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Real-variable characterizations of Orlicz–Hardy

spaces on strongly Lipschitz domains of Rn

Dachun Yang and Sibei Yang

Abstract. Let Ω be a strongly Lipschitz domain of Rn, whose complement
in Rn is unbounded. Let L be a second order divergence form elliptic
operator on L2(Ω) with the Dirichlet boundary condition, and the heat
semigroup generated by L having the Gaussian property (Gdiam(Ω)) with
the regularity of its kernels measured by μ ∈ (0, 1], where diam(Ω) denotes
the diameter of Ω. Let Φ be a continuous, strictly increasing, subadditive
and positive function on (0,∞) of upper type 1 and of strictly critical lower
type pΦ ∈ (n/(n+ μ), 1]. In this paper, the authors introduce the Orlicz–
Hardy space HΦ, r(Ω) by restricting arbitrary elements of the Orlicz–Hardy
space HΦ(R

n) to Ω and establish its atomic decomposition by means of
the Lusin area function associated with {e−tL}t≥0. Applying this, the
authors obtain two equivalent characterizations of HΦ, r(Ω) in terms of
the nontangential maximal function and the Lusin area function associated
with the heat semigroup generated by L.

1. Introduction

The theory of Hardy spaces on the n-dimensional Euclidean space Rn, was origi-
nally initiated by Stein and Weiss in [48]. Later, Fefferman and Stein [20] systemat-
ically developed a real-variable theory for the Hardy spacesHp(Rn) with p ∈ (0, 1],
which plays an important role in various fields of analysis; see, for example, [47],
[11], [40], and [46]. It is well known that the Hardy space Hp(Rn) with p ∈ (0, 1]
is a good substitute for Lp(Rn) in the study of the boundedness of operators; for
example, the classical Riesz transform is bounded on Hp(Rn), but not on Lp(Rn)
with p ∈ (0, 1]. An important feature of the Hp(Rn) is their characterizations
in terms of atomic decompositions, which were established by Coifman [12] when
n = 1 and Latter [34] when n > 1 (see also [51]).
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On the other hand, as a generalization of Lp(Rn), the Orlicz space was in-
troduced by Birnbaum–Orlicz in [7] and Orlicz in [41]; since then, the theory
of the Orlicz spaces themselves has been well developed and these spaces have
been widely used in probability, statistics, potential theory, and partial differential
equations, as well as harmonic analysis and some other fields of analysis (see, for
example, [43], [44], [8], [37] and [26]). Moreover, Orlicz–Hardy spaces are also
suitable substitutes for the Orlicz spaces in the study of boundedness of operators
(see, for example, [27], [50], [29], [31] and [28]). Recall that Orlicz–Hardy spaces
and their dual spaces were studied by Janson [27] on Rn and Viviani [50] on spaces
of homogeneous type in the sense of Coifman and Weiss [14].

It is known that the Hardy spaces Hp(Rn) are essentially related to the Lapla-
cian

Δ :=

n∑
i=1

∂2

∂x2i
.

In recent years, the study of the real-variable theory of various function spaces
associated with different differential operators has inspired great interests (see,
for example, [2], [3], [18], [52], [16], [22], [21], [28], [29], [31], [30], and [53]). In
particular, Orlicz–Hardy spaces associated with some differential operators and
their dual spaces were introduced and studied in [31], [29] and [28].

One important aspect of the development in the theory of Hardy spaces is the
study of Hardy spaces on domains of Rn (see, for example, [39], [10], [9], [49], [4],
[17], [25] and [24]). Especially, Chang, Krantz and Stein [10] introduced the Hardy
spacesHp

r (Ω) and H
p
z (Ω) on the domain Ω for p ∈ (0, 1], respectively, by restricting

arbitrary elements of Hp(Rn) to Ω, and restricting elements of Hp(Rn) which are
zero outside Ω to Ω, where here and in what follows, Ω denotes the closure of Ω
in Rn. We point out that the Hardy spaces Hp

r (Ω) and Hp
z (Ω), when Ω is a

bounded smooth domain of Rn and p ∈ (0, 1], appear naturally in the study of the
regularity of the Green operators, respectively, for the Dirichlet boundary problem
and the Neumann boundary problem in [10] and [9]. For these Hardy spaces,
atomic decompositions have been obtained in [10] when Ω is a special Lipschitz
domain or a bounded Lipschitz domain of Rn. Let Ω be a strongly Lipschitz
domain, and let H1

r (Ω) and H1
z (Ω) be defined as in [10]. Auscher and Russ [4]

proved that H1
r (Ω) and H

1
z (Ω) can be characterized by the nontangential maximal

function and the Lusin area function associated with {e−t
√
L}t≥0, respectively,

under the so-called Dirichlet and the Neumann boundary conditions, where L
is an elliptic second-order divergence operator such that for all t ∈ (0,∞), the
kernel of e−tL has the Gaussian property (G∞) in the sense of Auscher and Russ
in Definition 3 of [4] (see also Definition 2.1 below). Moreover, for these Hardy
spaces, Huang [25] established a characterization in terms of the Littlewood–Paley–
Stein function associated with L. Assume that the regularity of the kernel of the
heat semigroup generated by L is measured by μ ∈ (0, 1]. When Ω is a special
Lipschitz domain of Rn, p ∈ (n/(n+ μ), 1] and L satisfies the Neumann boundary
condition, Duong and Yan [17] gave a simple proof of the atomic decomposition
for elements in Hp

z (Ω) via the nontangential maximal function associated with the
Poisson semigroup generated by L.
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Let Ω be a strongly Lipschitz domain of Rn, whose complement in Rn is un-
bounded. Let L be a second order divergence form elliptic operator on L2(Ω)
with the Dirichlet boundary condition, and the heat semigroup generated by L
having the Gaussian property (Gdiam(Ω)) with the regularity of its kernels mea-
sured by μ ∈ (0, 1] (see Definition 2.1 below for the definition), where diam(Ω)
denotes the diameter of Ω. Let Φ be a continuous, strictly increasing, subadditive
and positive function on (0,∞) of upper type 1 and of strictly critical lower type
pΦ ∈ (n/(n+ μ), 1] (see (2.4) below for the definition of pΦ). A typical example of
such a function is

Φ(t) := tp

for t ∈ (0,∞) and p ∈ (n/(n+ μ), 1]. Motivated by [4], [10], [31], [29] and [50], in
this paper, we introduce the Orlicz–Hardy spaceHΦ, r(Ω) by restricting elements of
the classical Orlicz–Hardy space HΦ(R

n) to Ω, and give its atomic decomposition
by means of the Lusin area function associated with the heat semigroup generated
by L. Applying this, we obtain two equivalent characterizations of HΦ, r(Ω) in
terms of the nontangential maximal function and the Lusin area function associ-
ated with the heat semigroup generated by L. Let H1

SP
(Ω) be the Hardy space

defined by the Lusin area function associated with the Poisson semigroup gener-
ated by L. As a byproduct, by applying the method used in this paper for the
atomic decomposition of elements in HΦ, r(Ω) via the Lusin area function associ-
ated with the heat semigroup generated by L (see Proposition 3.14 below), we also
give a direct proof of the atomic decomposition for all f ∈ H1

SP
(Ω) in Proposi-

tion 3.17 below, which answers the question asked by Duong and Yan in [17] (see
Remarks (iii), page 485) in the case that p = 1.

To state the main result of this paper, we first recall some necessary notions.
Throughout the whole paper, we always assume that Ω is a strongly Lipschitz
domain of Rn; namely, Ω is a proper open connected set in Rn whose boundary is
a finite union of parts of rotated graphs of Lipschitz maps, at most one of these
parts possibly unbounded. It is well known that strongly Lipschitz domains include
special Lipschitz domains, bounded Lipschitz domains and exterior domains (see,
for example, [4] and [6] for their definitions and properties).

Throughout the whole paper, for the sake of convenience, we choose the norm
on Rn to be the supremum norm; namely, for any

x = (x1, x2, . . . , xn) ∈ Rn, |x| := max{|x1|, . . . , |xn|}.
Balls determined by this norm are cubes associated with the usual Euclidean norm
with sides parallel to the axes.

Remark 1.1. Let Ω be a strongly Lipschitz domain of Rn. Then Ω is a space
of homogeneous type in the sense of Coifman and Weiss [14]. Furthermore, as a
space of homogeneous type, the collection of all balls of Ω is given by the set

{Q ∩ Ω : cube Q ⊂ Rn satisfies xQ ∈ Ω and l(Q) ≤ 2diam(Ω)} ,
where xQ denotes the center of Q, l(Q) the sidelength of Q, and diam(Ω) the
diameter of Ω, namely, diam(Ω) := sup{|x− y| : x, y ∈ Ω} (see, for example, [4]).
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Motivated by [10], we introduce the Orlicz–Hardy space HΦ, r(Ω) as follows.
We first recall the definition of the Orlicz–Hardy space HΦ(R

n) introduced by
Viviani [50]. Let S(Rn) denote the space of all Schwartz functions with the classical
topology and S ′(Rn) its topological dual with the weak ∗-topology. For all f ∈
S ′(Rn), let G(f) denote its grand maximal function (see page 90 of [47]).

Definition 1.2. Let Φ be a function of type (p0, p1), where 0 < p0 ≤ p1 ≤ 1 (see
Section 2.2 below for the definition of type (p0, p1)). Define

HΦ(R
n) :=

{
f ∈ S ′(Rn) :

∫
Rn

Φ(G(f)(x)) dx <∞
}

and

‖f‖HΦ(Rn) := inf
{
λ ∈ (0,∞) :

∫
Rn

Φ
(G(f)(x)

λ

)
dx ≤ 1

}
.

In what follows, we shall denote by D(Ω) the space of all infinitely differentiable
functions with compact support in Ω endowed with the inductive topology, and
by D′(Ω) its topological dual with the weak ∗-topology, which is called the space of
distributions on Ω.

Definition 1.3. Let Φ be as in Definition 1.2 and let Ω be a subdomain in Rn.
A distribution f on Ω is said to be in the Orlicz–Hardy space HΦ, r(Ω) if f is the
restriction to Ω of a distribution F in HΦ(R

n); namely,

HΦ, r(Ω) : = {f ∈ D′(Ω) : there exists an F ∈ HΦ(R
n) such that F |Ω = f}

=HΦ(R
n)/{F ∈ HΦ(R

n) : F = 0 on Ω}.
Moreover, for all f ∈ HΦ, r(Ω), the quasi-norm of f in HΦ, r(Ω) is defined by

‖f‖HΦ, r(Ω) := inf
{‖F‖HΦ(Rn) : F ∈ HΦ(R

n) and F |Ω = f
}
,

where the infimum is taken over all F ∈ HΦ(R
n) satisfying F = f on Ω.

Remark 1.4. Let p ∈ (0, 1]. When Φ(t) := tp for all t ∈ (0,∞), the spaceHΦ, r(Ω)
was introduced by Chang, Krantz and Stein [10]. In this case, we denote the
Orlicz–Hardy spaces HΦ(R

n) and HΦ, r(Ω), respectively, by H
p(Rn) and Hp

r (Ω).

We now describe the divergence form elliptic operators considered in this paper.
The most typical example is the Laplace operator on the Lipschitz domain of Rn

with the Dirichlet boundary condition. If Ω is a strongly Lipschitz domain of Rn,
we denote by W 1, 2(Ω) the usual Sobolev space on Ω equipped with the norm(‖f‖2L2(Ω) + ‖∇f‖2L2(Ω)

)1/2
,

where∇f denotes the distributional gradient of f . In what follows,W 1, 2
0 (Ω) stands

for the closure of C∞
c (Ω) in W 1, 2(Ω), where C∞

c (Ω) denotes the set of all C∞(Rn)
functions on Ω with compact support.

If A : Rn →Mn(C) is a measurable function, define

‖A‖∞ := ess sup
x∈Rn, |ξ|=|η|=1

|A(x)ξ · η|,
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whereMn(C) denotes the set of all n×n complex-valued matrixes, ξ, η ∈ Cn and η
denotes the conjugate vector of η. For all δ ∈ (0, 1], denote by A(δ) the class of all
measurable functions A : Rn →Mn(C) satisfying the ellipticity condition; namely,
for all x ∈ Rn and ξ ∈ Cn,

(1.1) ‖A‖∞ ≤ δ−1 and �(A(x)ξ · ξ) ≥ δ|ξ|2,

where above and in what follows, �(A(x)ξ · ξ) denotes the real part of A(x)ξ · ξ.
Denote by A the union of all A(δ) for δ ∈ (0, 1].

When A ∈ A and V is a closed subspace ofW 1, 2(Ω) containingW 1, 2
0 (Ω), denote

by L the maximal-accretive operator (see Def. 1.46 in [42] for the definition) on
L2(Ω) with D(L) ⊂ V the largest domain such that for all f ∈ D(L) and g ∈ V ,

(1.2) 〈Lf, g〉 =
∫
Ω

A(x)∇f(x) · ∇g(x) dx,

where 〈·, ·〉 denotes the interior product in L2(Ω). In this sense, for all f ∈ D(L),
we write

(1.3) Lf = −div(A∇f).

We recall the following Dirichlet and Neumann boundary conditions of L from
page 152 of [4]:

Definition 1.5. Let Ω be a strongly Lipschitz domain and L as in (1.3). The
operator L is said to satisfy the Dirichlet boundary condition (for simplicity, DBC)
if V =W 1, 2

0 (Ω) and the Neumann boundary condition (for simplicity, NBC) if V =
W 1, 2(Ω).

Let Ω be a strongly Lipschitz domain of Rn. Recall that for an Orlicz function Φ
on (0,∞), a measurable function f on Ω is said to be in the space LΦ(Ω) if∫

Ω

Φ(|f(x)|) dx <∞.

Moreover, for any f ∈ LΦ(Ω), define

‖f‖LΦ(Ω) := inf
{
λ ∈ (0,∞) :

∫
Ω

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

If p ∈ (0, 1] and Φ(t) = tp for t ∈ (0,∞), we then denote LΦ(Ω) simply by Lp(Ω).

Definition 1.6. Let Φ satisfy Assumption (A) (see Section 2.2 for the definition
of Assumption (A)), let Ω be a strongly Lipschitz domain of Rn and let L be as
in (1.3). For all f ∈ L2(Ω) and x ∈ Ω, let

Nh(f)(x) := sup
y∈Ω, t∈(0,2diam(Ω)), |y−x|<t

∣∣e−t2L(f)(y)∣∣.
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A function f ∈ L2(Ω) is said to be in H̃Φ,Nh
(Ω) if Nh(f) ∈ LΦ(Ω); moreover,

define

‖f‖HΦ,Nh
(Ω) := ‖Nh(f)‖LΦ(Ω) := inf

{
λ ∈ (0,∞) :

∫
Ω

Φ
(Nh(f)(x)

λ

)
dx ≤ 1

}
.

The Orlicz–Hardy space HΦ,Nh
(Ω) is defined to be the completion of the space

H̃Φ,Nh
(Ω) in the quasi-norm ‖ · ‖HΦ,Nh

(Ω).

Remark 1.7. (i) Since Φ is of strictly lower type pΦ (see (2.4) for its definition),
we see that for all f1, f2 ∈ HΦ,Nh

(Ω),∥∥f1 + f2
∥∥pΦ
HΦ,Nh

(Ω)
≤ ∥∥f1∥∥pΦHΦ,Nh

(Ω)
+
∥∥f2∥∥pΦHΦ,Nh

(Ω)
.

(ii) From the completion theorem of Yosida (see page 56 of [55]), it follows that

H̃Φ,Nh
(Ω) is dense in HΦ,Nh

(Ω); namely, for any f ∈ HΦ,Nh
(Ω), there exists a

Cauchy sequence {fk}∞k=1 ⊂ H̃Φ,Nh
(Ω) such that

lim
k→∞

‖fk − f‖HΦ,Nh
(Ω) = 0.

Moreover, if {fk}∞k=1 is a Cauchy sequence in H̃Φ,Nh
(Ω), then there exists a unique

f ∈ HΦ,Nh
(Ω) such that

lim
k→∞

‖fk − f‖HΦ,Nh
(Ω) = 0.

In what follows, Q(x, t) denotes the closed cube of Rn centered at x and of
the sidelength t with sides parallel to the axes. Similarly, given Q := Q(x, t) and
λ ∈ (0,∞), we write λQ for the λ-dilated cube, which is the cube with the same
center x and with sidelength λt. For any f ∈ L2(Ω) and x ∈ Ω, the Lusin area

functions Sh and S̃h associated with {e−t2L}t≥0 are respectively defined by

Sh(f)(x) :=
{∫

Γ(x)

∣∣t2Le−t2L(f)(y)∣∣2 dy dt

t|Q(x, t) ∩ Ω|
}1/2

and

S̃h(f)(x) :=
{∫

Γ(x)

∣∣t∇e−t2L(f)(y)∣∣2 dy dt

t|Q(x, t) ∩ Ω|
}1/2

,

where Γ(x) is the cone defined by

Γ(x) := {(y, t) ∈ Ω× (0, 2diam(Ω)) : |y − x| < t}.
Definition 1.8. Let Φ satisfy Assumption (A), let Ω be a strongly Lipschitz
domain of Rn and let L be as in (1.3). Assume that L satisfies DBC and that
the semigroup generated by L has the Gaussian property (Gdiam(Ω)). A function

f ∈ L2(Ω) is said to be in H̃Φ, Sh
(Ω) if Sh(f) ∈ LΦ(Ω). Recall that

(1.4) ‖Sh(f)‖LΦ(Ω) := inf
{
λ ∈ (0,∞) :

∫
Ω

Φ
(Sh(f)(x)

λ

)
dx ≤ 1

}
.
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Furthermore, define
‖f‖HΦ, Sh

(Ω) := ‖Sh(f)‖LΦ(Ω).

The Orlicz–Hardy space HΦ, Sh
(Ω) is defined to be the completion of H̃Φ, Sh

(Ω) in
the quasi-norm ‖ · ‖HΦ, Sh

(Ω).

