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Abstract. In this paper we investigate when the generic member of a
family of complex K3 surfaces admitting a non-symplectic automorphism
of finite order admits also a symplectic automorphism of the same order.
We give a complete answer to this question if the order of the automor-
phism is a prime number and we provide several examples and partial
results otherwise. Moreover we prove that, under certain conditions, a K3
surface admitting a non-symplectic automorphism of prime odd order, p,
also admits a non-symplectic automorphism of order 2p. This generalizes
a previous result by J. Dillies for p = 3.

0. Introduction

An automorphism of finite order n on a complex K3 surface is called symplectic if
it acts trivially on the holomorphic 2-form of the K3 surface and it is called purely
non-symplectic if it acts as multiplication by a primitive n-th root of the unity.
These notions were introduced by V.V. Nikulin in the 1980’s (cf. [24]).

In [24] the finite abelian groups G which act symplectically on a K3 surface are
classified and it is proved that the existence of a primitive embedding of a certain
negative definite lattice ΩG (depending only on the group G) in the Néron–Severi
group of a K3 surface X is equivalent to the fact that G acts symplectically on X .
In [14] and [15] the lattice ΩG is computed for each finite abelian group G and,
thanks to the Nikulin’s result, the families of K3 surfaces admitting G as group of
symplectic automorphisms are described as families of LG-polarized K3 surfaces,
for certain lattices LG.

On the other hand, in [25], [1], and [2] families of K3 surfaces admitting a non-
symplectic automorphism of prime order and a certain fixed locus are classified.
These are also M -polarized K3 surfaces, for a certain lattice M depending on the
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order and on the fixed locus of the automorphism. One of the aim of this paper is
to bring these two descriptions together.

In [11] and [8] a particular phenomenon is described for certain groups of sym-
plectic and non-symplectic automorphisms respectively: each K3 surface admit-
ting a particular group G as group of symplectic automorphisms (respectively,
non-symplectic automorphisms with a certain fixed locus), automatically admits
a larger group H of symplectic (respectively, non-symplectic) automorphisms (see
Theorems 1.5 and 1.6). In particular, this implies that the family of K3 surfaces
admitting G as group of (non-)symplectic automorphisms coincides with the fam-
ily of the K3 surfaces admitting H as group of (non-)symplectic automorphisms.
Due to these results it seems natural to ask:

Question 0.1. When does the generic member of a family of K3 surfaces admitting
a certain group G of automorphisms admit a larger group H of automorphisms?

A similar question was recently studied by K. Frantzen, [10], who considers K3
surfaces with non-symplectic involution and studies actions of symplectic groups
on the same K3 surface. More precisely she considers a K3 surface admitting a
symplectic action by a group G in Mukai’s list [23] and a non-symplectic involution
σ acting on X , centralizing G and with Fix(σ) �= ∅. She describes all K3 surfaces
admitting such a couple (G, σ) and she shows also that not all groups in Mukai’s
list can occur.

These kind of investigations are related to the classification of the finite groups
which can act on a K3 surface (until now there does not exist a complete classifica-
tion). The paper is organized as follows. In Section 1 we generalize the results of
Dillies (cf. [8]) assuming that the groups G and H both act non-symplectically on
the K3 surface. More precisely, let p be an odd prime number. Then, under some
conditions on the fixed locus of the non-symplectic automorphism of order p, we
prove that a K3 surface admits Z/pZ as group of non-symplectic automorphisms if
and only if it admits Z/2pZ as group of non-symplectic automorphisms (cf. Theo-
rem 1.7). There are two exceptions; in fact if the fixed locus of the automorphism
of order p consists of isolated points and p = 7, 11, then the same result is false
(cf. Theorem 1.8).

We analyze next the case when G =< η > is a finite cyclic non-symplectic
group and H is generated by η and by a symplectic automorphism σ. Very much
is known about the groups 〈η〉 and 〈σ〉 and it turns out that the orders satisfy
o(σ) ≤ 8 and o(η) ≤ 66. Thus the orders 2 ≤ n ≤ 8 are possible for both η and σ.
One can hence ask if there are K3 surfaces having both the automorphisms σ
and η with o(σ) = o(η). The answer is positive and surprising, in the sense that in
some cases the generic K3 surface with non-symplectic automorphism also admits
a symplectic automorphism of the same order. By generic we mean that the
non-symplectic automorphism acts trivially on the Néron–Severi group of the K3
surface. With some abuse of terminology we call generic also a K3 surface in
a 0-dimensional family, satisfying the previous condition.

The main result of this paper is summarized in the following:
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Theorem 0.1. Assume that X is a generic K3 surface with a non-symplectic
automorphism η of order p then:

• If p = 2 then X = X(r,a,δ) (the Nikulin invariants r, a, δ will be introduced in
Section 2) admits also a symplectic involution if and only if either δ = 1 and
a > 16− r or δ = 0 and a > 16− r or δ = 0 and a = 6, r = 10.

• If p = 3, then X admits a symplectic automorphism of order 3 if and only if
the fixed locus of η consists of n points and n− 3 curves with n ≥ 6.

• If p = 5, 7 then X does not admit a symplectic automorphism of the same
order (in particular, if p = 7 such an automorphism does not exist for any K3
surface with a non-symplectic automorphism of order 7, not only for the
generic one in a family).

We give the proof in the Theorems 2.8, 3.9, 4.1, and 5.1. We remark that
the theorem does not say anything about the existence of special K3 surfaces
with a symplectic and a non-symplectic automorphism of the same order (at least
if p �= 7). Indeed, in Example 5.2 we describe a rigid K3 surface admitting both a
symplectic and a non-symplectic automorphism of order 5.

We obtain complete results only in the cases that the order of the automorphism
is a prime number. Indeed the classification of families of K3 surfaces with non-
symplectic automorphisms of non prime order is not complete. However we show
that there exist no K3 surfaces admitting both a symplectic and a non-symplectic
automorphism of order 8 (cf. Table 1) and we show that there exists a 1-dimensional
family of K3 surfaces admitting both a symplectic and a non-symplectic automor-
phism of order 4 (resp. 6) (cf. Example 6.4, resp. Example 7.2). Moreover, in
the case of order 6, we show that the generic member of a family of K3 surfaces
admitting a non-symplectic automorphism of order 6 does not admit a symplectic
automorphism of the same order (Theorem 7.1). The same result is proved for
order 4 if the dimension of the family is at least 2 (cf. Theorem 6.1).
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1. Automorphisms on K3 surfaces

Definition 1.1. LetX be a smooth complex surface. The surfaceX is a K3 surface
if the canonical bundle of X is trivial and the irregularity of X , q(X) := h1,0(X),
is zero.

If X is a K3 surface, then h2,0(X) = 1. We choose a generator ωX of H2,0(X),
which is called the period of X .
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The second cohomology group of a K3 surface, equipped with the cup product,
is isometric to a lattice, which is the unique, up to isometry, even unimodular
lattice with signature (3, 19). This lattice will be denoted by ΛK3 and is isometric
to U ⊕U ⊕U ⊕E8⊕E8, where U is the unimodular lattice with bilinear form [ 0 1

1 0 ]
and E8 is the even negative definite lattice associated to the Dynkin diagram E8.
The Néron–Severi group of a K3 surface X , NS(X), coincides with its Picard
group. The transcendental lattice of X , TX , is the orthogonal lattice to NS(X) in
H2(X,Z).

Definition 1.2. An isometry α of H2(X,Z) is an effective isometry if it preserves
the Kähler cone of X . An isometry α ofH2(X,Z) is a Hodge isometry if its C-linear
extension to H2(X,C) preserves the Hodge decomposition of H2(X,C).

Theorem 1.3 ([5]). Let X be a K3 surface and g be an automorphism of X,
then g∗ is an effective Hodge isometry of H2(X,Z). In the opposite direction,
if f is an effective Hodge isometry of H2(X,Z), then f is induced by a unique
automorphism of X.

If g is an automorphism of a K3 surface X , then g∗ preserves the space of the
holomorphic 2-forms on X , and hence g∗(ωX) = λωX , λ ∈ C∗.

Definition 1.4. An automorphism σ of a K3 surface X is symplectic if σ∗ acts
as the identity on H2,0(X), that is σ∗(ωX) = ωX . Equivalently σ is symplectic
if the isometry induced by σ∗ on the transcendental lattice is the identity. An
automorphism η of finite order m is purely non-symplectic if η∗(ωX) = ζmωX ,
where ζm is a primitive m-th root of unity.

In the following we will only say that an automorphism is non-symplectic but
we mean that it is purely non-symplectic.

In [24] it is proved that for each finite group G of automorphisms on a K3
surface X , there exists the following exact sequence:

(1.1) 1 −→ G0 −→ G
α−→ Γm −→ 1 ,

where α is the natural representation of G in H2,0(X) = CωX , and m is a positive
integer. Then Γm is cyclic of order m. If Γm �= {1}, the K3 surface X is algebraic
(see Theorem 3.1 of [24]). The group Γm has order m ≤ 66 and if m is a prime
number, then m ≤ 19 (cf. [24]). A complete list of finite groups G0 acting sym-
plectically on a K3 surface is given in [32] and consists of 79 groups. We observe
that there are a priori many possibilities for the groups G0 and Γm. However not
all these possibilities correspond to different families of K3 surfaces. Indeed the
following two results show that requiring a certain group of (resp. non-) symplectic
automorphisms on a K3 surface X implies that there is a bigger group of (resp.
non-) symplectic automorphisms.

