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Galois actions on regular dessins of small genera
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Abstract. Dessins d’enfants can be regarded as bipartite graphs embed-
ded in compact orientable surfaces. According to Grothendieck and others,
a dessin uniquely determines a complex structure on the surface, and even
an algebraic structure (as a projective algebraic curve defined over a num-
ber field). The general problem of how to determine all properties of the
curve from the combinatorics of the dessin is far from being solved. For
regular dessins, which are those having an edge-transitive automorphism
group, the situation is easier: currently available methods in combinatorial
and computational group theory allow the determination of the fields of
definition for all curves with regular dessins of genus 2 to 18.

1. The many facets of dessins

One may introduce dessins d’enfants as hypermaps on compact oriented 2-manifolds.
These objects, first studied in genus 0 by Cori in [9], have several equivalent alge-
braic or topological definitions. Topologically they are a generalisation of maps,
whose underlying graphs are replaced with hypergraphs, in which hyperedges are
allowed to be incident with any finite number of hypervertices and hyperfaces. One
way to visualise this concept is to represent a hypermapD by itsWalsh mapW (D) ,
a connected bipartite graph B embedded in a compact oriented surface, dividing
it into simply connected cells [31]. In the language of hypermaps, the white and
black vertices represent the hypervertices and hyperedges of D, the edges represent
incidences between them, and the cells represent the hyperfaces.

There are several other ways to define dessins. There is a group theoretic
description of maps and hypermaps by their (hyper)cartographic groups; see, for
example, [18], [19] or the introduction of [20]. The latter are the monodromy
groups of the functions about to be introduced, and give a link to function theory
on Riemann surfaces and algebraic geometry on curves. Playing a key role are
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Bely̆ı functions, which are non-constant meromorphic functions

β : X → P1(C)

on a Riemann surface X , ramified above at most three points, customarily nor-
malised to be 0, 1 and ∞. According to Bely̆ı’s theorem [2], such functions exist
if and only if X can be defined (as a smooth projective algebraic curve) over a
number field.

Two observations by Grothendieck [14] are crucial. The first is that to ev-
ery Bely̆ı function belongs a dessin. In the Walsh representation, we can see the
zeros of β as white vertices, the points in β−1(1) as black vertices, and the con-
nected components of the β-preimage of the real interval (0, 1) as the edges of
the bipartite graph; in this picture, the poles of β play the role of the cell mid-
points. Grothendieck stressed a second point whose proof can be traced back
to [24] and [17] (some years before Bely̆ı’s discovery), namely that every dessin D
defines a unique conformal structure on X and a Bely̆ı function on X inducing D ,
and hence even a structure as an algebraic curve over Q. As a consequence, one
has a natural (indeed faithful) action of the absolute Galois group GalQ/Q on
the set of all dessins, induced by the action on the curves and the Bely̆ı functions
– or more precisely, on the equation coefficients of the curves and the coefficients
of the Bely̆ı functions. In particular, the fields of definition of the curves and their
Bely̆ı functions should be encoded in their dessins.

These will form the main topic of this paper, but first we need to introduce
another tool, namely the link between dessins and triangle groups.

On Riemann surfaces X that are uniformised by subgroups Γ of finite index in
a triangle group Δ, there exist natural Bely̆ı functions as covering maps

β : X = Γ\H → Δ\H
where H is the hyperbolic plane if Δ is Fuchsian (while in the few cases where Δ
is a spherical or euclidean triangle group, H is the Riemann sphere P1(C) or the
Euclidean plane C, respectively). Conversely, every Bely̆ı function can be realised
in this way; in particular, every Bely̆ı surface X (that is, every Riemann surface
endowed with a Bely̆ı function) can be described as the quotient space Γ\H for
some subgroup Γ of a Fuchsian triangle group Δ; see [4].

In this context, the bipartite graph of the Walsh map is part of the skeleton
induced by the tessellation of H obtained from the usual fundamental domain
for Δ. Figure 1 shows a typical example of this construction; the left hand side
is due to Felix Klein [22], the right hand side gives the dessin belonging to this
tessellation, and the numbers on the boundary of the fundamental domain of Γ
indicate the identifications needed to obtain the surface.

The signature 〈p, q, r〉 of the triangle group Δ is related to the Bely̆ı function β
as follows: p is a common multiple of the zero orders of β, while q is a common
multiple of the zero orders of β− 1, and r is a common multiple of the pole orders
of β (which in turn are visible via the valencies of the dessin).

Finally, we wish to explain that we restrict our attention in this paper to regular
dessins, namely those dessins having an edge-transitive, colour- and orientation-
preserving automorphism group. In the literature, these are also known as “rotary”
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Figure 1. Tessellation and dessin for Klein’s quartic x3y + y3z + z3x = 0.

or “orientably regular” hypermaps. Note that the automorphism group also acts
as an automorphism group of the underlying Riemann surface. In the Walsh
map of a regular dessin, all white vertices have the same valency, as do all black
vertices, and all cells (hyperfaces) have the same size. Hence in the uniformisation
context above, the subgroup Γ is a torsion-free normal subgroup of the triangle
group Δ. The quotient Δ/Γ is isomorphic to the automorphism group of the
dessin, and to the covering group of β ; in this case it is a normal ramified cover
X → P1(C). Because of its Δ-invariant triangular tessellation, the surface X is
called quasiplatonic.

Regular dessins and quasiplatonic surfaces have many other interesting prop-
erties; see for example Theorem 4 in [35], or [27]. There are only finitely many
regular dessins of any given genus g > 1, and they are all known for genera 2 to 100
(see [6]). Every quasiplatonic surface X of genus g > 1 has automorphism group
AutX ∼= Δ/Γ for some triangle group Δ , uniquely determined as the normaliser
of the universal covering group Γ in PSL2R, and defining a maximal regular dessin
on X. (Other regular dessins may exist on X , coming from intermediate triangle
subgroups between Δ and Γ ; see [25].) What is important for this paper is our ex-
perience that the fields of definition for regular dessins and quasiplatonic surfaces
are easier to determine than those of arbitrary dessins or Bely̆ı surfaces. Moreover,
they play a systematic role for all dessins, because every dessin is obtainable as a
quotient of some regular dessin by a subgroup of its automorphism group.