If Ω is bounded, a function f ∈ L2(Ω) is said to be in H̃Φ, Sh, dΩ(Ω) if Sh(f) ∈
LΦ(Ω); moreover, define

‖f‖HΦ, Sh, dΩ
(Ω)(1.5)

:=‖Sh(f)‖LΦ(Ω) + inf
{
λ ∈ (0,∞) : Φ

(‖e−d2ΩL(f)‖L1(Ω)

λ

)
≤ 1

}
,

where above and in what follows, dΩ := 2diam(Ω) and ‖Sh(f)‖LΦ(Ω) is as in (1.4).
The Orlicz–Hardy space HΦ, Sh, dΩ(Ω) is defined to be the completion of the space

H̃Φ, Sh, dΩ(Ω) in the quasi-norm ‖ · ‖HΦ, Sh, dΩ
(Ω).

When Ω is bounded, the Orlicz–Hardy spaces HΦ, ˜Sh
(Ω) and HΦ, ˜Sh, dΩ

(Ω) are

defined, respectively, via replacing Sh by S̃h in the definitions of HΦ, Sh
(Ω) and

HΦ, Sh, dΩ(Ω).

If Ω is bounded, by |Ω| < ∞, we know that L2(Ω) ⊂ L1(Ω), which, together
with the Gaussian property (Gdiam(Ω)) and Fubini’s theorem, implies that for all

f ∈ L2(Ω), e−d
2
ΩL(f) ∈ L1(Ω). Thus, if f ∈ L2(Ω) and Sh(f) ∈ LΦ(Ω), then

‖f‖HΦ, Sh, dΩ
(Ω) and ‖f‖H

Φ, ˜Sh, dΩ
(Ω) make sense.

In what follows, we denote by Ωc the complement of Ω in Rn. The main result
of this paper is as follows:

Theorem 1.9. Let Φ satisfy Assumption (A) and let L be as in (1.3). Let Ω be a
strongly Lipschitz domain of Rn such that Ωc is unbounded. Assume that L satis-
fies DBC and the semigroup generated by L has the Gaussian property (Gdiam(Ω)).

(i) If Ω is unbounded, then the spaces

HΦ, r(Ω), HΦ,Nh
(Ω), HΦ, ˜Sh

(Ω) and HΦ, Sh
(Ω)

coincide with equivalent norms.

(ii) If Ω is bounded, then the spaces

HΦ, r(Ω), HΦ,Nh
(Ω), HΦ, ˜Sh, dΩ

(Ω) and HΦ, Sh, dΩ(Ω)

coincide with equivalent norms. Moreover, if, in addition, n ≥ 3 and (G∞)
holds, then the spaces

HΦ, ˜Sh, dΩ
(Ω), HΦ, Sh, dΩ(Ω), HΦ, ˜Sh

(Ω) and HΦ, Sh
(Ω)

coincide with equivalent norms.
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We first point out that the coincidence between HΦ, r(Ω) and HΦ,Nh
(Ω) of

Theorem 1.9 when Φ(t) = t for t ∈ (0,∞) was already obtained by Auscher and
Russ (see Proposition 19, and Theorems 1 and 20 in [4]).

We also remark that although a strongly Lipschitz domain can be regarded as a
space of homogeneous type, Theorem 1.9 can not be deduced from a general theory
of Hardy spaces on spaces of homogeneous type, since its proof depends on the
geometrical properties of strongly Lipschitz domains and the divergence structure
of the operator L considered.

The following chains of inequalities give the strategy of the proof of Theo-
rem 1.9 (i). For all f ∈ HΦ, r(Ω) ∩ L2(Ω), we have

(1.6) ‖f‖HΦ, r(Ω) � ‖f‖HΦ,Nh
(Ω) � ‖f‖H

Φ, ˜Sh
(Ω) � ‖f‖HΦ, Sh

(Ω) � ‖f‖HΦ, r(Ω),

where the implicit constants are independent of f . The proof of the first inequality
in (1.6) is standard by applying the atomic decomposition of HΦ(R

n) established
by Viviani [50] and the relation between HΦ, r(Ω) and HΦ(R

n) (see Proposition 3.1
below). We prove the second and the third inequalities, respectively, in Proposi-
tions 3.5 and 3.13 below. We point out that Proposition 3.5 plays an important
role in the proof of Theorem 1.9, and the key step in the proof of Proposition 3.5
is to establish a “good-λ inequality” concerning Nh(f) and S̃h(f); see Lemma 3.10
below. To show the last inequality of (1.6) in Proposition 3.14 (i) below, for all
f ∈ HΦ, Sh

(Ω)∩L2(Ω), we establish its atomic decomposition by using a Calderón
reproducing formula on L2(Ω) associated with L (see (3.42) below), the atomic
decomposition of functions in the tent space on Ω, and the reflection technol-
ogy related to Lipschitz domains on Rn which was proved by Auscher and Russ
(see page 183 of [4]) and plays a key role in the proof of Theorem 1.9 (see also
Lemma 3.16 below). However, this reflection technology was not necessary in the
study of the Orlicz–Hardy space HΦ, z(Ω) in [54] (see also [4]).

Similar to the proof of Theorem 1.9 (i), the following chains of inequalities
give the strategy of the proof of Theorem 1.9 (ii). Namely, we show that for all
f ∈ HΦ, r(Ω) ∩ L2(Ω),

‖f‖HΦ, r(Ω) � ‖f‖HΦ,Nh
(Ω) � ‖f‖HΦ, ˜Sh, dΩ

(Ω) � ‖f‖HΦ, Sh, dΩ
(Ω) � ‖f‖HΦ, r(Ω),

where the implicit constants are independent of f . In this case that Ω is bounded,
the Calderón reproducing formula (3.42) on L2(Ω) associated with L used in the
proof of Theorem 1.9 (i) is never valid. Thus, instead of (3.42), we use a lo-
cal Calderón reproducing formula on L2(Ω) associated with L (see (3.72) below).
Moreover, if Ω is bounded, n ≥ 3 and (G∞) holds, using the fact that the op-
erator L−1 is bounded from Lp(Ω) into Lq(Ω) for some p, q ∈ (1,∞) satisfying
1 < p < q < ∞ and 1

p − 1
q = 2

n , which can be proved in a manner similar to the

proof of Proposition 5.3 in [1], we further show that the second term in (1.5) can
be controlled by the Orlicz norm of the Lusin area function Sh(f), which implies
the second part of Theorem 1.9 (ii).

Let Φ satisfy Assumption (A), let Ω be an unbounded strongly Lipschitz do-
main of Rn, and let L be an elliptic second order divergence operator on L2(Ω)
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satisfying the Neumann boundary condition and the Gaussian property (G∞). As
mentioned above, the Orlicz–Hardy space HΦ, z(Ω) was introduced in [54] and
its several equivalent characterizations, including the nontangential maximal func-
tion characterization and the Lusin area function characterization associated with
{e−t

√
L}t≥0, the vertical and the nontangential maximal function characterizations

associated with {e−tL}t≥0, and the Lusin area function characterization associated
with {e−tL}t≥0, were also obtained therein.

For all f ∈ L2(Ω) and x ∈ Ω, let

SP (f)(x) :=
{∫

˜Γ(x)

∣∣∣t ∂te−t√L(f)(y)∣∣∣2 dy dt

t |Q(x, t) ∩ Ω|
}1/2

,

where

Γ̃(x) := {(y, t) ∈ Ω× (0,∞) : |x− y| < t}.
Let

H̃1
SP

(Ω) :=
{
f ∈ L2(Ω) : ‖f‖H1

SP
(Ω) := ‖SP (f)‖L1(Ω) <∞}

.

The Hardy space H1
SP

(Ω) is defined to be the completion of H̃1
SP

(Ω) in the
norm ‖ · ‖H1

SP
(Ω). By applying the method used in the proof of Proposition 3.14 (i)

below, we also give a direct proof for the atomic decomposition of elements in
H1
SP

(Ω) in Proposition 3.17 below, which gives an answer to the question asked by
Duong and Yan in [17] (see Remarks (iii), page 485) in the case p = 1. (We point
out that the Lusin area function SP was also given in page 154 of [4] by replacing
|Q(x, t)∩Ω| by tn. This may be problematic for obtaining some estimates, like the
estimate in line 1 from the bottom of page 164 in [4], by regarding Ω as a space of
homogeneous type when Ω is bounded.)

The layout of this paper is as follows. In Section 2, we first recall some prop-
erties of the divergence form elliptic operator L on Rn or a strongly Lipschitz
domain Ω, and then describe some basic assumptions on L; then we describe some
basic assumptions on Orlicz functions and present some properties of these func-
tions. In Section 3, we give the proof of Theorem 1.9.

Finally we make some conventions on notation. Throughout the paper, L al-
ways denotes the second order divergence form elliptic operator as in (1.3). We de-
note by C a positive constant which is independent of the main parameters, but it
may vary from line to line. We also use C(γ, β, . . .) to denote a positive constant
depending on the indicated parameters γ, β, . . . The symbol A � B means that
A ≤ CB. If A � B and B � A, then we write A ∼ B. The symbol �s� for s ∈ R

denotes the maximal integer not more than s; Q(x, t) denotes a closed cube in Rn

with center x ∈ Rn and sidelength l(Q) := t and

CQ(x, t) := Q(x,Ct).

For any given normed spaces A and B with the corresponding norms ‖ · ‖A and
‖ · ‖B, A ⊂ B means that for all f ∈ A, then f ∈ B and ‖f‖B � ‖f‖A. For
any subset G of Rn, we denote by Gc the set Rn \ G; for a measurable set E,
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denote by χE the characteristic function of E. We also set N := {1, 2, . . . } and
Z+ := N ∪ {0}. For any θ := (θ1, . . . , θn) ∈ Zn+, let

|θ| := θ1 + · · ·+ θn and ∂θx :=
∂|θ|

∂xθ11 · · · ∂xθnn
.

For any sets E, F ⊂ Rn and z ∈ Rn, let

dist (E,F ) := inf
x∈E, y∈F

|x− y| and dist (z, E) := inf
x∈E

|x− z|.

2. Preliminaries

In Subsection 2.1, we first recall some properties of the divergence form elliptic
operator L on Rn on a strongly Lipschitz domain Ω, and then describe some basic
assumptions about L. In Subsection 2.2, we describe some basic assumptions about
Orlicz functions and then present some properties of these functions.

2.1. The divergence form elliptic operator L

Let L be as in (1.3). Then L generates a semigroup {e−tL}t≥0 of operators that is
analytic (namely, it has an extension to the complex half cone |arg z| < μ for some
μ ∈ (0, π/2)) and contracting on L2(Ω), namely

for all f ∈ L2(Ω) and t ∈ (0,∞), ‖e−tLf‖L2(Ω) ≤ ‖f‖L2(Ω)

(see, for example, [42] for the details). Also, L has a unique maximal accretive
square root

√
L such that −√

L generates an analytic and L2(Ω)-contracting semi-

group {Pt}t≥0 with Pt := e−t
√
L, the Poisson semigroup for L (see, for example, [32]

for details).
Now we recall the Gaussian property of {e−tL}t≥0, introduced by Auscher and

Russ (see Definition 3 in [4]), on a strongly Lipschitz domain (see also [5] and [6]).

Definition 2.1. Let Ω be a strongly Lipschitz domain of Rn and let L be as
in (1.3). Let β ∈ (0,∞]. The semigroup generated by L is said to have the
Gaussian property (Gβ), if the following hold:

(i) The kernel of e−tL, denoted by Kt, is a measurable function on Ω × Ω,
and there exist positive constants C and α such that for all t ∈ (0, β) and
all x, y ∈ Ω,

(2.1) |Kt(x, y)| ≤ C

tn/2
e−α

|x−y|2
t ;

(ii) For all x ∈ Ω and t ∈ (0, β), the functions

y �→ Kt(x, y) and y �→ Kt(y, x)
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are Hölder continuous in Ω and there exist positive constants C and μ ∈ (0, 1]
such that for all t ∈ (0, β) and x, y1, y2 ∈ Ω,

(2.2) |Kt(x, y1)−Kt(x, y2)|+ |Kt(y1, x)−Kt(y2, x)| ≤ C

tn/2
|y1 − y2|μ
tμ/2

.

Remark 2.2. (i) The assumption (G∞) is always satisfied if L is the Laplacian or
a real symmetric operator (under DBC or NBC) on Rn or on a Lipschitz domain
except under NBC with Ω bounded (see, for example, [6]).

(ii) The assumption (G∞) implies that for all β ∈ (0,∞), (Gβ) holds. If β is
finite, by Lemma A.1 in page 178 of [4] and the properties of semigroups, we know
that (Gβ) and (G1) are equivalent.

The following well-known fact is a simple corollary of the analyticity of the
semigroup {e−tL}t≥0. We omit the details.

Lemma 2.3. Let β ∈ (0,∞]. Assume that L has the Gaussian property (Gβ).
Then the estimate (2.1) also holds for t∂tKt.

2.2. Orlicz functions

Let Φ be a positive function on R+ := (0,∞). The function Φ is said to be of
upper type p (resp. lower type p) for some p ∈ [0,∞), if there exists a positive
constant C such that for all t ∈ [1,∞) (resp. t ∈ (0, 1]) and s ∈ (0,∞),

(2.3) Φ(st) ≤ C tpΦ(s).

Obviously, if Φ is of lower type p for some p ∈ (0,∞), then

lim
t→0+

Φ(t) = 0.

Thus, for the sake of convenience, if it is necessary, we may assume that Φ(0) = 0.
If Φ is of both upper type p1 and lower type p0, then Φ is said to be of type (p0, p1).
The function Φ is said to be of strictly lower type p if for all t ∈ (0, 1) and s ∈ (0,∞),

Φ(st) ≤ tpΦ(s),

and we define

(2.4) pΦ := sup{p ∈ (0,∞) : Φ(st) ≤ tpΦ(s) holds for all t∈(0, 1) and s∈(0,∞)}.
In what follows, pΦ is called the strictly critical lower type index of Φ. We point
out that if pΦ is defined as in (2.4), then Φ is also of strictly lower type pΦ (see [29]
for the proof).

Throughout the paper, we always assume that Φ satisfies the following assump-
tions:

Assumption (A). Let μ be as in (2.2), and let Φ be a positive function defined
on R+ which is of upper type 1 and strictly critical lower type pΦ ∈ ( n

n+μ , 1]. Also
assume that Φ is continuous, strictly increasing, and subadditive.
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Let
p ∈

( n

n+ μ
, 1
]

and Φ(t) = tp or Φ(t) = tp ln(e4 + t)

for all t ∈ (0,∞). Then Φ satisfies Assumption (A) with pΦ = p (see [29] and [35]
for some other examples).

Notice that if Φ satisfies Assumption (A), then Φ(0) = 0. For any positive

function Φ̃ of upper type 1 and p
˜Φ ∈ ( n

n+μ , 1], if we set

Φ(t) :=

∫ t

0

Φ̃(s)

s
ds

for all t ∈ [0,∞), then by Proposition 3.1 in [50], Φ is equivalent to Φ̃; namely,
there exists a positive constant C such that

C−1 Φ̃(t) ≤ Φ(t) ≤ C Φ̃(t)

for all t ∈ [0,∞); moreover, Φ is a strictly increasing, subadditive and continuous
function of upper type 1 and strictly critical lower type

pΦ ≡ p
˜Φ ∈

( n

n+ μ
, 1
]
.

Notice that all our results are the same for equivalent functions satisfying As-
sumption (A). From this, we deduce that all results with Φ as in Assumption (A)

also hold for all positive functions Φ̃ of type 1 and strictly critical lower type
p
˜Φ ∈ ( n

n+μ , 1].

Since Φ is strictly increasing, we define the function ρ(t) on R+ by setting, for
all t ∈ (0,∞),

(2.5) ρ(t) :=
t−1

Φ−1(t−1)
,

where Φ−1 is the inverse function of Φ. Then the types of Φ and ρ have the
following relation: If 0 < p0 ≤ p1 ≤ 1 and Φ is an increasing function, then Φ is
of type (p0, p1) if and only if ρ is of type (p−1

1 − 1, p−1
0 − 1) (see [50] for the proof).

3. Proof of Theorem 1.9

In this section, we present the proof of Theorem 1.9. To this end, we need some
auxiliary area functions defined as follows. Recall that dΩ := 2diam(Ω). Let
α ∈ (0,∞), ε, R ∈ (0, dΩ) and ε < R. For all given f ∈ L2(Ω) and x ∈ Ω, let

S̃αh (f)(x) :=
{∫

Γα(x)

∣∣∣t∇e−t2L(f)(y)∣∣∣2 dy dt

t |Q(x, t) ∩ Ω|
}1/2

and

S̃ ε,R, αh (f)(x) :=
{∫

Γε, R
α (x)

∣∣∣t∇e−t2L(f)(y)∣∣∣2 dy dt

t |Q(x, t) ∩ Ω|
}1/2

,
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where above and in what follows, for all x ∈ Ω, Γα(x) and Γε, Rα (x) are the cone
and the truncated cone, respectively, defined by

Γα(x) := {(y, t) ∈ Ω× (0, dΩ) : |y − x| < αt}

and
Γ ε, Rα (x) := {(y, t) ∈ Ω× (ε, R) : |y − x| < αt}

for α ∈ (0,∞) and 0 < ε < R < dΩ. When α = 1, denote S̃αh (f), S̃
ε, R, α
h (f)

and Γα(x) simply by S̃h(f), S̃
ε,R
h (f) and Γ(x), respectively.

To show Theorem 1.9, we first establish the following proposition:

Proposition 3.1. Let Φ satisfy Assumption (A), let Ω be a strongly Lipschitz
domain of Rn and let L be as in (1.3). Assume that the semigroup generated by L
has the Gaussian property (Gdiam(Ω)). Then under DBC,

(HΦ, r(Ω) ∩ L2(Ω)) ⊂ (HΦ,Nh
(Ω) ∩ L2(Ω))

and there exists a positive constant C such that for all f ∈ HΦ, r(Ω) ∩ L2(Ω),

‖f‖HΦ,Nh
(Ω) ≤ C‖f‖HΦ, r(Ω).

To show Proposition 3.1, we need the atomic decomposition characterization of
the Orlicz–Hardy spaceHΦ(R

n) established by Viviani in [50]. To state it, we begin
with the notions of (ρ, q, s)-atoms and the atomic Orlicz–Hardy space Hρ, q, s(Rn).

