , which immediately implies the existence of the
principal value for all f ∈ Lp, p ∈ (1,∞).
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which are well defined for compactly supported f if one assumes, for example,
that K is locally bounded off the “diagonal” s = t. In this case, the boundedness
in Lp is defined as the uniform boundedness of the truncated operators Tε; if the
operators Tε are uniformly bounded, one can then take a limit point (in the weak
operator topology) of Tε, ε→ 0, as the corresponding singular integral operator T .
Note that the weak limit point does not have to be unique.

Moreover, if the operators Tε are uniformly bounded, then it is often possible
to prove the existence of principal values (at least for f in a dense set), so one can
define the singular integral operator in a natural fashion.

Instead of truncations, one can also consider smooth regularizations of the
kernel K. For example, for the Hilbert transform, it is very natural to move to the
complex plane and consider operators Tε,

Tεf(s) =
1

π

∫
R

f(t)

s− t+ iε
dt.

Further, there is an alternative, “axiomatic” way of defining a singular integral
operator with kernel K, see for example [1]. Namely, we assume that we are given
an operator, or, more precisely its bilinear form 〈Tf, g〉, well defined on some
smaller set (the Schwartz class or the class of C∞ functions with compact support
are often used). The statement that T is an integral operator with kernel K means
simply that

〈Tf, g〉 =
∫
K(s, t) f(t) g(s) dμ(t) dμ(s)

for f and g with separated compact supports (so the above integral is well defined).
In many cases it was shown that if the operator T is bounded in Lp, then the
truncated operators Tε are uniformly bounded as well. Note, that in the above
abstract approach we require some kind of a priori bounds on the operator, because
we assume that its bilinear form is well defined on some smaller space.

Let us also mention, that in the theory of Calderón–Zygmund operators (see the
definition of a Calderón–Zygmund operator below), if the kernel K is antisymmet-
ric, K(s, t) = −K(t, s), there is a canonical way to interpret the operator without
any a priori boundedness assumptions, see for example [1] for the homogeneous
case and [7] for the non-homogeneous case.

Namely, antisymmetry means that formally T ∗ = −T , so 〈Tf, g〉 = −〈f, T g〉,
so (again formally)

〈Tf, g〉 =
∫
K(s, t)f(t)g(s)dμ(t)dμ(s) = −

∫
K(s, t)f(s)g(t)dμ(t)dμ(s)

=
1

2

∫
K(s, t) [f(t)g(s)− f(s)g(t)] dμ(t)dμ(s).(1.4)

If K is a Calderón–Zygmund kernel of dimension d in RN , then by the definition
|K(s, t)| ≤ C|s− t|−d. Therefore if f and g are compactly supported C1 functions,
then the integrand in (1.4) can be estimated by C|s− t|−d+1.

For such kernels it is usually assumed that the measure satisfies the condition
μ({x : |x−x0| < r}) ≤ Crd for all x0 and r (this condition is usually necessary for
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the L2 boundedness of classical Calderón–Zygmund operators of dimension d, like
Cauchy transform in C). But for such measures

∫
Q |s− t|−d+1dμ(s)dμ(t) <∞ for

any compact Q, so 〈Tf, g〉 is well defined for f, g ∈ C1
0 .

1.2. Description of the main results

The main result of the paper can be stated in one sentence as “the situation
with interpretation of singular integral operators is much simpler than it seems;
to investigate the boundedness one only needs to study an elementary and well
defined restricted bilinear form”.

The main idea is embarrassingly simple, and we should be ashamed that we did
not arrive at it much earlier, although some preliminary results in this direction
were obtained by us in [6], and in thesis of the first author. In our defense we
can only say that this idea was overlooked by generations of harmonic analysts
before us.

Let us describe the main results in more detail. We will need some definitions.

Definition 1.1. Let Radon measures μ and ν in RN be fixed. A singular kernel
in R

N (with respect to the measures μ and ν) is a μ× ν-measurable function K on
RN × RN , which is locally L2(μ× ν) off the diagonal {(s, t) ∈ RN × RN : s = t}.

We say that the singular kernel K is a singular kernel of order d if the kernel

K̃(s, t) =

{
K(s, t)|s− t|d, s �= t,
0, s = t,

is locally L2(μ × ν). Note, that for any singular kernel on R
N the kernel K̃ is

locally L2(μ× ν) off the diagonal, so one only needs to check this condition on the
diagonal.

For a singular kernel K in RN (with respect to Radon measures μ and ν) the
expression

〈Tf, g〉 =
∫
K(s, t)f(t)g(s)dμ(t)dν(s)

is well defined for all Borel measurable bounded functions f , g with separated
compact supports (dist(supp f, supp g) > 0).

Definition 1.2. Let p ∈ (1,∞) and Radon measures μ and ν on RN be fixed.
LetK be a singular kernel in RN . We say that the formal singular integral operator
with the kernel K is restrictedly bounded in Lp (i.e., as an operator T : Lp(μ) →
Lp(ν)) if

(1.5)
∣∣∣ ∫ K(s, t)f(t)g(s)dμ(t)dν(s)

∣∣∣ ≤ C‖f‖Lp(μ)‖g‖Lp′(ν), 1/p+ 1/p′ = 1

for all bounded f , g with separated compact supports. Sometimes, abusing the lan-
guage, we will just say that the kernel K is restrictedly Lp bounded with bound C.
The least constant C in (1.5) (with p, μ and ν fixed) is called the restricted norm
of K.
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It is easy to check that for any fixed p, μ, ν the restricted norm is a (semi)norm
on the set of singular kernels.

Remark. For fixed measures μ and ν one can always assume that the kernel K is
defined only a.e. with respect to the measure μ × ν. It is not hard to show that
if the measures μ and ν do not have common atoms (which we usually assume),
then the diagonal {(s, s) : s ∈ RN} of RN ×RN has μ× ν measure 0, so the values
of K on the diagonal do not have to be specified.

Our first main result is that there are many families of smooth mollifying mul-
tipliers Mε(s, t), such that

(i) Mε(s, t) → 1 as ε→ 0 uniformly on all sets {s, t ∈ RN : |s− t| > a}, a > 0;

(ii) for any singular kernel K (with respect to Radon measures μ and ν) the
regularized kernels Kε = KMε are locally in L2(μ× ν), so the corresponding
operators are well defined for bounded compactly supported functions;

(iii) if the kernel is restrictedly bounded in Lp (i.e., if the estimate (1.5) holds
for all bounded f , g with separated compact supports), and the measures μ
and ν do not have common atoms, then the regularized integral operators Tε
with kernels Kε are uniformly (in ε) bounded as operators Lp(μ) → Lp(ν).