2. Known methods and their variants

In only a few cases, such as quasiplatonic curves of genus up to 4 [33], or for special
families, such as the Fermat curves, are explicit equations known for the curves,
or are explicit representations for the Bely̆ı functions known as rational functions
on these curves. Generally it is difficult to determine a minimal field (or even a
small field) of definition for the curve or the dessin – that is, for both the curve X
and the corresponding Bely̆ı function β. It is easier to determine instead the field
of moduli of the curve X , defined as the fixed field of all σ ∈ GalQ/Q for which
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there is an isomorphism fσ : X → Xσ. For a dessin, this isomorphism fσ has
to be compatible with the Bely̆ı function β as well. Clearly the field of moduli is
contained in every field of definition, and depends only on the isomorphism class
of the curve or the dessin. Here, an isomorphism between two dessins (X1, β1)
and (X2, β2) is an isomorphism of curves f : X1 → X2 compatible with the
respective Bely̆ı functions (that is, such that β2 ◦ f = β1), and hence is also a
graph isomorphism.

By ideas from [8] (see also [10] and Theorem 5 in [35]), we have

Proposition 1. The fields of moduli of regular dessins and of quasiplatonic curves
are their respective minimal fields of definition.

As another tool, we can use Galois invariants of dessins, many of which were
given in [19]. We call the signature 〈p, q, r〉 of the triangle group Δ also the
signature of the dessin, if the parameters p, q, r are chosen minimally. We easily
obtain the following:

Proposition 2. The genus, the signature, and the isomorphism class of the auto-
morphism group are Galois invariants of a dessin.

From the two propositions above, we can draw an easy conclusion which is
applicable to many regular dessins and quasiplatonic curves, especially those of
small genus.

Theorem 1. If a regular dessin is uniquely determined up to isomorphism by its
genus, signature and automorphism group, then it can be defined over the field Q

of rational numbers. Accordingly, a quasiplatonic curve can be defined over Q if it
has a regular dessin with this property.

The latter applies to all quasiplatonic curves and their maximal dessins with
genus g lying in the range 1 < g < 6, as can be verified using the classification [6]
that this paper is based on. In genus 6, however, we find there are non-isomorphic
dessins with common signature 〈7, 14, 14〉 and common automorphism group C14

(cyclic of order 14). They give the first candidates for a nontrivial Galois action
on quasiplatonic curves, but the fields of definition turn out to be Q for all these
dessins:

Proposition 3. If the automorphism group of a regular dessin is abelian, then the
dessin (and its underlying quasiplatonic curve) can be defined over Q.

This may be seen as a special case of a more general theorem concerning so-
called homology covers, which allows the explicit determination of defining equa-
tions for the curve [15]. We are grateful to Benjamin Mühlbauer for an alternative
argument from his forthcoming PhD thesis, which uses the fact that every such
dessin is a quotient of a regular dessin of signature 〈n, n, n〉 living on the Fermat
curve Fn of exponent n with automorphism group Cn × Cn. A closer look at the
action of this automorphism group on Fn shows that every subgroup is Galois
invariant, and therefore so is any quotient dessin. Hence all such quotients have
moduli field Q , and the result follows from Proposition 1.
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To handle nontrivial Galois actions, an observation made recently in [20] is
extremely useful: Galois actions on hypermaps are often equivalent to Wilson
operators [32]. With regard to the triangle group description of a dessin, these
Wilson operators Hj can be defined as follows.

Suppose Δ has signature 〈p, q, r〉, so that Δ has a presentation

〈 γ0, γ1 | γp
0 = γq

1 = (γ0γ1)
r = 1 〉

in terms of hyperbolic rotations γ0 and γ1 with rotation angles 2π
p and 2π

q at neigh-

bouring fixed points (which project onto neighbouring white and black vertices of
the dessin). Then the universal covering group Γ of the underlying quasiplatonic
surface is the kernel of an epimorphism

h : Δ → G ∼= AutD taking (γ0, γ1) 	→ (a, b)

for some a, b ∈ G, such that a, b and ab have orders p, q and r respectively.
Now for any unit j in the ring Zpq = Z/pqZ, let r′ be the order of ajbj, and

let Δ′ be the triangle group with signature 〈p, q, r′〉. Then since aj and bj have
orders p and q respectively, there exists an epimorphism hj : Δ′ → G taking
(γ0, γ1) 	→ (aj , bj), with torsion-free kernel Γj . This gives a regular dessin HjD on
Xj := Γj\H, with automorphism group again isomorphic to G.

We may consider the dessin HjD as the result of applying the Wilson oper-
ator Hj to the regular dessin D. Geometrically, HjD is a regular embedding of
the original graph into a possibly different quasiplatonic surface, obtained by an
obvious change of the local cyclic ordering of the edges around the vertices. Note
that this may give new faces (if j 
= 1), and can even give a different genus (if
r′ 
= r ). The genus is preserved in the special case of the Wilson operator H−1,
which takes every such D to its mirror image, and therefore transposes every chiral
pair of regular dessins, that is a pair of non-isomorphic dessins interchanged under
an anticonformal homeomorphism of the surface.

There are also generalisationsHi,j of these Wilson operators to situations where
a and b are replaced with ai and bj for units i and j in Zp and Zq respectively;
see [20].