Definition 3.2. Let Φ be as in Definition 1.2, let ρ be as in (2.5), and let q ∈ (0,∞]
and s ∈ Z+. A function a is called a (ρ, q, s)-atom if

(i) suppa ⊂ Q, where Q is a closed cube of Rn;

(ii) ‖a‖Lq(Rn) ≤ |Q|1/q−1[ρ(|Q|)]−1;

(iii) for all β := (β1, β2, . . . , βn) ∈ Zn+ with |β| ≤ s,
∫
Rn a(x)x

β dx = 0.

Obviously, when Φ(t) := t for all t ∈ (0,∞), a (ρ, q, s)-atom is just a classical
(1, q, s)-atom (see, for example, [47]).

Definition 3.3. Let p0 be as in Definition 1.2, let Φ, q and ρ be as in Definition 3.2,
and set

s := �n(1/p0 − 1)�.
The atomic Orlicz–Hardy space Hρ, q, s(Rn) is defined to be the space of all distri-
butions f ∈ S ′(Rn) that can be written as f =

∑
j bj in S ′(Rn), where {bj}j is

a sequence of constant multiples of (ρ, q, s)-atoms, with the constant depending
on j, such that for each j, supp bj ⊂ Qj and

∑
j

|Qj |Φ
(‖bj‖Lq(Rn)

|Qj|1/q
)
<∞.
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Define

Λq({bj}j) := inf
{
λ ∈ (0,∞) :

∑
j

|Qj |Φ
(‖bj‖Lq(Rn)

λ|Qj |1/q
)
≤ 1

}

and
‖f‖Hρ, q, s(Rn) := inf{Λq({bj}j)},

where the infimum is taken over all decompositions of f as above.

The notion of (ρ, q, s)-atom and the atomic Orlicz–Hardy space Hρ, q, s(Rn)
were introduced by Viviani in [50], in which the following lemma was also obtained
(see Theorem 2.1 in [50]):

Lemma 3.4. Let p0 be as in Definition 1.2, let Φ, q and ρ be as in Definition 3.2,
and set

s := �n(1/p0 − 1)�.
Then the spaces HΦ(R

n) and Hρ, q, s(Rn) coincide with equivalent norms.

Now we prove Proposition 3.1 by applying Lemma 3.4.

Proof of Proposition 3.1. Let f ∈ HΦ, r(Ω)∩L2(Ω). By the definition of HΦ, r(Ω),

we know that there exists f̃ ∈ HΦ(R
n) such that f̃

∣∣
Ω
= f and

(3.1)
∥∥f̃ ∥∥

HΦ(Rn)
� ‖f‖HΦ, r(Ω).

To show Proposition 3.1, we only need to prove that for any constant multiple
of a (ρ, ∞, 0)-atom b supported in the closed cube Q0 := Q(x0, r0),

(3.2)

∫
Ω

Φ(Nh(b)(x)) dx � |Q0|Φ
(‖b‖L∞(Rn)

)
.

Indeed, for f̃ ∈ HΦ(R
n), by Lemma 3.4, there exists a sequence {bi}i of constant

multiples of (ρ, ∞, 0)-atoms, with the constant depending on i, such that f̃ =∑
i bi in S ′(Rn) and

Λ∞({bi}i) ∼ ‖f̃‖HΦ(Rn).

Moreover, by the proof of Theorem 2.1 in [50] and (2.15) in Lemma (2.9) of [36],
we know that the supports of {bi}i have the finite intersection property. By this,

f ∈ L2(Ω), f̃ =
∑

i bi in S ′(Rn) and f̃
∣∣
Ω
= f , we conclude that f =

∑
i bi almost

everywhere on Ω, which further implies that∫
Ω

Kt2(x, y)f(y) dy =
∑
i

∫
Ω

Kt2(x, y)bi(y) dy.

From this, we deduce that for all x ∈ Ω,

Nh(f)(x) ≤
∑
i

Nh(bi)(x).
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By this and the fact that Φ is strictly increasing, continuous and subadditive,
if (3.2) holds, we then have∫

Ω

Φ (Nh(f)(x)) dx ≤
∑
i

∫
Ω

Φ (Nh(bi)(x)) dx �
∑
i

|Qi|Φ
(‖bi‖L∞(Rn)

)
,

where for each i, supp bi ⊂ Qi. This, together with the facts that for all λ ∈ (0,∞),

Nh(f/λ) = Nh(f)/λ

and, for each i,
‖bi/λ‖L∞(Rn) = ‖bi‖L∞(Rn)/λ,

implies that for all λ ∈ (0,∞),∫
Ω

Φ
(Nh(f)(x)

λ

)
dx �

∑
i

|Qi|Φ
(‖bi‖L∞(Rn)

λ

)
.

By this and (3.1), we find that

‖f‖HΦ,Nh
(Ω) � Λ∞({bi}i) ∼ ‖f̃‖HΦ(Rn) � ‖f‖HΦ, r(Ω),

which, together with the arbitrariness of f ∈ HΦ, r(Ω) ∩ L2(Ω), yields the conclu-
sions of Proposition 3.1.

It is easy to see that for all x ∈ Ω,

(3.3) e−t
2L(b)(x) =

∫
Q0∩Ω

Kt2(x, y)b(y) dy.

Now we show (3.2) by considering the following three cases for Q0:

Case 1)Q0∩Ω = ∅. In this case, by (3.3), we know that for all x ∈ Ω, Nh(b)(x) = 0.
From this, it follows that (3.2) holds.

Case 2) Q0 ⊂ Ω. In this case, let Q̃0 := 8Q0. Then we have

(3.4)

∫
Ω

Φ(Nh(b)(x)) dx =

∫
˜Q0∩Ω

Φ(Nh(b)(x)) dx +

∫
( ˜Q0)c∩Ω

· · · =: I1 + I2.

We first estimate I1. For any x ∈ Q̃0, by (3.3) and (2.1), we see that

Nh(b)(x) ≤ sup
y∈Ω, t∈(0,dΩ), |x−y|<t

∫
Ω

|Kt2(y, z)| |b(z)| dz � ‖b‖L∞(Rn),

which, together with the upper type 1 property of Φ, implies that

(3.5) I1 �
∫

˜Q0

Φ(‖b‖L∞(Rn)) dx � |Q0|Φ
(‖b‖L∞(Rn)

)
.
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Now we estimate I2. Let x ∈ (Q̃0)
c∩Ω, t ∈ (0, dΩ) and y ∈ Ω satisfy |x−y| < t.

By the moment condition for b and (3.3), we have

(3.6) e−t
2L(b)(y) =

∫
Q0

[Kt2(y, z)−Kt2(y, x0)] b(z) dz.

Since pΦ ∈ ( n
n+μ , 1], there exists μ̃ ∈ (0, μ) such that pΦ >

n
n+μ̃ . Now we estimate

e−t
2L(b)(y) by considering the following two cases for t:

(i) t < 1
4 |x− x0|. In this case, let z ∈ Q0. Then

|x− x0| ≤ |x− y|+ |y − x0| < 1

4
|x− x0|+ |y − x0|,

which yields |x− x0| < 4
3 |y − x0|. Moreover,

|x− x0| ≥ 4r0 ≥ 4|z − x0|.

Thus, we have

|y − x0| ≥ 3

4
|x− x0| ≥ 3|z − x0|,

which implies that

(3.7) |y − z| ≥ |y − x0| − |z − x0| ≥ 2

3
|y − x0| ≥ 1

2
|x− x0|.

Thus, by (3.7), (2.1) and (2.2), we obtain

|Kt2(y, z)−Kt2(y, x0)| � |z − x0|μ̃
|x− x0|n+μ̃ ,

which, together with (3.6), implies that

(3.8)
∣∣e−t2L(b)(y)∣∣ � rn+μ̃0

|x− x0|n+μ̃ ‖b‖L∞(Rn).

(ii) t ≥ 1
4 |x− x0|. In this case, by (2.2), we obtain

|Kt2(y, z)−Kt2(y, x0)| � |z − x0|μ
tn+μ

� |z − x0|μ
|x− x0|n+μ � |z − x0|μ̃

|x− x0|n+μ̃ ,

which, together with (3.6), implies that (3.8) also holds in this case.

By the estimates obtained in (i) and (ii), and the arbitrariness of y ∈ Ω satis-
fying |x− y| < t, we see that

Nh(b)(x) �
rn+μ̃0

|x− x0|n+μ̃ ‖b‖L∞(Rn),
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which, together with the lower type pΦ property of Φ and pΦ >
n

n+μ̃ , implies that

I2 �
∫ dΩ

4r0

Φ
(rn+μ̃0

sn+μ̃
‖b‖L∞(Rn)

)
sn−1 ds(3.9)

�Φ(‖b‖L∞(Rn)) r
(n+μ̃)pΦ
0

∫ ∞

4r0

sn−(n+μ̃)pΦ−1 ds ∼ |Q0|Φ(‖b‖L∞(Rn)).

Thus, by (3.4), (3.5) and (3.9), we know that (3.2) holds in this case.

Case 3) Q0 ∩ ∂Ω �= ∅. In this case, recall that for any x ∈ Ω, t ∈ (0,∞) and
y ∈ ∂Ω, Kt(x, y) = 0 (see, for example, page 156 of [4]). Take y0 ∈ Q0∩∂Ω. Then
we find that for any x ∈ Ω and t ∈ (0, dΩ), Kt2(x, y0) = 0, which further implies
that for any x ∈ Ω,

e−t
2L(b)(x) =

∫
Q0∩Ω

[Kt2(x, y)−Kt2(x, y0)] b(y) dy.

The remaining estimates are similar to those of Case 2). We omit the details. This
completes the proof of Proposition 3.1. �

To show Theorem 1.9, we need the following key proposition:

Proposition 3.5. Let Φ, Ω and L be as in Proposition 3.1. Then under DBC,
there exists a positive constant C such that for all f ∈ HΦ,Nh

(Ω) ∩ L2(Ω),∥∥S̃h(f)∥∥LΦ(Ω)
≤ C ‖f‖HΦ,Nh

(Ω).

To show Proposition 3.5, we need Lemmas 3.6 through 3.12.

Lemma 3.6. Let Ω be a strongly Lipschitz domain of Rn, let L be as in (1.3),
and set

Ir(x0, t0) := (Q(x0, r) ∩ Ω)× [t0 − cr2, t0],

where (x0, t0) ∈ Ω× (4cr2,∞), r ∈ (0,∞) and c is a positive constant. If

∂tut = −Lut
in I2r(x0, t0), then there exists a positive constant C, depending only on Ω, c and δ
in (1.1), such that

(3.10)

∫
Ir(x0,t0)

|∇ut(x)|2 dx dt ≤ C

r2

∫
I2r(x0,t0)

|ut(x)|2 dx dt.

Lemma 3.6 is usually called the Caccioppoli inequality. Its proof is similar to
that of Lemma 3 (a) in [33]. We omit the details.

Remark 3.7. Let Ω, L, x0, t0, r, c and ut be as in Lemma 3.4 but with t20 ∈
(4cr2,∞). Then, by making a change of variables in (3.10), we see that∫ t0

√
t20−cr2

∫
Q(x0,r)∩Ω

t|∇ut2(x)|2 dx dt � 1

r2

∫ t0

√
t20−4cr2

∫
Q(x0,2r)∩Ω

t|ut2(x)|2 dx dt.
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In [4] (see page 183), Auscher and Russ proved the following geometric property
of strongly Lipschitz domains, which plays an important role in this paper:

Lemma 3.8. Let Ω be a strongly Lipschitz domain of Rn. Then there exists a
constant C ∈ (0, 1] such that for all cubes Q centered in Ω with l(Q) ∈ (0, ∞) ∩
(0, dΩ], it holds that |Q ∩ Ω| ≥ C|Q|.

In what follows, we denote by B((z, τ), r) the ball in Rn × (0,∞) with center
(z, τ) and radius r; namely,

B((z, τ), r) := {(x, t) ∈ Rn × (0,∞) : max(|x − z|, |t− τ |) < r}.
Lemma 3.9. Let Ω be a strongly Lipschitz domain of Rn, α ∈ (0, 1), ε, R ∈ (0, dΩ)
and ε < R. Then there exists a positive constant C, depending only on α, Ω and n,
such that for all f ∈ L2(Ω) and x ∈ Ω,

(3.11) S̃ ε,R, αh (f)(x) ≤ C [1 + ln(R/ε)]1/2 Nh(f)(x).

Proof. Fix α ∈ (0, 1), 0 < ε < R < dΩ and x ∈ Ω. Let f ∈ L2(Ω) and for all

t ∈ (0, dΩ), ut := e−t
2L(f). For all (z, τ) ∈ Γε,Rα (x), let

E(z, τ) := B((z, τ), γτ) ∩ (Ω× (0, dΩ)),

where γ ∈ (0, 1) is a positive constant which is determined later. By the Besicovitch
covering lemma, there exists a subcollection {E(zj ,τj)}j of {E(z,τ)}(z,τ)∈Γε,R

α (x) such

that

(3.12) Γε, Rα (x) ⊂
⋃
j

E(zj ,τj) and
∑
j

χE(zj,τj)
≤M,

where M is a positive integer depending only on n. For each j, we denote E(zj ,τj)

simply by Ej . Then we have the following two facts for Ej :

(i) For each j, if (y, t) ∈ Ej, then t ∼ τj ∼ dj, where dj denotes the distance
from Ej to the bottom boundary Ω× {0}.

Indeed, if (y, t) ∈ Ej , we then have (1 − γ)τj < t < (1 + γ)τj , which implies
that t ∼ τj . By dj = (1− γ)τj , we see that

dj < t < (1 + γ)τj =
1 + γ

1− γ
dj .

Thus, t ∼ dj .

(ii) For each j, let

Ẽj := B((zj , τj), 9γτj) ∩ (Ω× (0, dΩ)).

If γ ∈ (0, 1−α18 ), then Ẽj ⊂ Γε/2, 2R(x).

Indeed, for all (y, t) ∈ Ẽj , since (zj , τj) ∈ Γε,Rα (x), it follows that |y−zj| < 9γτj
and |x− zj| < ατj . By this, we find that

(3.13) |x− y| < |x− zj |+ |zj − y| < (9γ + α)τj .
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Moreover, by |t− τj | < 9γτj , we know that

(1− 9γ)τj < t < (1 + 9γ)τj ,

which implies that τj <
t

1−9γ if γ ∈ (0, 1/9). From this and (3.13), it follows that

|x − y| < 9γ+α
1−9γ t. Thus, to guarantee that Ẽj ⊂ Γ(x), it suffices to choose γ ∈

(0, 1−α18 ]. Furthermore, by the facts that for any j and (y, t) ∈ Ẽj ,

(1− 9γ)τj < t < (1 + 9γ)τj ,

and ε < τj < R, to ensure that t ∈ (ε/2, 2R), it suffices to take γ ∈ (0, 1
18 ). Thus,

if we choose γ ∈ (0, 1−α18 ], we then conclude that for each j, Ẽj ⊂ Γε/2, 2R(x).

Now we show (3.11). By the fact that R ∈ (0, dΩ) and Lemma 3.8, we know
that for all t ∈ (ε, R),

|Q(x, t) ∩ Ω| ∼ tn.

From this, (3.12), the above two facts (i) and (ii), and Remark 3.7 (in which, if
τj ∈ (ε, dΩ

1+γ ], we choose t0 = (1 + γ)τj , r = γτj and c = 4
γ , and if τj ∈ ( dΩ1+γ , dΩ),

we choose t0 = dΩ, r = γτj and c = 4
γ(1+γ)2 ; and in both cases, we need to choose

γ ∈ (0,min{ 2
81 ,

1−α
18 }), it follows that

[
S̃ ε, R, αh (f)(x)

]2 ∼
∫
Γε, R
α (x)

|t∇ut(y)|2 dy dt
tn+1

�
∑
j

∫
Ej

|t∇ut(y)|2 dy dt
tn+1

�
∑
j

∫ min{(1+γ)τj, dΩ}

(1−γ)τj

∫
Q(zj ,γτj)∩Ω

t|∇ut(y)|2 dy dt
tn

�
∑
j

d−nj
1

(γτj)2

∫
˜Ej

t|ut(y)|2 dy dt

�
{∑

j

d−nj (γτj)
−2|Ẽj |(1 + 9γ)τj

}
[Nh(f)(x)]

2

∼
{∑

j

∫
Ej

dy dt

tn+1

}
[Nh(f)(x)]

2 �
∫
Γε/2, 2R(x)

dy dt

tn+1
[Nh(f)(x)]

2

�
∫ 2R

ε/2

{∫
Rn

χQ(0,1)

(x− y

t

)
dy

}
t−(n+1) dt [Nh(f)(x)]

2

∼ [1 + ln(R/ε)] [Nh(f)(x)]
2
,

which implies that

S̃ ε, R, αh (f)(x) � [1 + ln(R/ε)]1/2Nh(f)(x).

Thus, (3.11) holds, which completes the proof of Lemma 3.9. �
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Lemma 3.10. Let Ω be a strongly Lipschitz domain of Rn, let L be as in (1.3),
and let dΩ := 2diam(Ω). Then there exists a positive constant C such that for all
γ ∈ (0, 1], λ ∈ (0,∞), ε, R ∈ (0, dΩ) with ε < R and f ∈ HΦ,Nh

(Ω) ∩ L2(Ω),∣∣{x ∈ Ω : S̃
ε,R, 1/20
h (f)(x) > 2λ, Nh(f)(x) ≤ γλ

}∣∣(3.14)

≤ Cγ2
∣∣{x ∈ Ω : S̃

ε, R, 1/2
h (f)(x) > λ

}∣∣.
We point out that Lemma 3.10 plays a key role in the proof of Proposition 3.5.

The inequality (3.14) is usually called the “good-λ inequality” concerning the maxi-

mal functionNh(f) and the truncated area functions S̃
ε, R, 1/20
h (f) and S̃

ε,R, 1/2
h (f).

Proof of Lemma 3.10. To prove this lemma, we borrow some ideas from [3] and [4].
Fix 0 < ε < R < dΩ, γ ∈ (0, 1] and λ ∈ (0,∞). Let f ∈ HΦ,Nh

(Ω) ∩ L2(Ω) and

O :=
{
x ∈ Ω : S̃

ε,R, 1/2
h (f)(x) > λ

}
.