Theorem 1.5 ([11]). A K3 surface admits Z/5Z as a group of symplectic auto-
morphisms if and only if it admits the dihedral group D5 of order 10 as a group of
symplectic automorphisms.
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Theorem 1.6 ([8]). If a K3 surface admits Z/3Z as a group of non-symplectic
automorphisms and the fixed locus contains at least two curves or it consists exactly
of two points and one curve, then it admits also the group Z/6Z as a group of non-
symplectic automorphisms.

In [11] a criterion is given which implies that a group G acts symplectically
on a K3 surface if and only if a larger group H ⊃ G acts symplectically on it.
Here we prove that also in the non-symplectic case one can extend the result of
Theorem 1.6.

Theorem 1.7. Let p = 5, 13, 17, 19. A K3 surface admits Z/pZ as a group of
non-symplectic automorphisms if and only if it admits Z/2pZ as a group of non-
symplectic automorphisms.

Let q = 7, 11. If a K3 surface X admits Z/qZ as a group of non-symplectic
automorphisms and the fixed locus of these automorphisms contains at least one
curve, then X admits Z/2qZ as a group of non-symplectic automorphisms.

Proof. In [2] the general member X of a family of K3 surfaces admitting a non-
symplectic automorphism η of prime order 5 ≤ p ≤ 19 is described for any possible
fixed locus of η. To prove the theorem, it suffices to show that this general member
admits a non-symplectic automorphism of order 2p. Let us now consider the
following two constructions:

Case A. Let αp be an automorphism of P2 of prime order p �= 2. Let Cαp =
V (fαp(x0 : x1 : x2)) be a family of sextic plane curves with ADE singularities
invariant under αp. Let Sαp be the K3 surface obtained as a double cover of P2

branched along Cαp . A (possibly singular) model of Sαp ⊂ WP(3, 1, 1, 1) is u2 =
fαp(x0 : x1 : x2). The automorphism acting on WP(3, 1, 1, 1) as (u; (x0 : x1 :
x2)) → (u;αp(x0 : x1 : x2)) restricts to an automorphism η of Sαp . It has order p.
It is now clear that the surface Sαp admits also the automorphism β : (u; (x0 :
x1 : x2)) → (−u;αp(x0 : x1 : x2)), which is the composition of η with the covering
involution and which has order 2p.

Case B. Let R be a K3 surface admitting an elliptic fibration with Weierstrass
equation y2 = x3 + A(t)x + B(t). If R admits an automorphism of prime order
p �= 2, η : (x, y, t) → (ζapx, ζ

b
py, ζ

c
pt), then it admits also an automorphism β :

(x, y, t) → (ζapx,−ζbpy, ζ
c
pt) of order 2p.

The general members of the families of K3 surfaces with a non-symplectic
automorphism of order 5 are described in [2] as double covers of P2 and the non-
symplectic automorphism is induced by an automorphism of P2. So the non-
symplectic automorphism of order 5 is constructed as η in case A. This shows that
these K3 surfaces admit also an automorphism of order 10, constructed as was β in
case A. Since the covering involution is a non-symplectic automorphism of order 2,
the automorphism β is a non-symplectic automorphism of order 10.

In the cases p = 13, 17, 19, the general member of the family and the non-
symplectic automorphism of prime order p on it can be constructed as was the
automorphism η in case B (cf. [2]). The automorphism β in case B is an auto-
morphism of order 2p on these K3 surfaces. It is non-symplectic since it is the
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composition of two non-symplectic automorphisms with coprime orders. The sit-
uation is similar in the cases p = 7, 11 if the automorphism fixes at least one
curve. �

1.1. Holomorphic Lefschetz formula for a non-symplectic automorphism
of order 14 and of order 22

Theorem 1.7 does not describe any relation between automorphisms of order p and
of order 2p if p = 7, 11 and the non-symplectic automorphism of order p fixes only
isolated points. In order to describe this situation we need a deeper analysis of the
non-symplectic automorphisms of order 2p, p = 7, 11.

We can assume that η acts on ωX as the multiplication by ζm, m = 14 or
m = 22. The action of η can be locally linearized and diagonalized at a fixed point
x ∈ Xσ (see [6] and §5 in [24]), so that its possible local actions are

Am,t =

(
ζt+1
m 0
0 ζm−t

m

)
, t = 0, . . . ,

m− 2

2
.

If t = 0 then x belongs to a smooth fixed curve for η, otherwise x is an isolated
fixed point. We will say that an isolated point x ∈ Xη is of type t (t > 0) if the
local action at x is given by Am,t and we will denote by nt the number of isolated
points of η of type t.

The holomorphic Lefschetz formula (see Theorem 4.6 of [3]) allows to compute
the holomorphic Lefschetz number L(η) of η in two ways. First we have that

L(η) =

2∑
i=0

(−1)itr(η∗|Hi(X,OX)).

Since we have H2(X,OX) = H0,2 = H2,0 = CωX we obtain:

(1.2) L(η) = 1 + ζm−1
m .

On the other hand, we also have that

L(η) =

m−2∑
t=1

nta(t) +
∑
i

b(Ci),

where the Ci are the η-fixed curves of genus g(Ci),

(1.3) a(t) :=
1

det(I − σ∗|Tt)
=

1

det(I −Am,t)
=

1

(1− ζt)(1− ζm−t+1)
,

with Tt the tangent space of X at a point of type t, and

(1.4) b(Ci) :=
(1 + ζm)(1 − g(Ci))

(1− ζm)2
.
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Denoting by h =
∑

(1− g(Ci)) we can then write

L(η) =
m−2∑
t=1

nta(t) + h
(1 + ζm)

(1− ζm)2
.

If Xη is either empty or the union of two elliptic curves, then L(η) = 0; this
is possible only in the case of involutions. By applying the holomorphic Lefschetz
formula one obtains the following results in the case that the order of the auto-
morphism is 14 or 22 and the automorphism η2 of order 7 or 11 has only isolated
fixed points.

m = 14 In this case, by Theorem 6.3 of [2], the local actions at the fixed points
of η2 are (

ζ27 0
0 ζ67

)
,

(
ζ37 0
0 ζ57

)

and there are two fixed points with local action of the first type and one fixed
point with local action of the second type. Observe that the automorphism η of
order 14 has only isolated fixed points too and in the first case the local action of
η can be of type 1 or 5 and in the second case of type 2 or 4. Then η either fixes
the three points fixed by η2 or interchanges two points and fixes the third one. In
any case we have h = n3 = 0. By using the fact that the roots ζi14, i = 0, . . . , 5,
are linearly independent over Q one gets a system of equations (with maple):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3n1 − 3n2 − 5n4 + n5 = 7
8n1 − n2 + 3n4 − 2n5 = 7
6n1 + n2 − 3n4 + 2n5 = 7
4n1 + 3n2 − 9n4 + 6n5 = 7
9n1 + 5n2 − n4 + 3n5 = 7
6n1 + n2 − 3n4 + 2n5 = 7

Subtracting the first equation from the third we get n5 = −3n1 − 4n2 − 2n4.
Since ni ≥ 0, i = 1, 2, 4, 5, we obtain n1 = n2 = n4 = n5 = 0, which is impossible
in any other equation. Hence there are no non-symplectic automorhpisms of order
14 on K3 surfaces such that the square fixes isolated points.

m = 22 In this case, by Theorem 7.3 of [2], the local actions at the fixed points
of η2 are (

ζ211 0
0 ζ1011

)
,

(
ζ311 0
0 ζ911

)
.

Observe that the automorphism of order 22 must fix also these two points. Near
the first fixed point the local action can be of type 1 or 9; near the second one is
of type 4 or 6. In any case we have that h = n2 = n3 = n5 = n7 = n8 = n10 = 0.
By using the fact that the roots ζi22, i = 0, . . . , 9 are independent over Q one gets
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the system of equations (with maple):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5n1 − 8n4 + 2n6 + n9 = 11
24n1 − n4 + 3n6 − 4n9 = 11
10n1 − 5n4 + 15n6 + 2n9 = 11
18n1 − 9n4 + 5n6 + 8n9 = 11
15n1 − 2n4 + 6n6 + 3n9 = 11
12n1 + 5n4 + 7n6 − 2n9 = 11
20n1 + n4 − 3n6 + 4n9 = 11
6n1 − 3n4 + 9n6 + 10n9 = 11
25n1 + 4n4 + 10n6 + 5n9 = 11
15n1 − 2n4 + 6n6 + 3n9 = 11

Subtracting the 9th equation from the 7th, one gets 13n6 + n9 + 5n1 + 3n4 = 0,
which gives n1 = n9 = n4 = n6 = 0 . This is impossible in any other equation.
Hence there are no non-symplectic automorhpisms of order 22 on K3 surfaces such
that the square fixes isolated points.

Assume now that X has a non-symplectic automorphism η of order 7 or 11.
Then, with the same notation as in the exact sequence (1.1), m is a multiple of 7
or 11. We show then:

Theorem 1.8. Assume that η has only isolated fixed points.
If X is a generic K3 surface with a non-symplectic automorphism of order seven

then G0 = {1} and m = 7.
If X is any K3 surface with a non-symplectic automorphism of order eleven

then G0 = {1} and m = 11.