In this case, one can take the limit point T (in the weak operator topology)
of Tε, ε → 0+, as a singular integral operator with the kernel K. It is easy to see
that

(1.6) 〈Tf, g〉 =
∫
K(s, t) f(t) g(s) dμ(t) dν(s)

for all bounded f and g with separated compact supports, so T is indeed a singular
integral operator with kernel K in the sense of the abstract “axiomatic” approach,
described above in Section 1.1.

Note that such a limit point does not need to be unique, but it is easy to show
that the difference between any two bounded operators Lp(μ) → Lp(ν) satisfy-
ing (1.6) (with the same kernel K) is always a multiplication operator.

A simple way to construct a mollifying multiplier is to take an arbitrary C∞

function m, m ≡ 0 in a neighborhood of the origin, and such that 1 − m has a
compact support, and define Mε(s, t) := m((t − s)/ε). If at the origin one only
requires that |m(x)| ≤ C|x|d, then the function Mε(s, t) := m((t − s)/ε) will
regularize the kernels of order up to d.

Next, we will show that, under additional assumptions on the kernel K, the
restricted boundedness of K implies the uniform boundedness of the truncated
operators (1.3).

And finally, we will show that under some additional assumption, the restricted
boundedness implies a two weight Muckenhoupt condition, see Theorem 5.1 below
for the exact statement.
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2. Smooth regularizations of singular kernels

2.1. A trivial idea

We start with the simple observation that if a kernelK(s, t), s, t ∈ Rn is restrictedly
bounded in Lp with a bound C, then for any a ∈ RN the kernel

K(s, t)e−ia·teia·s

is also restrictedly bounded with the same constant. This follows from the trivial
fact that a multiplication by a unimodular function is always an invertible isometry
in all Lp(μ), and that it does not change the support.

Averaging the kernel K(s, t)e−ia·teia·s over all a ∈ R
N with weight ρ, ρ ≥ 0

and
∫
RN ρ(a)da = 1, we get that the averaged kernel∫

RN

ρ(a)K(s, t)e−ia·teia·sda

is also restrictedly bounded with the same constant C. Note, that we do not even
have to assume that ρ ≥ 0. It is sufficient to assume that ρ ∈ L1(dx) (L1 with
respect to Lebesgue measure); in this case the averaged kernel will be bounded
with constant C‖ρ‖1, where ‖ · ‖1 is the L1 norm with respect to the Lebesgue
measure.

One can immediately see that∫
RN

ρ(a)K(s, t)e−ia·teia·sda = ρ̂(t− s)K(s, t) ,

where ρ̂ denotes the Fourier transform, ρ̂(s) =
∫
RN ρ(x)e

−is·xdx.
We can summarize the above reasoning in the following lemma:

Lemma 2.1. Let K be a restrictedly Lp bounded kernel (i.e., estimate (1.5)
holds for all bounded compactly supported functions with separated supports) with
a bound C. Assume that ρ ∈ L1(dx) and let

M = 1− ρ̂, Mε(x) :=M(x/ε).

Then the kernels Kε(s, t) := K(s, t)Mε(t − s) are Lp restrictedly bounded with
constant (1 + ‖ρ‖1)C.
Proof. The estimate for ε = 1 was already explained above. To prove the estimate
for general ε need only notice that ρ̂(s/ε) is the Fourier transform of the function
εNρ(εx) and ∫

RN

|εNρ(εx)| dx =

∫
RN

|ρ(x)| dx = ‖ρ‖1.
�

Lemma 2.2. For the function M (and Mε) defined in the previous lemma, the
following holds:

(i) For any a > 0, the function Mε(s) → 1 as ε → 0+ uniformly on the set
{s ∈ RN , |s| > a}.
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(ii) If ρ̂ ∈ C1 (e.g., if
∫
RN (1 + |x|)|ρ(x)|dx < ∞) and if

∫
RN ρ(x)dx = 1, then

for any ε > 0
Mε(s) = O(|s|) as s→ 0.

(iii) If
∫
RN (1 + |x|2)|ρ(x)|dx <∞,

∫
RN ρ(x)dx = 1, and∫

RN

xkρ(x) dx = 0, ∀k = 1, 2, . . . , N,

then
Mε(s) = O(|s|2) as s→ 0.

(iv) Moreover, if
∫
RN ρ(x)dx = 1 and if

∫
RN (1 + |x|k)|ρ(x)|dx < ∞ for some

k ∈ N, and ∫
RN

xαρ(x)dx = 0,

for all multi-indices α, |α| < k, then

Mε(s) = O(|s|k) as s→ 0.

Proof. The proof follows from the basic properties of the Fourier transform. We
leave it as an exercise for the reader. Statement (i) follows, for example, from the
Riemann–Lebesgue Lemma. �

2.2. Some examples

Example 2.3. On the real line R consider the weight ρ(x) = e−x1[0,∞)(x). For
this weight ρ̂(s) = (1 + is)−1, so the mollifying factor M(s) = 1− ρ̂(s) is given by

M(s) =
is

1 + is
=

s

s− i
, so Mε(s) :=M(s/ε) =

s

s− iε
.

For the Hilbert transform kernel K(s, t) = π−1(s − t)−1 the regularization with
this mollifying factor give as the kernel

Kε(s, t) =
1

π
· 1

s− t
Mε(t− s) =

1

π
· 1

s− t
· t− s

t− s− iε
=

1

π
· 1

s− t+ iε
,

which has the very natural complex analytic interpretation. That regularization is
widely used in complex analysis, and our investigation of this regularization in [6]
lead us to the main idea of this paper.

Example 2.4. Define the weight ρ on RN by ρ(x) = (2π)−N/2e−|x|2/2. The

Fourier transform of ρ is given by ρ̂(s) = e−|s|2/2, so the mollifying multiplier is

M(s) = 1− e−|s|2/2. The regularized kernel Kε will be

Kε(s, t) := K(s, t)
[
1− e−|s−t|2/2ε].