It is easy to show that O is an open subset of Ω.
Now we show (3.14) by considering the following two cases for O:

Case 1) O �= Ω. In this case, let

(3.15) O =
⋃
k

(Qk ∩ Ω)

be the Whitney decomposition of O, where {Qk}k are dyadic cubes of Rn with
disjoint interiors and (2Qk) ∩ Ω ⊂ O ⊂ Ω, but

((4Qk) ∩Ω) ∩ (Ω \O) �= ∅.
To show (3.14), by (3.15) and the disjoint property of {Qk}k, it suffices to show
that for all k,

(3.16)
∣∣{x ∈ Qk ∩ Ω : S̃

ε,R, 1/20
h (f)(x) > 2λ, Nh(f)(x) ≤ γλ

}∣∣ � γ2|Qk ∩ Ω|.
From now on, we fix k and denote by lk the sidelength of Qk.

If x ∈ Qk ∩ Ω, then

(3.17) S̃
max{10lk, ε}, R, 1/20
h (f)(x) ≤ λ.

Indeed, pick xk ∈ (4Qk)∩Ω with xk �∈ O. For any (y, t) ∈ Ω×(0, dΩ), if |x−y| < t
20

and t ≥ max{10lk, ε}, then

|xk − y| ≤ |xk − x|+ |x− y| < 4lk +
t

20
<
t

2
,

which implies that

Γ
max{10lk, ε}, R
1/20 (x) ⊂ Γ

max{10lk, ε},R
1/2 (xk).

By this, we know that

S̃
max{10lk, ε}, R, 1/20
h (f)(x) ≤ S̃

max{10lk, ε},R, 1/2
h (f)(xk) ≤ λ.

Thus, the claim (3.17) holds.
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If ε ≥ 10lk, by (3.17), we see that (3.16) holds. If ε < 10lk, to show (3.16), by
the fact that

S̃
ε, R, 1/20
h (f) ≤ S̃

ε, 10lk, 1/20
h (f) + S̃

10lk, R, 1/20
h (f)

and (3.17), it remains to show that

(3.18) |{x ∈ Qk ∩ F : g(x) > λ}| � γ2|Qk ∩ Ω|,

where g := S̃
ε, 10lk, 1/20
h (f) and

F := {x ∈ Ω : Nh(f)(x) ≤ γλ}.
By Chebyshev’s inequality, we see that (3.18) follows from∫

Qk∩F
[g(x)]2 dx � (γλ)2|Qk ∩ Ω|.(3.19)

Now we prove (3.19). It is easy to see that F is a closed subset of Ω.
If ε ≥ 5lk, then by the definitions of g and F , and Lemma 3.9, we have∫
Qk∩F

[g(x)]2 dx �
∫
Qk∩F

[Nh(f)(x)]
2 dx � (γλ)2|Qk ∩ F | � (γλ)2|Qk ∩ Ω|,

which shows (3.19) in this case.
Assume from now on that ε < 5lk. Let

(3.20) G :=
{
(y, t) ∈ Ω× (ε,min{10lk, dΩ}) : ψ(y) < t

20

}
,

where

ψ(y) := dist (y,Qk ∩ F ).(3.21)

By the geometric properties of Ω, we have∫
Qk∩F

[g(x)]2 dx �
∫
G

t|∇ut(y)|2 dy dt.(3.22)

Indeed, if Ω is unbounded, by Lemma 3.8, we know that for all x ∈ Ω and t ∈ (0,∞),

|Q(x, t) ∩ Ω| ∼ |Q(x, t)|.
Thus, in this case, we have∫

Qk∩F
[g(x)]2 dx =

∫
Qk∩F

{∫
Γ
ε, 10lk
1/20

(x)

|t∇ut(y)|2 dy dt

t|Q(x, t) ∩ Ω|
}
dx

�
∫
G

{∫
Ω

t1−nχQ(0,1)

(20[x− y]

t

)
dx

}
|∇ut(y)|2 dy dt

�
∫
G

t |∇ut(y)|2 dy dt.
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That is, (3.22) holds in this case. If Ω is bounded, we first assume that diam(Ω)
≤ 10lk. Then∫

Qk∩F
[g(x)]2 dx=

∫
Qk∩F

{∫
Γ

ε, diam(Ω)

1/20
(x)

|t∇ut(y)|2 dy dt

t|Q(x, t) ∩ Ω|
}
dx

+

∫
Qk∩F

{∫
Γ

diam(Ω), 10lk
1/20

· · ·
}
dx

�
∫
G

{∫
Ω

t1−nχQ(0,1)

(20[x− y]

t

)
dx

}
|∇ut(y)|2 dy dt

+

∫
G

{ 1

|Ω|
∫
Ω

tχQ(0,1)

(20[x− y]

t

)
dx

}
|∇ut(y)|2 dy dt

�
∫
G

t |∇ut(y)|2 dy dt,

which is the desired relation. If Ω is bounded and diam(Ω) > 10lk, then

g ≤ S̃
ε,diam(Ω), 1/20
h (f),

which, together with an argument similar to the above, shows that (3.22) also
holds in this case. Thus, (3.22) is always true.

Let

E :=
{
y ∈ Ω : there exists t ∈ (ε,min{10lk, dΩ}) such that ψ(y) < t

20

}
.

Then E ⊂ 2Qk ∩ Ω. Indeed, if y ∈ E, then there exist t ∈ (ε,min{10lk, dΩ}) such
that (y, t) ∈ G and x ∈ Qk ∩ F such that |x − y| < t

20 . By t < 10lk, we have

|x− y| < 10lk
20 = lk

2 , which implies that E ⊂ 2Qk ∩ Ω.
Let

G̃ :=
{
(y, t) ∈ Ω× (

ε
5 ,min{40lk, dΩ}

)
: ψ(y) < t

}
.

Then for all (y, t) ∈ G̃,

(3.23) |ut(y)| ≤ γλ.

Indeed, for any (y, t) ∈ G̃, there exists x ∈ Qk ∩ F such that |x − y| < t with
t ∈ ( ε5 ,min{40lk, dΩ}), which implies that (y, t) ∈ Γ(x). Thus, by the definitions
of F and Nh(f), we have

|ut(y)| ≤ Nh(f)(x) ≤ γλ.

To finish the proof of Lemma 3.10, we need the following conclusion, which is
just Lemma 3.5 in [54]:

Lemma 3.11. Let

D :=
{
(y, t) ∈ Ω× (ε, 10lk) : ψ(y) <

t
20

}
and

D1 :=
{
(y, t) ∈ Ω× (

ε
2 , 20lk

)
: ψ(y) < t

10

}
,

where ψ is as in (3.21).
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Then there exists ζ̃ ∈ C∞(D1) ∩ C(D1) satisfying that

0 ≤ ζ̃ ≤ 1, ζ̃ ≡ 1 on D, |∇ζ̃(y, t)| � 1

t
for all (y, t) ∈ D1,

and
supp ζ̃ ⊂ D1 ∪

{
∂Ω× (

ε
2 , 20lk

)}
,

where above and in what follows, D1 denotes the closure of D1 in Rn+1.

Now we continue proving Lemma 3.10 by using Lemma 3.11. Let

G1 :=
{
(y, t) ∈ Ω× (

ε
2 ,min{20lk, dΩ}

)
: ψ(y) < t

10

}
and let ζ̃ be as in Lemma 3.11. Let ζ := ζ̃χΩ×(0,dΩ]. Then

ζ ∈ C∞(G1) ∩ C(G1), 0 ≤ ζ ≤ 1, ζ ≡ 1 on G, |∇ζ(y, t)| � 1

t
for all (y, t) ∈ G1,

and
supp ζ ⊂ G1 ∪

{
∂Ω× (

ε
2 ,min{20lk, dΩ}

)}
.

Recall that ut := e−t
2L(f) for all t ∈ (0, dΩ). By 0 ≤ ζ ≤ 1, ζ ≡ 1 on G,

and (1.1), we have∫
G

t|∇ut(y)|2 dy dt ≤
∫
G1

t|∇ut(y)|2ζ(y, t) dy dt(3.24)

≤ δ−1�
∫
G1

tA(y)∇ut(y) · ∇ut(y)ζ(y, t) dy dt =: δ−1�I,

where A(y) and δ are as in (1.1). Let

J :=

∫
G1

tA(y)∇ut(y) · ∇ζ(y, t)ut(y) dy dt.

For all t ∈ (ε/2,min{20lk, dΩ}) and all y ∈ Ω, let ζt(y) := ζ(y, t). Then ζt ∈
C∞(Ω). By (1.19) in page 23 of [42], we know that for all t ∈ (0, dΩ),

ut ∈ D(L) ⊂W 1, 2
0 (Ω),

which, together with ζt ∈ C∞(Ω), implies that for all t ∈ (0, dΩ), utζt ∈ W 1, 2
0 (Ω).

From this, (1.2) and the fact that

∂tut + 2tLut = 0

in L2(Ω), it follows that

I =

∫
G1

tA(y)∇ut(y) · ∇ut(y)ζ(y, t) dydt(3.25)

=

∫
G1

tA(y)∇ut(y) · ∇(utζt)(y) dydt−
∫
G1

tA(y)∇ut(y) · ∇ζt(y)ut(y) dydt

=

∫
G1

tLut(y)(utζt)(y) dy dt− J

= −1

2

∫
G1

∂tut(y)(utζt)(y) dy dt− J =: −1

2
I1 − J.



260 D. Yang and S. Yang

For I1, by the fact that 2�((∂tut)ut) = ∂t|ut|2 and integration by parts, we
conclude that

�I1= 1

2

∫
G1

∂t|ut(y)|2ζ(y, t) dy dt

=
1

2

{∫
∂G1

|ut(y)|2ζ(y, t)N(y, t)·(0, 0, . . . , 1) dσ(y, t)−
∫
G1

|ut(y)|2∂tζ(y, t)dy dt
}
,

where ∂G1 denotes the boundary of G1, N(y, t) is the unit outward normal vector
to G1, and dσ is the surface measure over ∂G1. This, combined with (3.25), implies
that

�I = −1

2
�I1 −�J =

1

4

{∫
G1

|ut(y)|2∂tζ(y, t) dy dt(3.26)

−
∫
∂G1

|ut(y)|2ζ(y, t)N(y, t) · (0, 0, . . . , 1) dσ(y, t)
}

−�
{∫

G1

tA(y)∇ut(y) · ∇ζt(y)ut(y) dy dt
}
.

By supp ζ ⊂ G1 ∪ {∂Ω× ( ε2 ,min{20lk, dΩ})} and the fact that

N(y, t) · (0, . . . , 0, 1) = 0

on ∂Ω× ( ε2 ,min{20lk, dΩ}), we obtain∫
∂G1

|ut(y)|2ζ(y, t)N(y, t) · (0, . . . , 0, 1) dσ(y, t) = 0.(3.27)

From ζ ≡ 1 on G, we deduce that ∇ζ ≡ 0 on G. Thus, by this, (3.26) and (3.27),
we have

�I = 1

4

∫
G1\G

|ut(y)|2∂tζ(y, t) dydt−�
{∫

G1\G
tA(y)∇ut(y)·∇ζt(y)ut(y) dydt

}
=: I2 + I3.(3.28)

First, we estimate I2. By G1 ⊂ G̃ and (3.23), we find that for all (y, t) ∈ G1\G,
|ut(y)| ≤ γλ. Moreover,

G1 \G =
{
(y, t) ∈ Ω× (

ε
2 ,min{20lk, dΩ}

)
: t

20 ≤ ψ(y) < t
10

}
∪ {

(y, t) ∈ Ω× (
ε
2 ,min{20lk, dΩ}

)
: ψ(y) < t

10 ,
ε
2 ≤ t < ε

}
∪ {

(y, t) ∈ Ω× (
ε
2 ,min{20lk, dΩ}

)
: ψ(y) < t

10 , 10lk ≤ t < 20lk
}
.

From these observations and the fact that for all (y, t) ∈ G1,

|∇ζ(y, t)| � 1

t
,
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we deduce that∫
G1\G

|ut(y)|2| ∂tζ(y, t)| dy dt(3.29)

� (γλ)2
∫
G1\G

dy dt

t

� (γλ)2
∫
H1

{∫ ε

ε/2

dt

t
+

∫ 20lk

10lk

dt

t
+

∫ 20ψ(y)

10ψ(y)

dt

t

}
dy

� (γλ)2|H1|,
where

H1 :=
{
y ∈ G1 : there exists t ∈ (

ε
2 ,min{20lk, dΩ}

)
such that (y, t) ∈ G1

}
.

For all y ∈ H1, we know that there exists t ∈ ( ε2 ,min{20lk, dΩ}) such that
(y, t) ∈ G1. From this and the definition of G1, it follows that there exists x ∈
Qk ∩ F such that |x − y| < t

10 with t ∈ ( ε2 ,min{20lk, dΩ}). Thus, |x − y| < 2lk,
which implies that y ∈ (5Qk) ∩Ω. By this, we know that H1 ⊂ (5Qk) ∩ Ω, which,
together with (3.19), implies that

(3.30) |I2| �
∫
G1\G

|ut(y)|2|∂tζ(y, t)| dy dt � (γλ)2|H1| � (γλ)2|Qk ∩ Ω|.

To estimate I3, by the facts that |∇ζ(y, t)| � 1
t for all (y, t) ∈ G1 and that

|ut(y)| ≤ γλ for all (y, t) ∈ G1, we have

|I3| �
∫
G1\G

|∇ut(y)| |ut(y)| dy dt � γλ

∫
G1\G

|∇ut(y)| dy dt.(3.31)

Now, we need to show ∫
G1\G

|∇ut(y)| dy dt � γλ|Qk ∩Ω|.(3.32)

For all (y, t) ∈ (G1 \G) and δ1 ∈ (0, 1), let

E(y,t) := B((y, t), δ1t) ∩ (Ω× (0, dΩ)) , and

Ẽ(y,t) := B((y, t), 9δ1t) ∩ (Ω× (0, dΩ)).

Take δ1 small enough such that for all (y, t) ∈ (G1 \G),
Ẽ(y,t) ⊂

{
(y, t) ∈ Ω× (

ε
5 ,min{30lk, dΩ}

)
: t

40 < ψ(y) < t
2

}
∪{

(y, t) ∈ Ω× (
ε
5 ,min{30lk, dΩ}

)
: ψ(y) < t

2 ,
ε
5 < t < 2ε

}
∪{

(y, t) ∈ Ω× (
ε
5 ,min{30lk, dΩ}

)
: ψ(y) < t

2 , 5lk < t < 30lk
}
:= G2.

By the Besicovitch covering lemma, there exists a sequence {E(yj ,tj)}j of sets which
are a bounded covering of G1 \ G. Let Ej := E(yj ,tj) and Ẽj := Ẽ(yj ,tj). Notice
that for all (y, t) ∈ Ej , t ∼ tj ∼ r(Ej), where r(Ej) denotes the radius of Ej .
From this, Hölder’s inequality, Remark 3.7 (in which, if τj ∈ (ε, dΩ

1+δ1
], we choose

t0 = (1+δ1)τj , r = δ1τj and c =
4
δ1
, and if τj ∈ ( dΩ

1+δ1
, dΩ), we then choose t0 = dΩ,
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r = δ1τj and c =
4

δ1(1+δ1)2
; and in both cases, we need δ1 ∈ (0, 2/81)), and the fact

that for all j and (y, t) ∈ Ẽj , |ut(y)| ≤ γλ, it follows that∫
G1\G

|∇ut(y)| dy dt(3.33)

�
∑
j

∫
Ej

|∇ut(y)| dy dt �
∑
j

|Ej |1/2
{∫

Ej

|∇ut(y)|2 dy dt
}1/2

�
∑
j

|Ej |1/2[r(Ej)]−1
{∫

˜Ej

|ut(y)|2 dy dt
}1/2

� γλ
∑
j

|Ej |[r(Ej)]−1 � γλ

∫
G2

dy dt

t

� γλ

∫
H2

{∫ ε

ε/5

dt

t
+

∫ 30lk

5lk

dt

t
+

∫ 40ψ(y)

2ψ(y)

dt

t

}
dy � γλ|H2|,

where

H2 :=
{
y ∈ Ω : there exists t ∈ (

ε
5 , 30lk

)
such that (y, t) ∈ G2

}
.

Similar to the estimate of H1, we also have |H2| � |Qk ∩ Ω|, which, together
with (3.33), implies that (3.32) holds. Thus, by (3.31) and (3.32), we see that

|I3| � (γλ)2|Qk ∩ Ω|,
which, together with (3.22), (3.28) and (3.30), implies that (3.19) holds. This
finishes the proof of Lemma 3.10 in Case 1).

Case 2) O = Ω. In this case, we claim that Ω is bounded. Otherwise, |Ω| = ∞.
Indeed, if Ω is unbounded, then diam(Ω) = ∞. By this and Lemma 3.8, we know
that for any cube Q with its center xQ in Ω,

|Ω| ≥ |Q ∩ Ω| � |Q|,
which, together with the arbitrariness of Q, implies that |Ω| = ∞. Moreover,
from f ∈ HΦ,Nh

(Ω), we deduce that Nh(f) ∈ LΦ(Ω), which, together with

Lemma 3.9, implies that S̃
ε,R, 1/2
h (f) ∈ LΦ(Ω). By this and the definition of O,

we have |O| <∞, which conflicts with |O| = |Ω| = ∞. Thus, the claim holds.
By Lemma 3.9, we know that there exists a positive constant C1 such that for

all R ∈ (diam(Ω), dΩ) and x ∈ Ω,

(3.34) S̃
diam(Ω), R, 1/20
h (f)(x) ≤ C1Nh(f)(x).

Now we continue the proof of Lemma 3.10 by using (3.34). Without loss of
generality, we may assume that R ≥ diam(Ω). Otherwise, we replace R by diam(Ω)
in (3.14). If γ ≥ 1

C1
, then∣∣{x ∈ Ω : S̃

ε, R, 1/20
h (f)(x) > 2λ, Nh(f)(x) ≤ γλ

}∣∣ ≤ |Ω| ≤ C2
1γ

2|O| � γ2|O|,
which shows Lemma 3.10 in the case that O = Ω and γ ≥ 1

C1
.
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If γ < 1
C1

, by the fact that Nh(f)(x) ≤ γλ for all x ∈ F and (3.34), we have
that for any R ≥ diam(Ω) and x ∈ F ,

S̃
diam(Ω), R, 1/20
h (f)(x) ≤ C1 Nh(f)(x) ≤ 1

γ
γλ = λ,

which implies that{
x ∈ Ω : S̃

ε,R, 1/20
h (f)(x) > 2λ, Nh(f)(x) ≤ γλ

}
⊂ {

x ∈ Ω : S̃
ε, diam(Ω), 1/20
h (f)(x) > λ, Nh(f)(x) ≤ γλ

}
.