Proof. Assume first thatX is generic. Then we have that TX = U(7)⊕U⊕E8⊕A6,
NS(X) = U(7) ⊕K7 in the case of the order 7 (where K7 � [−4 1

1 −2

]
) and TX =

U ⊕ U(11)⊕ E8 ⊕ E8, NS(X) = U(11) in the case of the order 11. In both cases
rank (NS(X)) < 8, so by [24] or Lemma 1.2 of [21] we have G0 = {1}. Since X has
an automorphism of order p = 7, 11, we can writem = pn and one sees immediately
that n ≤ 6 (cf. [24], [33]). Let h denote a generator of G (since G0 = {1}, G = Γm

is cyclic) then η = hn′
and the fixed loci h(Xη) ⊂ Xη and Xh ⊂ Xη. In particular,

the fixed locus of Xh consists of isolated points (in fact Xh is not empty since h
is not an involution).

p = 7 The only possible values for m are 7 and 14, because only in these cases

the Euler function ϕ(m) divides the rank of the transcendental lattice, which is 18.
We must exclude the case m = 14. Let Xη = {P1, P2, P3} be the fixed points
of η on X . Then Xh consists either of one point or of three points. By using
the Lefschetz fixed point formula for an automorphism of order 14 as done at the
beginning of the section, one sees that this is not possible.

p = 11 The possible values for n are 11, 22, 33, 44, and 66. If n ∈ {33, 44, 66},
the K3 surface is unique (see [20]), and our family is 1-dimensional, so this is not
possible. There remains to exclude the case m = 22. Let Xη = {P1, P2}. Since Xh
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is not empty it must be equal toXη. Again using the Lefschetz fixed point formula,
here for an automorphism of order 22, as done at the beginning of the section, one
sees that this is not possible.

Consider now any K3 surface with non-symplectic action by an automorphism
of order 11. Since ϕ(11) = 10, the rank of the transcendental lattice can be only 10
or 20. If it is 20 and m ∈ {33, 44, 66}, the K3 surfaces are described in [20] and the
fixed locus of the automorphism of order eleven is one point and one elliptic curve.
If m /∈ {33, 44, 66}, we argue in the same way as in the generic case. We now
assume that the rank of the transcendental lattice is 10. Since rank (NS(X)) = 12
by [24] the only possibility is that G0 is generated by a symplectic involution ι.
Observe that as before the case m = 22 is not possible. Hence m = 11 and so G
has order 22. If G is a cyclic group of order 22 then ι and η commute and so the
fixed locus of ι, which comprises eight isolated fixed points, must be permuted or
fixed by η. This is not possible since η has order eleven and has only two isolated
fixed points. If G is the dihedral group of order 22 then the product η ◦ ι has order
two but the action on the holomorphic 2-form is the multiplication by an eleventh
root of unity, which is not possible. Hence G0 = {1} and m = 11. �

Remark 1.9. In the paper [27], Oguiso and Zhang study the case of a K3 surface
with a non-symplectic automorphism of order eleven, they show the same result as
Theorem 1.8 for p = 11. We gave here a uniform proof for both p = 7 and p = 11.

2. K3 surfaces with a symplectic and non-symplectic auto-
morphisms of the same order

Here we recall some basic facts on symplectic and non-symplectic automorphisms.
One important point is that one can associate some lattices to an automorphism
with a given fixed locus.

Definition 2.1 (Definition 4.6 of [24]). We say that G has a unique action on
ΛK3 if, given two embeddings i : G ↪→ Aut(X), i′ : G ↪→ Aut(X ′) such that G is a
group of symplectic automorphisms of the K3 surfaces X and X ′, there exists an
isometry φ : H2(X,Z) → H2(X ′,Z) such that i′(g) = φ ◦ i(g) ◦ φ−1 for all g ∈ G.

Theorem 2.2 (Theorem 4.7 of [24]). Let G be a finite abelian group acting sym-
plectically on a K3 surface. Then G has a unique action on ΛK3, hence the lattice
ΩG := (ΛG

K3)
⊥ is uniquely determined by G, up to isometry.

By Theorem 2.2 the definition of the lattice ΩG is independent of X (up to
isometries). Thus ΩG is defined as an abstract lattice (for example ΩZ/2Z �
E8(2), [17]).

Theorem 2.3 (Theorem 4.15 of [24]). Let G be a finite abelian group. A K3 sur-
face X admits G as group of symplectic automorphisms if and only if the lattice ΩG

is primitively embedded in NS(X).
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The lattices ΩG are computed in [14] and [15] for each abelian group G. The
fixed locus of a symplectic automorphism of prime order does not depend on the K3
surface on which the automorphism acts and it consists of a finite number of points.
The situation is different for non-symplectic automorphisms. The possible fixed
loci of a non-symplectic automorphism of prime order on a K3 surface are listed
in [25] in the case of involutions, and in [2] in the other cases.

Definition 2.4. Let l be a prime number. A lattice is called l-elementary if its
discriminant group is (Z/lZ)a for a certain nonnegative integer a. We then call
a := l(L) the length of L.

Let L be a 2-elementary lattice, then one defines the invariant δ of L to be
equal to 0 if the discriminant form of L takes values in Z and equal to 1 otherwise.

We recall the following results on l-elementary lattices:

Theorem 2.5 (Theorem 3.6.2 of [26]). An indefinite even 2-elementary lattice is
uniquely determined by δ, its signature and the integer a.

This can be generalized by the following theorem which gives also special results
in the hyperbolic case:

Theorem 2.6 ([28], Theorem 1.1 of [2]). An even, indefinite, p-elementary lattice
of rank r for p �= 2 and r ≥ 2 is uniquely determined by its signature and the
integer a.

For p �= 2 a hyperbolic p-elementary lattice with invariants a and r exists if and
only if the following conditions are satisfied: a ≤ r, r ≡ 0 (mod 2) and

{
for a ≡ 0 (mod 2), r ≡ 2 (mod 4),

for a ≡ 1 (mod 2), p ≡ (−1)r/2−1 (mod 4);

and r > a > 0 if r �≡ 2 (mod 8).

Finally we recall some results on non-symplectic automorphisms:

Theorem 2.7 ([24], [25], [1], [2]). Assume that a K3 surface X has a non-
symplectic automorphism η of finite order m. Then we have:

a) The Euler function ϕ(m) divides rank (TX).

b) The lattice H2(X,Z)η is a hyperbolic lattice and is primitively embedded in
NS(X).

c) Let the order of η be a prime number p. Then the lattice H2(X,Z)η is
a p-elementary lattice and the fixed locus Fix(η) determines uniquely the
invariants r and a of the lattice H2(X,Z)η.

As a consequence of the previous results one obtains that if X is a K3 surface
admitting a non-symplectic automorphism η of prime order p, the fixed locus de-
termines H2(X,Z)η uniquely if p is odd and gives at most two possible choices for
H2(X,Z)η if p = 2. Here we want to analyze K3 surfaces, X , admitting both a
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non-symplectic automorphism and a symplectic automorphism of the same order.
This order is at most 8, in fact if Z/nZ is a group of symplectic automorphisms
on a complex K3 surface, then n ≤ 8 (cf. [24]). Since X admits G := 〈σ〉 as
a group of symplectic automorphism, we have ΩG ⊂ NS(X) (cf. Theorem 2.3).
The lattice ΩG, characterizing K3 surfaces admitting G as a group of symplectic
automorphisms, is negative definite. The K3 surfaces with non-symplectic auto-
morphism of finite order are always algebraic (cf. Theorem 3.1 of [24]), hence the
Néron–Severi group of X contains a class with a positive self-intersection and so
rank (NS(X)) ≥ rank (ΩG) + 1. These observations lead us to Table 1, where
the possible ranks of the Néron–Severi group and of the transcendental lattice for
a K3 surface having a symplectic and a non-symplectic automorphism of the same
order m are given. The rank of the transcendental lattice determines the number
of moduli of the family of K3 surfaces.

m rank (NS(X)) rank (TX) moduli
2 ≥ 9 ≤ 13 ≤ 11
3 14, 16, 18, 20 8, 6, 4, 2 3, 2, 1, 0
4 16, 18, 20 6, 4, 2 2, 1, 0
5 18 4 0
6 18, 20 4, 2 1, 0
7 − − −
8 − − −

Table 1. K3 surfaces with symplectic and non-symplectic automorphisms.

We recall the construction of a space parametrizing K3 surfaces with non-
symplectic automorphism η of prime order p (cf. [9] and [19]). We denote by η∗

the action of η on H2(X,Z). By Nikulin’s Theorem 3.1 in [24], the eigenvalues of η
on TX ⊗ C are ζ, . . . , ζp−1, where ζ is a primitive p-th root of unity. The value 1
is not an eigenvalue of η. Hence one has a decomposition in eigenspaces:

TX ⊗ C = Tζ ⊕ . . .⊕ Tζp−1 .

Put

B = {z ∈ P(Tζ) : (z, z) = 0, (z, z̄) > 0} and

Γ = {γ ∈ O(TX) : γ ◦ η∗ = η∗ ◦ γ}.
It is easy to see that B is a complex ball of dimesion (rank (TX)/(p−1))−1 for

p ≥ 3 and it is a type IV Hermitian symmetric space of dimension rank (TX) − 2
if p = 2. Then the generic point of B/Γ corresponds to a K3 surface with a non-
symplectic automorphism η′ of order p and η′∗ = η∗. There is a birational map from
B/Γ to the moduli space of K3 surfaces with a non-symplectic automorphism of
order p (see [9] and [2] for a more detailed description). A similar construction holds
also if the order of η is not a prime number. One must consider the decomposition
of TX ⊗C into eigenspaces corresponding to primitive m-th roots of the unity and
the dimension of the moduli space is (rank (TX)/ϕ(m)) − 1. From these remarks
it follows:
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Theorem 2.8. There are no K3 surfaces having both a symplectic and a non-
symplectic automorphism of the same order n if n = 7, 8 and there are at most
countably many K3 surfaces having a symplectic and a non-symplectic automor-
phism of order 5.

