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Phase space localization of Riesz bases for L2(Rd)

Karlheinz Gröchenig and Eugenia Malinnikova

Abstract. We prove a strong uncertainty principle for Riesz bases in
L2(Rd) and show that the orthonormal basis constructed by Bourgain
possesses the optimal phase space localization.

1. Introduction

In [7] J. Bourgain constructed an orthonormal basis for L2(R) consisting of func-
tions fn ∈ L2(R), such that

(1.1) sup
n∈N

(
inf
a∈R

∫
R

|x− a|2|fn(x)|2dx+ inf
b∈R

∫
R

|ξ − b|2|f̂n(ξ)|2dξ
)
<∞ .

Bourgain remarked that the exponent 2 of |x− a| and |ξ − b| is optimal and that
there are no orthonormal bases with a better phase space localization.

In this paper we prove the following strong uncertainty principle for Riesz bases
for L2(Rd):

Theorem 1.1. If {fn}∞n=1 is a Riesz basis for L2(Rd) and s > d, then

(1.2) sup
n∈N

(
inf
a∈Rd

∫
Rd

|x− a|2s|fn(x)|2dx+ inf
b∈Rd

∫
Rd

|ξ − b|2s|f̂n(ξ)|2dξ
)
= ∞ .

This theorem therefore asserts that the Bourgain basis possesses the best pos-
sible phase space localization. For the case of an orthonormal basis for L2(R) in
dimension d = 1, Bourgain outlines a proof strategy for Theorem 1.1. Precisely,
he writes that “it has been shown by T. Steger that L2(R) does not admit a basis
of the form fj = eibjxgj(x− aj), where gj satisfies supj ‖gj‖Aε <∞, defining

‖g‖2Aε
=

∫
(1 + x2)1+ε|g(x)|2dx+

∫
(1 + ξ2)1+ε|ĝ(ξ)|2dξ .

Here ε > 0 is any strictly positive number. His argument is based on the fact
that the operations x (x-multiplication) and d/dx in the latter basis would become
‘almost’ diagonal operators, violating the non-commutation property [d/dx, x] = I.
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He also makes use of a density computation due to Y. Meyer of the set Λ of pairs
(aj , bj) in phase space. The condition ε > 0 is important in Steger’s argument as
well as for Meyer’s distribution result to be valid”; see [7].

Some of these arguments have made their way into the literature. A density
argument related to Meyer’s argument has appeared in the fundamental paper of
Ramanathan and Steger [23] on the density of Gabor frames and has become the
main technique for investigating the density of frames. See [2], [16], and [17] for
some variations of the Ramanathan–Steger technique. The canonical commutation
relations were used in Battle’s elegant proof of the Balian–Low theorem [3].

However, a full proof of the uncertainty principle of Theorem 1.1 has not yet
been given. Research has focused mainly on bases consisting of phase space shifts
fn(x) = e2πibnxg(x − an) of a single generating function g, the so-called Gabor
systems. The theorem of Balian–Low asserts that a basis satisfying (1.1) cannot
consist of a (regular) Gabor system. We refer the reader to proofs of the the-
orem in [10] and [3], to the survey articles on the Balian–Low theorem and its
generalizations ([5] and [9]), and to the monograph [14] for detailed discussions of
the subject. Gabor systems are somewhat easier to handle, because one needs to
control the localization of only one function in contrast to Bourgain’s case.

In this paper we offer a complete proof of Theorem 1.1 which extends the result
mentioned in [7] to higher dimensions and to Riesz bases instead of orthonormal
bases. For orthogonal bases our proof follows the outline of Bourgain. The case
of Riesz bases requires additional ideas. We will apply the theory of localized
frames [12], [15] to verify that the biorthogonal basis possesses the same localization
properties as the original basis. In a second step we use a bootstrap argument.
We will show that if a Riesz basis violates condition (1.2) for s > d, then we can
construct a new Riesz basis with optimal phase space localization, for instance,
with all functions in a Gelfand–Shilov space of test functions.

It may seem a lot of effort to prove the non-existence of well localized phase
space bases, but several arguments are of interest in themselves. The proof com-
bines tools from the density theory of frames, the canonical commutation relations,
the theory of localized frames, recent phase space methods, and a new argument
of how to improve the quality of a given basis.

One of the corollaries of Theorem 1.1 is that there is no Riesz basis of phase
space shifts of the Gaussian function in L2(Rd). This fact implies that there is no
subset Λ ⊂ Cd that is both sampling and interpolating for the Bargmann–Fock
space F2(Cd). This statement is well known in dimension d = 1, but seems to
have been open in higher dimensions.

The paper is organized as follows: in Section 2 we show that a well-localized
phase space basis must be indexed by a set of density one. In Section 3 we prove
Theorem 1.1 for the special case when its biorthogonal basis is also well localized;
this includes the case of an orthonormal basis. Section 4 contains some background
about time-frequency analysis. In Section 5 we develop the necessary arguments to
prove the uncertainty principle of Theorem 1.1 for Riesz bases. Section 6 elaborates
the non-existence of sets of simultaneous sampling and interpolation and concludes
with further remarks.
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2. Density conditions

We say that a sequence of functions {fn}∞n=1 ⊂ L2(Rd) has phase space localization
of magnitude s, if

sup
n∈N

(
inf
a∈Rd

∫
Rd

|x− a|2s|fn(x)|2dx+ inf
b∈Rd

∫
Rd

|ξ − b|2s|f̂n(ξ)|2dξ
)
<∞ .

In this case there exist points (an, bn) ∈ R2d, such that

sup
n∈N

(∫
Rd

|x− an|2s|fn(x)|2dx+

∫
Rd

|ξ − bn|2s|f̂n(ξ)|2dξ
)
<∞ .

Then the set Λ = {(an, bn)}∞n=1 is the set in the phase space where the func-
tions {fn}n are localized. Note that there is some freedom in the choice of points
(an, bn) ∈ R2d.