Thus, to finish the proof of Lemma 3.10 in this case, it suffices to show that∣∣{x ∈ Ω : S̃
ε, diam(Ω), 1/20
h (f)(x) > λ, Nh(f)(x) ≤ γλ

}∣∣ � γ2|O|.
The proof of this is similar to that of (3.18) with 10lk and Qk ∩ F respectively
replaced by diam(Ω) and Ω. We omit the details. This completes the proof of
Lemma 3.10. �

Lemma 3.12. Let Φ, Ω and L be as in Proposition 3.1. For all α, β ∈ (0,∞),
0 ≤ ε < R < dΩ and all f ∈ L2(Ω),∫

Ω

Φ
(
S̃ε,R, αh (f)(x)

)
dx ∼

∫
Ω

Φ
(
S̃ε,R, βh (f)(x)

)
dx,

where the implicit constants are independent of ε, R and f .

The proof of Lemma 3.12 is similar to that of Proposition 4 in [13]. We omit
the details.

Now we show Proposition 3.5 by using Lemmas 3.10 and 3.12.

Proof of Proposition 3.5. Let f ∈ HΦ,Nh
(Ω) ∩ L2(Ω). By the upper type 1 and

the lower type pΦ properties of Φ, we know that

Φ(t) ∼
∫ t

0

Φ(s)

s
ds

for all t ∈ (0,∞). From this, Fubini’s theorem and Lemma 3.10, it follows that for
all ε, R ∈ (0, dΩ) with ε < R and γ ∈ (0, 1],∫

Ω

Φ
(
S̃
ε,R, 1/20
h (f)(x)

)
dx(3.35)

∼
∫
Ω

∫
˜S

ε, R, 1/20
h (f)(x)

0

Φ(t)

t
dt dx ∼

∫ ∞

0

Φ(t)

t
σ
˜S

ε, R, 1/20
h (f)

(t) dt

�
∫ ∞

0

Φ(t)

t
σNh(f)(γt) dt+ γ2

∫ ∞

0

Φ(t)

t
σ
˜S

ε, R, 1/2
h (f)

(t/2) dt

� 1

γ

∫ ∞

0

Φ(t)

t
σNh(f)(t) dt+ γ2

∫ ∞

0

Φ(t)

t
σ
˜S

ε, R, 1/2
h (f)

(t) dt

∼ 1

γ

∫
Ω

Φ (Nh(f)(x)) dx+ γ2
∫
Ω

Φ
(
S̃
ε, R, 1/2
h (f)(x)

)
dx,
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where

σ
˜S
ε, R, 1/20
h (f)

(t) :=
∣∣{x ∈ Ω : S̃

ε, R, 1/20
h (f)(x) > t

}∣∣.
Furthermore, by Lemma 3.12, (3.35) and S̃

ε, R, 1/2
h (f) ≤ S̃ ε,Rh (f), we conclude that

for all ε, R ∈ (0, dΩ) with ε < R and γ ∈ (0, 1],∫
Ω

Φ
(
S̃ ε, Rh (f)(x)

)
dx∼

∫
Ω

Φ
(
S̃
ε, R, 1/20
h (f)(x)

)
dx

� 1

γ

∫
Ω

Φ (Nh(f)(x)) dx+ γ2
∫
Ω

Φ
(
S̃ ε, Rh (f)(x)

)
dx,

which, together with the facts that for all λ ∈ (0,∞),

S̃ ε, Rh (f/λ) = S̃ ε, Rh (f)/λ and Nh(f/λ) = Nh(f)/λ,

implies that there exists a positive constant C2 such that

∫
Ω

Φ
( S̃ ε, Rh (f)(x)

λ

)
dx(3.36)

≤ C2

{ 1

γ

∫
Ω

Φ
(Nh(f)(x)

λ

)
dx+ γ2

∫
Ω

Φ
( S̃ ε, Rh (f)(x)

λ

)
dx

}
.

Take γ ∈ (0, 1] such that C2γ
2 = 1/2. Then by (3.36), we see that for all λ ∈ (0,∞),

∫
Ω

Φ
( S̃ ε, Rh (f)(x)

λ

)
dx �

∫
Ω

Φ
(Nh(f)(x)

λ

)
dx.

By the Fatou lemma, upon letting ε → 0 and R → dΩ, we find that for any
λ ∈ (0,∞), ∫

Ω

Φ
( S̃h(f)(x)

λ

)
dx �

∫
Ω

Φ
(Nh(f)(x)

λ

)
dx,

which implies that

‖S̃h(f)‖LΦ(Ω) � ‖Nh(f)‖LΦ(Ω).

This finishes the proof of Proposition 3.5. �

Proposition 3.13. Let Φ, Ω and L be as in Proposition 3.1. Then under DBC,
there exists a positive constant C such that for all f ∈ L2(Ω),

‖Sh(f)‖LΦ(Ω) ≤ C
∥∥S̃h(f)∥∥LΦ(Ω)

.

Proof. To show this proposition, we borrow some ideas from [22]. Fix ε, R ∈ (0, dΩ)
with ε < R and x ∈ Ω. Let f ∈ L2(Ω) and, for α ∈ (0,∞),

˜̃
Γ ε, Rα (x) := {(y, t) ∈ Rn × (ε, R) : |x− y| < αt}.
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Take η ∈ C∞
c (Rn × (0,∞)) such that η ≡ 1 on

˜̃
Γ ε,R1 (x), 0 ≤ η ≤ 1,

supp η ⊂ ˜̃
Γ
ε/2, R/2
3/2 (x)

and for all (y, t) ∈ ˜̃
Γ
ε/2, 2R
3/2 (x), |∇η(y, t)| � 1

t . By the choice of η, we see that

for all t ∈ (ε/2, 2R), ηt(·) := η(·, t) ∈ C∞(Ω).

In the rest part of this proof, we denote e−t
2L(f) by ut for all t ∈ (0, dΩ). Then

by (1.19) in page 23 of [42], we know that

for any given t ∈ (0, dΩ), ut ∈ D(L) ⊂W 1, 2
0 (Ω).

Moreover, by the fact that for all t ∈ (0, dΩ),

Lut = e−
t2

2 L
(
Le−

t2

2 L(f)
)
,

and (1.19) in page 23 of [42] again, we know that

Lut ∈ D(L) ⊂W 1, 2
0 (Ω),

which, together with ηt ∈ C∞(Ω), implies that

for all t ∈ (0, dΩ), (Lut)ηt ∈ W 1, 2
0 (Ω).

From this, (1.2), the facts that 0 ≤ η ≤ 1 and η ≡ 1 on
˜̃
Γ ε, R1 (x), and Hölder’s

inequality, we deduce that

S ε, Rh (f)(x) =
{∫

Γε, R
1 (x)

∣∣∣t2Le−t2L(f)(y)∣∣∣2 dy dt

t|Q(x, t) ∩ Ω|
}1/2

≤
{∫

Γ
ε/2, 2R

3/2
(x)

t2Le−t
2L(f)(y)t2Le−t2L(f)(y)η(y, t)

dy dt

t|Q(x, t) ∩ Ω|
}1/2

≤
{∫

Γ
ε/2, 2R

3/2
(x)

t
∣∣∣A(y)∇ut(y) · t∇(t2Lut)(y)

∣∣∣ η(y, t) dy dt

t|Q(x, t) ∩Ω|
}1/2

+
{∫

Γ
ε/2, 2R

3/2
(x)

t
∣∣∣A(y)∇ut(y) · ∇η(y, t)t3Lut(y)∣∣∣ dy dt

t|Q(x, t) ∩ Ω|
}1/2

�
{∫

Γ
ε/2, 2R

3/2
(x)

|t∇ut(y)|2 dy dt

t|Q(x, t) ∩Ω|
}1/4

(3.37)

×
{∫

Γ
ε/2, 2R

3/2
(x)

∣∣t∇(t2Lut)(y)
∣∣2 dy dt

t|Q(x, t) ∩ Ω|
}1/4

+
{∫

Γ
ε/2, 2R

3/2
(x)

|t∇ut(y)|2 dy dt

t|Q(x, t) ∩ Ω|
}1/4

×
{∫

Γ
ε/2, 2R

3/2
(x)

|t2Lut(y)|2 dy dt

t|Q(x, t) ∩ Ω|
}1/4

.
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For all (z, τ) ∈ Γ
ε/2, 2R
3/2 (x), let

E(z, τ) := B((z, τ), γτ) ∩ (Ω× (0, dΩ)),

where γ is a positive constant which is determined later. From the Besicov-
itch covering lemma, it follows that there exists a subcollection {E(zj ,τj)}j of
{E(z,τ)}(z,τ)∈Γ

ε/2, 2R

3/2
(x)

such that (3.12) holds in this case. For each j, we denote

E(zj ,τj) simply by Ej . Similar to the facts (i) and (ii) appearing in the proof of
Lemma 3.9, we have the following two facts for Ej :

(i) For each j, if (y, t) ∈ Ej , then t ∼ dj ∼ r(Ej), where dj and r(Ej) denote,
respectively, the distance from Ej to the bottom boundary Ω× {0} and the
radius of Ej .

(ii) For each j, let

Ẽj := B((zj , τj), 9γτj) ∩ (Ω× (0, dΩ)).

If γ ∈ (0, 1/54), then Ẽj ⊂ Γ
ε/4, 4R
2 (x).

For all t ∈ (0, dΩ), let vt := Le−tL(f). Then we see that

∂tvt + Lvt = 0.

Thus, from Remark 3.7 (in which, if τj ∈ (ε, dΩ1+γ ], we choose t0 = (1+γ)τj, r = γτj

and c = 4
γ , and if τj ∈ ( dΩ1+γ , dΩ), we choose t0 = dΩ, r = γτj and c =

4
γ(1+γ)2 ; and

in both cases, we need to choose γ ∈ (0, 1/54)), we deduce that for each j,∫
Ej

t|∇(Lut)(y)|2 dy dt � 1

[r(Ej)]2

∫
˜Ej

t|Lut(y)|2 dy dt.

By this, the above facts (i) and (ii), and (3.12), we conclude that∫
Γ
ε/2, 2R

3/2
(x)

∣∣t∇(t2Lut)(y)
∣∣2 dy dt

t|Q(x, t) ∩ Ω| ≤
∑
j

∫
Ej

∣∣t∇(t2Lut)(y)
∣∣2 dy dt

t|Q(x, t) ∩ Ω|

∼
∑
j

[r(Ej)]
4

|Q(x, r(Ej)) ∩ Ω|
∫
Ej

t |∇(Lut)(y)|2 dy dt

�
∑
j

[r(Ej)]
2

|Q(x, r(Ej)) ∩ Ω|
∫
˜Ej

t |Lut(y)|2 dy dt

∼
∑
j

1

[r(Ej)]2

∫
˜Ej

∣∣t3Lut(y)∣∣2 dy dt

t|Q(x, t) ∩ Ω|

�
∫
Γ
ε/4, 4R
2 (x)

∣∣t2Lut(y)∣∣2 dy dt

t|Q(x, t) ∩ Ω| ,

which, together with (3.37), implies that

S ε, Rh (f)(x) �
[
S̃
ε/2, 2R, 3/2
h (f)(x)

]1/2 [
S
ε/4, 4R, 2
h (f)(x)

]1/2
.
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By the Fatou lemma, upon letting ε→ 0 and R→ dΩ, we know that

Sh(f)(x) � [S̃
3/2
h (f)(x)]1/2 [S2

h(f)(x)]
1/2,

which, together with Cauchy’s inequality, implies that there exists a positive con-
stant C2 such that for all ε ∈ (0, 1),

(3.38) Sh(f)(x) ≤ C2

ε
S̃

3/2
h (f)(x) + ε S2

h(f)(x).

Similar to the proof of Lemma 3.12, we find that there exists a positive constant C3

such that for all g ∈ L2(Ω),∫
Ω

Φ
(
S2
h(g)(y)

)
dy ≤ C3

∫
Ω

Φ (Sh(g)(y)) dy.

From this, (3.38), the strictly lower type pΦ and the upper type 1 properties of Φ,
it follows that there exists a positive constant C such that for all x ∈ Ω,∫

Ω

Φ (Sh(f)(x)) dx≤
∫
Ω

Φ
(C2

ε
S̃

3/2
h (f)(x)

)
dx+

∫
Ω

Φ
(
S2
h(f)(x)

)
dx

≤ CC2

ε

∫
Ω

Φ
(
S̃

3/2
h (f)(x)

)
dx+ C3ε

pΦ

∫
Ω

Φ (Sh(f)(x)) dx.(3.39)

Take ε ∈ (0, 1) small enough such that C3 ε
pΦ ≤ 1/2. By this, (3.39) and

Lemma 3.12, we know that∫
Ω

Φ(Sh(f)(x)) dx �
∫
Ω

Φ
(
S̃h(f)(x)

)
dx,

which, together with the facts that for all λ ∈ (0,∞),

Sh(f/λ) = Sh(f)/λ and S̃h(f/λ) = S̃h(f)/λ,

implies that ∫
Ω

Φ
(Sh(f)(x)

λ

)
dx �

∫
Ω

Φ
( S̃h(f)(x)

λ

)
dx.

This completes the proof of Proposition 3.13. �

To complete the proof of Theorem 1.9, we need the following key proposition:

Proposition 3.14. Let Φ, Ω and L be as in Theorem 1.9. Assume that L satisfies
DBC and the semigroup generated by L has the Gaussian property (Gdiam(Ω)).

(i) If Ω is unbounded, then

(HΦ, Sh
(Ω) ∩ L2(Ω)) ⊂ (HΦ, r(Ω) ∩ L2(Ω))

and there is a positive constant C such that for all f ∈ HΦ, Sh
(Ω) ∩ L2(Ω),

‖f‖HΦ, r(Ω) ≤ C‖f‖HΦ, Sh
(Ω).
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(ii) If Ω is bounded, then

(HΦ, Sh dΩ(Ω) ∩ L2(Ω)) ⊂ (HΦ, r(Ω) ∩ L2(Ω))

and there is a positive constant C such that for all f ∈ HΦ, Sh, dΩ(Ω)∩L2(Ω),

‖f‖HΦ, r(Ω) ≤ C‖f‖HΦ, Sh, dΩ
(Ω).

Moreover, if, in addition, n ≥ 3 and (G∞) holds, then

(HΦ, ˜Sh, dΩ
(Ω) ∩ L2(Ω)) = (HΦ, ˜Sh

(Ω) ∩ L2(Ω))

= (HΦ, Sh, dΩ(Ω) ∩ L2(Ω)) = (HΦ, Sh
(Ω) ∩ L2(Ω))

with equivalent norms.

To show Proposition 3.14, we need the atomic decomposition of the tent space
on Ω. Now we recall some definitions and notions about the tent space, which was
initially introduced by Coifman, Meyer and Stein [13] on Rn, and then generalized
by Russ [45] to spaces of homogeneous type in the sense of Coifman and Weiss [14]
and [15]. Recall that it is well known that the strongly Lipschitz domain Ω is a
space of homogeneous type. For all measurable functions g on Ω × (0,∞) and
x ∈ Ω, define

A(g)(x) :=
{∫

˜Γ(x)

|g(x, t)|2 dy

|Q(x, t) ∩Ω|
dt

t

}1/2

,

where
Γ̃(x) := {(y, t) ∈ Ω× (0,∞) : |y − x| < t}.

In what follows, we denote by TΦ(Ω) the space of all measurable functions g on
Ω×(0,∞) such that A(g) ∈ LΦ(Ω) and for any g ∈ TΦ(Ω), define its quasi-norm by

‖g‖TΦ(Ω) := ‖A(g)‖LΦ(Ω) := inf
{
λ ∈ (0,∞) :

∫
Ω

Φ
(A(g)(x)

λ

)
dx ≤ 1

}
.

When Φ(t) := t for all t ∈ (0,∞), we denote TΦ(Ω) simply by T1(Ω).

A function a on Ω× (0,∞) is called a TΦ(Ω)-atom if

(i) there exists a cube
Q := Q(xQ, l(Q)) ⊂ Rn

with xQ ∈ Ω and l(Q) ∈ (0,∞) ∩ (0, dΩ] such that supp a ⊂ Q̂ ∩ Ω, where
here and in what follows,

Q̂ ∩ Ω :=
{
(y, t) ∈ Ω× (0,∞) : |y − xQ| < l(Q)

2 − t
}
;

(ii) ∫
Q̂∩Ω

|a(y, t)|2 dy dt
t

≤ |Q ∩ Ω|−1[ρ(|Q ∩Ω|)]−2.



Real-variable characterizations of Orlicz–Hardy spaces 269

Since Φ is of upper type 1, it is easy to see that there exists a positive constant C
such that for all TΦ(Ω)-atoms a, we have ‖a‖TΦ(Ω) ≤ C (see [28]). By a slight
modification of the proof of Theorem 3.1 in [28], we have the following atomic
decomposition for functions in TΦ(Ω). We omit the details.

Lemma 3.15. Let Ω be a strongly Lipschitz domain of Rn and let Φ satisfy
Assumption (A). Then, for any f ∈ TΦ(Ω), there exist a sequence {aj}j of TΦ(Ω)-
atoms and a sequence {λj}j of numbers such that

(3.40) f(x, t) =
∑
j

λjaj(x, t) for almost every (x, t) ∈ Ω× (0,∞).

Moreover, there exists a positive constant C such that for all f ∈ TΦ(Ω),

Λ({λjaj}j) := inf
{
λ ∈ (0,∞) :

∑
j

|Qj ∩ Ω|Φ
( |λj |‖aj‖T 2

2 (Ω×(0,∞))

λ|Qj ∩ Ω|1/2
)
≤ 1

}
≤ C‖f‖TΦ(Ω),(3.41)

where Qj ∩Ω appears in the support of aj and

‖aj‖T 2
2 (Ω×(0,∞)) :=

{∫
Q̂j∩Ω

|aj(y, t)|2 dy dt
t

}1/2

.