Proof. The first assertion follows from Table 1, and the second assertion is a conse-
quence of the structure of the moduli space, which in this case is 0-dimensional. �

Proposition 2.9. Let η be a non-symplectic automorphism of finite order m on
a K3 surface X such that the action of η on NS(X) is the identity. Let σ be a
symplectic automorphism of finite order n on the same K3 surface X. Then η and
σ commute and η ◦ σ is an automorphism of order lcm(m,n) acting on the period
of the K3 surface as η.

Proof. By assumption η acts as the identity on the Néron–Severi group NS(X)
and σ acts as the identity on the transcendental lattice TX (cf. [24]). Hence the
actions of η∗ and σ∗ on NS(X)⊕TX (and so on H2(X,Z)) commute. Since η∗ ◦σ∗

is an effective Hodge isometry on H2(X,Z), by the global Torelli theorem, it is
induced by a unique automorphism on X (which is η ◦ σ). However, η∗ and σ∗

commute, hence η∗ ◦σ∗=σ∗ ◦η∗ which is induced by a unique automorphism on X ,
i.e. by σ ◦ η. So η ◦ σ = σ ◦ η.

Let ωX be the period of the K3 surface X . So (η ◦ σ)∗(ωX) = η∗(ωX) = ζmωX

where ζm is a primitive m-th root of unity. Moreover since η and σ commute, η ◦σ
is an automorphism of order lcm(m,n). �

With respect to the fixed locus we have the following trivial property:

Lemma 2.10. If two automorphisms η and σ commute, then η(Fix(σ)) ⊂ Fix(σ)
and σ(Fix(η)) ⊂ Fix(η). In particular, if η and σ are two automorphisms on a K3
surface as in Proposition 2.9, then the fixed points of σ are either fixed or permuted
by η.

3. Order two

We recall that ΩZ/2Z � E8(2). Moreover the invariant lattice of a non-symplectic
involution is identified by three invariants (r, a, δ), where r is the rank of the
lattice, a is its length, and δ ∈ {0, 1}. We call S(r,a,δ) the 2-elementary lattice with
signature (1, r − 1) and invariants (r, a, δ). If a non-symplectic involution η acts
trivially on the Néron–Severi group of a K3 surface, then the Néron–Severi group
coincides with some S(r,a,δ) and hence r is the Picard number of the surface. In the
following X(r,a,δ) will be a K3 surface with a non-symplectic involution η acting
trivially on the Néron–Severi group and such that NS(X(r,a,δ)) � S(r,a,δ).

Proposition 3.1. Assume that X(r,a,δ) admits also a symplectic involution, then

i) r ≥ 9,

ii) a ≥ 16− r,

iii) if a = 16− r, then r = 10, a = 6, and δ = 0.
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Proof. By [24], if r = ρ(X(r,a,δ)) ≤ 8, then X(r,a,δ) does not admit a symplectic
involution.

In order to prove ii) we can assume r > 8 (by i)) and r ≤ 16 (otherwise
the implication is trivial, because a is a nonnegative integer). Since X(r,a,δ) ad-
mits a symplectic automorphism, there exists a primitive embedding ϕ : E8(2) →
NS(X(r,a,δ)). Let L := ϕ(E8(2))

⊥NS(X(r,a,δ)) , so NS(X(r,a,δ)) is an overlattice of
finite index of E8(2) ⊕ L (we identify E8(2) with its image ϕ(E8(2))). The rank
of L is r − 8. The length of E8(2) ⊕ L is 8 + l(L). To obtain an overlattice of
E8(2)⊕ L such that E8(2) is primitively embedded in it, one has to add divisible
classes of type (ei + li)/2, where ei ∈ E8(2), li ∈ L, ei/2 ∈ E8(2)

∨/E8(2) and
li/2 ∈ L∨/L. If one adds a divisible class to the lattice E8(2) ⊕ L the length of
the lattice decreases at most by two. The maximal number of divisible classes we
can add is l(L) (in fact since r ≤ 16 we get rank (L) ≤ 8, so l(L) ≤ 8), so the
minimal possible length of an overlattice of E8(2)⊕L such that E8(2) is primitively
embedded in it, is 8+ l(L)− 2(l(L)) = 8− l(L). The length of L cannot be greater
then the rank of L, hence 8− l(L) ≥ 8− rank (L) = 8− (r− 8) = 16− r. Hence if
X(r,a,δ) admits a symplectic involution, r ≥ 9 and a ≥ 16− r.

To prove iii) we can assume r ≤ 16 (otherwise a is negative but there exists
no K3 surface X(r,a,δ) with a negative value of a). Let a = 16 − r. Then the
lattice L is such that rank(L) = l(L), so we can choose a basis of L, {li}i=1,...r−8,
such that {li/ni} are generators of the discriminant group L∨/L. Moreover we are
adding exactly r−8 classes to E8(2)⊕L to obtainNS(X(r,a,δ)) (because a = 16−r,
so it is the minimal possible). Hence there are r − 8 elements in E8(2), called ei,
i = 1, . . . r − 8, such that

vi := (ei + li)/2 ∈ NS(X(r,a,δ)).

Since vi ∈ NS(X(r,a,δ)), we have v2i ∈ 2Z and vivj ∈ Z. Recalling that e2i ∈ 4Z
and eiej ∈ 2Z we obtain

v2i =
e2i + l2i

4
∈ 2Z implies l2i ∈ 4Z and vivj =

eiej + lilj
4

∈ Z implies lilj ∈ 2Z,

and so L = M(2) for a certain even lattice M . Since NS(X(r,a,δ)) is a 2-elementary
lattice of length a, |d(NS(X(r,a,δ)))| = 2a = 216−r.

The discriminant of the overlattice of E8(2)⊕ L � E8(2) ⊕ M(2) obtained
adding the r − 8 classes (ei + li)/2 is (28 · 2r−8d(M))/22(r−8) = 216−rd(M). So
|d(M)| = 1, i.e., M is a unimodular lattice. Moreover it is clear that M has
signature (1, r − 9). This, together with the condition r ≤ 16, implies that
M � U , r = 10, and hence a = 6. Let us now compute the discriminant form of
NS(X(r,a,δ)). We recall that it is an overlattice of (E8 ⊕ U)(2). The discriminant
group of NS(X(r,a,δ)) is generated by a linear combination, with integer coeffi-
cients, of the elements generating the discriminant group of (E8 ⊕ U)(2). Since
the discriminant quadratic form of (E8 ⊕U)(2) takes values in Z, the discriminant
quadratic form of NS(X(r,a,δ)) takes value in Z too, so δ = 0. �
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Proposition 3.2. i) If X(r,a,1) admits a symplectic involution and the surface
X(r+1,a+1,1) exists, then it admits also a symplectic involution.

ii) If X(r,a,1) admits a symplectic involution and the surface X(r+1,a−1,1) exists,
then it admits also a symplectic involution.

Proof. A K3 surface W admits a symplectic involution if and only if E8(2) is
primitively embedded in NS(W ) or, equivalently, if and only if its transcendental
lattice TW is primitively embedded in E8(2) ⊕ U ⊕ U ⊕ U � E8(2)

⊥ΛK3 . By the
assumptions on X(r,a,1), E8(2) is primitively embedded in NS(X(r,a,1)) � S(r,a,1).

The lattice S(r,a,1) ⊕ 〈−2〉 is an even 2-elementary lattice with invariants r′ =
r+1, a′ = a+1, δ = 1 and its signature is (1, r′− 1). These data identify uniquely
its isometry class and so we have that S(r,a,1) ⊕ 〈−2〉 � S(r+1,a+1,1). Since E8(2)
is primitively embedded in S(r,a,1), it is also primitively embedded in S(r+1,a+1,1).
This proves that X(r+1,a+1,1) admits a symplectic automorphism.

Let T(r,a,1) := TX(r,a,1)
(observe that it is well defined since, by the Theorem 2.5,

T(r,a,1) is uniquely determined by (r, a, 1)), we observe that rank (T(r,a,1))=22− r
and the length of T(r,a,1) is a. By the assumptions on X(r,a,1), the lattice T(r,a,1)

is primitively embedded in E8(2)⊕U⊕U⊕U . Let us consider the 2-elementary even
lattice T(r+1,a−1,1), identified by the data rank (T(r+1,a−1,1)) = 21−r, l(T(r+1,a−1,1))
= a−1 , δ = 1 and signature (2, 19−r). It is clearly isometric to the transcendental
lattice of the K3 surface X(r+1,a−1,1). We have T(r,a,1) � T(r+1,a−1,1)⊕〈−2〉. Since
T(r,a,1) is primitively embedded in E8(2) ⊕ U ⊕ U ⊕ U , the lattice T(r+1,a−1,1) is
primitively embedded in E8(2)⊕U⊕U⊕U , hence X(r+1,a−1,1) admits a symplectic
involution. �

Remark 3.3. LetX(r,a,δ) be a K3 surface admitting a non-symplectic involution η,
and let Y = X/η. If α is an automorphism of Y which leaves invariant the branch
curve of the double cover X → Y , then α lifts to two automorphisms, α′, α′′, of X
where α′′ = ηα′. Observe that if α is an involution, then the group generated by α′

and α′′ is isomorphic to Z/2Z×Z/2Z and contains a symplectic involution. In the
following two examples we construct explicitly K3 surfaces with non-symplectic
involution η and quotient surface Y = X/η. In particular in both the examples
the automorphism α of Y has order two. In Example 3.4 the surface Y is P2 and
in Example 3.5 the surface Y is an Enriques surface.