We will first estimate the density of the set Λ = {(an, bn)}∞n=1 ⊂ R2d both for
Riesz bases and frames for L2(Rd) which have phase space localization. The ideas
we follow are well known, see [23], [24], [21], and [25].

Let Λ be a subset of R2d. We denote by D+(Λ) and D−(Λ) its upper and lower
Beurling densities,

D+(Λ) = lim sup
r→∞

sup
x∈R2d

card(Λ ∩Q(x, r))

|Q(x, r)| ,

D−(Λ) = lim inf
r→∞ inf

x∈R2d

card(Λ ∩Q(x, r))

|Q(x, r)| ,

where x = (x1, x2) ∈ Rd × Rd and

Q(x, r) = {(y1, y2) ∈ R
d × R

d : |x1 − y1| < r, |x2 − y2| < r} .
These densities can be also defined by using dilations of cubes or balls in R2d

instead of Q(x, r), as was proved by Landau [22].

A set Λ ⊂ R2d is relatively separated if supx∈R2d card
(
Λ ∩ (x + [0, 1]2d)

)
< ∞.

Clearly, if D+(Λ) <∞, then Λ is relatively separated.

Lemma 2.1. Suppose that {fn}∞n=1 is a Riesz basis for L2(Rd) that has phase
space localization of magnitude s, s > 0, at points {(an, bn)}∞n=1, i.e.,

sup
n∈N

(∫
Rd

|x− an|2s|fn(x)|2dx+

∫
Rd

|ξ − bn|2s|f̂n(ξ)|2dξ
)
= S <∞ .

Then Λ = {(an, bn)}∞n=1 ⊂ R2d is relatively separated and D+(Λ) ≤ 1.

Proof. Fix ε > 0. We say that a function g ∈ L2(Rd) is ε-concentrated on some
set E ⊂ Rd if ∫

E

|g(x)|2dx ≥ (1− ε2)‖g‖2.
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Since∫
|x−an|≥r

|fn(x)|2 dx ≤ r−2s

∫
|x−an|≥r

|x− an|2s|fn(x)|2 dx ≤ r−2sS ,

there exists r = r(ε) such that fn is ε-concentrated on B(an, r) uniformly in n.

Likewise f̂n is ε-concentrated on B(bn, r) for every n. We fix (x0, ξ0) ∈ Rd × Rd,
consider any R > 0 and denote QR = Q((x0, ξ0), R). Note that if (an, bn) ∈ QR,

then fn is ε-concentrated on B(x0, R+r), and f̂n is ε-concentrated on B(ξ0, R+r),
where r = r(ε) as above.

We now apply a standard estimate of the trace of a time-frequency restriction
operator to conclude that D+(Λ) ≤ 1, see [23].

Let F be the Fourier transform and PE be the projection operator PEf =
χE f (multiplication of f by the characteristic function of E). The phase space
restriction operator is defined by

L = PB(x0,R+r)(F−1PB(ξ0,R+r)F)PB(x0,R+r) = P1P2P1 .

It is well known, see for example [11], that

tr(L) = |B(x0, R+ r)||B(ξ0, R+ r)| = |QR+r|.

For each fn such that (an, bn) ∈ QR, we have

‖fn − Lfn‖ ≤ ‖fn − P1fn‖+ ‖P1‖‖fn − P2fn‖+ ‖P1P2‖‖fn − P1fn‖ ≤ 3ε‖fn‖.
Now let {gn} be the biorthogonal basis for {fn}, i.e., (fn, gm) = δnm. Then

tr(L) ≥
∑

(an,bn)∈QR

(Lfn, gn) ≥
∑

(an,bn)∈QR

((fn, gn)− |(fn − Lfn, gn)|)

≥ (1 − 3Cε)card(Λ ∩QR),

where C = supn ‖fn‖‖gn‖ <∞ (since {fn} is a Riesz basis). Thus

card
(
Λ ∩Q((x0, ξ0), R)

) ≤ (1− 3Cε)−1|Q((x0, ξ0), R+ r)|.

Taking the limit R → ∞, we obtain D+(Λ) ≤ (1 − 3Cε)−1 for every ε > 0, and
thus D+(Λ) ≤ 1, and Λ is relatively separated. �

Remark. Lemma 2.1 and its proof hold also for Riesz sequences. If {fn}∞n=1 is a
frame that has phase space localization of magnitude s > 0 at points {(an, bn)}∞n=1

and satisfies C−1 ≤ ‖fn‖2 ≤ C, then it is still true that Λ = {(an, bn)}∞n=1 is
a relatively separated set and that D+(Λ) < ∞. This follows by compactness
arguments, see Theorem 3.5 in [19] for a similar result in dimension d = 1.

Lemma 2.2. Suppose that {fn}∞n=1 is a frame for L2(Rd) with C−1 ≤ ‖fn‖2 ≤
C < ∞. If s > d and {fn}n has phase space localization of magnitude s at points
{(an, bn)}n, then Λ = {(an, bn)}∞n=1 is relatively separated and D−(Λ) ≥ 1.
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We remark that the lemma does not hold for s = d. This can be seen from the
construction of an orthonormal basis in [7].

Proof. Let K(y, l) denote the cube with center y ∈ Rq and side length 2l,

K(y, l) = {z ∈ R
q : ‖y − z‖∞ < l},

where ‖z‖∞ = max1≤s≤q |zs|, z = (z1, . . . , zq) ∈ Rq.
Fix ε > 0 and choose δ in the open interval (d/s, 1). This is possible by the

hypothesis s > d.

Step 1. An estimate for the coefficients (ψ, fm) of a localized function. Assume
that ψ ∈ L2(Rd), ‖ψ‖2 = 1, ψ is ε-concentrated on K(a,R− Rδ), and its Fourier
transform is supported on K(b, R − Rδ). Set η = ψ(1 − χK(a,R−Rδ)), so that
‖η‖2 ≤ ε.