By Theorems 2 and 3 of [20], we have the following:

Proposition 4. Let {Dj | j ∈ (Z/mZ)∗} be a family of regular dessins Dj =
(Xj , βj) , each having signature 〈p, q, r〉, such that m is the least common multiple
of p and q . Suppose that these regular dessins form a single orbit under Wilson’s
map operators Hj , with Dj = HjD1 for all j, and also that this family is invariant
under the action of the absolute Galois group GalQ/Q. Then the curves Xj (as
smooth projective algebraic curves) and their Bely̆ı functions βj can be defined
over a subfield K of the cyclotomic field Q(ζm), where ζm = e2πi/m, and the
given family forms a single orbit under the action of the absolute Galois group.
Here the subfield K is the fixed field of the subgroup

H := { j ∈ (Z/mZ)∗ | HjD1
∼= D1 },

when we identify (Z/mZ)∗ with the Galois group GalQ(ζm)/Q.
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Proposition 5. Let {Di,j | (i, j) ∈ S} be a family of regular dessins Di,j =
(Xi,j , βi,j) , each having signature 〈p, q, r〉 and indexed by a subset S of (Z/pZ)∗×
(Z/qZ)∗ admitting an action of (Z/mZ)∗ where m is the least common multiple
of p and q. (This means that whenever S contains (i, j), it also contains (ki, kj)
for all k ∈ (Z/mZ)∗.) Suppose that these regular dessins form a single orbit under
the Wilson map operators Hi,j , with Di,j = Hi,jD1,1 for all i, j, and also that this
family is invariant under the action of the absolute Galois group GalQ/Q.

Then the curves Xi,j (as smooth projective algebraic curves) and their Bely̆ı
functions βi,j can be defined over a subfield K of the cyclotomic field Q(ζm), where
ζm = e2πi/m. Furthermore, the orbits of the action of the absolute Galois group are
precisely the orbits of the action of the set of Wilson operators {Hk | k ∈ (Z/mZ)∗}
on this family – that is, the orbit of Di,j consists of

Hki,kjD1,1 = HkHi,jD1,1 = HkDi,j for all k ∈ (Z/mZ)∗.

Also the minimal field of definition of each Di,j = (Xi,j , βi,j) is the fixed field
K ⊆ Q(ζm) of the subgroup of all k ∈ (Z/mZ)∗ for which Di,j

∼= Dki,kj .

It can often happen that not all Wilson operators produce Galois conjugate
curves – for example, if HjD is a dessin on a curve of different genus from that
of D. In some of these cases, precisely the same arguments as in the proof of
Theorem 2 in [20] give the following slight generalisation.

Theorem 2. Under the same hypotheses as in Proposition 4, but with j running
over a proper subgroup U of (Z/mZ)∗, the curves Xj and their Bely̆ı functions βj

can be defined over a subfield K of the cyclotomic field Q(ζm), and the Bely̆ı pairs
(Xj , βj) form a single orbit under the action of the absolute Galois group. If
we consider U in the usual way as a subgroup of GalQ(ζm)/Q, then U acts by
restriction as the Galois group GalK/Q ; in particular, the index |U : H | of the
subgroup H := { j ∈ U | HjD1

∼= D1 } is equal to the degree [K : Q] of K as an
extension of Q.

For example, if U = {±1} and H−1D 
∼= D , then we know that the regular
dessins D andH−1D form a chiral pair defined over an imaginary quadratic subfield
of Q(ζm) –which is often uniquely determined. Proposition 5 can be generalised
in a similar manner, of course.

Galois actions on families of quasiplatonic curves cannot always be described
by Wilson operators, as shown in Corollary A1 of [20]. In cases where the auto-
morphism group is PSL2Fq or an extension of this, and in particular if Δ is
arithmetically defined, then the methods developed in [26], [11] and [12] are more
applicable. We quote a special case (as an example), explaining Galois actions on
many Hurwitz curves.

Proposition 6. Let Δ be the triangle group of signature 〈2, 3, 7〉. The pre-image
of Δ in SL2R is the norm 1 group of a maximal order in a quaternion algebra
defined over the cubic field k := Q(cos 2π/7). Let p be a rational prime, and
let ℘ be a prime ideal in the ring O of integers of k, lying over p and with norm
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N(℘) = q = pf . Then the principal congruence subgroup Δ(℘) is a surface group
for some surface X with automorphism group Δ/Δ(℘) ∼= PSL2Fq , definable over
the splitting subfield of p in k, that is, over Q when p 
≡ ±1 mod 7, and over k
when p ≡ ±1 mod 7. In the latter case, q = p, and the Galois conjugate curves Xσ

( for σ ∈ Gal k/Q) have the surface groups Δ(σ(℘)) .

The former case applies in particular when p = 7 , the ramified prime over the
ideal ℘ = (2 − 2 cos 2π/7) · O of norm q = 7 , and gives the Klein quartic, of
genus 3. The prime 2 is inert in k, generating ℘ = 2O of norm q = 8 , giving the
Macbeath curve, of genus 7. The first nontrivial Galois actions occur for the three
curves with q = p = 13, in genus 14.

3. New tools

Another instrument making visible the interplay between group theory and Rie-
mann surfaces is the use of the canonical representation of the automorphism
group G = AutX of the quasiplatonic surface X on its C-vector space of holo-
morphic k-differentials. Denote the character (trace) of such a representation by χ,
and call two such characters χ1 and χ2 equivalent, denoted by χ1 ∼ χ2 , if one
results from the other by composition χ1 = χ2 ◦α with an automorphism α of G.

Then we have (as a counterpart of the Main Observation in [27]) the following:

Theorem 3. Let X1, . . . , Xn be a Galois invariant family of quasiplatonic sur-
faces, admitting regular dessins D1, . . . ,Dn with the same signature and isomor-
phic automorphism groups, and with inequivalent characters χ1, . . . , χn on their
respective vector spaces of k-differentials for some k ∈ N. Suppose there is a Galois
extension K/Q such that the values of the χj generate K and such that GalK/Q
acts transitively on the equivalence classes of the characters via

σ : χj 	→ σ ◦ χj ∼ χi for some i.

Then we have n = [K : Q] , and the surfaces Xj all have K as minimal field of
definition and form a Galois orbit under GalK/Q.

Proof. To prove this, by Proposition 1 we need only show thatK is themoduli field.
We note first that any σ ∈ GalQ/Q not only acts on the family of surfaces Xj

and the associated Bely̆ı functions, but also induces an action on the family of
vector spaces of k-differentials, and maps the common automorphism group onto
an isomorphic one acting on the image curve. Also clearly if σ fixes K element-
wise, then all characters are mapped to equivalent ones, and so all Xj are fixed
(because the other characters are inequivalent), and therefore the moduli field has
to be contained in K.