Example 3.4. The case r = 9, a = 9, δ = 1. Let X be a K3 surface with
NS(X) � ZL ⊕ E8(2), and L2 = 2. By [17], X admits a symplectic involu-
tion ι (indeed there is a primitive embedding of E8(2) in NS(X)) and a projective
model as a double cover of P2 branched along the sextic D6 := V (f6(x1, x2) +
ax2

0f4(x1, x2) + bx4
0f2(x1, x2) + x6

0), where the fd are homogeneous polynomials
of degree d in x1, x2. The symplectic involution is induced by the involution
ιP2 : (x0 : x1 : x2) → (−x0 : x1 : x2) of P

2 (cf. [17]). More precisely if the equation
of X is u2 = f6(x1, x2)+ax2

0f4(x1, x2)+ bx4
0f2(x1, x2)+x6

0 in WP(3, 1, 1, 1), then ι
acts on WP(3, 1, 1, 1) as (u : x0 : x1 : x2) → (−u : −x0 : x1 : x2). The fixed locus
of ιP2 is a line, which intersects the sextic in six points pi, i = 1, . . . , 6, and a point
q = (1 : 0 : 0). This induces eight fixed points on X .
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The K3 surface X admits also a non-symplectic automorphism ν which is the
covering involution (i.e., it is the restriction to X of (u : x0 : x1 : x2) → (−u : x0 :
x1 : x2)).

By construction ι acts as −1 on E8(2) ⊂ NS(X) and as +1 on the polariza-
tion L and the transcendental lattice. The covering involution ν preserves the class
of the polarization and acts as −1 on its orthogonal complement. Let η be the
composition ν ◦ ι, so it is induced on X by (u : x0 : x1 : x2) → (u : −x0 : x1 : x2).
The fixed locus of η is the genus 2 curve u2 = f6(x1, x2) (the curve in X associated
to x0 = 0).

On the lattice ZL ⊕ E8(2) ⊕ TX ↪→ H2(X,Z) we have the following action of
these involutions:

ZL⊕ E8(2)⊕ TX

ι +1 −1 +1
ν +1 −1 −1
η +1 +1 −1

The non-symplectic automorphism η acts trivially on the Picard group and hence
the surface X and the involution η gives a model for the general member of the
family of K3 surfaces with a non-symplectic involution η with H2(X,Z)η � 〈2〉 ⊕
E8(2) (or, what is the same, of the family of K3 surfaces with a non-symplectic
involution with fixed locus a curve of genus 2).

We observe that Fix(ι) �⊂ Fix(η) and Fix(η) �⊂ Fix(ι).

Example 3.5. The case r = 10, a = 10, δ = 0. Let us consider a K3 surface X
such that NS(X) � U(2) ⊕ E8(2). It is well known that X admits an Enriques
involution, i.e. a fixed point free involution. It is also clear that E8(2) ↪→ NS(X),
hence this K3 surface admits also a symplectic involution. In Chapter V, Section 23
of [4] a 10-dimensional family of K3 surfaces admitting an Enriques involution is
presented. Since the dimension of the family of K3 surfaces admitting an Enriques
involution is 10, the generic member of the family described in Chapter V, Sec-
tion 23 of [4] is the surface X . It admits a 2:1 map to P1×P1. Let us consider the
involution ιP1×P1 : ((x0 : x1); (y0 : y1)) → ((x0 : −x1); (y0 : −y1)). It has four iso-
lated fixed points p1 = ((0 : 1); (0 : 1)), p2 = ((0 : 1); (1 : 0)), p3 = ((1 : 0); (0 : 1)),
p4 = ((1 : 0); (1 : 0)). Let D4,4 be the curve

ax4
0y

4
0 + bx4

0y
2
0y

2
1 + cx4

0y
4
1 + dx2

0x
2
1y

4
0 + ex2

0x
2
1y

2
0y

2
1 + fx2

0x
2
1y

4
1 + gx4

1y
4
0 + hx4

1y
2
0y

2
1

+lx4
1y

4
1 +mx3

0x1y
3
0y1 + nx3

0x1y0y
3
1 + ox0x

3
1y

3
0y1 + px0x

3
1y0y

3
1 = 0,

i.e., the curve invariant under the action of ιP1×P1 . The double cover of P1 × P1

branched along D4,4 is the K3 surface X . As in the previous example one obtains
an equation of X as u2 = D4,4. The following three involutions act on X :

ι : (u : (x0, x1) : (y0 : y1)) → (u : ιP1×P1((x0 : x1) : (y0 : y1))),
ν : (u : (x0, x1) : (y0 : y1)) → (−u : ((x0 : x1) : (y0 : y1))),
η : (u : (x0, x1) : (y0 : y1)) → (−u : ιP1×P1((x0 : x1) : (y0 : y1))),

where ι is a symplectic automorphism fixing the eight points which are the inverse
images (with respect to the double cover) of the four points pi, ν is the covering
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involution, and η is the Enriques involution. We observe that η = ι ◦ ν. On
the lattice U(2) ⊕ E8(2) ⊕ TX ↪→ H2(X,Z) we have the following action of these
involutions:

U(2)⊕ E8(2)⊕ TX

ι +1 −1 +1
ν +1 −1 −1
η +1 +1 −1

The non-symplectic involution η fixes the lattice U(2)⊕ E8(2) � NS(X).

Example 3.6. The case r = 10, a = 8, δ = 0. Let us consider the K3 surface X
admitting an elliptic fibration with Weierstrass equation y2 = x3+A(t2)x+B(t2).
It is clear that it admits two non-symplectic involutions: ν : (x, y; t) → (x,−y; t)
and η : (x, y; t) → (x, y;−t). We observe that ν acts only on the fibers and η only
on the basis. The Néron–Severi group of X is isometric to U ⊕ E8(2) and the
Mordell–Weil lattice of the fibration is isometric to E8(2) ([12]). The involution ν
acts as −1 on each fiber and preserves the class of the fiber and the class of the zero
section. In particular it acts as +1 on the copy of U and as −1 on its orthogonal
complement. The involution η preserves the class of the fiber (it sends fibers to
fibers) and the class of each section (because it acts only on the basis). So η
is a non-symplectic involution acting trivially on the Néron–Severi group. The
composition η ◦ ν is a symplectic automorphism acting as −1 on E8(2), i.e., on the
Mordell–Weil lattice.

Example 3.7. The case r = 10, a = 6, δ = 0. Let us consider the elliptic fibration
with equation y2 = x(x2 + a(t)x + b(t)), with deg(a(t)) = 4 and deg(b(t)) = 8. It
has 8 reducible fibers of type I2 and its Mordell-Weil group is isometric to Z/2Z.
Hence it admits a symplectic automorphism of order 2, which is the translation
by the 2-torsion section. Its Néron–Severi is isometric to U ⊕ N , where N is the
Nikulin lattice (cf. Proposition 4.2 of [17]). We recall that the Nikulin lattice is
a rank 8 even negative definite lattice and its discriminant form is the same as
the discriminant form of U(2)3. Hence the invariants of the Néron–Severi lattice
are r = 10, a = 6, and δ = 0, and it admits a symplectic involution. We observe
that it clearly admits also a non-symplectic involution η : (x, y, t) → (x,−y, t). It
acts trivially on the Néron–Severi group and its fixed locus comprises two rational
curves (the zero section and the 2-torsion section) and one curve of genus 3, the
bisection x2 + a(t)x + b(t) = 0, which is a 2 : 1 cover of P1 branched in the eight
zeros of a(t)2 − 4b(t) = 0.

Example 3.8. Elliptic fibration with a 2-torsion section. In the following table
we list certain elliptic K3 surfaces. Each of them is the generic member of a
family of K3 surfaces with a non-symplectic involution associated to certain values
of (r, a, δ) and the non-symplectic involution acting trivially on the Néron–Severi
group is η : (x, y, t) → (x,−y, t) (i.e. it acts as −1 on each smooth fiber of the
fibration). Moreover each of these elliptic K3 surfaces admits a 2-torsion section
(cf. [29]), and hence a symplectic involution, which is the translation by this 2-
torsion section (Example 3.7 is a particular case of this construction). We will
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denote by k the number of rational curves fixed by η and by g the genus of the
non rational curve fixed by η (the computation of g and k is similar to the one in
Example 3.7).

(r, a, δ) singular fibers Mordell–Weil lattice k g

(10, 6, 0) 8I2 + 8I1 Z/2Z 2 3

(14, 4, 0) III∗ + 5I2 + 6I1 Z/2Z 5 2

(14, 6, 0) I∗2 + 6I2 + 4I1 Z/2Z 4 1

(18, 0, 0) I∗12 + 6I1 Z/2Z 9 2

(18, 2, 0) 2III∗ + 2I2 + 2I1 Z/2Z 8 1

(18, 4, 0) 4I∗0 (Z/2Z)2 8 −
In both the cases (18, 0, 0) and (18, 2, 0), the symplectic involution is in fact a
Morrison–Nikulin involution, i.e., a symplectic involution switching two copies
of E8 in the Néron–Severi group (cf. [22] and [17]). The elliptic fibration given
in case (18, 0, 0) is described in details in [7]. The case (18, 2, 0) is a particular
member of the family described in Example 3.5; some of its elliptic fibrations and
involutions are described in [18].