Since M has a zero of order 2 at 0, this function will regularize singular kernels of
order d ≤ 2 (i.e., such that |s− t|dK(s, t) is locally bounded).
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The mollifying multiplier M regularizes only singular kernels of order d ≤ 2.
To regularize kernels of higher order one can use, for example, its powerMk

ε , where
the exponent k is an integer, k ≥ N/2. Applying Lemma 2.1 k times we get that
given an Lp restrictedly bounded kernel K with a bound C, then K(s, t)Mε(t−s)k
is also restrictedly bounded with constant 2k.

However, we neither have to do that, nor do we need to be tied to a particular
regularization. Using basic facts about the Fourier transform, we can construct
mollifying multipliers without explicitly defining the weight and computing its
Fourier transform.

2.3. Schur multipliers, Wiener algebra and Sobolev spaces

Let us first introduce some definitions.

Definition 2.5. Let p ∈ (1,∞) and Radon measures μ and ν in RN be fixed.

We say that a function M on RN × RN is a Schur multiplier on the set of
restrictedly Lp bounded singular kernels, if the map K → KM is a bounded map
on this set. In other words, M is a Schur multiplier on this set if, there exists a
constant C1 such that for any Lp restrictedly bounded kernel K with a bound C,
see Definition 1.2, the kernel MK is also restrictedly bounded with constant C1C.

The best possible constant C1 (for a fixed p, μ, and ν) is called the (Lp, μ, ν)
restricted Schur norm of M .

Remark. Let us explain the terminology a little bit. The Schur product A ◦ B of
two matrices is their entrywise product, (A ◦B)j,k = aj,kbj,k.

Similarly, the Schur product of two kernels, K(s, t) and M(s, t) is their usual
product (of two functions). The special term “Schur product” is sometimes used
to distinguish it from the product (composition) of the corresponding integral
operators.

Let X be a space of operators (like the space of bounded operators, or the
Schatten–Von-Neumann class Sp). On the set of kernels one can introduce the
norm inherited from the space X of operators; the norm ‖K‖X of a kernel is
simply the norm of the corresponding integral operator in the space X .

A function M is called a Schur multiplier for the class X if the map K →MK
is bounded with respect to the norm ‖K‖X .

We use the same term “Schur multiplier”, because our definition is very close
in spirit to the classical one.

We should also mention that while our definition definitely depends on p, μ
and ν, the Schur multipliers we construct below will be the universal ones: they
are Schur multipliers with uniform estimate on the Schur norm for all p, μ, ν, and
also for all reasonable classes of operators like the bounded operators, Sp.

Recall, that the Wiener algebra W (RN ) is the set of all f = ĥ, h ∈ L1(RN ),
with the norm ‖f‖W = ‖h‖1.

The reasoning in the beginning of this section can be summarized in the fol-
lowing lemma.



Regularizations of general singular integral operators 61

Lemma 2.6. Let M ∈ W = W (RN ). Then the function M̃ on RN × RN defined

by M̃(s, t) =M(t− s) is a Schur multiplier with Schur norm at most ‖M‖W .

The next trivial and well known lemma gives a simple sufficient condition
for M ∈W .

Lemma 2.7. Let M belong to the Sobolev space W k,2(RN ) = Hk(RN ) (all deriva-
tives up to order k are in L2), k > N/2. Then M belongs to the Wiener algebra
W (RN ), and ‖M‖W ≤ C‖M‖Wk,2 , where C = C(N).

Proof. Let ρ be the inverse Fourier transform of M .
The condition M ∈ W k,2(RN ) means that (1 + |x|k)ρ ∈ L2(RN ). Then, by the

Cauchy–Schwarz inequality,∫
RN

|ρ(x)|dx ≤
(∫

RN

(1 + |x|k)−2dx
)1/2(∫

RN

(1 + |x|k)2|ρ(x)|2dx
)1/2

≤ C(N)‖M‖Wk,2 ,

so M belongs to the Wiener algebra. �

Note that the sufficient condition M ∈ W k,2 is far from necessary: while the
Wiener algebra is scale invariant, i.e., the scaling operator Sa, Saf(x) = f(ax), is
an isometry in W , one can easily see that the operator norm ‖Sa‖Wk,2→Wk,2 → ∞
as a→ 0.

The next lemma, an analog of Lemma 2.6, gives a sufficient condition for Schur
multipliers that are not translation invariant (i.e., not of the form M(t− s)).

Lemma 2.8. Let M ∈ W (RN × RN) = W (R2N ). Then M is a Schur multiplier
on the set of restrictedly bounded singular kernels in RN with Schur norm at most
‖M‖W (R2N ).

Proof. Let p, μ, and ν be fixed, and let K be an Lp restricted singular kernel
on RN . Since for a ∈ R the multiplication by eiax is an isometry in Lp(μ) (and
in Lp′

(ν)), the kernel e−ia·sK(s, t)e−ib·t has the same Lp restricted bound as the
kernel K.

Because ρ ∈ L1(RN × RN ), one can immediately see that the restricted norm

of the “averaged” kernel K̃,

K̃(s, t) :=

∫
RN×RN

K(s, t)ρ(a, b)e−ia·se−ib·tda db = K(s, t) ρ̂(s, t)

is at most ‖ρ̂‖W ‖K‖restr, where ‖K‖restr is the (Lp, μ, ν) restricted norm ofK. �

Remark 2.9. In the above Lemma 2.8 one can replace class W = W (RN × R
N )

by the class M̂ of the Fourier transforms of the measures (charges) of bounded
variation in R

N × R
N .
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This point of view unifies the situations described in Lemmas 2.6 and 2.8.
Namely, if one considers on the N -dimensional subspace D = {(−x, x) : x ∈ R

N}
the measure (not necessarily nonnegative) σ, dσ = ρ(x)dx in the parametrization
x → (−x, x), x ∈ RN , then the Fourier transform σ̂ of σ (treated as a measure on
the whole RN × RN ) is exactly ρ̂(t− s).

Remark 2.10. One can use Lemma 2.7 for a sufficient condition forM ∈W (RN×
RN ); in this case it is sufficient that M ∈ W k,2(R2N ), k > N .

Remark. As we already mentioned, the Wiener algebra is scale invariant, i.e.,
the functions M and Mε, Mε(x) := M(x/ε) have the same norm in the Wiener
algebra (a well known fact and an easy exercise). The same, of course, holds for

the space M̂.