If ‖am − a‖∞ > 2kR, then the following estimate holds:

|(ψ, fm)|2 ≤ 2|(ψ(1− χK(a,R−Rδ)), fm)|2 + 2
(∫

K(a,R−Rδ)

|ψ(x)||fm(x)|dx
)2

≤ 2|(η, fm)|2 + 2
(
((2k − 1)R+Rδ)−s

∫
K(a,R−Rδ)

|x− am|s|ψ(x)||fm(x)|dx
)2

≤ 2|(η, fm)|2 + 2((2k − 1)R+Rδ)−2sS .

If ‖bm − b‖∞ > 2kR, then

|(ψ, fm)|2 = |(ψ̂, f̂m)|2 =
(∫

K(b,R−Rδ)

|ψ̂(ξ)||f̂n(ξ)|dξ
)2

≤ ((2k − 1)R+Rδ)−2sS .

Let M0 = {n : (an, bn) ∈ K(a,R)×K(b, R)} and let M be the complement ofM0,
M = {n : (an, bn) 
∈ K(a,R)×K(b, R)}. We further partition M into the sets Mk

as follows:

Mk =
{
n : max(‖an − a‖∞, ‖bn − b‖∞) ∈ [2kR, 2k+1R)

}
, k ≥ 0.

Since D+(Λ) < ∞ by Lemma 2.1 (see also the remark after the lemma), we find
that card(Mk) ≤ C1(2

kR)2d for some large enough constant C1. Thus

∑
m∈M

|(ψ, fm)|2 =

∞∑
k=0

∑
m∈Mk

|(ψ, fm)|2

≤ 2
∑

m∈M
|(η, fm)|2 + 2S

∞∑
k=0

C12
2kdR2d

((
2k − 1

)
R+Rδ

)−2s

≤ 2B‖η‖22 + 2SC1R
2d−2sδ + 2SC1R

2d−2s
∞∑
k=1

22kd(2k − 1)−2s ,

where B is the upper frame bound of {fn}n. Since s > d by assumption, the
last sum converges. Further, sδ > d and, by choosing R large enough, the second
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and third terms can be made arbitrarily small. Given ε > 0 and δ ∈ (d/s, 1), we
find that

(2.1)
∑

m∈M
|(ψ, fm)|2 ≤ C2

0ε
2 for R ≥ R0(ε, δ,Λ, S) ,

with the constant C0 depending only on the frame bound B of {fn}n.
Step 2. Comparison with a basis of prolate spheroidal functions. For given ε > 0,
δ ∈ (d/s, 1), and R ≥ R0(ε, δ,Λ, S), we now consider those prolate spheroidal
functions φ1, . . . , φN with N = N(R) that are εd−1/2 concentrated on (−R +
Rδ, R−Rδ) and whose Fourier transforms are supported on (−R+Rδ, R−Rδ). We
refer the reader to [24] and [21] for definitions and properties of these functions.
According to [21] the number of φj with these concentration properties satisfies
limR→∞N(R)R−2 = 1.

In higher dimensions we take tensor products of phase space shifts of these
prolate spheroidal functions. Let σ = (n1, . . . , nd) ∈ {1, 2, . . . , N(R)}d and define

ψσ(x) =

d∏
j=1

e−2πibjxjφnj (xj − aj),

then we obtain an orthonormal set of Nd functions {ψσ}σ that are ε-concentrated
on K(a,R−Rδ) and whose Fourier transforms are supported on K(b, R−Rδ).

Now let {gn}n be the dual frame of {fn}n. If A > 0 is the lower frame bound
of {fn}n, then we have∥∥∑

n

cngn
∥∥2
2
≤ A−1‖c‖22 for every c ∈ 
2 .

Step 3. Density estimate. We now follow the argument of Ramanathan and
Steger in [23]. Let S be the orthogonal projection of L2(Rd) onto Ψ = span{ψσ :
σ ∈ {1, . . . , N(R)d} and let T be the orthogonal projection onto G = span{gn :
n ∈ M0}. We consider U : Ψ → Ψ, U = S ◦ T . For each ψ ∈ Ψ we obtain

‖ψ − Uψ‖2 = ‖S(ψ − Tψ)‖2 ≤ ‖ψ − Tψ‖2 = inf
g∈G

‖ψ − g‖2 ≤
∥∥∥ψ −

∑
n∈M0

(ψ, fn)gn

∥∥∥
2

=
∥∥∥ ∑

m∈M
(ψ, fm)gm

∥∥∥
2
≤ A−1/2

( ∑
m∈M

|(ψ, fm)|2
)1/2

.

Since each basis function ψσ is in Ψ and satisfies the concentration assumptions
from Step 1, the estimate (2.1), implies that

‖ψσ − Uψσ‖2 ≤ C0√
A
ε .

Consequently,

tr(U) ≥
∑
σ

(Uψσ, ψσ) =
∑
σ

(
‖ψσ‖22 − (ψσ − Uψσ, ψσ)

)
≥

(
1− C0√

A
ε
)
N(R)d .
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On the other hand, since U is the composition of two projections, all eigenvalues
of U belong to (0, 1), and therefore tr(U) ≤ rank(U) ≤ dim(G). Thus

(1−A−1/2C0ε)N(R)d ≤ tr(U) ≤ card(Λ ∩K(a,R)×K(b, R)) .

We now use the definition of the Beurling density with cubes in R2d instead of
balls, and obtain

D−(Λ) = lim
R→∞

inf
(a,b)∈R2d

card
(
Λ ∩K(a,R)×K(b, R)

)
R2d

≥ (1−A−1/2C0ε) lim
R→∞

N(R)d

R2d
= 1−A−1/2C0ε .

As ε > 0 was arbitrary, we conclude that D−(Λ) ≥ 1. �

Combining Lemmas 2.1 and 2.2, we obtain the density result for localized Riesz
bases (recall, however, that our aim is to prove that there are no such bases).

Corollary. If s > d and {fn}∞n=1 is a Riesz basis for L2(Rd) that has phase
space localization of magnitude s at points {(an, bn)}∞n=1, then the density of Λ =
{(an, bn)}n is D(Λ) = D+(Λ) = D−(Λ) = 1.