Theorem 3.9. The K3 surface X(r,a,1) admits a symplectic involution if and only
if a > 16− r.

The K3 surface X(r,a,0) admits a symplectic involution if and only if either
a > 16− r or a = 6 and r = 10.

Proof. By Proposition 3.1, a > 16−r is a necessary condition to have a symplectic
involution on X(r,a,1). By Example 3.4, the surface X9,9,1 admits a symplectic
involution. By Proposition 3.2 ii), this implies that X9+k,9−k,1, k = 0, . . . , 9 ad-
mits a symplectic involution. By Proposition 3.2 i), this implies that X9+k,9+k,1,
k = 0, 1, 2 admits a symplectic involution and hence X9+h,9−h,1, X10+h,10−h,1,
X11+h,11−h,1, h = 0, . . . , 9 admit a symplectic involution. This proves the first
statement, because all the acceptable values of r, a such that a > 16 − r are of
types X9+k+h,9−k+h,1, k = 0, . . . , 9, h = 0, 1, 2.

By Proposition 3.1, if X(r,a,0) admits a symplectic automorphism, a > 16 − r
or a = 6 and r = 10. The converse is proved in Examples 3.5, 3.6, 3.7, and 3.8. �

4. Order three

Theorem 4.1. Let X be a K3 surface with a non-symplectic automorphism η of or-
der 3, acting trivially on the Néron–Severi group. If rank(NS(X)) := ρ(X) < 14,
then X does not admit a symplectic automorphism of order 3.

The surface X admits a symplectic automorphism of order 3 if and only if the
fixed locus of η consists of n points and n− 3 curves and n ≥ 6.

Proof. The first statement follows from Table 1. In [1] it is proved that the families
of K3 surfaces with a non-symplectic automorphism η of order 3 are identified by
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the fixed locus of the automorphism, in particular by the pair (n, k), where n is
the number of fixed points and k is the number of fixed curves. The families of K3
surfaces admitting a non-symplectic automorphism η of order 3 such that the rank
of the Néron–Severi group is greater than 14 are the families associated to the pairs
(n, n− 3), (m,m− 2) with 6 ≤ n ≤ 9 and 6 ≤ m ≤ 8.

Moreover, it is proved that the generic member of a family of K3 surfaces
admitting such an η with fixed locus (n, n − 3), 6 ≤ n ≤ 9, has transcendental
lattice Tn:

T6 := U ⊕ U(3)⊕ A2
2, T7 := U ⊕ U(3)⊕A2, T8 := U ⊕ U(3), T9 := A2(−1).

By Theorem 2.3 it sufficies to show that ΩZ/3Z is primitively embedded in the
Néron–Severi group of the K3 surfaces Xn with transcendental lattice Tn. The
lattice ΩZ/3Z and its orthogonal complement in the K3 lattice ΛK3 are computed

in [14]. In particular it is proved that Ω⊥
Z/3Z � U⊕U(3)2⊕A2

2 and ΩZ/3Z = K12(−2)

(the Coxeter–Todd lattice of rank 12). Comparing the lattices Ti, i = 6, 7, 8, 9,
and Ω⊥

Z/3Z, one notices that

Ti ⊂ Ω⊥
Z/3Z, so T⊥

i ⊃ ΩZ/3Z.

Thus the Néron–Severi lattices of the surfaces admitting a non-symplectic auto-
morphism with fixed locus (6, 3), (7, 4), (8, 5), (9, 6) contain the lattice ΩZ/3Z and
hence admit a symplectic automorphism of order 3.

The generic member of a family of K3 surfaces admitting such an η with fixed
locus (m,m − 2), 6 ≤ m ≤ 8, has transcendental lattice T ′

m := U ⊕ U ⊕ A8−m
2 .

We observe that T ′
m is primitively embedded in T ′

m−i, i = 1, 2. We show that the
unimodular lattice T ′

8 � U ⊕ U is not primitively embedded in U ⊕ U(3)2 ⊕A2
2 �

(ΩZ/3Z)
⊥. Indeed, assume the contrary. Then there exists a lattice L such that

U⊕U⊕L � (ΩZ/3Z)
⊥. This would imply that L is a 3-elementary lattice of rank 6,

signature (1, 5) and discriminant group equal to (Z/3Z)6. By Theorem 2.6, there
exists no such a lattice, hence T ′

8 is not primitively embedded in Ω⊥
Z/3Z. Since T

′
8 is

primitively embedded in T ′
7 and T ′

6, also T
′
7 and T ′

6 cannot be primitively embedded
in (ΩZ/3Z)

⊥. Thus ΩZ/3Z is not primitively embedded in the Néron–Severi group
of the generic K3 surface with a non-symplectic automorphism η with fixed locus
(m,m− 2), 6 ≤ m ≤ 8. �

In [1] the generic members of the family of K3 surfaces admitting a non-
symplectic automorphism η of order 3 with fixed locus given by n points and n− 3
curves are described as an isotrivial elliptic fibration. In [16] the generic members
of such family with 6 ≤ n ≤ 9 are described by a different isotrivial elliptic fibra-
tion. Here we consider the description given in [16], and we show that the generic
members of this family also admit a symplectic automorphism of order 3. More-
over, since the non-symplectic automorphism and the symplectic automorphism
commute, we obtain that their composition is a non-symplectic automorphism of
order three on the surface. We will analyze it later.
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Let us consider now the K3 surface Sf admitting an elliptic fibration with
equation

Sf : y2w = x3 + f2
6 (τ)w

3 , τ ∈ C(4.1)

where f6(τ) is a polynomial of degree six with at most double zeros. In [16] it is
proved that such a surface can be obtained as a quotient of the product surface
Eζ × Cf by an automorphism of order three, where Cf is a curve with equation
z3 = f6(τ) and Eζ is the elliptic curve with equation v2 = u3 + 1.

The surface Sf clearly admits the non-symplectic automorphism of order three

η : (x : y : w; t) → (ζx : y : w; t).

By the equation of the elliptic fibration it is clear that it admits always the following
sections:

s : τ → (0 : 1 : 0; τ), t1 : τ → (0 : f6(τ) : 1; τ), t2 : τ → (0 : −f6(τ) : 1; τ).

The sections t1 and t2 are 3-torsion sections, indeed for a fixed value τ of τ they
correspond to inflectional points of the elliptic curve y2w = x3 + f2

6 (τ )w
3. This

implies that the K3 surface Sf admits a symplectic automorphism σ of order three
induced by the translation by the section t1 (cf. [15]). Hence these K3 surfaces
admit both a non-symplectic automorphism and a symplectic automorphism of
order three.

4.1. Fixed locus (6, 3)

Let us assume that f6(τ) has six zeros of multiplicity one. Up to projectivity, one
can assume that three of the zeros of f6(τ) are 0, 1 and ∞, so the elliptic fibration
on Sf is

E6 : y2 = x3 + τ2(τ − 1)2(τ − λ1)
2(τ − λ2)

2(τ − λ3)
2.

We observe that this family has three moduli. The singular fibers are six fibers of
type IV (i.e., three rational curves meeting in one point). The sections s, t1 and t2
meet the singular fibers in different components. Let us denote by Cj

i , i = 0, 1, 2,

the rational components of the j-th singular fibers with Cj
0 · s = 1, Cj

1 · t1 = 1,

and Cj
2 · t2 = 1.

The non-symplectic automorphism η fixes the sections s, t1, t2 (since it fixes
the base of the fibration). Moreover, since the curves in the fixed locus of η are
smooth and disjoint (cf. [1]), η cannot fix the components of the reducible fibers,
because they meet the sections, but the curves Cj

i are invariant under η and so η

has two fixed points on each of them. One is the intersection between the curves Cj
i

and the sections, the other is the intersection point of the three rational curves Cj
i

in the same reducible fiber.

In summary, the fixed locus of η is made up of three rational curves (s, t1, t2)
and six isolated points (the singular points of the six fibers of type IV). Hence the
family of K3 surfaces admitting the fibration E6 is a (sub)family of the family of K3
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surfaces admitting a non-symplectic automorphism of order three with fixed locus
of type (6, 3). The dimension of that family is three (cf. [1]) and the dimension
of the family of K3 surfaces with equation E6 is 3 too, hence these two families
coincide. In fact the moduli space M6,3 is irreducible as shown in [1].

The symplectic automorphism σ acts as a translation by the three torsion
section. In particular it preserves the fibers of the fibration and acts on the sections
and on the components of the reducible fibers in the following way:

s → t1 → t2, Cj
0 → Cj

1 → Cj
2 , j = 1, 2, 3, 4, 5, 6.

Clearly, it fixes the singular points of each reducible fibers, and this is exactly
Fix(σ) since a symplectic automorphism of order three on a K3 surface fixes ex-
actly 6 isolated points (cf. [24]).

In particular we observe that Fix(σ) ⊂ Fix(η) and the isolated fixed points of η
are exactly the same as the isolated fixed points of σ.

Let us now consider the automorphism η ◦ σ, which is a non-symplectic auto-
morphism of order 3.

By [30] (see pages 29–31), σ acts in the following way, if xP �= 0:

σ(xP : yP : 1; τ) =
(

(yP−f6(τ))
2−x3

P

x2
P

:
(

yP−f6(τ)
xP

)[
xP− (yP−f6(τ))

2

x2
P

]
−f6(τ) : 1; τ

)
.