In [4] (see page 183), Auscher and Russ showed the following property of
strongly Lipschitz domains, which plays an important role in the proof of Propo-
sition 3.14:

Lemma 3.16. Let Ω be a strongly Lipschitz domain of Rn. Then there exists
ρ(Ω) ∈ (0,∞) such that for any cube Q satisfying l(Q) < ρ(Ω) and 2Q ⊂ Ω but

4Q∩∂Ω �= ∅, where ∂Ω denotes the boundary of Ω, there exists a cube Q̃ ⊂ Ωc such
that l(Q̃) = l(Q) and the distance from Q̃ to Q is comparable to l(Q). Furthermore,
ρ(Ω) = ∞ if Ωc is unbounded.

Now we show Proposition 3.14 by applying Lemmas 3.4, 3.15 and 3.16.

Proof of Proposition 3.14. We first prove (i) of Proposition 3.14 by borrowing some
ideas from the proof of Theorem C in page 594 of [15] (see also [23] and [31]).
Recall that in this case, since Ω is unbounded, we have diam(Ω) = ∞. Let f ∈
HΦ, Sh

(Ω) ∩ L2(Ω). Then by the H∞-functional calculus for L, we know that

f = 8

∫ ∞

0

(t2Le−t
2L)(t2Le−t

2L)(f)
dt

t
(3.42)

in L2(Ω) (see also the equation (9) in [25]). Since f ∈ HΦ, Sh
(Ω), we find that

Sh(f) ∈ LΦ(Ω), which implies that t2Le−t
2L(f) ∈ TΦ(Ω) and

‖f‖HΦ, Sh
(Ω) =

∥∥t2Le−t2L(f)∥∥
TΦ(Ω)

.
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Then from Lemma 3.15, we deduce that there exist {λj}j ⊂ C and a sequence {aj}j
of TΦ(Ω)-atoms such that for almost every (x, t) ∈ Ω× (0,∞),

t2Le−t
2L(f)(x) =

∑
j

λjaj(x, t).(3.43)

For each j, let

αj := 8

∫ ∞

0

t2Le−t
2L(aj)

dt

t
.

Then by (3.42) and (3.43), similar to the proof of Proposition 4.2 in [29], we see
that

(3.44) f =
∑
j

λjαj

in L2(Ω). For any TΦ(Ω)-atom a supported in Q̂ ∩ Ω, let

α := 8

∫ ∞

0

t2Le−t
2L(a)

dt

t
.(3.45)

To show Proposition 3.14, it suffices to show that there exist a function α̃ on Rn

such that

(3.46) α̃|Ω = α

and a sequence {bi}i of harmless constant multiples of (ρ, 2, 0)-atoms, with the
constant depending on i, such that α̃ =

∑
i bi in L

2(Rn) and

(3.47)
∑
i

|Qi|Φ
(‖bi‖L2(Rn)

|Qi|1/2
)
� |Q ∩ Ω| Φ

(‖a‖T 2
2 (Ω×(0,∞))

|Q ∩ Ω|1/2
)
,

where for each i, supp bi ⊂ Qi and Q ∩ Ω appears in the support of a. Indeed,
if (3.46) and (3.47) hold, then by (3.46), we know that for each j, there exists a
function α̃j on Rn such that α̃j |Ω = αj . Let

f̃ :=
∑
j

λj α̃j .

Then f̃ |Ω = f . Furthermore, from (3.47), we deduce that there exists a se-
quence {bj, i}j, i of harmless constant multiples of (ρ, 2, 0)-atoms, with the constant
depending on j and i, such that

f̃ =
∑
j

∑
i

λjbj, i

and

∑
j, i

|Qj, i|Φ
( |λj |‖bj, i‖L2(Rn)

|Qj, i|1/2
)
�

∑
j

|Qj ∩ Ω|Φ
( |λj |‖aj‖T 2

2 (Ω×(0,∞))

|Qj ∩ Ω|1/2
)
,
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where for each j and i, supp bj, i ⊂ Qj, i and Qj ∩Ω appears in the support of aj ,
which, together with the facts that for all λ ∈ (0,∞),

‖bi, j/λ‖L2(Rn) = ‖bi, j‖L2(Rn)/λ and ‖aj/λ‖T 2
2 (Ω×(0,∞)) = ‖aj‖T 2

2 (Ω×(0,∞))/λ,

implies that for all λ ∈ (0,∞),

∑
j, i

|Qj, i|Φ
( |λj |‖bj, i‖L2(Rn)

λ|Qj, i|1/2
)
�

∑
j

|Qj ∩ Ω|Φ
( |λj |‖aj‖T 2

2 (Ω×(0,∞))

λ|Qj ∩ Ω|
)
.

From this and Lemmas 3.4 and 3.15, it follows that f̃ ∈ HΦ(R
n) and

(3.48)
∥∥f̃∥∥

HΦ(Rn)
∼ ∥∥f̃∥∥

Hρ, 2, 0(Rn)
�

∥∥f∥∥
HΦ, Sh

(Ω)
.

Thus, f ∈ HΦ, r(Ω) and

‖f‖HΦ, r(Ω) � ‖f‖HΦ, Sh
(Ω),

which, together with the arbitrariness of f ∈ HΦ, Sh
(Ω)∩L2(Ω), implies the desired

conclusion, Proposition 3.14 (i).
Let Q := Q(x0, r0). Now we show (3.46) and (3.47) by considering the following

two cases for Q appearing in the support of a:

Case 1) 8Q ∩ Ωc �= ∅. In this case, let

Rk(Q) := (2k+1Q \ 2kQ) ∩ Ω

if k ≥ 3 and R0(Q) := 8Q ∩ Ω. Let

JΩ := {k ∈ N : k ≥ 3, |Rk(Q)| > 0} .
For k ∈ JΩ ∪ {0}, let

χk := χRk(Q), χ̃k := |Rk(Q)|−1χk and mk :=

∫
Rk(Q)

α(x) dx.

Then we have

(3.49) α = αχ0 +
∑
k∈JΩ

αχk

almost everywhere and also in L2(Ω). Take the cube Q̃ ⊂ Rn such that the

center x
˜Q of Q̃ satisfies that

x
˜Q ∈ Ωc, l(Q̃) = l(Q) and dist (Q, Q̃) ∼ l(Q).

Then there exists a cube Q∗
0 such that (Q ∪ Q̃) ⊂ Q∗

0 and

(3.50) l(Q∗
0) ∼ l(Q).
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Let

b0 := αχ0 − 1

|Q̃ ∩ Ωc|
{∫

R0(Q)

α(x) dx
}
χ

˜Q∩Ωc .

Then ∫
Rn

b0(x) dx = 0 and supp b0 ⊂ Q∗
0.

Similar to the proof of (3.36) in [54], we have

(3.51) ‖α‖L2(Ω) � ‖a‖T 2
2 (Ω×(0,∞)).

By the facts that Ωc is an unbounded strongly Lipschitz domain and Lemma 3.8,
we know that |Q̃∩Ωc| ∼ |Q̃|. From this, Hölder’s inequality, (3.50) and (3.51), we
deduce that

‖b0‖L2(Rn) ≤ ‖α‖L2(Ω) +
1

|Q̃ ∩ Ωc|1/2
{∫

R0(Ω)

|α(x)|2 dx
}1/2

|Q ∩ Ω|1/2

� ‖α‖L2(Ω) + ‖α‖L2(Ω)
|Q|1/2
|Q̃|1/2 � ‖a‖T 2

2 (Ω×(0,∞))

� 1

|Q ∩Ω|1/2ρ(|Q ∩ Ω|) ∼ 1

|Q|1/2ρ(|Q|) ∼ 1

|Q∗
0|1/2ρ(|Q∗

0|)
.

Thus, we know that b0 is a harmless constant multiple of a (ρ, 2, 0)-atom and, by
the upper 1 property of Φ,

|Q∗
0|Φ

(‖b0‖L2(Rn)

|Q∗
0|1/2

)
� |Q|Φ

(‖a‖T 2
2 (Ω×(0,∞))

|Q|1/2
)

(3.52)

� |Q ∩ Ω|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q ∩Ω|1/2
)
.

To finish the proof in this case, we need the following Fact 1, whose proof is
similar to the usual Whitney decomposition of an open set in Rn (see, for exam-
ple, [47]). We omit the details.

Fact 1. For all k ∈ JΩ, there exists the Whitney decomposition {Qk, i}i of Rk(Q)
about ∂Ω, where {Qk, i}i are dyadic cubes of Rn with disjoint interiors, and for
each i, 2Qk, i ⊂ Ω but 4Qk, i ∩ ∂Ω �= ∅.

Notice that Fact 1 was also used in pages 304–305 of [10] and in page 167 of [4].
Let {Qk, i}k∈JΩ, i be as in Fact 1. Then for each k ∈ JΩ,

αχRk(Q) =
∑
i

αχQk, i

almost everywhere. In what follows, for all t ∈ (0,∞), let

Dt := s∂sKs|s=t2 .
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Then for all x ∈ Rk(Q), by (3.45), Lemmas 2.3 and 3.8, and Hölder’s inequality,
we see that

|α(x)| �
∫ r0

0

∫
Q∩Ω

|Dt(x, y)||a(y, t)| dy dt
t

�
∫ r0

0

∫
Q∩Ω

e−α
|x−y|2

t2

tn
|a(y, t)|dy dt

t
(3.53)

� ‖a‖T 2
2 (Ω×(0,∞))

{∫ r0

0

∫
Q∩Ω

t2

|x− y|2(n+1)

dy dt

t

}1/2

� |x− x0|−(n+1)r0|Q ∩ Ω|1/2‖a‖T 2
2 (Ω×(0,∞))

� 2−k(n+1)|Q ∩ Ω|−1/2‖a‖T 2
2 (Ω×(0,∞)).

Moreover, by Lemma 3.16, we know that for each k and i, there exists a cube
Q̃k, i ⊂ Ωc such that

l(Q̃k, i) = l(Qk, i) and dist (Q̃k, i, Qk, i) ∼ l(Qk, i).

Then for each k and i, there exists a cube Q∗
k, i such that

(Qk, i ∪ Q̃k, i) ⊂ Q∗
k, i and l(Q∗

k, i) ∼ l(Qk, i).

For each k and i, let

bk, i := αχQk, i
− 1

|Q̃k, i|
{∫

Qk, i

α(x) dx
}
χ

˜Qk, i
.

Then ∫
Rn

bk, i(x) dx = 0 and supp bk, i ⊂ Q∗
k, i.

Furthermore, by (3.53) and Hölder’s inequality, we conclude that

‖bk, i‖L2(Rn) � ‖α‖L2(Qk, i)(3.54)

� 2−k(n+1)|Q ∩ Ω|−1/2|Q∗
k, i|1/2‖a‖T 2

2 (Ω×(0,∞)).

Thus, for each k and i, bk, i is a constant multiple of some (ρ, 2, 0)-atom with a
constant depending on k and i. Let

α̃ := b0 +
∑
k∈JΩ

∑
i

bk, i.

Then, by the constructions of b0 and {bk, i}k∈JΩ, i, we know that α̃|Ω = α. More-
over, we claim that

∑
k∈JΩ

∑
i bk, i converges in L

2(Rn). Indeed, let M denote the
usual Hardy–Littlewood maximal operator. Then by (3.53), the boundedness of
the vector-valued Hardy–Littlewood maximal operator established by Fefferman
and Stein in Theorem 1(1) of [19], and the disjoint property of {Qk, i}i, we find
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that, for each k ∈ JΩ,∫
Rn

[ ∑
i

bk, i(x)
]2
dx

≤
∫
Rn

[∑
i

2−k(n+1)|Q ∩ Ω|−1/2‖a‖T 2
2 (Ω×(0,∞))χQ∗

k, i
(x)

]2
dx

� 2−2k(n+1)|Q ∩ Ω|−1‖a‖2T 2
2 (Ω×(0,∞))

∫
Rn

{∑
i

[
M(χQk, i

)(x)
]2 }2

dx

� 2−2k(n+1)|Q ∩ Ω|−1‖a‖2T 2
2 (Ω×(0,∞))

∫
Rn

{∑
i

[
χQk, i

(x)
]2 }2

dx

∼ 2−2k(n+1)|Q ∩ Ω|−1‖a‖2T 2
2 (Ω×(0,∞))|Rk(Q)| � 2−k(n+2)‖a‖2T 2

2 (Ω×(0,∞)),

which, together with Minkowski’s inequality, implies that∥∥∥ ∑
k∈JΩ

∑
i

bk, i

∥∥∥
L2(Rn)

≤
∑
k∈JΩ

∥∥∥∑
i

bk, i

∥∥∥
L2(Rn)

�
∑
k∈JΩ

2−k(n/2+1)‖a‖T 2
2 (Ω×(0,∞))

� ‖a‖T 2
2 (Ω×(0,∞)).(3.55)

Thus, the claim holds and hence

α̃ = b0 +
∑
k∈JΩ

∑
i

bk, i

in L2(Rn). Furthermore, by (3.52), (3.54), the lower type pΦ property and pΦ ∈
(n/(n+ 1), 1], we see that

|Q∗
0|Φ

(‖b0‖L2(Rn)

|Q∗
0|1/2

)
+

∑
k∈JΩ

∑
i

|Q∗
k, i|Φ

(‖bk, i‖L2(Rn)

|Q∗
k, i|1/2

)
(3.56)

� |Q ∩ Ω|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q ∩ Ω|1/2
)

+
∑
k∈JΩ

∑
i

|Q∗
k, i|Φ

(2−k(n+1)|Q ∩ Ω|−1/2|Q∗
k, i|1/2‖a‖T 2

2 (Ω×(0,∞))

|Q∗
k, i|1/2

)

� |Q ∩ Ω|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q ∩ Ω|1/2
)

+

∞∑
k=3

|(2(k+1)nQ) ∩ Ω|Φ
(2−k(n+1)‖a‖T 2

2 (Ω×(0,∞))

|Q ∩ Ω|1/2
)

� |Q ∩ Ω|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q ∩ Ω|1/2
){

1 +

∞∑
k=3

2−[k(n+1)pΦ−kn]
}

� |Q ∩ Ω|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q ∩ Ω|1/2
)
,

which implies that α̃ ∈ HΦ(R
n) and (3.47) in Case 1).



Real-variable characterizations of Orlicz–Hardy spaces 275

Case 2) 8Q ⊂ Ω. In this case, let k0 ∈ N be such that 2k0Q ⊂ Ω but (2k0+1Q) ∩
∂Ω �= ∅. Then k0 ≥ 3. Let

Rk(Q) := (2k+1Q \ 2kQ) ∩ Ω for k ∈ N,

and R0(Q) := 2Q. Let

JΩ, k0 := {k ∈ N : k ≥ k0 + 1, |Rk(Q)| > 0}.
For k ∈ Z+, let

χk := χRk(Q), χ̃k := |Rk(Q)|−1χk, mk :=

∫
Rk(Q)

α(x) dx,

Mk := αχk −mkχ̃k and M̃k := αχk. Then

α =

k0∑
k=0

Mk +
∑

k∈JΩ, k0

M̃k +

k0∑
k=0

mkχ̃k.

For k ∈ {0, . . . , k0}, by the definition of Mk, we know that∫
Rn

Mk(x) dx = 0 and suppMk ⊂ 2k+1Q.

Moreover, if k = 0, by Hölder’s inequality and (3.51), we have

(3.57) ‖M0‖L2(Rn) � ‖a‖T 2
2 (Ω×(0,∞)) � |Q|−1/2[ρ(Q)]−1 � |2Q|−1/2[ρ(2Q)]−1,

and, if k ∈ {1, . . . , k0}, similar to the proof of (3.54), we have

(3.58) ‖Mk‖L2(Rn) � ‖α‖L2(Rk(Q)) � 2−k(n/2+1)‖a‖T 2
2 (Ω×(0,∞)).

Thus, for each i ∈ {0, . . . , k0}, Mk is a constant multiple of a (ρ, 2, 0)-atom with
a constant depending on k. Furthermore, from (3.57), we deduce that

(3.59) |2Q|Φ
(‖M0‖L2(Rn)

|2Q|1/2
)
� |Q|Φ

(‖a‖T 2
2 (Ω×(0,∞))

|Q|1/2
)
.

By (3.58), the lower type pΦ property and pΦ ∈ (n/(n+ 1), 1], we then obtain

k0∑
k=1

|2k+1Q|Φ
(‖Mk‖L2(Rn)

|2k+1Q|1/2
)
�

k0∑
k=1

|2kQ|Φ
(‖a‖T 2

2 (Ω×(0,∞))

2−k(n+1)|Q|1/2
)

(3.60)

� |Q|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q|1/2
)
.

For each k ∈ JΩ, k0 , by Fact 1, there exists the Whitney decomposition {Qk, i}i of
Rk(Q) about ∂Ω such that ∪iQk, i = Rk(Q) and for each i, Qk, i satisfies that

2Qk, i ⊂ Ω and 4Qk, i ∩ ∂Ω �= ∅.
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Then M̃k =
∑

i αχQk, i
almost everywhere. Moreover, by Lemma 3.16, for each k

and i, there exists a cube Q̃k, i ⊂ Ωc such that

l(Q̃k, i) = l(Qk, i) and dist (Q̃k, i, Qk, i) ∼ l(Qk, i).

Then for each k and i, there exists a cube Q∗
k, i such that

(Qk, i ∪ Q̃k, i) ⊂ Q∗
k, i and l(Q∗

k, i) ∼ l(Qk, i).

For each k and i, let

bk, i := αχQk, i
− 1

|Q̃k, i|
{∫

Qk, i

α(x) dx
}
χ

˜Qk, i
.

Then ∫
Rn

bk, i(x) dx = 0 and supp bk, i ⊂ Q∗
k, i.

Furthermore, similar to the proofs of (3.56) and (3.55), we see that for each
k ∈ JΩ, k0 and i, bk, i is a constant multiple of a (ρ, 2, 0)-atom with a constant
depending on k and i, and

(3.61)
∑

k∈JΩ, k0

∑
i

|Q∗
k, i|Φ

(‖bk, i‖L2(Rn)

|Q∗
k, i|1/2

)
� |Q|Φ

(‖a‖T 2
2 (Ω×(0,∞))

|Q|1/2
)
.