3. Uncertainty identity

We first prove Theorem 1.1 under the additional condition that the dual basis is
also well localized. The proof extends Battle’s elegant proof of the Balian–Low
theorem [3] and rediscovers Steger’s argument mentioned by Bourgain in [7] (see
the quote above).

The core of the argument is the following uncertainty identity (the canonical
commutation relations)

(xf,∇g) + (∇f, xg) =
d∑

j=1

(
(xjf,

∂g
∂xj

) + ( ∂f
∂xj

, xjg)
)
= −d(f, g),

which holds provided that f, g, ∂f
∂xj

, ∂g
∂xj

, xjg, xjf ∈ L2(Rd) for j = 1, . . . , d.

Lemma 3.1. Assume that {fn}∞n=1 is a Riesz basis for L2(Rd) with the bior-
thogonal basis {gn}∞n=1. If the bases satisfy the localization estimates

(a) supn
∫
Rd |x− an|2s|fn(x)|2dx+

∫
Rd |ξ − bn|2s|f̂n(ξ)|2dξ = S2 <∞;

(b) supn
∫
Rd |x− an|2s|gn(x)|2dx+

∫
Rd |ξ − bn|2s|ĝn(ξ)|2dξ = T 2 <∞; and

(c) Λ = {(an, bn)}∞n=1 ⊂ R2d is relatively separated and

0 < D−(Λ) ≤ D+(Λ) <∞,

then s ≤ d.



122 K. Gröchenig and E. Malinnikova

Proof. We assume that s > d and use the uncertainty identity to derive a contra-

diction from (a)–(c). In the following we will write
−−−−→
(xf, g) ∈ Cd for the vector with

components (xjf, g), j = 1, . . . , d. Likewise
−−−−→
(∇f, g) = ( ∂f

∂xj
, g)dj=1.

Step 1. An estimate for non-diagonal coefficients. Condition (a) implies that
xfn ∈ L2(Rd)d, and then the sequence of vectors

cnm =
−−−−−−→
(xfn, gm) = (xjfn, gm)dj=1 ∈ C

d

is well defined. By the biorthogonality condition, for m 
= n

cnm =
−−−−−−−−−−−−→
((x − an)fn, gm).

Since {gm} is a Riesz basis, assumption (a) implies that∑
m:m �=n

|cnm|2 ≤ B‖|x− an| fn‖22 ≤ BS2 .

Next, since cnm =
−−−−−−→
(xgm, fn), we also have∑

n:n�=m

|cnm|2 ≤ B‖|x− am| gm‖22 ≤ BT 2.

Here B is the upper basis constant for both Riesz bases {gm}m and {fn}n.
The coefficients

dnm =
−−−−−−→
(ζf̂n, ĝm) = (2πi)−1−−−−−−→(∇fn, gm)

enjoy similar properties.

Step 2. Commutation relations. We now apply the uncertainty identity to each
pair {fn, gn} and obtain

d = −
∑
m

(−−−−−−→
(xfn, gm) · −−−−−−→(∇gn, fm) +

−−−−−−→
(∇fn, gm) · −−−−−−→(xgn, fm)

)
(3.1)

= −2πi
∑
m

(cnm · dmn − dnm · cmn ),

where λ · μ =
∑d

j=1 λjμj is the standard scalar product in Cd.

For eachR > 0 defineN (R) = {n : |an| ≤ R, |bn| ≤ R} andN(R) = cardN (R).
Now we sum up the identities (3.1) for all n ∈ N (R),

d

2πi
N(R) =

∑
n∈N (R)

∑
m

(−cnm · dmn + dnm · cmn )(3.2)

=
∑

n,m∈N (R)

d∑
j=1

(−(cnm)j(d
m
n )j +(dnm)j(c

m
n )j)+

∑
n∈N (R)

∑
m �∈N (R)

(−cnm · dmn + dnm · cmn ).

Clearly, the first sum equals zero. We will derive a contradiction by showing
that the second sum grows more slowly than N(R). We divide the necessary
estimates into several steps.
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Step 3. Points (an, bn) near the boundary. To estimate the second sum, we parti-
tion N (R) into two sets,

N (R) = N (R− r) ∪ (N (R) \ N (R − r)
)
,

where r = Rδ for some δ ∈ (d/s, 1).

First, for n ∈ R(R− r, R) = N (R) \ N (R − r) we get

(3.3)
∑

n∈R(R−r,R)

∑
m �∈N (R)

|cnm||dmn |

≤
∑

n∈R(R−r,R)

( ∑
m:m �=n

|cnm|2
)1/2( ∑

m:m �=n

|dmn |2
)1/2

≤ (N(R)−N(R− r))B S T .

The sum of |dnm||cmn | admits the same estimate.

Step 4. Further partition of N (R) for interior (an, bn). Next we partition the
complement of N (R) into the rings Nk = N (Rk+1) \ N (Rk) where Rk = 2kR,
k ≥ 0. Then for each n ∈ N (R − r) we get

∑
m �∈N (R)

|cnm||dmn | =
∞∑
k=0

∑
m∈Nk

|cnm||dmn |

≤
∞∑
k=0

∑
m∈Nk:|am|>Rk

|cnm||dmn |+
∞∑
k=0

∑
m∈Nk:|bm|>Rk

|cnm||dmn |

≤
( ∞∑

k=0

∑
m∈Nk:|am|>Rk

|cnm|2
)1/2( ∑

m:m �=n

|dmn |2
)1/2

+
( ∑

m:m �=n

|cnm|2
)1/2( ∞∑

k=0

∑
m∈Nk:|bm|>Rk

|dmn |2
)1/2

.

Step 5. Main estimate. Now we write down an estimate for cnm when |an| < R− r
and |am| > Rk. Set

h(j)n (x) = (x− an)jfn(x)(1 − χB(R−r/2)(x)), j = 1, 2, . . . , d.

Then

‖h(j)n ‖22 ≤
∫
|x|>R−r/2

|(x − an)j |2|fn(x)|2dx.