On the other hand, transitivity of the action of GalK/Q shows that the moduli
field cannot be a proper subfield of K. �
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Another variant of Proposition 4 turns out to be particularly useful for the small
genus examples to be discussed shortly. It is known that every triangle group Δ
of signature 〈p, p, r〉 (that is, with p = q) is embeddable as a subgroup of index 2
in an extension group Δ of signature 〈2, p, 2r〉; see [25].

Now suppose that the curve X has a surface group with normaliser Δ. Then
on X we have two regular dessins corresponding to the Bely̆ı functions β and 1−β ,
or in other words, with exchanged vertex colours. Since in this case β is not
uniquely determined by X and its ramification orders, it can happen that β (and
hence also the dessin) is definable not over the minimal field of definition of X , but
over some quadratic extension of it; as an example take the first pair of genus 18
curves of the table in the next section.

We call two dessins renormalisations of each other if they correspond under this
interchange β ↔ 1 − β or another transformation permuting the critical values
of β.

Theorem 4. Let {Xj | j ∈ (Z/pZ)∗} be a family of quasiplatonic surfaces each
with maximal regular dessins Dj and D′

j of signature 〈p, p, r〉. Suppose that Dj

and D′
j are renormalisations of each other, with Bely̆ı functions βj and 1 − βj

on Xj , and that the dessins Dj := HjD1 and D′
j := HjD′

1 form two orbits under
Wilson’s map operations Hj . Also suppose that the combined family of all pairs
(Xj , βj) and (Xj , 1 − βj) (for j ∈ (Z/pZ)∗) is invariant under the action of the
absolute Galois group GalQ/Q. Then the curves Xj can be defined over a subfield
K of the cyclotomic field Q(ζp) , where ζp = e2πi/p, and the Xj form a single orbit
under the action of the absolute Galois group. Here the subfield K is the fixed field
of the subgroup

H := { j ∈ (Z/pZ)∗ | HjD1
∼= D1 },

when we identify (Z/pZ)∗ with the Galois group GalQ(ζp)/Q as usual.

Proof. This can be proved using the same ideas as in the proofs of Theorem 2 of [20]
and Theorem 2 of this paper. Every Galois conjugation fixing Q(ζp) element-wise
either preserves or interchanges Dj and D′

j , and so fixes Xj up to isomorphism. It
follows that the moduli field (and hence, by Proposition 1, also the field of defini-
tion) of Xj is contained in Q(ζp). Study of the local behaviour of the generators
of the automorphism group on vertices of the dessin then shows that the Wilson
operatorHj has the same effect on the dessins Dj and D′

j as the Galois conjugation

taking ζp 	→ ζkp for kj ≡ 1 mod p, up to renormalisation. �

Another way to distinguish Galois orbits of quasiplatonic curves is via the study
of their unramified function field extensions, which is equivalent to the study of
the subgroup lattices of their surface groups Γ. We will in fact restrict to the
consideration of the finite sublattice of all subgroups N normal in both Γ and Δ
such that the quotient Γ/N is an elementary abelian m-group for a small prime m.
Let Γm denote the subgroup of Γ generated by the mth powers of all elements of Γ;
then we have:
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Theorem 5. Let {Di | 1 ≤ i ≤ n} be a Galois invariant family of regular dessins
of signature 〈p, q, r〉 on quasiplatonic surfaces Xi = Γi\H, such that Di has auto-
morphism group Δ/Γi, where Δ is the 〈p, q, r〉 triangle group and Γi is the surface
group of Di. Let m be a prime and for each i, let Li be the lattice of normal
subgroups N of the triangle group Δ with the property that

[Γi,Γi]Γ
m
i ≤ N ≤ Γi .

If these lattices Li are pairwise non-isomorphic, then the dessins Di can be defined
over Q.

In practice, often only the ‘top’ part of each lattice needs to be considered,
in order to demonstrate non-isomorphism. Normal subgroups of small index in
a finitely-presented group (such as the triangle group Δ) can be found using the
LowIndexNormalSubgroups procedure in the magma system [3]. When |Δ/Γ|
is small, that can sometimes be enough, but usually (and for larger cases) it is
necessary to dig deeper, for example as follows.

For a surface X = Γ\H of genus g, the group Γ has a presentation in terms
of 2g generators and a single defining relator (which can be written as a product
of g commutators), so its abelianisation Γ/[Γ,Γ] has rank 2g. Hence, in partic-
ular, the largest abelian quotient of Γ of exponent m is Γ/[Γ,Γ]Γm, which is
isomorphic to (Cm)2g. In between Γ and [Γ,Γ]Γm there may be other normal
subgroups of Δ. Again, for small values of g and |Δ/Γ| (and m), these can some-
times be found using a combination of the Reidemeister–Schreier process and the
LowIndexNormalSubgroups procedure in magma [3]; in other cases, they may of-
ten be found by investigating the submodule structure of the quotient Γ/[Γ,Γ]Γm

as a Δ/Γ-module.

If the numbers of such ‘intermediate’ normal subgroups are different for different
choices of Γ, then the corresponding lattices are non-isomorphic, in which case
Theorem 5 may be applied.

Another interpretation of the subgroups used in Theorem 5 will play a ma-
jor role in Section 5. Recall that Γ is isomorphic to π1(X) and Γ/[Γ,Γ]Γm is
isomorphic to the mod m homology group H1(X,Z/mZ) , so the normal sub-
groups N in question correspond to the (AutX)-invariant submodules of this
homology group.

4. The classification

A complete classification of all regular maps and hypermaps of small genera is
described in [6], with the maps and hypermaps themselves available on the first
author’s website. In the following table, we restrict our consideration to maxi-
mal regular dessins on quasiplatonic curves of genera from 2 to 18, and omit all
cases for which Theorem 1 or Proposition 3 applies. Thus our table begins with
genus g = 7 .
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In the 3rd to 6th columns of this table, ‘Order’ means the order of the auto-
morphism group of the dessin (and by maximality, also of the curve), ‘Number’
denotes the number of non-isomorphic curves of the kind described by the cur-
rent row, and ‘Field X’ means the minimal field of definition for the curve, while
‘Field D’ means the minimal field of definition of the dessins. The final column
gives a number for reference to the relevant comment in the explanations that
follow the table.