Therefore, if M ∈ M̂, and Mε(x) :=M(x/ε), then all Mε are Schur multipliers
with the uniform estimate on the Schur norm.

This fact will be exploited a lot in this paper.

Let us now state a simple corollary.

Corollary 2.11. Let m be in the Sobolev space Hk(RN ), k > N/2. Then the
kernels Kε, Kε(s, t) := m((t− s)/ε) are Schur multipliers with uniformly bounded
Schur norms.

2.4. Smooth mollifying multipliers

We can summarize the above discussion in the following proposition:

Proposition 2.12. Let m be a function on RN such that m ≡ 0 in a neighborhood
of 0, and 1−m ∈ Hk(RN ) =W k,2(RN ), k > N/2. Then the functions Mε,

Mε(s, t) := m((t− s)/ε)

are the family of smooth regularized multipliers, described above in Section 1.2,
meaning that

(i) Mε(s, t) → 1 as ε→ 0 uniformly on all sets {s, t ∈ RN : |s− t| > a}, a > 0;

(ii) for any singular kernel K (with respect to Radon measures μ and ν) the
regularized kernels Kε = KMε are locally in L2(μ× ν), so the corresponding
operators are well defined for bounded compactly supported functions;

(iii) if the kernel is restrictedly bounded in Lp (i.e., if the estimate (1.5) holds for
all bounded f , g with separated compact supports), and the measures μ and ν
do not have common atoms, then the regularized integral operators Tε with
kernels Kε are uniformly (in ε) bounded as operators Lp(μ) → Lp(ν).
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3. Restricted boundedness implies boundedness

In this section we are going to show that for kernels which are locally L2(μ×ν) (and
also for nonnegative kernels), restricted Lp boundedness with restricted norm C
implies boundedness with norm at most 2C.

The main application of this result is as follows. SupposeK is an Lp restrictedly
bounded singular kernel. Multiplying K by a smooth mollifying multiplier, as
described above in Section 2 (see for example Proposition 2.12), we will get a family
of uniformly (in ε) restrictedly bounded kernels Kε := MεK. The kernels Kε

are locally L2(μ × ν), so, by the main result of this section, the corresponding
operators Tε are uniformly bounded operators from Lp(μ) to Lp(ν).

Let T be a limit point of Tε, as ε → 0, in the weak operator topology. State-
ment (i) of Proposition 2.12 will imply that for f and g with separated compact
supports

〈Tf, g〉ν =

∫
K(s, t) f(t) g(s) dμ(t) dν(s),

so the limit operator T can indeed be considered as a singular integral operator
with kernel K.

The statement about nonnegative kernels will be used to show that under some
additional assumptions about the kernel K (which do not involve nonnegativity),
the restricted boundedness of K implies that the measures μ and ν satisfy the two
weight Muckenhoupt condition; see Theorem 5.1 below.

3.1. Separated partitions of unity

Lemma 3.1. Let σ be a Radon measure without atoms on RN . There exist Borel
sets E1

n, E
2
n, n ∈ N such that

(i) For all n ∈ N the sets E1
n and E2

n are separated, i.e., dist(E1
n, E

2
n) > 0.

(ii) The operators P k
n , P

k
nf := 1Ek

n
f , k = 1, 2 converge to 1

2I in the weak operator

topology in L2(σ).

(iii) For any p ∈ [1,∞) and for k = 1, 2

lim
n→∞ ‖1Ek

n
f‖Lp(σ) = 2−1/p‖f‖Lp(σ), ∀f ∈ Lp(σ).

Definition. The standard grid G of size r in RN is the collection of cubes rj +
[0, r)N , j∈ZN . A grid of size r is a translation of the standard grid by some a ∈ RN .

The boundary ∂G of a grid G is the union of all boundaries ∂Q, Q ∈ G.

For a cube R = x+ [0, r)N , with x ∈ RN and τ ∈ R, let τR denote its dilation,
τR := x + [0, τr)N . Note that the cube is dilated with respect to its corner, not
its center.
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Lemma 3.2. Let σ be a Radon measure on RN . For a cube R = x+[0, r)N let τR
be its dilation as described above. Then,

lim
τ→1

σ(τR) = σ(R).

Proof. The lemma is a trivial corollary of countable additivity. Recall that for
finite measures countable additivity is equivalent to the fact that σ(∪k≥0Rk) =
limk→∞ σ(Rk) for any increasing sequence of measurable sets Rk. Since the fam-
ily τR, τ > 0, is an increasing (with respect to τ) family of cubes, and since
∪τ∈(0,1)τR = R, we get that

lim
τ→1−

σ(τR) = σ(R).

Since in what follows we only need this identity, we leave the rest of the lemma
(i.e., the case of limτ→1+) as an easy exercise for the reader, who just needs to
recall the restatement of countable additivity in terms of decreasing sequences of
sets. �

Proof of Lemma 3.1. Since for any sets Ek
n the operators P k

n , P
k
nf := 1Ek

n
f , are

contractions on all Lp(σ), to prove (ii) it is sufficient to show that

lim
n→∞〈P k

nf, g〉 =
1

2
〈f, g〉

for f and g in some set dense in Lp(σ). In particular, it is sufficient to prove this
identity for f and g that are finite sums

∑
j αj1Qj , where Qj are some (standard)

dyadic cubes.
Because of the continuity of the norm, it is also sufficient to check the condi-

tion (iii) on a dense set, for example again on the finite sums
∑

j αj1Qj .
So, it is sufficient to show that for any standard dyadic cube Q

(3.1) lim
n→∞ σ(Ek

n ∩Q) =
1

2
σ(Q), k = 1, 2.

To prove (3.1) we will construct the sets Ek
n in such a way that

(3.2)
∣∣σ(Ek

n ∩Q)− σ(Q)/2
∣∣ < 2−nσ(Q), k = 1, 2,

for all standard dyadic cubes of size 2−n which are inside the large cube Qn :=
[−2n, 2n)N . Trivially, the same estimate will hold for all larger dyadic cubes in-
side Qn, which trivially implies (3.1).