Further, for |x| ≥ r/2 and |an| ≤ R− r, we have |x− an| ≥ r/2, and therefore

(3.4)
d∑

j=1

‖h(j)n ‖22 ≤ (r/2)2−2s

∫
Rd

|x− an|2s|fn(x)|2dx ≤ (r/2)2−2sS2.
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Then we have

|cnm|2 =

d∑
j=1

|((x− an)jfn, gm
)|2(3.5)

≤
d∑

j=1

(
2|((x− an)jfnχB(R−r/2), gm)|2 + 2|(h(j)n , gm)|2

)

≤ 2S2‖gmχB(R−r/2)‖22 + 2

d∑
j=1

|(h(j)n , gm)|2

≤ 2S2T 2(Rk −R+ r/2)−2s + 2
d∑

j=1

|(h(j)n , gm)|2.

And since {gm}m is a Riesz basis,

(3.6)
∑
m

|(h(j)n , gm)|2 ≤ B‖h(j)n ‖22 .

Summing up the estimates (3.5) over all k and all m ∈ Nk such that |am| > Rk

and taking into account (3.4) and (3.6), we obtain

∞∑
k=0

∑
m∈Nk:|am|>Rk

|cnm|2

≤ 2S2T 2
∞∑
k=0

N(Rk+1)(Rk −R+ r/2)−2s +B(r/2)2−2sS2.

We can derive similar estimates of
∑

k

∑
m |dmn |2 where the summation is over

all k and m ∈ Nk such that |bm| > Rk by using the localization inequality for ĝn.
Likewise, we obtain the estimates for

∑
k

∑
m |cmn |2 and

∑
k

∑
m |dnm|2, where the

sums are over all k and m ∈ Nk such that |bm| > Rk and over all k and m ∈ Nk

such that |am| > Rk, by using the localization conditions on gn and f̂n.

Step 6. Comparison of the densities. Finally we combine the inequality obtained
in Step 4 with the last inequality of Step 5 and similar inequalities with other
combinations of indices. Then we obtain for every n ∈ N (R − r)

∑
m �∈N (R)

(|cnm||dnm|+ |cmn ||dmn |) ≤
(
C1r

2−2s +C2

∞∑
k=0

N(Rk+1)(Rk −R+ r/2)−2s
)1/2

,

where C1 and C2 depend on S, T,B, s, and supn ‖fn‖2 and supn ‖gn‖2. Assump-
tion (c) (the estimate of the upper density D+(Λ) <∞) implies that

N(Rk+1) ≤ D12
2d(k+1)R2d and N(R− r) ≤ D1(R − r)2d
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for some D1 > 0 and all large enough R. Then for large enough R we obtain∑
n∈N (R−r)

∑
m �∈N (R)

(|cnm||dmn |+ |cmn ||dnm|)

≤ CN(R− r)
(
r2−2s +R2d(r/2)−2s +R2d

∞∑
k=1

22d(k+1)(2kR−R+ r/2)−2s
)1/2

≤ C(R − r)2dRdr−s,

where C depends on S, T,B, s,D1, d, as well as supn ‖fn‖2 and supn ‖gn‖2.
To finish the proof we recall that r = Rδ and δ ∈ (d/s, 1). Observe that

for r large enough the estimate of the upper density implies N(R) −N(R − r) ≤
D1R

2d−1r (we just cover the set Q(0, R)\Q(0, R− r) by cubes with side length r).
Now, combining (3.2), (3.3), and the last inequality, we obtain

N(R) ≤ C3

(
N(R)−N(R− r) +R3d−δs

) ≤ C4(R
2d−1+δ +R3d−δs).

If we now let R go to infinity, we see that

D−(Λ) ≤ lim
R→∞

N(R)

R2d
≤ C4 lim

R→∞
(
Rδ−1 +Rd−δs

)
= 0 .

This conclusion contradicts the assumption (c) that the lower density estimate
D−(Λ) is strictly positive. �

Lemma 3.1 concludes the proof of Theorem 1.1 for the case of an orthonormal
basis. For a Riesz basis we are not able to prove that the phase space localization
of magnitude s (condition (a) of the lemma) with s > d implies the required
localization for its biorthogonal basis (stated in (b)). For the general case a more
complicated argument is presented in the next sections.

4. Some preliminaries on modulation spaces

The proof of Theorem 1.1 for Riesz bases requires some tools from time-frequency
analysis. We give a minimalistic account of the required facts on the short time
Fourier transform and modulation spaces. The reader can find the details and a
much more general theory of modulation spaces in [14].

Short time Fourier Transform. For (a, b) ∈ R2d we write

π(a, b)f(t) = e2πib·tf(t− a)

for the phase space shift of a function f on Rd. Let g(x) = 2−d/4e−π|x|2 be the
normalized Gaussian function on Rd. We consider the short time Fourier transform
of a function φ ∈ L2(Rd) with respect to g (see Chapter 3 of [14]),

Vgφ(x, ξ) = (φ, π(x, ξ)g) =

∫
Rd

φ(t)g(t − x)e−2πit·ξdt, x, ξ ∈ R
d.
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The inversion formula for the short time Fourier transform yields

φ(t) =

∫∫
R2d

Vgφ(x, ξ)e
2πiξ·tg(t− x) dx dξ,

for every φ ∈ L2(Rd), with a weak interpretation of the vector-valued integral.

Modulation spaces. For each s ≥ 0 let

L2
s(R

m) =
{
f ∈ L2(Rm) : ‖f‖2L2

s
=

∫
Rm

|f(x)|2(1 + |x|)2sdx <∞
}
.

The modulation space M2
s (R

d) is defined by

M2
s (R

d) = {φ ∈ L2(Rd) : ‖φ‖M2
s
= ‖Vgφ‖L2

s(R
2d) <∞}.

The following norm equivalence identifies the modulation space M2
s with the

Fourier–Lebesgue space L2
s ∩ FL2

s (see Propositions 11.3.1 and 12.1.6 of [14]):

c1‖φ‖M2
s
≤ ‖φ‖L2

s
+ ‖φ̂‖L2

s
≤ c2‖φ‖M2

s
.