For all curves in question, the table contains the maximal dessin only, corre-
sponding to the (unique) triangle group Δ that normalises the surface group Γ.
In most cases, the entries in the signature 〈p, q, r〉 are pairwise distinct, in which
case the moduli field (and hence also the field of definition) for the dessin is the
same as that for the curve; see Lemma 5 of [35]. In all other cases, two of the
entries coincide, and then the triangle group of signature 〈p, p, r〉 is a subgroup
of index 2 in another one of signature 〈2, p, 2r〉 (see [25], [29]), and the underly-
ing surfaces are pairwise isomorphic by conjugation of their surface groups in this
extension. Geometrically, the respective dessins are related to each other by renor-
malisation, that is duality or transposition of vertex colours. In that case it may
happen that the Bely̆ı functions can be defined only over a quadratic extension
k(
√
α) of the minimal field of definition k of X ; see the proof of Theorem 4 above.

For example, if both dessins result from each other by an transposition of vertex
colours, β is defined over a quadratic extension k(

√
α) if and only if 1 − β = βσ

for the nontrivial Galois conjugation σ of k(
√
α)/k . For several curves we were

unable to decide whether we are in this situation; in these cases we put a question
mark in the column “Field D”.

In the table we always display the signature triples so that p ≤ q ≤ r , since
the order of the entries is irrelevant for the triangle group and the curve. For the
Bely̆ı function and the dessin, reordering means renormalisation and duality or tri-
ality. However, one should note that for the application of Wilson operators, the
ordering of the entries p, q and r in the signature is essential. If it happens that for
a given triple consisting of the genus, signature (for a maximal dessin), and auto-
morphism group, there is a unique pair of dessins, both chiral, then the two dessins
must be defined over an imaginary quadratic number field, and these two dessins
are transposed by the Wilson operator H−1. In that case such a Wilson operator
can be found for any ordering of p, q, r , but this does not always correspond to
a Galois conjugation of the dessin, so Proposition 4 or Theorem 2 cannot be ap-
plied immediately. For example, in the case of comment 5 below (for genus 10 and
order 432), the application of H−1 to the signature 〈2, 3, 8〉 gives a Galois conju-
gation in Q(

√−3) , while application to the signature 〈2, 8, 3〉 would give a Galois
conjugation in Q(

√−1) or Q(
√−2). Accordingly, a direct check is necessary to

choose the correct ordering.

Unless otherwise stated, all group theoretic calculations were made with the
help of the magma system [3].
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g Signature Order Number Field X Field D Comment

7 2 6 9 54 2 Q(
√−3) Q(

√−3) 1

2 3 7 504 1 Q Q 2

8 2 3 8 336 2 Q(
√
2) Q(

√
2) 3

2 6 6 84 2 Q(
√−3) ? 4

10 2 3 8 432 2 Q(
√−3) Q(

√−3) 5

3 6 14 42 2 Q(
√−3) Q(

√−3) 6

11 2 4 8 160 2 Q(
√−1) Q(

√−1) 7

2 4 8 160 2 Q(
√−1) Q(

√−1) 7

2 4 12 120 2 Q(
√−1) Q(

√−1) 6

12 2 5 10 110 4 Q(ζ5) Q(ζ5) 5

13 3 4 6 96 2 Q(
√−3) Q(

√−3) 6

4 4 8 64 2 Q ? 8

4 4 8 64 2 Q ? 8

14 2 3 7 1092 3 Q(2 cos 2π
7 ) Q(2 cos 2π

7 ) 9

2 6 6 156 2 Q(
√−3) ? 4

15 2 3 12 336 2 Q(
√−3) Q(

√−3) 6

3 3 6 168 2 Q(
√−3) ? 4

5 5 11 55 2 Q(
√
5) Q(ζ5) 6

16 2 6 18 108 2 Q(
√−3) Q(

√−3) 6

3 4 6 120 2 Q(
√
6) Q(

√
6) 10

3 6 12 72 2 Q Q 11

4 6 12 60 2 Q(
√−1) Q(

√−1) 5

17 2 3 7 1344 2 Q(
√−3) Q(

√−3) 5

2 4 6 384 2 Q(
√−1) Q(

√−1) 5

2 7 14 112 2 Q(
√−7) Q(

√−7) 5

3 4 4 192 2 Q(
√−1) ? 12

4 4 6 96 2 Q ? 13

4 8 8 64 2 Q ? 13

18 2 8 8 136 2 Q(
√−2) Q(ζ8) 14

14 14 21 42 2 Q Q 15

Comments on the table:

1) Application of Proposition 4 to the signature 〈2, 9, 6〉, with the subgroup
H := {1, 13, 7} of (Z/18Z)∗ fixing the proper subfield Q(

√−3) of Q(ζ18).

2) The Macbeath curve of genus 7 of signature 〈2, 3, 7〉 with automorphism
group PSL2F8 . This is the Hurwitz curve of second smallest genus. It should
not really be contained in this table (since by Proposition 6 it is uniquely
determined, with a dessin defined over Q), but we mention it here for two
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good reasons: firstly, there is still no model known for it that is given by
equations with rational coefficients, and secondly, Macbeath’s curve has
two non-maximal chiral dessins of type 〈7, 2, 7〉, called the Edmond maps,
coming from the two non-isomorphic regular embeddings of the complete
graph K8 (see [16])1. Again Proposition 4 applies here, with the subgroup
H := {1, 9, 11} of (Z/14Z)∗ giving the field of definition Q(

√−7) . As maps,
these two dessins are dual to each other. However, this is not the lowest
genus for which two regular non-isomorphic Galois conjugate dessins exist
on the same quasiplatonic curve: on Klein’s quartic in genus 3 there are
two complex conjugate dessins of signature 〈3, 3, 7〉; see Theorem 1 of [28].
By Proposition 4, they are defined over Q(

√−3) .