For j ∈ {0, . . . , k0}, let Nj :=
∑k0

k=jmk. It is easy to see that

k0∑
k=0

mkχ̃k =

k0∑
k=1

(χ̃k − χ̃k−1)Nk +N0χ̃0.(3.62)

For any k ∈ {1, . . . , k0}, by (3.53) and |χ̃k − χ̃k−1| � |2kQ|−1, we know that

‖(χ̃k − χ̃k−1)Nk‖L2(Rn) � |2kQ|−1/2|Nk|(3.63)

� |2kQ|−1/2
( ∞∑
j=k

2−j
)
|Q|1/2‖a‖T 2

2 (Ω×(0,∞))

� 2−k(n/2+1)‖a‖T 2
2 (Ω×(0,∞)).

This, together with∫
Rn

[χ̃k(x) − χ̃k−1(x)] dx = 0 and supp (χ̃k − χ̃k−1) ⊂ 2kQ,

yields that for each k ∈ {1, . . . , k0}, (χ̃k − χ̃k−1)Nk is a constant multiple of a
(ρ, 2, 0)-atom with a constant depending on k. Furthermore, by (3.63), the lower
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type pΦ property of Φ and pΦ ∈ (n/(n+ 1), 1], we have

k0∑
k=1

|2kQ|Φ
(‖(χ̃k − χ̃k−1)Nk‖L2(Rn)

|2kQ|1/2
)

(3.64)

�
k0∑
k=1

|2kQ|Φ
(‖a‖T 2

2 (Ω×(0,∞))

2−k(n+1)|Q|1/2
)
� |Q|Φ

(‖a‖T 2
2 (Ω×(0,∞))

|Q|1/2
)
.

Finally we deal with N0χ̃0. By

2k0−1r0 < dist (x0, ∂Ω) ≤ 2k0r0,

we know that there exist a positive integer M and a sequence {Q0, i}Mi=1 of cubes
such that

(i) M ∼ 2k0 ;

(ii) for all i ∈ {1, . . . , M}, l(Q0, i) = 2r0 and Q0, i ⊂ Ω;

(iii) for all i ∈ {1, . . . , M − 1}, Q0, i ∩Q0, i+1 �= ∅ and

dist (Q0, i, ∂Ω) ≥ dist (Q0, i+1, ∂Ω);

(iv) 2Q0,M ∩ ∂Ω �= ∅.
Then by Lemma 3.16, there exists a cube Q0,M+1 ⊂ Ωc such that

l(Q0,M+1) = r0 and dist (Q0,M , Q0,M+1) ∼ r0.

Let

b0, 1 := N0χ̃0 − N0

|Q0, 1|χQ0, 1 and b0, i :=
N0

|Q0, i−1|χQ0, i−1 −
N0

|Q0, i|χQ0, i

with i ∈ {2, . . . , M + 1}. Obviously, for all i ∈ {1, . . . , M + 1}, by the definition
of b0, i, we see that ∫

Rn

b0, i(x) dx = 0

and there exists a cube Q∗
0, i ⊂ Rn such that supp b0, i ⊂ Q∗

0, i and

l(Q∗
0, i) ∼ l(Q).(3.65)

To finish the proof of Proposition 3.14 (i) in this case, we need another fact as
follows.

Fact 2. Let L be as in (1.3) and satisfy DBC. Let Ω, Q and k0 be as above.
Assume that (G∞) holds. For all x ∈ Ω, let

δ(x) := dist (x, ∂Ω).

Then there exist positive constants C and β, independent of k0 and Q, such that
for all x ∈ Q, ∣∣∣ ∫

2k0Q

∂tKt(y, x) dy
∣∣∣ ≤ C

t
e−

β[δ(x)]2

t .
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Now we continue the proof of Proposition 3.14 (i) by using Fact 2. By Fact 2,
equation (3.45) and Hölder’s inequality, we conclude that

|N0| =
∣∣∣ ∫

2k0Q

α(x) dx
∣∣∣ = 8

∣∣∣ ∫
2k0Q

{∫ ∞

0

∫
Ω

Dt(x, y)a(y, t)
dy dt

t

}
dx

∣∣∣(3.66)

≤ 8

∫ ∞

0

∫
Ω

∣∣∣ ∫
2k0Q

Dt(x, y) dx
∣∣∣ |a(y, t)|dy dt

t

� ‖a‖T 2
2 (Ω×(0,∞))

{∫ r0

0

∫
Q

e−
2β[δ(y)]2

t2
dy dt

t

}1/2

� ‖a‖T 2
2 (Ω×(0,∞))

{∫ r0

0

∫
Q

( t

2k0r0

)2(n+1)/n dy dt

t

}1/2

� 2−k0(n+1)/n|Q|1/2‖a‖T 2
2 (Ω×(0,∞)).

For each i ∈ {1, . . . , M+1}, from the definition of b0, i, (3.65) and (3.66), it follows
that

‖b0, i‖L2(Rn) � |N0||Q|−1/2 � 2−k0(n+1)/n‖a‖T 2
2 (Ω×(0,∞))(3.67)

� 2−k0(n+1)/n|Q|−1/2[ρ(|Q|)]−1

∼ 2−k0(n+1)/n|Q0, i|−1/2[ρ(|Q0, i|)]−1,

which, together with the facts that∫
Rn

b0, i(x) dx = 0 and supp b0, i ⊂ Q∗
0, i,

implies that b0, i is a constant multiple of a (ρ, 2, 0)-atom with a constant depend-
ing on i. Furthermore, by (3.67), the fact that M ∼ 2k0 and (3.65), we have

M+1∑
i=1

|Q∗
0, i|Φ

(‖b0, i‖L2(Rn)

|Q0, i|1/2
)
�

M+1∑
i=1

|Q|Φ
( ‖a‖T 2

2 (Ω×(0,∞))

2k0(n+1)/n|Q|1/2
)

(3.68)

�M2−
k0(n+1)pΦ

n |Q|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q|1/2
)

� 2k0[1−(n+1)pΦ/n]|Q|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q|1/2
)

� |Q|Φ
(‖a‖T 2

2 (Ω×(0,∞))

|Q|1/2
)
.

Let

α̃ :=

k0∑
i=1

Mk +
∑

k∈JΩ, k0

∑
i

bk, i +

k0∑
k=1

(χ̃k − χ̃k−1)Nk +

M+1∑
i=1

b0, i.

Similar to the proof of (3.55), we know that the above equality holds in L2(Rn).
It is easy to see that α̃|Ω = α. Furthermore, from (3.59), (3.60), (3.61), (3.63)
and (3.70), it follows that α̃ ∈ HΦ(R

n) and (3.47) holds.
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To finish the proof of Proposition 3.14 (i), we need to show Fact 2.

Fix x ∈ Q. Choose ψ1 ∈ C∞
c (Ω) such that 0 ≤ ψ1 ≤ 1, ψ1 ≡ 1 on Q(x, δ(x)8 ),

suppψ1 ⊂ Q
(
x,
δ(x)

4

)
, and |∇ψ1(z)| � 1

δ(x)
for all z ∈ Ω.

Then we see that∣∣∣ ∫
2k0Q

∂tKt(y, x) dy
∣∣∣(3.69)

≤
∣∣∣ ∫

2k0Q

∂tKt(y, x)ψ1(y) dy
∣∣∣+ ∣∣∣ ∫

2k0Q

∂tKt(y, x) [1− ψ1(y)] dy
∣∣∣

≤
∣∣∣ ∫

2k0Q

∂tKt(y, x)ψ1(y) dy
∣∣∣+ ∫

2k0Q\Q(x,δ(x)/8)

|∂tK(y, x)| dy
=: I1 + I2.

We first estimate I1. It was proved by Auscher and Russ in Proposition A.4 of [4]
that for all y ∈ Ω, t ∈ (0,∞) and all r ∈ (0,∞),

{∫
{z∈Ω: r≤|y−z|≤2r}

|∇zKt(z, y)|2 dz
}1/2

� t−
1
2−n

4

( r√
t

)n−2
2

e−γ
r2

t ,(3.70)

where γ is a positive constant independent of y, t and r. Notice that

∂tKt(·, x) + LKt(·, x) = 0

and Q(x, δ(x)4 ) ⊂ 2k0Q. From this, the facts that ψ1 ≡ 1 on Q(x, δ(x)8 ),

suppψ1 ⊂ Q
(
x,
δ(x)

4

)
, |∇ψ1(y)| � 1

δ(x)
for all y ∈ Ω,

Hölder’s inequality and (3.70), it follows that

I1 =
∣∣∣ ∫

Ω

LyKt(y, x)ψ1(y) dy
∣∣∣ = ∣∣∣ ∫

Ω

A(y)∇yKt(y, x) · ∇yψ1(y) dy
∣∣∣(3.71)

�
∫
{y∈Ω: δ(x)

8 ≤|x−y|≤ δ(x)
4 }

|∇yKt(y, x)||∇yψ1(y)| dy

�
{∫

{y∈Ω:
δ(x)
8 ≤|x−y|≤ δ(x)

4 }
|∇yKt(y, x)|2 dy

}1/2

×
{∫

{y∈Ω: δ(x)
8 ≤|x−y|≤ δ(x)

4 }
|∇yψ1(y)|2 dy

}1/2

� t−
1
2−n

4

[δ(x)√
t

]n−2
2

e−
γ[δ(x)]2

16t [δ(x)]
n−2

2

∼ 1

t

[δ(x)√
t

]n−2

e−
γ[δ(x)]2

16t � 1

t
e−

γ[δ(x)]2

32t .
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For I2, by Lemma 2.3, we conclude that

I2 �
∫
Ω\Q(x,δ(x)/8)

1

tn/2+1
e−

α|x−y|2
t dy � 1

t
e−

α[δ(x)]2

29t

∫
Rn

e−
α|y|2

t

tn/2
dy � 1

t
e−

α[δ(x)]2

29t .

From this, (3.69) and (3.71), it follows that Fact 2 holds, which completes the
proof of Proposition 3.14 (i).

Now we prove (ii) of Proposition 3.14. To this end, let f ∈ HΦ, Sh, dΩ(Ω)∩L2(Ω).
Recall that dΩ := 2diam(Ω). We write (dΩ)

2 simply as d2Ω. It is easy to see that
for all z ∈ C satisfying z �= 0 and | arg z| ∈ (0, π/2),

8

∫ dΩ

0

(t2ze−t
2z)(t2ze−t

2z)
dt

t
+ (2d2Ωz + 1)e−2d2Ωz = 1;

this, together with the H∞-functional calculus for L, implies that for all f ∈ L2(Ω),

f = 8

∫ dΩ

0

(t2Le−t
2L)(t2Le−t

2L)(f)
dt

t
+
[
2d2ΩLe

−2d2ΩL(f) + e−2d2ΩL(f)
]

(3.72)

=: f1 + f2.

We first deal with f1. By the fact that f ∈ HΦ,Nh
(Ω)∩L2(Ω), and Propositions 3.5

and 3.13, we know that Sh(f) ∈ LΦ(Ω). From this and the definition of the space
TΦ(Ω), it follows that

t2Le−t
2L(f)χΩ×(0,dΩ) ∈ TΦ(Ω)

and
‖f‖HΦ, Sh

(Ω) =
∥∥t2Le−t2L(f)χΩ×(0,dΩ)

∥∥
TΦ(Ω)

.

Then by Lemma 3.15, there exist {λj}j ⊂ C and a sequence {aj}j of TΦ(Ω)-atoms
such that for almost every (x, t) ∈ Ω× (0,∞),

t2Le−t
2L(f)(x)χΩ×(0,dΩ)(x, t) =

∑
j

λjaj(x, t).(3.73)

For each j, let

αj := 8

∫ ∞

0

t2Le−t
2L(aj)

dt

t
.

Then by the fact that

f1 = 8

∫ ∞

0

(
t2Le−t

2L
) (
t2Le−t

2L(f)χΩ×(0,dΩ)

) dt
t

and (3.73), similar to the proof of Proposition 4.2 in [29], we know that f1 =∑
j λjαj in L2(Ω). Also, similar to the proof of (3.48), there exists f̃1 ∈ HΦ(R

n)
such that

f̃1|Ω = f1 and ‖f̃1‖HΦ(Rn) � ‖f‖HΦ, Sh
(Ω),
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which implies that f1 ∈ HΦ, r(Ω) and

‖f1‖HΦ, r(Ω) � ‖f‖HΦ, Sh
(Ω).(3.74)

Now we deal with f2. Since Ω is bounded, there exists a closed cube Q̃0 ⊂ Rn

such that x
˜Q0

∈ Ω, l(Q̃0) ∼ dΩ and Ω ⊂ Q̃0. Take cubes Q̃1, Q̃2 such that

Q̃1 ⊂ Ωc, l(Q̃1) ∼ dΩ, (Q̃0 ∪ Q̃1) ⊂ Q̃2 and l(Q̃2) ∼ dΩ.

Let

f̃2 := f2χ ˜Q0
− 1

|Q̃1|
[ ∫

Ω

f2(y) dy
]
χ

˜Q1
.

Then f̃2|Ω = f2. It is easy to see that supp f̃2 ⊂ Q̃2,∫
Rn

f̃2(y) dy = 0 and ‖f̃2‖L2(Rn) � ‖f2‖L2(Ω).

Thus, we see that f̃2 is a harmless constant multiple of some (ρ, 2, 0)-atom. Denote

by K̃ the kernel of 2d2ΩLe
−d2ΩL + e−d

2
ΩL. Then by Lemma 2.3, we know that for

all x, y ∈ Ω,

|K̃(x, y)| � 1

dnΩ
e
−α|x−y|2

d2
Ω ,

where α is as in (2.1), which, together with the fact that Ω is bounded, implies
that

sup
z∈Ω

|f2(z)|= sup
z∈Ω

∣∣∣ ∫
Ω

K̃(z, y)e−d
2
ΩL(f)(y) dy

∣∣∣ � ‖e−d2ΩL(f)‖L1(Ω).

From this, the upper type 1 property of Φ, and the facts that Ω ⊂ Q̃2 and l(Q̃2) ∼
dΩ, we deduce that for all λ ∈ (0,∞),

|Q̃2|Φ
(‖f̃2‖L2(Rn)

λ|Q̃2|1/2
)
� |Q̃2|Φ

(‖f2‖L2(Ω)

λ|Q̃2|1/2
)
� |Q̃2|Φ

(supz∈Ω |f2(z)|
λ

)

� |Q̃2|Φ
(‖e−d2ΩL(f)‖L1(Ω)

λ

)
∼ Φ

(‖e−d2ΩL(f)‖L1(Ω)

λ

)
.

By this, Lemma 3.4 and the definition of HΦ, r(Ω), we know that f2 ∈ HΦ, r(Ω)
and

(3.75) ‖f2‖HΦ, r(Ω) ≤ ‖f̃2‖HΦ(Rn) � inf
{
λ ∈ (0,∞) : Φ

(‖e−d2ΩL(f)‖L1(Ω)

λ

)
≤ 1

}
.

Thus, from (3.72), (3.74) and (3.75), it follows that f ∈ HΦ, r(Ω) and

‖f‖HΦ, r(Ω) � ‖f‖HΦ, Sh, dΩ
(Ω),

which, together with the arbitrariness of f ∈ HΦ, Sh, dΩ(Ω) ∩ L2(Ω), implies that
the first part of Proposition 3.14 (ii) holds.
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We now show the second part of Proposition 3.13 (ii). We first prove that

(HΦ, Sh, dΩ(Ω) ∩ L2(Ω)) = (HΦ, Sh
(Ω) ∩ L2(Ω))(3.76)

with equivalent norms. Obviously, we have

(HΦ, Sh, dΩ(Ω) ∩ L2(Ω)) ⊂ (HΦ, Sh
(Ω) ∩ L2(Ω))

by their definitions.
To show the converse, let f ∈ HΦ, Sh

(Ω)∩L2(Ω). By Lemma 3.6, the contraction
property of {e−tL}t≥0 on L

2(Ω) and Hölder’s inequality, we know that for all x ∈ Ω,

[Sh(f)(x)]
2 �

∫ dΩ

dΩ/2

∫
Ω

∣∣∣t2Le−t2L(f)(y)∣∣∣2 dy dt
tn+1

� d−nΩ ‖Le−d2ΩL(f)‖2L2(Ω),

which implies that

(3.77) inf
x∈Ω

Sh(f)(x) � d
−n/2
Ω ‖Le−d2ΩL(f)‖L2(Ω).

To continue the proof, we need the following fact, whose proof is similar to the
proof of Proposition 5.3 in [1]. We omit the details.

Fact 3. Let 1 < p < q < ∞ and α := 1
2 (
n
p − n

q ). Assume that (G∞) holds.

Then L−α is bounded from Lp(Ω) to Lq(Ω).

By n ≥ 3, we know that there exist p0 ∈ (1, 2] and q0 ∈ (1,∞) such that
1/p0 = 2/n+1/q0. Then (n/p0−n/q0)/2 = 1. By this, Fact 3, (3.77) and Hölder’s
inequality, we see that∥∥e−d2ΩL(f)∥∥

L1(Ω)

∥∥e−d2ΩL(f)∥∥
Lq0(Ω)

∼ ∥∥L−1Le−d
2
ΩL(f)

∥∥
Lq0(Ω)

�
∥∥Le−d2ΩL(f)∥∥

Lp0(Ω)
� d

n/p0
Ω inf

x∈Ω
Sh(f)(x),

which, together with the upper type 1 property of Φ, (3.77) and (3.65), implies
that for all λ ∈ (0,∞),

Φ
(‖e−d2ΩL(f)‖L1(Ω)

λ

)
� Φ

( infx∈Ω Sh(f)(x)

λ

)
�

∫
Ω

Φ
(Sh(f)(x)

λ

)
dx.

From this, it follows that f ∈ HΦ, Sh, dΩ(Ω) and

‖f‖HΦ, Sh, dΩ
(Ω) � ‖f‖HΦ, Sh

(Ω),

which, together with the arbitrariness of f ∈ HΦ, Sh
(Ω) ∩ L2(Ω), implies that

(HΦ, Sh
(Ω) ∩ L2(Ω)) ⊂ (HΦ, Sh, dΩ(Ω) ∩ L2(Ω)).