The adjoint operator V ∗
g of the short time Fourier transform is defined on L2(R2d) by

V ∗
g F (t) =

∫∫
R2d

F (x, ξ)e2πiξ·tg(t− x)dxdξ =

∫∫
R2d

F (x, ξ)π(x, ξ)g(t)dxdξ .

If F ∈ L2
s(R

2d), then by Proposition 11.3.2 in [14], V ∗
g F ∈M2

s (R
d) and

(4.1) ‖V ∗
g F‖M2

s
≤ C‖F‖L2

s
.

We note that the phase space localization of magnitude s can be rephrased as

sup
n∈N

inf
(a,b)∈R2d

‖π(a, b)fn‖M2
s
<∞ .

Amalgam spaces. We define the amalgam space W (L2
s) ⊂ L2

s(R
2d) ∩ L∞(R2d)

as the space of all continuous functions on R2d for which the norm

‖F‖2W (L2
s)

=
∑

k,n∈Zd

sup
x,ξ∈[0,1]d

|F (x + k, ξ + n)|2 (1 + |k|+ |n|)2s

is finite. For s = 0, ‖F‖W (L2) ≥ ‖F‖2 obviously. The continuity of F implies the

existence of points xkn, ξkn ∈ [0, 1]d, such that

(4.2) ‖F‖2W (L2
s)

=
∑

k,n∈Zd

|F (k + xkn, n+ ξkn)|2(1 + |k|+ |n|)2s .

The definition of W (L2
s) implies the following sampling inequality: If Λ = {λn} ⊆

R2d is relatively separated, z ∈ R2d, and F ∈ W (L2
s), then

(4.3)
(∑

n

|F (z+λn)|2 (1+|z+λn|)2s
)1/2

≤ sup
k∈Z2d

card
(
Λ∩(k+[0, 1]2d)

) ‖F‖WL2
s
.

The following important inequality links modulation spaces with amalgam spaces:
For every φ ∈ L2

s(R
d) with φ̂ ∈ L2

s(R
d) we have, e.g., by Theorem 12.2.1 of [14],

(4.4) ‖Vgφ‖W (L2
s)

≤ C‖Vgφ‖L2
s
= C‖φ‖M2

s
.
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5. Basis modification

To finish the proof of Theorem 1.1, we will modify a given Riesz basis {fn}n for
L2(Rd) that has phase space localization of magnitude s > d into a Riesz basis
with much better localization properties. The argument in this section may be of
independent interest and can also be used to prove positive results about frames
and bases.

Proposition 5.1. Assume that {fn}∞n=1 is a Riesz basis for L2(Rd) that satisfies

(5.1) sup
n∈N

( ∫
Rd

|x− an|2s|fn(x)|2 +
∫
Rd

|ξ − bn|2s|f̂n(ξ)|2
)
<∞

for some s > d. Then there exists a Riesz basis {hn}∞n=1 that satisfies

(5.2) sup
n∈N

( ∫
Rd

|x− an|2t|hn(x)|2 +
∫
Rd

|ξ − bn|2t|ĥn(ξ)|2
)
<∞

for every t > 0.

Proof. The new basis is obtained by a modification of {fn}n. We use the inversion
formula for the short time Fourier transform and truncate it. In the language of
time-frequency analysis we apply a localization operator to fn. Precisely, let R > 0
and Q(R) = Q(0, R) = B(0, R) × B(0, R) ⊂ R

2d. Then the localization operator
AR is defined by

ARf(t) =

∫∫
Q(R)

Vgf(x, ξ)e
2πiξ·tg(t− x)dxdξ, f ∈ L2(Rd) .

Intuitively, ARf is the part of f that is concentrated on the set Q(R) in the phase
space. For more on localization operators see for instance [26] and [8].

We recast the assumption as follows: {fn}n is a Riesz basis for L2(Rd), fn(x) =
e2πibnxφn(x− an), s > d and

sup
n∈N

‖φn‖2M2
s
≤ S2 <∞.

We now define

(5.3) ψn = ARφn =

∫∫
Q(R)

Vgφn(x, ξ)π(x, ξ)g dxdξ

and the modified basis hn(x) = hRn (x) = e2πibnxψn(x− an).

Claim. For R large enough {hn}∞n=1 is a Riesz basis for L2(Rd).

To prove the claim, it suffices to show that for every ε > 0 there exists R such
that for hn = hRn and every sequence c = {cn}n ∈ 
2 the inequality∥∥∥∑

n

cn(fn − hn)
∥∥∥
2
≤ ε‖c‖2
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holds. If {fn}n is a Riesz basis with the lower basis constant A > 0, then∥∥∥∑
n

cnhn

∥∥∥
2
≥

∥∥∥∑
n

cnfn

∥∥∥
2
−
∥∥∥∑

n

cn(fn − hn)
∥∥∥
2
≥ (A− ε)‖c‖2 ,

and so {hn}n is a Riesz basis.
Using once again the crucial assumption s > d, we now choose a number σ such

that d < σ < s. Using the inversion formula for the short time Fourier transform
and (5.3), we write

φn − ψn =

∫∫
R2d

(
1− χQ(R)(x, ξ)

)
Vgφn(x, ξ)π(x, ξ)g dxdξ ,

and estimate the M2
σ-norm of φn − ψn with (4.1) as

‖φn − ψn‖2M2
σ
≤

∫∫
R2d

(
1− χQ(R)(x, ξ)

)|Vgφn(x, ξ)|2(1 + |x|+ |ξ|)2σ dxdξ

≤ (1 +R)2(σ−s)

∫∫
R2d

(
1− χQ(R)(x, ξ)

)|Vgφn(x, ξ)|2(1 + |x|+ |ξ|)2s dxdξ

≤ C(1 +R)2(σ−s)‖φn‖2M2
s
≤ C(1 +R)2(σ−s)S2 .

Choosing now R large enough, we have

‖φn − ψn‖M2
σ
< ε for all n.