Let us construct the sets Ek
n. For each n we will first construct the sets Ẽk

n, such

that the sets Ẽ1
n and Ẽ2

n are disjoint (but not necessarily separated), and (3.2) is

satisfied. The sets Ẽk
n will be constructed as unions of the (small) standard dyadic

cubes, and by shrinking each cube a little, we will get separated sets E1
n and E2

n.
Let α = minQ σ(Q), where the minimum is taken over all standard dyadic

cubes Q ⊂ Qn of size 2−n for which σ(Q) �= 0. Pick δ0 > 0 such that

σ(R) < 2−nα
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for all cubes R ⊂ Qn such that �(R) < δ0 (recall, that �(R) is the size, i.e., the
sidelength of the cube R). Note, that clearly δ0 < 2−n. Pick some δ < δ0 of the
form δ = 2−m, m ∈ Z.

Let us split the cube Qn into the standard dyadic cubes of size δ, and construct
the sets Ẽ1

n and Ẽ2
n as the finite unions of such cubes. Namely, for each dyadic

cube Q ⊂ Qn, �(Q) = 2−n, we distribute the dyadic cubes R ⊂ Q, �(R) = δ,

between the sets Ẽ1
n and Ẽ2

n as follows.

We assign the first such cube R to be in Ẽ1
n, the second one to be in the set Ẽ2

n,
and on each subsequent step we add a cube to the set of smaller measure σ (in the
case when both sets have the same measure, we can add the next cube to either of
the sets, say to Ẽ1

n for definiteness). We stop when all such cubes R are exhausted,
and then repeat the procedure for the other cubes Q.

Since, by the choice of δ, for each dyadic cube Q ⊂ Qn, �(Q) = 2−n, we have

σ(R) < 2−nα ≤ 2−nσ(Q),

and since on each step we add such a cube R to a set of smaller (or equal) measure,
we conclude that ∣∣σ(Ẽ1

n ∩Q)− σ(Ẽ2
n ∩Q)

∣∣ < 2−nσ(Q),

which in turn implies (because σ(Ẽ1
n ∩Q) + σ(Ẽ2

n ∩Q) = σ(Q)) that for k = 1, 2,∣∣σ(Ẽk
n ∩Q)− σ(Q)/2

∣∣ < 2−n−1σ(Q).

We then obtain the sets E1
n and E2

n by replacing each dyadic cube R, �(R) = δ,

in the sets Ẽ1
n and Ẽ2

n by the cube τR, where τ ∈ (0, 1) is sufficiently close to 1.
Clearly, for any τ ∈ (0, 1) the sets E1

n and E2
n are separated. Moreover, Lemma 3.2

ensures that by picking τ sufficiently close to 1 we can make the differences σ(Ẽk
n)−

σ(Ek
n) as small as we want, so if τ is sufficiently close to 1, (3.2) holds. �

Let us now consider the general case. For a measure μ let μc and μa be the con-
tinuous and purely atomic parts of μ respectively, μ = μc+μa. For a μ-measurable
function f consider the decomposition f = fμc + fμa , where fμc and fμa are the
projections of f onto the continuous and atomic parts of μ respectively,

fμa(x) =

{
f(x), μ({x}) > 0,
0, μ({x}) = 0.

Corollary 3.3. Let μ and ν be Radon measures in RN without common atoms.
There exist Borel sets E1

n, E
2
n, n ∈ N such that

(i) For all n ∈ N the sets E1
n and E2

n are separated, i.e., dist(E1
n, E

2
n) > 0.

(ii) The operators P 1
n and P 2

n , given by P 1
nf := 1E1

n

(
fμc + 1

2fμa
)
and P 2

ng :=

1E2
n

(
gνc +

1
2gνa

)
converge to 1

2I in the weak operator topology on L2(μ) and
L2(ν), respectively.

(iii) For any p ∈ [1,∞) and for any f ∈ Lp(μ), g ∈ Lp(ν)

lim
n→∞ ‖1E1

n
f‖Lp(μ) ≤ 2−1/p‖f‖Lp(μ), lim

n→∞ ‖1E2
n
g‖Lp(ν) ≤ 2−1/p‖g‖Lp(ν).
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Proof. Take σ := μc + νc, where μc and νc are the continuous parts of the mea-
sures μ and ν, respectively. Then

(3.3) dμc = wdσ, dνc = vdσ,

where w, v ≥ 0 are some weights such that w + v ≡ 1.
If the measures μ and ν do not have atoms, then the sets E1

n and E2
n from

Lemma 3.1 above are exactly the sets we need. Indeed, for bounded functions f
and g, statements (ii) and (iii) of the corollary (weak convergence and conver-
gence of norms in Lp(μ) and Lp(ν)) follow from the corresponding statements of
Lemma 3.1 (convergence in Lp(σ)). Since the operators P k

n are contractions for
any choice of the sets Ek

n, one can use the ε/3-theorem to extend the statements (ii)
and (iii) from a dense set of bounded functions to all of Lp(μ) (Lp(ν)).

For the general case, let

μa =
∑
n

αnδxn and νa =
∑
n

βnδyn

be the purely atomic parts of the measures μ and ν, respectively. Without loss
of generality, assume that the sequences {αn} and {βn} are non-increasing. Note
that since the measures μ and ν do not have a common atom, xn �= yk for all n
and k.

Let Ẽ1
n and Ẽ2

n denote the sets obtained in Lemma 3.1 for σ := μc + νc (we

use the notation Ẽk
n instead of Ek

n because we reserve the notation Ek
n for the final

“output”). We can always assume without loss of generality that xj , yj /∈ Ẽk
n (for

all j, n and k). Define

E1
n :=

(
Ẽ1

n ∪
n⋃

j=1

xj

)
\

∞⋃
j=1

B(yj , r
(n)
j ), E2

n :=
(
Ẽ2

n ∪
n⋃

j=1

yj

)
\

∞⋃
j=1

B(xj , r
(n)
j ),

where for each n the radii r
(n)
j are picked in such a way that

∞∑
j=1

[
σ(B(xj , r

(n)
j )) + σ(B(yj , r

(n)
j ))

]
< 2−n

and such that
n⋃

j=1

xj ∩
∞⋃
j=1

B(yj , r
(n)
j ) =

n⋃
j=1

yj ∩
∞⋃
j=1

B(xj , r
(n)
j ) = ∅.