3) In this case, both surface groups are principal congruence subgroups of a
norm 1 group in a quaternion algebra defined over the centre field Q(

√
2),

and the levels are the two Galois conjugate ideals lying over 7, both with
residue class field F7. Since the triangle group of signature 〈2, 3, 8〉 is an
index 2 extension of the norm 1 group [29], the quotient by the surface group
is PGL2F7. In an analogous way to Proposition 6, these two curves should
therefore be defined over Q(

√
2) and be Galois conjugate, but it is difficult to

translate the proof of Proposition 6 to this case. Theorem 3, however, gives
an easier way. Via a calculation in GAP [13] using Eichler’s trace formula,
one may see that the characters on the spaces of holomorphic 2-differentials
decompose into irreducible constituents as χi

4+χ0
5+χ0

6 for i = 0, 1: following
ATLAS notation [7], χ0

4 and χ1
4 are the algebraically conjugate extensions

to PGL2F7 of the irreducible character χ4 of degree 6 of PSL2F7 , while χ0
5

and χ0
6 are the extensions of the irreducible characters χ5 and χ6 of degrees 7

and 8 of PSL2F7 , defined by taking values 1 and −1 (rather than −1 and 1)
on the class 6A of elements of order 6. The values of the characters χ0

5 and χ0
6

are all rational, whereas those of each χi
4 generate Q(

√
2), so the two curves

are defined over this field and are conjugate under its Galois group.

4) Direct application(s) of Theorem 4. Note that the genus 8 curves with sig-
nature 〈2, 6, 6〉 are unramified degree 7 cyclic covers of the genus 2 curve
y2 = x6 − 1 . For this and for the next comment, see also Section 5.

5) Direct applications of Proposition 4. Note that the genus 12 dessins of type
〈2, 5, 10〉 are regular embeddings of the complete graph K11 (see [20]), and
form two chiral pairs. The genus 17 curves of signature 〈2, 3, 7〉 are degree 8
coverings of Klein’s quartic, with covering group C3

2 (see [23]).

6) Applications of Proposition 4 to reorderings of the respective signatures.
In genus 10 take 〈3, 14, 6〉; the dessins are invariant underHj for j ≡ 1 mod 3,
and are interchanged by H−1. Similarly, consider the signatures 〈2, 12, 4〉 in
genus 11 , 〈3, 6, 4〉 in genus 13 , and 〈2, 12, 3〉 and 〈5, 11, 5〉 in genus 15 . In
this last case, the dessins are permuted by the Wilson operators Hj for

1Added in proof (September 2012): Rubén Hidalgo kindly informed us that there is now a
relatively simple equation over Q available, found by Bradley Brock, and Hidalgo worked out
explicit versions of the Bely̆ı functions for the Edmond maps.
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units j mod 5, and the curves are invariant under Hj for j ≡ ±1 mod 5 and
interchanged by Hj for j ≡ ±2 mod 5 – see also Theorem 1 of [27]. This is
the only case in the table where (on both curves) one has two chiral dessins
living on the same curve. Finally, for the first line in genus 16 take 〈2, 18, 6〉.

7) These two cases in genus 11 have different automorphism groups of the same
order. In both cases, Proposition 4 can be applied to the signature 〈2, 8, 4〉,
with all four dessins invariant under Hj for j ≡ 1, 5 mod 8.

8) These are two pairs of regular dessins having the same signature but non-
isomorphic automorphism groups. Moreover, the dessins with the same auto-
morphism group can be distinguished by the number of normal subgroups N
of Δ contained in the surface group Γ such that Γ/N is an elementary
abelian 3-group. For one pair, a magma-assisted calculation shows there
are such normal subgroups of index 32i in Γ for all i ∈ {0, 1, 2, . . . , 13}
in one case, while in the other case, the only such N have index 32i for
i ∈ {0, 1, 4, 5, 8, 9, 12, 13}. For the second pair, in both cases there are such
normal subgroups of index 32i in Γ for all i ∈ {0, 1, 2, . . . , 13}, but one has
exactly 2480 possibilities for N , while the other has only 1294. Hence by
Theorem 5, the dessins are not Galois conjugate.

9) Application of Proposition 6.

10) In this case the two surface groups are congruence subgroups of a norm 1
group in a quaternion algebra with centre field Q(

√
6) , generated by the

triangle group; the norm 1 group is a quadrangle group of index 2 (see [29]),
and the levels are the two prime ideals above 5, and are Galois conjugate
under

√
6 	→ −√

6 . Unfortunately, methods like those used for the proof
of Proposition 6 do not seem to be sufficient for a proof that both curves
and dessins are defined over Q(

√
6) . (Work in progress by Pete Clark and

John Voight about congruence subgroups of triangle groups seems to be more
successful for this aim.) We can prove it, however, by the following argument.
The surface groups arise as kernels of two homomorphisms h1, h2 onto the
symmetric group S5 . Since S5 contains five conjugate subgroups of index 5
isomorphic to S4 , one may consider the preimages P1, P2 under h1, h2 of S4 ,
which are uniquely determined up to conjugation. These subgroups Pj are
of genus 0 , and the corresponding dessins Nj are given in Figure 2.

Figure 2. Two genus 0 dessins of type 〈4, 3, 6〉, up to homeomorphism.
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One may observe that up to isomorphism these are the only genus 0 dessins
with five edges on which two permutations of order 3 and 4 act such that their
product is a permutation of order 6 . Applying a Möbius transformation, we
may assume that in both cases the face centres are 0 and ∞, and that the
right white vertex, which is an order 4 zero of the Bely̆ı function, is situated
at z = 1. If a is the left white vertex (an order 1 zero), then the Bely̆ı function
must have the form

β(z) =
k(z − 1)4(z − a)

z3
.

Since β − 1 has a triple zero at the black vertex b on the left hand side of
the dessin, one expects a double zero of β′ outside of z = 0 or 1, giving a
condition on a and hence also the value of b :

a = −10± 4
√
6 and b = −3±

√
6.