Then we have, with (4.2) and a suitable choice of points (xk,m, ξk,m) ∈ [0, 1]2d,
that∥∥∥∑

n

cn(fn − hn)
∥∥∥2
2
=

∥∥∥∑
n

cnVg(fn − hn)
∥∥∥2
2
≤

∥∥∥∑
n

cnVg(fn − hn)
∥∥∥2

W (L2)

=
∑

(k,m)∈Z2d

∣∣∣∑
n

cnVg(fn − hn)(xk,m + k, ξk,m +m)
∣∣∣2

≤
∑

(k,m)∈Z2d

(∑
n

|cn| |Vg(fn − gn)(xk,m + k, ξk,m +m)|
)2

≤
∑

(k,m)∈Z2d

(∑
n

(1 + |k − an|+ |m− bn|)−2σ
)

·
(∑

n

|cn|2|Vg(fn − gn)(xk,m + k, ξk,m +m)|2(1 + |k − an|+ |m− bn|)2σ
)
.

Since σ > d and Λ is relatively separated, the sum
∑

n(1+|k−an|+|m−bn|)−2σ

is uniformly bounded, independent of k and m. Thus we obtain∥∥∥∑
n

cn(fn − hn)
∥∥∥2
2

≤ C
∑
n

|cn|2
∑
k,m

|Vg(fn − gn)(xk,m + k, ξk,m +m)|2(1 + |k − an|+ |m− bn|)2σ .
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By (4.3) and (4.4) we estimate further that∑
k,m

|Vg(fn − gn)(xk,m + k, ξk,m +m)|2(1 + |k − an|+ |m− bn|)2σ

=
∑
k,m

|Vg(φn − ψn)(xk,m + k − an, ξk,m +m− bn)|2(1 + |k − an|+ |m− bn|)2σ

≤ C2‖Vg(φn − ψn)‖2W (L2
σ)

≤ C3‖φn − ψn‖2M2
σ
< C3ε

2 .

Collecting all these estimates, we arrive at∥∥∥∑
n

cn(fn − hn)
∥∥∥2

2
≤ C3ε

2
∑
n

|cn|2 = C3‖c‖22 ε2 .

Consequently, {hn}n is a Riesz basis for L2(Rd).
Finally, applying (4.1) once again, we obtain, for arbitrary t > 0,

‖ψn‖L2
t
+ ‖ψ̂n‖L2

t
≤ C‖ψn‖M2

t
≤ C′‖VgφnχQ(R)‖L2

t
≤ CtR

t ,

which is (5.2). �

Remark. The construction of ψn implies that |ψn(t)| ≤ Ce−α|t|2 and |ψ̂n(ξ)| ≤
Ce−β|ξ|2 for some α, β, C > 0. Thus the perturbed basis belongs to the Gelfand–
Shilov space S1/2,1/2, the smallest space of test functions that is invariant under
the Fourier transform.

To complete the proof of Theorem 1.1 we will show that the biorthogonal

basis {h̃n}n satisfies (5.1) for some s large enough and then apply Lemma 3.1.
The modified basis {hn}n possesses enough phase space localization so that the

theory of localized frames [12], [15] is applicable. We say that a frame {hλ : λ ∈ Λ}
is s-localized over the index set Λ ⊆ Rd, if its Gramian satisfies

(5.4) |(hμ, hλ)| ≤ C(1 + |λ− μ|)−s for all λ, μ ∈ Λ .

The main result about localized frames asserts that the dual frame possesses the
same type of localization. Specifically we need the following result taken from The-
orem 1.1 and Corollary 3.7 of [12]:

Proposition 5.2. Let Λ ⊆ R2d be a relatively separated set and let {hλ : λ ∈ Λ}
be a frame for L2(Rd). Assume that {hλ} is s-localized for s > 2d. Then the
(canonical ) dual frame is also s-localized, i.e.,

(5.5) |(h̃μ, h̃λ)| ≤ C′(1 + |λ− μ|)−s for all λ, μ ∈ Λ .

For a Riesz basis this result can be proved directly. The Gramian matrix G

of the basis with entries (hμ, hλ) is invertible with inverse (G−1)λμ = (h̃μ, h̃λ).
By a theorem of Jaffard [18] the polynomial off-diagonal decay is preserved under
inversion, whence follows the statement of the proposition (for a Riesz basis).

To apply Proposition 5.2, we need to compare the phase space localization of
magnitude s in Bourgain’s uncertainty principle with the localization defined by
the off-diagonal decay of the Gramian.
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Lemma 5.3. (i) If {hn}n is a Riesz basis with phase space localization of magni-
tude s > 0, then {hn}n is s-localized over the index set Λ in the sense of (5.4).

(ii) If {hn}n is a Riesz basis with phase space localization of magnitude s > 3d,

then the biorthogonal basis {h̃n}n has phase space localization of magnitude t for
any t ∈ (d, s− 2d).

Proof. (i) We choose the set Λ = {(an, bn)}n ⊂ R2d as the appropriate index set.
By Lemma 2.1, Λ is relatively separated. Then the inequality

(1 + |x− am|)s(1 + |x− an|)s ≥ (1 + |am − an|)s

implies

|(hn, hm)| ≤ (1 + |am − an|)−s

∫
Rd

hn(x)(1 + |x− an|)shm(x)(1 + |x− am|)s dx

≤ (1 + |am − an|)−s sup
n∈N

∫
Rd

|hn(x)|2(1 + |x− an|)2s dx

= (1 + |am − an|)−sS2 .

The argument for the Fourier transforms yields that

|(hn, hm)| = |(ĥn, ĥm)| ≤ (1 + |bm − bn|)−sS2 .

By combining both estimates we arrive at

|(hn, hm)| ≤ C(1 + |λ− μ|)−s for all λ, μ ∈ Λ ,

in other words, {hn} is s-localized over Λ.

(ii) By (i), {hn} is s-localized on Λ ⊆ R2d and s > 3d. Therefore Proposition 5.2
applies and the dual frame is also s-localized as in (5.5). Now we have

h̃n =
∑
m

(h̃n, h̃m)hm.