If xP is zero, then we obtain the sections s, t1 and t2 and we described before the
action on them. Finally we obtain

(η ◦ σ)(xP : yP : 1; τ)

=
(
ζ
(yP − f6(τ))

2 − x3
P

x2
P

:
(yP − f6(τ)

xP

)[
xP − (yP − f6(τ))

2

x2
P

]
− f6(τ) : 1; τ

)
.

One can directly check that this automorphism fixes the curve C : x3 = −4f6(τ)
2.

This curve is a 3-section for the fibration. Since C is a 3:1 cover of P1 totally
ramified over the zeros of f6(τ), by the Riemann–Hurwitz formula we obtain that
g(C) = 4. No curves of the singular fibers are fixed by η ◦ σ (indeed they are not
invariant under σ and they are invariant under η), so in the fixed locus of η ◦ σ
there is only one curve, i.e. C, and this curve has to meet the singular fibers in
their singular point (C can not meet one component of the fiber in a point which
is not on the other components, because the components Cj

i are not invariant
under η ◦ σ). So the non-symplectic automorphism η ◦ σ of order three has fixed
locus of type (0, 1) and the fixed curve is of genus 4. In particular this implies that
the family of K3 surfaces admitting a non-symplectic automorphism of order 3
with fixed locus (6, 3) is a subfamily of the family of the K3 surfaces admitting
a non-symplectic automorphism of order 3 with fixed locus (0, 1). This can be
directly checked comparing the transcendental lattices of the generic members of
these two families, cf. [1]. One can prove similarly that η2 ◦ σ is a non-symplectic
automorphism of order 3 with fixed locus (0, 1) too.
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4.2. The other cases

In the following table we give the results obtained for different choices of the
polynomial f6 (they can be proved as in the case (6, 3)). In all the cases the curves
fixed by η are rational curves, the points fixed by σ are isolated fixed points also
of η, and the curve fixed by η ◦ σ is the trisection x3 = −4f6(τ)

2.

f6(τ )
2 Singular fibers Fixed locus η Fixed locus η ◦ σ

τ 2(τ − 1)2(τ−λ1)
2(τ−λ2)

2(τ−λ3)
2 6IV (6, 3) (0, 1)

τ 2(τ − 1)2(τ − λ1)
2(τ − λ2)

2 4IV + IV ∗ (7, 4) (1, 1)

τ 2(τ − 1)4(τ − λ1)
4 2IV + 2IV ∗ (8, 5) (2, 1)

τ 4(τ − 1)4 3IV ∗ (9, 6) (3, 1)

(4.2)

5. Order five

Theorem 5.1. The generic members of the families of K3 surfaces with a non-
symplectic automorphism of order 5 cannot admit a symplectic automorphism of
order 5.

Proof. By Table 1 the generic member (in the sense given in the introduction)
of a family of K3 surfaces admitting both a symplectic and a non-symplectic au-
tomorphism of order 5 has a the transcendental lattice of rank 4. By [2] this
implies that the transcendental lattice of the generic member of the family is iso-
metric to U ⊕ H5, where H5 � [

2 1
1 −2

]
. If there exists a primitive embedding of

U ⊕ H5 in U ⊕ U(5) ⊕ U(5) � (ΩZ/5Z)
⊥, then there exists a rank 2 sublattice

M of U ⊕ U(5) ⊕ U(5) such that U ⊕H5 ⊕M is an overlattice of finite index of
U⊕U(5)⊕U(5). In particular the length l of the discriminant group of U⊕H5⊕M
has to be greater or equal to the length m of U ⊕ U(5)⊕ U(5). The discriminant
group of U ⊕U(5)⊕U(5) is (Z/5Z)4, so m = 4. The discriminant group of U ⊕H5

is Z/5Z and the length of M is at most its rank, i.e. 2, so l ≤ 3. Hence there exists
no primitive embedding of U ⊕H5 in U ⊕ U(5)⊕ U(5) . �

Clearly the previous proposition does not imply that there exists no K3 surfaces
with both a non-symplectic and a symplectic automorphism of order 5, but that
if there exists such a K3 surface, it is not the generic member of a family of K3
surfaces with a non-symplectic automorphism. The following example proves that
there exist K3 surfaces with both symplectic and non-symplectic automorphisms
of order 5. By Table 1 we know that these K3 surfaces are rigid and the rank
of their transcendental lattice is 4. In the previous sections we constructed K3
surfaces admitting a non-symplectic automorphism of order p = 2, 3 and a sym-
plectic automorphism of the same order commuting with the non-symplectic one.
To construct the following example we again require that the non-symplectic au-
tomorphism and the symplectic automorphism commute.
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Example 5.2. The generic member of a family of K3 surfaces with a non-symplectic
automorphism of order 5 with four isolated fixed points as fixed locus is a double
cover of the plane ramified over a sextic C in the family C:

a1x
6
0 + a2x

3
0x1x

2
2 + a3x

2
0x

3
1x2 + x0(a4x

5
1 + a5x

5
2) + a6x

2
1x

4
2 = 0 ,

and the non-symplectic automorphism η is induced by the automorphism of P2

η̄(x0 : x1 : x2) = (x0 : ζx1 : ζ2x2).

This preserves each sextic in C. The generic sextic is smooth and Fix(η̄) = {(1 :
0 : 0), (0 : 1 : 0), (0 : 0 : 1)}, since two points are on the sextic, Fix(η) consists of
exactly four distinct points. The automorphisms of order 5 of P2 preserving the
sextic and commuting with η̄ are (x0 : x1 : x2) → (ζax0 : ζbx1 : ζcx2).

To obtain a symplectic automorphism we consider those automorphisms with
ζa, ζb, ζc equal to permutations of 1, ζ, ζ4 leaving invariant some sextic in the fam-
ily. The only possibility is σ̄ : (x0 : x1 : x2) → (x0 : ζx1 : ζ4x2) and we obtain the
family:

x0(a1x
5
0 + a4x

5
1 + a5x

5
2) = 0.

The automorphisms of P2 commuting with σ̄ are only diagonal matrices, hence we
obtain a number of parameters equal to zero, as expected. In fact there are three
possibilities for the branch sextic (not isomorphic to each other):

x0(x
5
1 + x5

2 + x5
0) = 0,

x0(x
5
1 + x5

2) = 0,

x0(x
5
0 + x5

1) = 0,

x6
0 = 0.

The last one is a multiple line, so the double cover is not a K3 surface. The second
case has six lines: five meeting at (1 : 0 : 0) and one line not passing through this
point. The third case has six lines meeting at (0 : 0 : 1). The double cover in these
cases is not a K3 surface (the singularity is not simple). There remains only one
case. Hence the K3 surface S is a double cover of P2 branched over the sextic

x0(x
5
1 + x5

2 + x5
0) = 0,

which admits both a symplectic automorphism σ induced by σ̄ and a non-symplectic
automorphism of order 5. The K3 surface S admits also other non-symplectic auto-
morphisms of order 5:

• ν, induced by the automorphism ν̄ : (x0 : x1 : x2) → (x0 : ζx1 : x2) of P
2, it

fixes a curve of genus 2 (the pullback of the line x1 = 0) and a fixed point
(the pullback of the point (0 : 1 : 0));

• μ induced by μ̄ : (x0 : x1 : x2) → (ζx0 : x1 : x2), it fixes one rational curve
(the pullback of the line x0 = 0, which is contained in the branch locus)
and 5 points (on the exceptional curve of the blow up of the singular points
of the branch curves).
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Remark 5.3. The moduli space of K3 surfaces admitting a non-symplectic auto-
morphism of order 5 has two irreducible components, corresponding to K3 surfaces
with a non-symplectic automorphism of order 5 fixing only isolated points or fixing
at least one curve. The K3 surface S is in the intersection of these two components,
indeed it admits a non-symplectic automorphism η of order 5 fixing only isolated
points and non-symplectic automorphisms ν and μ, of order 5, fixing at least one
curve.

Remark 5.4. Observe that the symplectic automorphism σ and the non-symplectic
automorphism η fix the same four points. This is a consequence of Lemma 2.10.

6. Order four

By Table 1, if a K3 surface admits both a symplectic and a non-symplectic auto-
morphism of order 4, the rank of its transcendental lattice is 6, 4, or 2. Each of
these transcendental lattices corresponds to the generic member of a family of K3
surfaces admitting a non-symplectic automorphism of order 4, and the dimension
of these families is respectively 2, 1, 0. We denote these families by M2, M1

and M0, respectively.

Theorem 6.1. The generic member of the family M2 does not admit a symplectic
automorphism of order 4.

Proof. Let S be the generic member in the family M2 and η be the non-symplectic
automorphism of order 4. It acts on the transcendental lattice with eigenvalues i
and−i and on the Néron–Severi group with eigenvalues 1 and−1 (cf. [24]). Thus η2

acts on the transcendental lattice with eigenvalue −1 and on the Néron–Severi
lattice with eigenvalue 1. This implies that TS is a 2-elementary lattice. Suppose
that S admits also a symplectic automorphism of order 4. Then TS ⊂ (ΩZ/4Z)

⊥.
The discriminant group of Ω⊥

Z/4Z is (Z/2Z)2 × (Z/4Z)4 and its rank is 8 (cf. [15]).