Moreover, the condition β(b) = 1 gives an obvious value of k ∈ Q(
√
6).

Finally, the two regular dessins of genus 16 can be considered as the unique
regular coverings of the Nj of smallest degree, and then since the Galois
conjugation

√
6 	→ −√

6 extends from N1 	→ N2 to these regular covers, the
result follows.

11) This case is similar to that in Comment 8). A magma-assisted calculation
shows that there are different numbers of normal subgroupsN of Δ contained
in the surface group Γ such that Γ/N is an elementary abelian 2-group.
Hence, by Theorem 5, the dessins are not Galois conjugate.

12) In this case there are four dessins living on two non-isomorphic curves. The
pairs of dessins living on the same curves can be transformed into each other
by passing to a dual dessin, or by conjugation in the triangle group 〈2, 4, 6〉,
or by applying the Petrie duality operator P = H1,−1 : the Petrie paths
of one dessin are the face boundaries of the other. On the other hand,
the dessins on non-isomorphic curves are interchanged by the generalised
Wilson operator H−1 = H−1,−1 , applied to the signature 〈4, 4, 3〉, and then
Theorem 4 applies.

13) These two cases are similar to the case in Comment 8) above; both can be
handled by considering normal subgroups N of Δ contained in the surface
group Γ such that Γ/N is an elementary abelian 3-group.

14) An application of Proposition 4 again. Here we have four maximal dessins
D of type 〈2, 8, 8〉, on two non-isomorphic curves, permuted transitively by
the Wilson operators Hj for j ∈ (Z/pZ)∗. These curves X are the first of
an infinite series of chiral pairs of quasiplatonic surfaces constructed in §3,
Example (iii) of [1]; see Theorem 3.1 in [5] for the associated maps. The
dessins D are all 17-sheeted regular unbranched coverings of a dessin D of
type 〈2, 8, 8〉 on the Riemann surface X of genus 2 given as an affine curve
by y2 = x5−x, a special case of a general construction treated in some more
detail in the final section.
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15) As in Comment 12), there are four dessins on two non-isomorphic curves.
We can apply the generalized Wilson operators Hi,j to the four dessins liv-
ing on two non-isomorphic curves. The dessins are pairwise equivalent under
exchange of the vertex colours (or conjugation in the triangle group 〈2, 14, 42〉,
or under a generalised Wilson operator, say H1,9). All dessins are invari-
ant up to isomorphism under the action of the Wilson operators Hi = Hi,i

for i coprime to 14. By Proposition 5, the fixed fields in question are all
equal to Q.

5. Problems, conjectures, and infinite families

One may of course continue this kind of calculation, and in certain genera this
can be easy: in genus g = 20 we have – besides those cases treated by means of
Theorem 1 or Proposition 3 – to consider just one such pair of maximal regular
dessins: they have signature 〈2, 6, 6〉 with automorphism groups of order 228 on
curves defined over Q(

√−3) . If on the other hand g − 1 has a complicated prime
decomposition, we can expect more and more complicated situations for which
involved calculations are needed, like those in Comment 8) or 10).

For the moment, it seems not to be worthwile to continue this way. In these
“small” genera, the degree of the fields of definition seems to grow so slowly that
very large genera might be necessary to find examples for which, say, non-abelian
number fields are needed for the definition of the curves. Several results from the
last ten years, such as those in [27] or [20], show that the degrees of these minimal
fields of definition for quasiplatonic curves are in fact unbounded; on the other
hand it is unknown whether the absolute Galois group acts faithfully on the set of
all regular dessins (a question raised by Gabino González-Dı́ez)2. And up to now
we do not have a single explicit example of a quasiplatonic curve with a non-abelian
field of moduli.

However, some of the regular dessins of small genera give an interesting insight
into those of higher genera: they represent the first examples of infinite families
showing certain similarities under the action of the absolute Galois group.

For each of the types 〈2, q, r〉 = 〈2, 5, 10〉, 〈2, 6, 6〉 and 〈2, 8, 8〉, the dessins D of
that type in the table, together with the pair of type 〈2, 6, 6〉 and genus 20 men-
tioned above, are members of an infinite family of p-sheeted unbranched coverings
of a regular genus 2 dessin D of that type, for all primes p in a certain arithmetic
progression. The corresponding quasiplatonic surfaces X , of genus p+ 1, are con-
structed in §3, Examples (i)–(iii) [1], and the associated maps, regarded by duality
as dessins of type 〈q, 2, r〉, are studied in Theorem 3.1 of [5].

For each of these three types, the dessin D corresponds to a torsion-free normal
subgroup Γ of finite index in the triangle group Δ of that type, with Δ/Γ ∼= A :=
AutD. Since the surface X underlying D has fundamental group π1(X) ∼= Γ, the

2Added in proof (September 2012): a positive answer to this question has been announced by
Gabino González-Dı́ez and Andrei Jaikin-Zapirain.
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mod p homology group H1(X ;Z/pZ) is isomorphic to Γ/[Γ,Γ]Γ
p
, as already men-

tioned at the end of Section 3. This isomorphism is an isomorphism of A-modules,
where the action of A on H1(X ;Z/pZ) is induced by its natural action on X , while
its action on Γ/[Γ,Γ]Γ

p
is induced by the action of Δ by conjugation on Γ.

The action of A on D allows one to deduce its action on H1(X;Z/pZ) (see
Mustafa Kazaz’s PhD thesis [21] for full details). In particular, if e is the exponent
of A then, for each prime p ≡ 1 mod e, this module is a direct sum of four
1-dimensional A-submodules. It follows that Γ has four subgroups Γ of index p
which are normal in Δ, with the A-modules Γ/Γ isomorphic to these summands.
These subgroups Γ correspond to four nonisomorphic regular dessins D, all of type
〈2, q, r〉 and genus p+1, for which AutD is a split extension of a normal subgroup
P ∼= Cp by A, with D/P ∼= D. (Primes p 
≡ 1 mod e yield dessins of genus pd + 1
as pd-sheeted coverings of D, for various d ≤ 4.)