Next let d < t < s−2d (which is possible by s > 3d). A straightforward calculation
and (5.2) give∫

Rd

|x− an|2t|hm(x)|2dx ≤
∫
Rd

Ct

(|x− am|2t + |an − am|2t)|hm(x)|2dx
≤ C(S + |an − am|2t) ≤ C′(1 + |λn − λm|)2t.

With the triangle inequality for the L2
t -norm we obtain(∫

Rd

|x− an|2t |h̃n(x)|2dx
)1/2

=
(∫

Rd

|
∑
m

(h̃n, h̃m)hm(x)|2|x− an|2t dx
)1/2

≤ C
∑
m

|(h̃n, h̃m)|(1 + |λn − λm|)t ≤ C
∑
m

(1 + |λn − λm|)t−s .

Since Λ is relatively separated and t−s < −2d, the last sum is uniformly bounded.
Similar estimates hold for the Fourier transforms. Consequently, the dual basis

is localized in the sense of (5.1) for t ∈ (d, s− 2d). �
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We now can finish the proof of Theorem 1.1 for Riesz bases.
We start with a Riesz basis {fn}n that satisfies (5.1) for some s > d. Then we

modify this basis by means of Proposition 5.1 to a Riesz basis {hn}n that satisfies
the localization estimates (5.1) for all t > 0. Finally, Lemma 5.3 guarantees

that the dual basis {h̃n}n also satisfies the localization estimates (5.1) for all t > 0.
Thus all the assumptions of Lemma 3.1 are satisfied whence we conclude that the
localization of {hn}n is t ≤ d. This is a contradiction to the construction of {hn}n.
This means that the original basis {fn}n cannot satisfy the strong localization
estimate s > d, and the proof of Theorem 1.1 is complete.

6. Sampling in Bargmann–Fock spaces and concluding re-
marks

Finally, we give an application of Theorem 1.1 to several complex variables. Recall
that the Bargmann–Fock space F consists of all entire functions on Cd with norm

‖F‖2F =

∫
Cd

|F (z)|2 e−π|z|2 dz.

The Bargmann–Fock space possesses the reproducing kernel Kw(z) = eπw̄·z for
w, z ∈ Cd, so that F (w) = (F,Kw). Consequently, a set {Kλ : λ ∈ Λ} is a Riesz
basis for F if and only if Λ ⊆ Cd is simultaneously sampling and interpolating
for F , i.e.,

∑
λ |F (λ)|2e−π|λ|2 � ‖F‖2F , and for every c ∈ 
2(Λ) there exists a

(unique) F ∈ F , such that F (λ)e−π|λ|2/2 = cλ.

The following result is an immediate consequence of Theorem 1.1:

Theorem 6.1. The Bargmann–Fock space does not admit a set Λ ⊆ Cd that is
simultaneously sampling and interpolating.

Proof. We use the Bargmann transform defined as

Bf(z) = F (z) = 2d/4e−πz2/2

∫
Rd

f(t)e−πt·te2πt·zdt , z ∈ C
d ,

and translate Theorem 1.1 into a statement of complex analysis. The Bargmann
transform is unitary from L2(Rd) onto F and maps the phase space shifts of

the Gaussian e−2πiw2·xe−π(x−w1)
2

= π(w1,−w2)g(x) to the reproducing kernel

eiαKw e
−|w|2/2 for some phase factor |c| = 1. Thus Λ ⊆ Cd is a set of sampling

and interpolation if and only if {Kλ : λ ∈ Λ} is a Riesz basis for F .
Clearly, the Gaussian satisfies the localization condition (5.1) for all s > 0.

By Theorem 1.1, a set of phase space shifts of the Gaussian cannot from a Riesz
basis for L2(Rd). Consequently, no set Λ ⊆ Cd can be simultaneously sampling
and interpolating. �

Remark. Theorem 6.1 is a statement of complex analysis. Indeed, in dimension
d = 1 is it well known and can be proved with classical methods from complex
variables. In higher dimensions the result was expected, but seems to have been
open so far. A proof with different methods has been announced in [1].
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Final remarks. It is interesting to compare the critical value of the localiza-
tion parameter s in higher dimensions with the higher dimensional versions of the
Balian–Low theorem. It is known that for d = 1 and every s < 1 there exists a
function f with ∫

R

(1 + |x|)2s|f |2 <∞,

∫
R

(1 + |ξ|)2s|f̂ |2 <∞,

such that {e2πintf(x −m)}n,m∈Z is an orthogonal basis for L2(R). (A more pre-
cise result is obtained in [4]; we refer the reader to [20] also.) Thus in the one-
dimensional setting the restrictions on the localization properties of an arbitrary
orthogonal basis and of a Gabor system can be observed only at one point of our
scale, s = 1. The situation changes drastically when we consider higher dimen-
sional spaces. There exists an orthogonal basis {fn} for L2(Rd) that satisfies

sup
n∈N

(
inf
a∈Rd

∫
Rd

|x− a|2d|fn(x)|2 + inf
b∈Rd

∫
Rd

|ξ − b|2d|f̂n(ξ)|2
)
<∞,

but for every orthogonal basis of the form {e2πintf(x−m)}n,m∈Zd a multidimen-
sional version of Balian–Low theorem (see [9] and references therein) implies

sup
n∈N

inf
a∈Rd

∫
Rd

|x− a|2|fn(x)|2 = ∞ or sup
n∈N

inf
b∈Rd

∫
Rd

|ξ − b|2|f̂n(ξ)|2 = ∞.

The reason for it could lie in the choice of the radial weight vs = |x|2s. It seems
that the product weight ws(x) =

(
(1+ |x1|) · · · (1+ |xd|)

)s
might be a more natural

weight in higher dimensions.
There are a (p, q)-version of Bourgain’s theorem [6] and a (p, q) version of the

Balian–Low theorem [13] for 1/p + 1/q = 1. It would be interesting to obtain a
(p, q)-version of Theorem 1.1.
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