If TS admits a primitive embedding in Ω⊥
Z/4Z, then there exists a rank 2 lattice L

such that Ω⊥
Z/4Z is an overlattice of finite index of TS ⊕ L. The length of Ω⊥

Z/4Z

over Z/4Z is 4, but the length of TS ⊕ L over Z/4Z is at most two, TS being a 2-
elementary lattice and L a lattice of rank 2. Hence it is impossible to find a lattice L
such that Ω⊥

Z/4Z is an overlattice of finite index of TS⊕L, thus the general member
of a 2-dimensional family of K3 surfaces admitting a non-symplectic automorphism
of order 4 does not admit a symplectic automorphism of order 4. �

Proposition 6.2. The K3 surface in the zero dimensional family of K3 surfaces
admitting a non-symplectic automorphism of order 4, whose square fixes ten ratio-
nal curves, admits a symplectic automorphism of order 4.

Proof. There exists only one family of K3 surface admitting a non-symplectic invo-
lution fixing 10 rational curves. This family is rigid and its transcendental lattice
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is 〈2〉2. A model for this K3 surface is given in [31]: it is a 4 : 1 cover of P2 branched
along four lines, so up to a choice of coordinates on P2, it has an equation of type

w4 = xy(x− z)(y − z).

The covering automorphism is the non-symplectic automorphism of order 4 whose
square fixes ten rational curves (cf. [13]). The automorphism of P2 given by (x :
y : z) → (x− z : x : x− y) preserves the branch locus of the 4 : 1 cover (permuting
the lines) and induces the automorphism (w : x : y : z) → (w : x − z : x : x − y)
of the surface. It is a symplectic automorphism (this can be shown computing the
action on the holomorphic 2-form). �

Remark 6.3. The full automorphism group of the surface in Proposition 6.2 is
computed in [31].

Example 6.4. Let us now consider the family of elliptic K3 surfaces:

E4 : wy2 = x3 + xw2(at8 + bt4 + c).

We observe that this elliptic fibration has a 2-torsion section t → (0 : 0 : 1; t) and 8
fibers of type III (i.e., two tangent rational curves) over the zeros of at8 + bt4 + c.
Moreover we observe that this elliptic fibration is isotrivial and the generic fiber
is isomorphic to the elliptic curve v2 = u3 + u which admits an automorphism of
order 4 with two fixed points.

It is easy to see that one can assume that a = c = 1 (it is enough to consider
the transformation (y, x) → (λ3y, λ2x) and to divide by λ6 to put one of the
parameters equal to one and then to consider a projective transformation of P1

to put the other parameters equal to one), hence this family is 1–dimensional. It
admits the dihedral group D4 of order 8 as group of symplectic automorphisms
(cf. [12]) which is generated by:

σ4 : (x : y : w; t) → (−x : −iy : w; it), ς2 : (x : y : w; t) →
( x

t4
: − y

t6
: w;

1

t

)
.

In particular this implies that NS(E4) contains primitively the lattice U ⊕ ΩD4 ,
where U is generated by the classes of the fiber and of the zero section of the fibra-
tion, which are invariant classes for the actions of σ4 and ς2. Hence rank (NS(E4)) ≥
rank (U) + rank (ΩZ/4Z) = 2 + 15 and rank (TX4) ≤ 5. Since the family X4 is a
one dimensional family, we deduce that rank (TE4) = 4. The K3 surface X4 clearly
admits the non-symplectic automorphism of order four

η : (x : y : w; t) → (−x : iy : w; t).

The automorphisms η and σ4 commute, hence their composition is a non-symplectic
automorphism of order 4. The automorphism σ4 fixes two points (t = 0, t = ∞)
on the base. The fibers over these points are smooth. It is easy to see that σ4 has
two fixed points on each of these two elliptic curves and the automorphism σ2

4 fixes
four points on each of them. The automorphism ς2 has eight fixed points, four on
the elliptic curve over t = 1 and four on the elliptic curve over t = −1.
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By using standard arguments on elliptic fibrations on K3 surfaces we can com-
pute the fixed locus of the order 4 non-symplectic automorphisms obtained by the
composition of the automorphisms described before. We summarize the fixed loci
in the following table:

automorphisms n4 k4 g4 k2 g2 r2
η 8 2 − 2 3 1

η ◦ σ4, η ◦ σ3
4 4 0 1 0 1 2

η ◦ σ2
4 , η ◦ ς2, η ◦ ς2 ◦ σi

4, i = 1, 2 4 0 − 2 3 1

In particular, n4 is the number of isolated fixed points of the automorphism of
order 4, k4 (resp. k2) is the number of rational curves fixed by the automorphism
of order 4 (resp. by its square), g4 (resp. g2) is the genus of the non rational
curve(s) fixed by the automorphism of order 4 (resp. by its square), and r2 is the
number of curves of genus g2 fixed by the square of the automorphism.

7. Order six

We recall that a K3 surface admits a non-symplectic automorphism of order 6 if
and only if it admits a non-symplectic automorphism of order 3 with certain fixed
loci (Theorem 1.6). We have the following:

Theorem 7.1. Let X be a generic K3 surface with a non-symplectic automorphism
of order 3. Then X does not admit a symplectic automorphism of order 6.

Proof. If X admits a symplectic automorphism, σ6, of order 6, then it admits also
a symplectic automorphism, σ2

6 , of order 3. By Theorem 4.1, X must be in the
families of K3 surfaces admitting a non-symplectic automorphism of order 3 with
fixed locus (n, n− 3), for 6 ≤ n ≤ 9.

Observe that to prove the theorem it is enough to show that ΩZ/6Z is not
contained in U ⊕ E2

8 ⊕ A2, which is the Néron–Severi group of the generic K3
surface S admitting a non-symplectic automorphism of order 3 with fixed locus
(9, 6). Assume the contrary: if S admits a symplectic automorphism of order 6,
then ΩZ/6Z is primitively embedded in U ⊕ E2

8 ⊕ A2. Arguing on the orthogonal
complements of these two lattices one obtains that there is no primitive embedding
of ΩZ/6Z in U ⊕ E2

8 ⊕A2. �

It is however possible that there exist families of K3 surfaces admitting both
a symplectic and a non-symplectic automorphism of order 6 and by Table 1 these
families have at most dimension 1. Here we provide an example of such a family.
We recall that the moduli space of K3 surfaces admitting a non-symplectic au-
tomorphism of order 3 (and hence of order 6) has 3 irreducible components M0,
M1, and M2, where Mj is the family of K3 surfaces admitting a non-symplectic
automorphism of order 3 fixing j curves (cf. [1]). Moreover we recall that the rank
of the transcendental lattice of a K3 surface admitting both a symplectic and a
non-symplectic automorphism is at most 4. Here we construct a 1-dimensional
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family of K3 surfaces with both a symplectic and a non-symplectic automorphism
of order 6. This family is a subfamily of M1 and M2.

Example 7.2. Let E6 be the family of K3 surfaces

E6 : y2w = x3 + (at12 + bt6 + c)w3.

We observe that this elliptic fibration has 12 fibers of type II (i.e., a cuspidal
rational curve) over the zeros of (at12 + bt6 + c), that it is isotrivial, and the
generic fiber is isomorphic to the elliptic curve v2 = u3 + 1, which admits an
automorphism of order 3 with three fixed points. It is easy to see that one can
assume that a = c = 1. So this family depends on one parameter. In particular
this implies that rank (TE6) = 4.

It admits the symplectic automorphisms (cf. [12])

σ6 : (x : y : w; t) → (ζ26x : −y : w; ζ6t), ς2 : (x : y : w; t) →
( x

t4
: − y

t6
: w;

1

t

)
.

Moreover it clearly admits the non-symplectic automorphisms

η : (x : y : w; t) → (ζ26x,−y : w; t)

and
ν : (x : y : w; t) → (x : y : w; ζ6t).

The automorphisms η and σ6 commute. Hence their composition is a non-symplectic
automorphism of order 6; in particular, ν = η5 ◦ σ6. The automorphisms σ6, σ

2
6

and σ3
6 fix each the points t = 0 and t = ∞ on the basis of the fibration. The fibers

over these points are smooth and the automorphisms fix, respectively, 2, 6 and 8
points on them. The automorphism ς2 has eight fixed points, four on the elliptic
curve over t = 1 and four on the elliptic curve over t = −1.

By using standard arguments on elliptic fibrations, we compute the fixed locus
of the order 6 non-symplectic automorphisms obtained by the composition of the
automorphisms described before. We summarize the fixed loci in the table below.
We denote by n6 (resp. n3) the number of isolated fixed points of the automorphism
of order 6 (resp. by its square); by k6 (resp. k3, k2) the number of rational curves
fixed by the automorphism of order 6 (resp. by its square, by its cube); by g6 (resp.
g3, g2) the genus of the non rational curve(s) fixed by the automorphism of order 6
(resp. by its square, by its cube); and by r2 the number of curves of genus g2 fixed
by the cube of the automorphism.

automorphisms n6 k6 g6 n3 k3 g3 k2 g2 r2

η, ν ◦ σ5
6 = η5 12 1 − 0 1 5 1 10 1

ν = η5 ◦ σ6, η ◦ σ6 3 0 1 3 0 1 0 1 2

η ◦ σ2j
6 , j = 1, 2, ν ◦ σi

6, i = 1, 3, 4 5 0 − 3 0 1 1 10 1

η ◦ σ3
6 , ν ◦ σ2

6 , ς2 ◦ η, ς2 ◦ η5, ς2 ◦ ν, ς2 ◦ ν5 6 0 − 0 1 5 0 1 2

We observe that the automorphisms ηj ◦ σh for h = 1, . . . , 5, j = 2, 3, 4 are not
purely non-symplectic.
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