Let us show that the Ek
n are the desired sets. Let us decompose f ∈ Lp(μ) as

f = fc + fa, where fa := f1∪∞
j=1{xj} is the purely atomic part of f . Clearly

lim
n→∞ ‖fa − 1

E1
n

fa‖Lp(μ)
= 0,

so statements (ii) and (iii) of the corollary hold for purely atomic functions fa. Note
that, unlike in Lemma 3.1, we have here inequality in statement (iii), because

lim
n→∞ ‖2−11

E1
n

fa‖Lp(μ)
= 2−1‖fa‖Lp(μ)

≤ 2−1/p‖fa‖Lp(μ)
.
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We can also estimate

(3.4) ‖fc1
E1

n

− fc1
Ẽ1

n

‖p
Lp(μc)

≤
∫
⋃∞

j=1 B(yj ,r
(n)
j )

|fc|pdμc → 0 as n→ ∞.

because

μc

( ∞⋃
j=1

B(yj , r
(n)
j )

)
≤ σ

( ∞⋃
j=1

B(yj , r
(n)
j )

)
≤ 2−n.

Therefore, since statements (ii) and (iii) of the corollary hold for the sets Ẽ1
n and

the measure μc (because, as we discussed above, the sets from Lemma 3.1 work
for measures without atoms), equality (3.4) implies that these statements hold for
the sets E1

n and the measure μc as well.
So statements (ii) and (iii) of the corollary hold for fa and fc (and the mea-

sure μ), and therefore they are true for f .
The statements for the measure ν can be proved in exactly the same way. �

3.2. Uniform boundedness

Theorem 3.4. Let μ and ν be Radon measures on RN without common atoms.
Assume that a kernel K ∈ L2

loc(μ×ν) is Lp resrictedly bounded, with the restricted
norm C. Then the integral operator T with kernel K is a bounded operator Lp(μ) →
Lp(ν) with norm at most 2C.

Proof. Let f and g be (Borel measurable) functions, supported on a cube Q. Let
us restrict everything to the cube Q. Then the integral operator T with kernel K
is a Hilbert–Schmidt (and therefore compact) operator, T : L2(Q,μ) → L2(Q, ν).

Let P k
n be the projections from Corollary 3.3. Then by statement (ii) of the

corollary (weak convergence) and because T is compact,

lim
n→∞〈TP 1

nf, P
2
ng〉 =

1

4
〈Tf, g〉.

On the other hand, by restricted Lp boundedness

(3.5)
∣∣〈TP 1

nf, P
2
ng〉

∣∣ ≤ C‖P 1
nf‖Lp(μ)‖P 2

ng‖Lp′(ν)

and by statement (iii) of Corollary 3.3

lim
n→∞ ‖P 1

nf‖Lp(μ)‖P 2
ng‖Lp′(ν) = 2−1/p‖f‖Lp(μ)2

−1/p′‖g‖Lp′(ν).

So, taking the limit on both sides of (3.5) we get that

1

4
|〈Tf, g〉| ≤ 1

2
‖f‖Lp(μ)‖g‖Lp′(ν).

which is exactly the desired estimate. Since it holds on a dense set of bounded
compactly supported functions, we are done. �
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The next result is an easy corollary of the previous theorem.

Theorem 3.5. Let μ and ν be Radon measures on RN without common atoms.
Assume that a kernel K ≥ 0 is Lp resrictedly bounded, with the restricted norm C.
Then the integral operator T with kernel K is a bounded operator Lp(μ) → Lp(ν)
with norm at most 2C.

Proof. First, notice that the integral operator with kernel K ≥ 0 is well defined
for f ≥ 0, and to compute its norm we only need to test it on f ≥ 0.

Second, the norm of this operator can be computed as the supremum (or limit
as R → ∞) of the operators with the truncated kernels

K
R
(s, t) = min{K(s, t), R}, R > 0.

If C is the restricted norm of K, then C is also a restricted bound for all of the K
R
.

However, the kernels K
R

are bounded, so by Theorem 3.4 the corresponding inte-
gral operators are bounded with norm at most 2C. Taking the limit as R → ∞
we get the conclusion of the theorem. �

3.3. How to treat common atoms

If the measures μ and ν do have common atoms, then the above Theorem 3.4
cannot be applied directly. However, using this theorem, it is quite easy to define
the boundedness of the singular integral operator in this case.

Namely, consider the decompositions

μ = μ̃+ μ0 and ν = ν̃ + ν0,

where μ0 and ν0 are the parts of μ and ν supported on their common atoms.
Then the measures μ and ν̃ do not have common atoms; the same is true for μ̃
and μ. Therefore, we check the Lp boundedness of a singular integral operator with
kernelK as an operator Lp(μ) → Lp(ν̃) or Lp(μ̃) → Lp(ν). But since the measures
do not have common atoms, these operators can be checked using Theorem 3.4.

So, to check the boundedness of the whole operator, it remains to check the
block mapping Lp(μ0) → Lp(ν0). But the bilinear form corresponding to this
block is well defined for functions supported at finitely many points (note, that
the kernel K(x, x) has to be defined at common atoms of the measures μ and ν),
so there is no problem defining this block.

4. Uniform boundedness of truncations

In this section we will show that under some additional assumptions, which are
satisfied for classical operators like the generalized Riesz transforms (treated as
a vector-valued transformation), or the Ahlfors–Beurling operator, restricted Lp

boundedness implies uniform boundedness of the truncated operators Tε,

(4.1) Tεf(s) =

∫
|s−t|<ε

K(s, t)f(t)dμ(t).
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We will need the following definition:

Definition 4.1. Let κ ∈ (0, 1]. A function F with values in Rd is called κ-sectorial
if there exists x0 ∈ Rd, |x0| = 1, such that 〈F (s), x0〉 ≥ κ|F (s)| for all s in the
domain of F .

Proposition 4.2. Let a singular kernel K with values in Rk be restrictedly bounded
in Lp (we assume that the measures μ and ν on R

N without common atoms have
been fixed ).

Suppose there exist δ > 0, κ > 0 and a family of (matrix-valued ) Schur multi-
pliers Mε(s, t), ε ∈ (0,∞), with uniformly bounded Schur norm, such that

(i) for each ε > 0 the function MεK is κ-sectorial on the set {s, t ∈ R
N :

(1− δ)ε < |s− t| < ε};
(ii) |MεK| ≥ |K| on the set {s, t ∈ R

N : (1 − δ)ε < |s− t| < ε}.
Then the truncated operators Tε defined by (4.1) are uniformly (in ε) bounded

operators Lp(μ) → Lp(ν).