The simplest case concerns the dessins of type 〈2, 5, 10〉. Here the quotient
dessin D, corresponding to the commutator subgroup Γ = [Δ,Δ] of Δ, is formed by
identifying opposite sides of a decagon, colouring the resulting two 5-valent vertices
black, and regarding the midpoints of the five edges as white vertices of valency 2.
The underlying surface X is given as an affine curve by x5 + y2 = 1, and the Bely̆ı
function is (x, y) 	→ y2, so that the white vertices are at the points (x, 0) with
x5 = 1, and the black vertices are at (0,±1). We have A = AutD ∼= Δ/Γ ∼= C10,
generated by a rotation α of the single face through π/5, or equivalently by
(x, y) 	→ (ζ5x,−y). For each prime p ≡ 1 mod 10, the module H1(X ;Z/pZ)
is a direct sum of four 1-dimensional A-submodules on which the eigenvalues λ
of α are the four primitive 10th roots of 1 in (Z/pZ)∗. It follows that there are
four subgroups Γ = Γλ of index p in Γ, each normal in Δ, with the generator of
Δ/Γ corresponding to α having these eigenvalues λ on the quotients Γ/Γλ. The
corresponding dessins Dλ have type 〈2, 5, 10〉 and genus p + 1. These roots λ are
permuted transitively by the operations λ 	→ λj for j ∈ (Z/10Z)∗, so the dessins Dλ

form a single orbit under the corresponding Wilson operatorsHj , consisting of two
chiral pairs Dλ±1 . As the only regular dessins with their type and automorphism
group, the four dessins Dλ form a GalQ/Q-invariant family, so Proposition 4 shows
that they and their underlying curves Xλ each form a single orbit of GalQ/Q, and
are defined over Q(ζ10) = Q(ζ5). The triangle group Δ of type 〈2, 5, 10〉, as a max-
imal Fuchsian group, is the normaliser of each Γλ in PSL2 R, so the four curves
Xλ are mutually nonisomorphic. Since GalQ(ζ5)/Q has order 4, it follows that
Q(ζ5) is the minimal field of definition of both the curves and the dessins. The
first example of this series occurs when p = 11, giving the genus 12 entry in the
table; if we use a renormalisation to regard these dessins as having type 〈10, 2, 5〉,
that is, as 10-valent pentagonal maps, we obtain the four regular embeddings of
the complete graph K11 described as maps in [16] and as a Galois orbit in [20].

When the type is 〈2, 8, 8〉, the dessin D lies on the curve X of genus 2 given by
y2 = x5 − x, with Bely̆ı function (x, y) 	→ 1 − x4. One can form D by identifying
opposite sides of an octahedron to give a map with one vertex, one face and four
edges; this single vertex, corresponding to the point (0, 0) ∈ X , is coloured black,
and the midpoints of the four edges are regarded as white vertices of valency 2,
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where x4 = 1 and y = 0. A rotation α : (x, y) 	→ (ix, ζ8y) of the octagon through
π/4 generates A = AutD ∼= Δ/Γ ∼= C8, where Γ is the unique torsion-free normal
subgroup of Δ with this quotient. If p ≡ 1 mod 8 then H1(X;Z/pZ) is a direct
sum of four 1-dimensional A-submodules, on which the eigenvalues λ of α are the
four primitive 8th roots of 1 in (Z/pZ)∗. We thus obtain four subgroups Γλ of
index p in Γ, each normal in Δ, such that α has eigenvalue λ on Γ/Γλ. The regular
dessin Dλ corresponding to Γλ has type 〈2, 8, 8〉 and genus p + 1, with AutDλ

a split extension of Cp by C8. As in the preceding case, these four dessins form
a single orbit under the Wilson operators Hj for j ∈ (Z/8Z)∗, consisting of two
chiral pairs Dλ±1 . The maximal triangle group of type 〈2, 4, 8〉 contains Δ with
index 2, transposing its generators γ1 and γ∞ = (γ0γ1)

−1 of order 8 by conjugation;
since each of these acts by conjugation on each Γ/Γλ as the cube of the other, H3

transposes each Dλ with a dual dessin Dλ3 on an isomorphic curve. It follows from
Proposition 4 that the four dessins and their two underlying curves each form a
single Galois orbit, the minimal field of definition of the dessins is Q(ζ8), and for
the curves it is the subfield Q(

√−2) fixed by the automorphism ζ8 	→ ζ38 .

If the type is 〈2, 6, 6〉 then X is given by x6 + y2 = 1, with Bely̆ı function
(x, y) 	→ y2. The dessin D is a double covering of a dessin D̃ on the Riemann
sphere consisting of a black vertex at 0 joined by straight line segments to white
vertices at the sixth roots of 1, where the covering D → D̃ is branched. In this
case A ∼= C2 × C6, the two direct factors being generated by automorphisms
α : (x, y) 	→ (x,−y) and β : (x, y) 	→ (ζ6x, y), respectively transposing the two
sheets and rotating them through π/3. For each prime p ≡ 1 mod 6 we obtain
four normal subgroups Γλ of Δ, of index p in Γ, such that α has eigenvalue −1
on each Γ/Γλ, while the eigenvalues λ of β are the four elements of order 3 or 6
in (Z/pZ)∗. The corresponding dessins Dλ form two chiral pairs Dλ±1 ; however,
unlike the two preceding cases, here they do not form a single orbit under the
Wilson operations Hj . The maximal triangle group of type 〈2, 4, 6〉 contains Δ
with index 2, transposing its generators γ1 and γ∞ by conjugation. These induce
the automorphisms β and (αβ)−1, which have eigenvalues λ and −λ−1, so there are
two dual pairs Dλ,D−λ−1 , each pair lying on one of two nonisomorphic curves. By
applying a renormalisation β 	→ 1/β we may regard these dessins as having type
〈6, 6, 2〉, in which case Theorem 4 shows that the curves are Galois conjugate, with
Q(ζ6) = Q(

√−3) as their minimal field of definition. Unfortunately our methods
do not provide corresponding results for the dessins.
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