Proof. Take a function m ∈ C∞(R) such that m(x) = 1 for x ≥ 1 and m(x) = 0
for x ≤ 1 − δ. Then the function m̃, m̃(s) = m(|s|), s ∈ RN satisfies 1 − m̃ ∈
C∞

0 (RN ). As was discussed in Section 2 above, this implies that the functions
m(|s − t|/ε) = m̃((s − t)/ε) are Schur multipliers with a uniform (in r) estimate
on the Schur norm.

Therefore, the smoothly regularized kernelsm(|s−t|/ε)K(s, t) give a uniformly
bounded family of operators. The difference between the kernel of the truncated
operator Tε and the kernel m(|s− t|/ε)K(s, t) is given by ψ(|s− t|/ε)K(s, t), where
ψ(x) = m(x)−1[1,∞)(x). Thus, to prove the uniform boundedness of the truncated
operators, it is sufficient to prove the uniform boundedness of the operators with
kernels ψ(|s− t|/ε)K(s, t).

We now use the trivial observation that if T1, T2 are integral operators be-
tween Lp spaces (defined initially on dense sets) with kernels K1 and K2 respec-
tively, and if |K1| ≤ K2, then the boundedness of T2 implies the boundedness of T1
and the estimate ‖T1‖ ≤ ‖T2‖. Therefore, since

|ψ(|s− t|/ε)K(s, t)| ≤ χ(|s− t|/ε)|K(s, t)| ,

where χ := 1[1−δ,1], to prove the proposition it is sufficient to show that the
operators with kernels χ(|s− t|/ε)|K(s, t)| are uniformly (in ε) bounded.

Let Mε be the Schur multiplier from the assumption of the proposition, and
let x0 ∈ R

d be such that

(4.2) 〈Mε(s, t)K(s, t), x0〉 ≥ κ|K(s, t)| ∀s, t ∈ R
N : (1− δ)ε < |s− t| < ε.

The operators with (vector-valued) kernelsMε(s, t)K(s, t) are uniformly (in ε)
bounded, and therefore so are the operators with scalar-valued kernels given by
〈Mε(s, t)K(s, t), x0〉.
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The estimate (4.2) implies that

χ(|s− t|/ε)|K(s, t)| ≤ κ−1〈Mε(s, t)K(s, t), x0〉,
and thus the operators with the kernels χ(|s−t|/ε)|K(s, t)| are uniformly bounded.

�

4.1. Some examples

Example 4.3. Consider a convolution kernel K(s, t) = K1(t− s),

(4.3) K1(x) = A(|x|)B(x/|x|),
where A(r) ≥ 0 for all r > 0 and B is a function (with values in some R

m) in the
Sobolev space Hk, k > N/2 on the unit sphere SN−1 in RN .

If B(s) �= 0 for all s ∈ SN−1, then the kernel K satisfies the assumption of
Proposition 4.2.

Indeed, let
C = max

s∈SN−1

|B(s)|−1,

and let ϕ ∈ C∞
0 (R) be such that ϕ ≡ 1 on [0.9, 1], and ϕ(x) ≡ 0 for x /∈ (0.8, 1.1).

Then the function m, m(s) = Cϕ(s)BT (s/|s|), where BT stands for the transpose
of B, is clearly in Hk(RN ).

Therefore, by Corollary 2.11 the functions Mr(s, t) defined by

Mr(s, t) := m((t− s)/r) = Cϕ(|s − t|/r)BT ((t− s)/|t− s|)
are Schur multipliers with uniformly bounded Schur norms. It is trivial to see that
the assumptions of (i) and (ii) of Proposition 4.2 are also satisfied (with κ = 1
and δ = 0.1).

Thus, for any such kernel, restricted Lp boundedness implies uniform bound-
edness of the truncated operators defined by (4.1).

Examples of such kernels include the kernel of the (vector-valued) generalized
Riesz transform in RN (K1(s) = s/|s|α+1, s ∈ RN , α > 0), or the Cauchy (K1(z) =
1/z = z/|z|2) and the Ahlfors–Beurling (K1(z) = 1/z2 = z2/|z|4) transforms in
the complex plane.

Note that the classical Riesz transform is a particular case (α = N) of the
generalized one.

Another example is given by the Beurling–Ahlfors transform S on forms, de-
fined, for example in [4]. The fact that the kernel of S admits the representa-
tion (4.3) can be easily seen from formula (112) on p. 53 of [4].

Remark 4.4. Notice that Proposition 4.2 cannot be applied to individual (co-
ordinate) generalized Riesz transforms given by K1(s) = sk/|s|α+1, where s =
(s1, s2, . . . , sN )T . While the restricted boundedness of such an individual kernel
implies the uniform boundedness of its smooth regularizations, we do not know
whether it implies the uniform boundedness of the truncations (4.3).

We suspect that the answer here is negative.
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5. Two weight Muckenhoupt condition

Theorem 5.1. Let K be a (vector-valued ) convolution kernel in RN , namely
K(s, t) = K1(t− s),

K1(s) = A(|x|)B(x)(5.1)

where B∈Hk(RN )=W k,2(RN ), k>N/2 is a function homogeneous of order d>0,

B(cx) = cdB(x) ∀x ∈ R
N ∀c ∈ R+,

bounded away from 0 on the unit sphere, and A is a function on R+ such that, for
some α ≥ d,

A(x) ≥ x−d−α ∀x ∈ R+.(5.2)

Let μ and ν be Radon measures without common atoms on RN , and let the
kernel K be Lp restrictedly bounded (with respect to the measures μ and ν).

Then the measures μ and ν satisfy the following generalized two-weight Muck-
enhoupt Aα

p condition of order α:

(Aα
p ) sup

B
(diamB)−αμ(B)1/p

′
ν(B)1/p <∞.

Here the supremum is taken over all balls in RN .

Examples of kernels satisfying the assumptions of this proposition are the gen-
eralized vector-valued Riesz transform (d = 1), the Cauchy transform in C (α = 1,
d = 1), and the Beurling–Ahlfors transform in C (α = 2, d = 2).

The classical Muckenhoupt condition (α = N) is well known in analysis: for
classical (one weight) weighted estimates (dμ = wdx, dν = w−1dx) it is well
known that the classical Muckenhoupt condition Ap = (AN

p ) (α = N) is necessary
and sufficient for the Lp boundedness of classical singular integral operators, like
Hilbert transform, or vector Riesz transform.

In the case of one measure (μ = ν) the condition (Aα
p ) is independent of p ∈

(1,∞) and is equivalent to the growth estimate μ(B(x0, r)) ≤ Crα (where B(x0, r)
stands for the open ball of radius r centered at x0) uniformly in x0 and r.

In the one measure case this growth condition for α = 1 is known to be necessary
(but not sufficient) for the boundedness in L2(μ) of the Cauchy transform in C.
It is probably well known to specialists, although we do not know a reference, that
in the one measure case the growth condition μ(B(x0, r)) ≤ Crα is necessary for
the boundedness of the vector Riesz transform in Lp(μ).

This condition has also appeared in more general situations as well. For exam-
ple, it was shown by the second author (see [9], p. 318) that the condition (A1

2) (in
fact, a bit stronger version, where averages over intervals are replaced by Poisson
averages) is necessary for the boundedness of the Hilbert transform in the gen-
eral two weight situation. As easy examples show, the two weight A2 condition is
not sufficient for the L2 boundedness of the Hilbert transform in the general two
weight case.
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It was conjectured for some time that the stronger “Poisson” A2 condition
(which is necessary for the two weight estimate of the Hilbert transform) is also
sufficient for the two weight estimate, but this conjecture was later disproved
by F. Nazarov.

However, the necessity of this condition for general operators as in the above
theorem is completely new, and has not appeared in the literature. The only
exception here is probably our paper [6], where it was shown that the condition (A1

2)
is necessary for the L2 boundedness of rather general singular integral operators
T : L2(μ) → L2(ν) on the real line.

For example, in the general two weight case, even the necessity of the con-
dition (A1

2) for the L2 boundedness of the Cauchy transform was not known (at
least it has not been described in the literature). The same can be said for the
condition (A2

p) for the Lp boundedness of the Beurling–Ahlfors transform in C.
The result for the generalized vector Riesz transforms of order α is also new.

Proof of Theorem 5.1. Define

m(x) := B(x)ϕ(|x|), ∀x ∈ R
N ,

where ϕ ∈ C∞
0 (R) is such that ϕ ≡ 1 on [0, 2]. Clearly m ∈ Hk(RN ) =W k,2(RN ),

so by Corollary 2.11 the functionsMε,Mε(s, t) := m((t−s)/ε) are Schur multipliers
with uniformly bounded Schur norms.

Since B(x) = |x|dB(x/|x|d) ≥ C|x|d, we conclude that

|B(x)| ≥ C|x|d ,
where C = inf{|B(x)| : x ∈ RN , |x| = 1} > 0. Then we can estimate

BT (x/ε)B(x) ≥ C2|x|2dε−d,

so for |s− t| ≤ 2ε,

Kε(s, t) :=MT
ε (s, t)K(s, t) ≥ C2ε−d|t− s|d−α ≥ C′ε−α.(5.3)

Here in the last inequality we used the fact that α ≥ d. Note that Kε(s, t) ≥ 0 for
all s, t ∈ RN .

Since the Mε are uniformly bounded Schur multipliers, the operators Tε with
kernels Kε are uniformly (in ε) restrictedly bounded, and so, by Theorem 3.5 they
are uniformly bounded operators Lp(μ) → Lp(ν).

Let B = B(t0, ε) be the open ball of radius ε centered at t0, and let Tε be the
integral operator with kernel Kε. Then estimate (5.3) implies that

Tε1B (s) ≥ C′ε−αμ(B) ∀s ∈ B.
Then integrating over B we get

‖T1B‖Lp(ν)
≥ C′ε−αμ(B)ν(B)1/p.

Since
‖1B‖Lp(μ)

= μ(B)1/p
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and the operators Tε are uniformly bounded (as operators Lp(μ) → Lp(ν)), we get
the estimate

ε−αμ(B)ν(B)1/p ≤ Cμ(B)1/p ,
with C independent of B and ε. This estimate is equivalent to the conclusion of
the proposition. �

6. Concluding remarks

The main result of this paper simplifies, even trivializes, the definition of a singular
integral operator if only its kernel is given. This paper does not offer a replace-
ment for the hard analysis techniques used to prove the boundedness of singular
integral operators; one still has to do hard work to prove boundedness. However,
it significantly simplifies the setup.

For example, in [8] the authors had to spend a lot of time and effort carefully
defining their operators. While this was necessary to state the result in full gen-
erality, in all interesting situations the operators were abstract singular integral
operators, meaning that there was a kernel kernel K(s, t) locally bounded off the
diagonal giving the bilinear form for functions with separated compact supports.
For example, this approach would work for the so called dyadic (or Haar) shifts,
which recently have attracted much attention, see [5] and [3].

But as we have shown in this paper, such operators can be regularized by
smooth mollifying multipliers! That means that if the operator is restrictedly
bounded, then its “smooth” regularizations are uniformly bounded, so from the
very beginning we can deal with such regularizations.

It looks a bit ironic that while the kernels of such dyadic integral operators
are very non-smooth, they can be regularized by smooth multipliers. It would be
interesting to find regularizations better adapted to the dyadic structure of such
operators.

Next, we should mention that since our Schur multipliers are the universal ones,
our approach works for operators from Lp to Lr, r �= p, as well. We did not want
to overload the paper, so we only considered the case p = r in the text. However,
the corresponding general statements and their proofs can be easily obtained from
the corresponding parts in the text by obvious modifications.

We should also mention that in the classical situation (dμ = dν = dx), and
even in the “classical non-homogeneous” (one measure) situation (dμ = dν), it is
known that if we have an operator T bounded in some Lp and having Calderón–
Zygmund kernel K (meaning that the bilinear form for functions with separated
compact supports is given by

∫
K(s, t)f(t)g(s)dμ(t)dν(s)), then its truncations Tε

are uniformly bounded, and, moreover, the maximal operator T � is also bounded.
However, this is a very non-trivial result, requiring rather strong assumptions

(Calderón–Zygmund kernels, restrictions on the growth of the measure, even in the
non-homogeneous case). No analogues of our results for more general situations
(two measures, no restriction on the growth) were known before. Moreover, we
suspect that the statement about the maximal operator T � fails in the general
situation.
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