Thus, (3.76) holds.
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By Propositions 3.1, 3.5, 3.13 and 3.14, we have

(3.78) (HΦ,Nh
(Ω) ∩ L2(Ω)) = (HΦ, Sh, dΩ(Ω) ∩ L2(Ω))

with equivalent norms. To finish the proof of the second part of Proposition 3.14 (ii),
let f ∈ HΦ,Nh

(Ω) ∩ L2(Ω). By

e−d
2
ΩL(f) = e−

d2Ω
2 L

(
e−

d2Ω
2 L(f)

)
,

estimate (2.1) and the fact that |Ω| <∞, we know that for all x ∈ Ω,

∥∥e−d2ΩL(f)∥∥
L1(Ω)

�
∫
Ω

sup
y∈Ω

∣∣e− d2Ω
2 L(f)(y)

∣∣ dz
� dnΩ sup

y∈Ω, t∈(0,dΩ), |x−y|<t

∣∣e−t2L(f)(y)∣∣ ∼ Nh(f)(x).

From this, it follows that

‖e−d2ΩL(f)‖L1(Ω) � inf
x∈Ω

Nh(f)(x),

which implies that for all λ ∈ (0,∞),

Φ
(‖e−d2ΩL(f)‖L1(Ω)

λ

)
� Φ

( infx∈ΩNh(f)(x)

λ

)
(3.79)

� 1

|Ω|
∫
Ω

Φ
(Nh(f)(x)

λ

)
dx ∼

∫
Ω

Φ
(Nh(f)(x)

λ

)
dx.

By Proposition 3.1 and (3.79), we conclude that

(HΦ,Nh
(Ω) ∩ L2(Ω)) = (HΦ, ˜Sh, dΩ

(Ω) ∩ L2(Ω)),

which, together with Proposition 3.13, (3.76), (3.78) and the obvious fact that

(HΦ, ˜Sh, dΩ
(Ω) ∩ L2(Ω)) ⊂ (HΦ, ˜Sh

(Ω) ∩ L2(Ω)),

implies that

(HΦ, ˜Sh
(Ω) ∩ L2(Ω)) ⊂ (HΦ, Sh

(Ω) ∩ L2(Ω)) = (HΦ, Sh, dΩ(Ω) ∩ L2(Ω))

= (HΦ,Nh
(Ω) ∩ L2(Ω)) ⊂ (HΦ, ˜Sh, dΩ

(Ω) ∩ L2(Ω))

⊂ (HΦ, ˜Sh
(Ω) ∩ L2(Ω)).

From this, we deduce that

(HΦ, ˜Sh
(Ω) ∩ L2(Ω)) = (HΦ, ˜Sh, dΩ

(Ω) ∩ L2(Ω)) = (HΦ, Sh
(Ω) ∩ L2(Ω))

= (HΦ, ˜Sh, dΩ
(Ω) ∩ L2(Ω))

with equivalent norms. This finishes the proof of Proposition 3.14 (ii) and hence
Proposition 3.14. �
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Combining Propositions 3.1, 3.5, 3.13 with 3.14, we then obtain Theorem 1.9.

Proof of Theorem 1.9. We first prove Theorem 1.9 (i). By Propositions 3.1, 3.5, 3.13
and 3.14 (i), we know that

(HΦ, r(Ω) ∩ L2(Ω)) = (HΦ,Nh
(Ω) ∩ L2(Ω)) = (HΦ, ˜Sh

(Ω) ∩ L2(Ω))

= (HΦ, Sh
(Ω) ∩ L2(Ω))

with equivalent norms, which, together with the fact that

HΦ, r(Ω) ∩ L2(Ω), HΦ,Nh
(Ω) ∩ L2(Ω), HΦ, ˜Sh

(Ω) ∩ L2(Ω) and HΦ, Sh
(Ω) ∩ L2(Ω)

are, respectively, dense in

HΦ, r(Ω), HΦ,Nh
(Ω), HΦ, ˜Sh

(Ω) and HΦ, Sh
(Ω),

and a density argument, implies that the spaces

HΦ, r(Ω), HΦ,Nh
(Ω), HΦ, ˜Sh

(Ω) and HΦ, Sh
(Ω)

coincide with equivalent norms, which completes the proof of Theorem 1.9 (i).

Now we prove Theorem 1.9 (ii). By Proposition 3.5, we know that for all
f ∈ HΦ,Nh

(Ω) ∩ L2(Ω),

‖f‖HΦ, ˜Sh
(Ω) � ‖f‖HΦ,Nh

(Ω),

which, together with (3.79), implies that

‖f‖HΦ, ˜Sh, dΩ
(Ω) � ‖f‖HΦ,Nh

(Ω)

for all f ∈ HΦ,Nh
(Ω) ∩ L2(Ω). By the arbitrariness of f ∈ HΦ,Nh

(Ω) ∩ L2(Ω), we
know that

(HΦ,Nh
(Ω) ∩ L2(Ω)) ⊂ (HΦ, ˜Sh, dΩ

(Ω) ∩ L2(Ω)).

From this, Propositions 3.1, 3.13, and 3.14 (ii), it follows that

(HΦ, r(Ω) ∩ L2(Ω)) = (HΦ,Nh
(Ω) ∩ L2(Ω)) = (HΦ, ˜Sh, dΩ

(Ω) ∩ L2(Ω))

= (HΦ, Sh, dΩ(Ω) ∩ L2(Ω))

with equivalent norms. This, together with the fact that the spaces HΦ, r(Ω) ∩
L2(Ω), HΦ,Nh

(Ω)∩L2(Ω), (HΦ, ˜Sh, dΩ
(Ω)∩L2(Ω)), and HΦ, Sh, dΩ(Ω)∩L2(Ω) are,

respectively, dense in

HΦ, r(Ω), HΦ,Nh
(Ω), HΦ, ˜Sh, dΩ

(Ω) and HΦ, Sh, dΩ(Ω),

and a density argument, implies that the spaces

HΦ, r(Ω), HΦ,Nh
(Ω), HΦ, ˜Sh, dΩ

(Ω) and HΦ, Sh, dΩ(Ω)

coincide with equivalent norms, which is the desired conclusion.
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Moreover, if n ≥ 3 and (G∞) holds, by the second part of Proposition 3.14 (ii)
and the fact that HΦ, ˜Sh, dΩ

(Ω)∩L2(Ω), HΦ, ˜Sh
(Ω)∩L2(Ω), HΦ, Sh, dΩ(Ω)∩L2(Ω),

and HΦ, Sh
(Ω) ∩ L2(Ω) are, respectively, dense in

HΦ, ˜Sh, dΩ
(Ω), HΦ, ˜Sh

(Ω), HΦ, Sh, dΩ(Ω) and HΦ, Sh
(Ω),

together with a density argument, we find that the spaces

HΦ, ˜Sh, dΩ
(Ω), HΦ, ˜Sh

(Ω), HΦ, Sh, dΩ(Ω) and HΦ, Sh
(Ω)

coincide with equivalent norms, which completes the proof of Theorem 1.9 (ii) and
hence that of Theorem 1.9. �

Assume that (G∞) holds. For all t ∈ (0,∞), let Pt := e−t
√
L. For all f ∈ L2(Ω)

and x ∈ Ω, let

SP (f)(x) :=
{∫

˜Γ(x)

|t∂tPt(f)(y)|2 dy dt

t|Q(x, t) ∩Ω|
}1/2

and

H̃1
SP

(Ω) :=
{
f ∈ L2(Ω) : ‖f‖H1

SP
(Ω) <∞}

,

where

‖f‖H1
SP

(Ω) := ‖SP (f)‖L1(Ω).

The Hardy space H1
SP

(Ω) is then defined to be the completion of H̃1
SP

(Ω) in the
norm ‖ · ‖H1

SP
(Ω).

Proposition 3.17. Let Ω and L be as in Theorem 1.9. Assume that (G∞) holds.
Then H1

r (Ω) = H1
SP

(Ω) with equivalent norms.

Proof. Similar to the proof of Proposition 3.1, we see that

(3.80)
(
H1
r (Ω) ∩ L2(Ω)

) ⊂ (
H1
SP

(Ω) ∩ L2(Ω)
)
.

To finish the proof of Proposition 3.17, it suffices to show

(3.81)
(
H1
SP

(Ω) ∩ L2(Ω)
) ⊂ (

H1
r (Ω) ∩ L2(Ω)

)
.

Indeed, if (3.81) holds, by (3.80), we have

(H1
r (Ω) ∩ L2(Ω)) = (H1

SP
(Ω) ∩ L2(Ω))

with equivalent norms, which, together with the fact that H1
r (Ω) ∩ L2(Ω) and

H1
SP

(Ω)∩L2(Ω) are respectively dense in H1
r (Ω) and H

1
SP

(Ω), and a density argu-
ment, implies that the spaces H1

r (Ω) and H
1
SP

(Ω) coincide with equivalent norms,
which completes the proof of Proposition 3.17.
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To show (3.81), let f ∈ H1
SP

(Ω) ∩ L2(Ω). Then by the H∞-functional calculus
for L and the equation (13) in page 164 of [4], we conclude that

(3.82) f = 4

∫ ∞

0

t
√
LPt(t

√
LPt)(f)

dt

t

in L2(Ω). By f ∈ H1
SP

(Ω), we see that SP (f) ∈ L1(Ω), which, together with

t
√
LPt(f) = t∂tPt(f), implies that

t
√
LPt(f) ∈ T1(Ω) and ‖f‖H1

SP
(Ω) = ‖t

√
LPt(f)‖T1(Ω).

Then from Lemma 3.15, it follows that there exist {λj}j ⊂ C and a sequence {aj}j
of T1(Ω)-atoms such that

(3.83) t
√
LPt(f) =

∑
j

λjaj .

For each j, let

αj := 4

∫ ∞

0

t
√
LPt(aj)

dt

t
.

Then by (3.82) and (3.83), similar to the proof of Proposition 4.2 in [29], we have

f =
∑

j λjαj in L2(Ω). For any T1(Ω)-atom a supported in Q̂ ∩ Ω, let

α := 4

∫ ∞

0

t
√
LPt(a)

dt

t
.

To show (3.81), similar to the proof of Proposition 3.14 (i), it suffices to show that
for α as above, there exist a function α̃ on Rn such that

(3.84) α̃|Ω = α

and a sequence {bi}i of harmless constant multiples of (1, 2, 0)-atoms, with the
constant depending on i, such that α̃ =

∑
i bi in L

2(Rn) and

(3.85)
∑
i

|Qi|1/2‖bi‖L2(Rn) � |Q ∩ Ω|1/2‖a‖T 2
2 (Ω×(0,∞)),

where for each i, supp bi ⊂ Qi.

Let Q := Q(x0, r0). Now we show (3.84) and (3.85) by considering the following
two cases for Q:

Case 1) 8Q ∩ Ωc �= ∅. In this case, the proofs of (3.84) and (3.85) are similar
to Case 1) of the proof of Proposition 3.14. We omit the details.

Case 2) 8Q ⊂ Ω. In this case, let k0, JΩ, k0 , R0(Q), Rk(Q), χk, χ̃k, mk,Mk and M̃k

be as in Case 2) of the proof of Proposition 3.14. Then

α =

k0∑
k=0

Mk +
∑

k∈JΩ, k0

M̃k +

k0∑
k=0

mkχ̃k.
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Similar to the proof of (3.59) and (3.60), we conclude that

(3.86) |2Q|1/2‖M0‖L2(Rn) +

k0∑
k=0

|2kQ|1/2‖Mk‖L2(Rn) � |Q|1/2‖a‖T 2
2 (Ω×(0,∞)).

For each k ∈ JΩ, k0 , by Fact 1, there exists the Whitney decomposition {Qk, i}i of
Rk(Q) about ∂Ω such that ∪iQk, i = Rk(Q) and for each i, Qk, i satisfies that

2Qk, i ⊂ Ω and 4Qk, i ∩ ∂Ω �= ∅.

Then M̃k =
∑

i αχQk, i
almost everywhere. Moreover, by Lemma 3.16, for each k

and i, there exists a cube Q̃k, i ⊂ Ωc such that

l(Q̃k, i) = l(Qk, i) and dist (Q̃k, i, Qk, i) ∼ l(Qk, i).

Then for each k and i, there exists a cube Q∗
k, i such that

(Qk, i ∪ Q̃k, i) ⊂ Q∗
k, i and l(Q∗

k, i) ∼ l(Qk, i).

For any k and i, let

bk, i := αχQk, i
− 1

|Q̃k, i|
{∫

Qk, i

α(x) dx
}
χ

˜Qk, i
.

Then ∫
Rn

bk, i(x) dx = 0 and supp bk, i ⊂ Q∗
k, i.

Furthermore, similar to (3.59) and (3.56), we know that for each k ∈ JΩ, k0 and i,
bk, i is a constant multiple of some (1, 2, 0)-atom, with the constant depending
on k and i, and∑

k∈JΩ, k0

∑
i

|Q∗
k, i|1/2‖bk, i‖L2(Rn) � |Q|1/2‖a‖T 2

2 (Ω×(0,∞)).(3.87)

For j ∈ {0, . . . , k0}, let Nj :=
∑k0

k=jmk. It is easy to see that

k0∑
k=0

mkχ̃k =

k0∑
k=1

(χ̃k − χ̃k−1)Nk +N0χ̃0.(3.88)

Similar to the proofs of (3.63) and (3.66), we see that for each k ∈ {1, . . . , k0},
(χ̃k − χ̃k−1)Nk is a constant multiple of a (1, 2, 0)-atom, with the constant de-
pending on k, and

(3.89)

k0∑
k=1

|2kQ|1/2‖(χ̃k − χ̃k−1)Nk‖L2(Rn) � |Q|1/2‖a‖T 2
2 (Ω×(0,∞)).
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Finally we deal with N0χ̃0. LetM, {Q0, i}M+1
i=0 and {b0, i}M+1

i=0 be as in Case 2)
of the proof of Proposition 3.14 (i). For all t ∈ (0,∞), we denote the kernel of Pt
by pt. Then by Fact 2 and the subordination formula associated with L that

e−t
√
L =

1√
π

∫ ∞

0

e−
t2

4uLe−uu−1/2 du

(see (A.1) in page 180 of [4]), we conclude that for all x ∈ Q,

∣∣∣ ∫
2k0Q

∂tpt(y, x) dy
∣∣∣ � 1

t

{
1 +

δ(x)

t

}−1

,

where δ(x) for x ∈ Q is as in Fact 2 of the proof of Proposition 3.14. From this
and Hölder’s inequality, it follows that

|N0| =
∣∣∣ ∫

2k0Q

α(x) dx
∣∣∣ ∼ ∣∣∣ ∫

2k0Q

{∫ ∞

0

∫
Ω

t∂tpt(x, y)a(y, t)
dy dt

t

}
dx

∣∣∣
�

∫ ∞

0

∫
Ω

∣∣∣ ∫
2k0Q

t∂tpt(x, y) dx
∣∣∣ |a(y, t)|dy dt

t

� ‖a‖T 2
2 (Ω×(0,∞))

{∫ r0

0

∫
Q

[
1 +

δ(y)

t

]−2 dy dt

t

}1/2

� ‖a‖T 2
2 (Ω×(0,∞))

{∫ r0

0

∫
Q

( t

2k0r0

)2 dy dt

t

}1/2

� 2−k0 |Q|1/2‖a‖T 2
2 (Ω×(0,∞)).(3.90)

For each i ∈ {1, . . . , M + 1}, by the definition of b0, i, (3.90) and the fact that
l(Q0, i) ∼ l(Q), we have

‖b0, i‖L2(Rn) � |N0||Q|−1/2 � 2−k0‖a‖T 2
2 (Ω×(0,∞))(3.91)

� 2−k0 |Q|−1/2[ρ(|Q|)]−1 ∼ 2−k0 |Q0, i|−1/2[ρ(|Q0, i|)]−1,

which, together with the facts that∫
Rn

b0, i(x) dx = 0 and supp b0, i ⊂ Q∗
0, i,

implies that b0, i is a constant multiple of some (1, 2, 0)-atom with the constant
depending on i. Furthermore, by (3.91) and the fact that M ∼ 2k0 , we obtain

M+1∑
i=1

|Q∗
0, i|1/2‖b0, i‖L2(Rn) ∼

M+1∑
i=1

2−k0 |Q|1/2‖a‖T 2
2 (Ω×(0,∞))(3.92)

∼ |Q|1/2‖a‖T 2
2 (Ω×(0,∞)).

Let

α̃ :=

k0∑
i=1

Mk +
∑

k∈JΩ, k0

∑
i

bk, i +

k0∑
k=1

(χ̃k − χ̃k−1)Nk +

M+1∑
i=1

b0, i.
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By an argument similar to that used to obtain the estimate (3.55), we know that
the series in the definition of α̃ converges in L2(Rn). It is easy to see that α̃|Ω = α.
Furthermore, by (3.86), (3.87), (3.89) and (3.92), we conclude that α̃ ∈ HΦ(R

n)
and there holds (3.85), which completes the proof of Proposition 3.17. �

From Proposition 3.17, we deduce that for any given f ∈ H1
SP

(Ω), there exists
an atomic decomposition, which gives a positive answer to the question asked by
Duong and Yan in Remarks (iii) of page 485 in [17] in the case that p = 1. However,
it is still unknown whether this method also works for p < 1 but near to 1. This
case seems to need a stronger estimate than (3.90).

Acknowledgements. Both authors would like to thank the referee for her/his
careful reading and several valuable remarks which improved the presentation of
this article.
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Pol. Ser. A 8 (1932), 207–220.

[42] Ouhabaz, E.M.: Analysis of heat equations on domains. London Mathematical
Society Monographs Series 31, Princeton University Press, Princeton, NJ, 2005.

[43] Rao, M. and Ren, Z.: Theory of Orlicz spaces. Monographs and Textbooks in
Pure and Applied Mathematics 146, Marcel Dekker, New York, 1991.

[44] Rao, M. and Ren, Z.: Applications of Orlicz spaces. Monographs and Textbooks
in Pure and Applied Mathematics 250, Marcel Dekker, New York, 2002.

[45] Russ, E.: The atomic decomposition for tent spaces on spaces of homogeneous
type. In CMA/AMSI Research Symposium “Asymptotic geometric analysis, har-
monic analysis, and related topics”, 125–135. Proc. Centre Math. Appl. 42, Austral.
Nat. Univ., Canberra, 2007.

[46] Semmes, S.: A primer on Hardy spaces, and some remarks on a theorem of Evans
and Müller. Comm. Partial Differential Equations 19 (1994), no. 1-2, 277–319.

[47] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscilla-
tory integrals. Princeton Mathematical Series 43, Monographs in Harmonic Analy-
sis III, Princeton University Press, Princeton, NJ, 1993.

[48] Stein, E.M. and Weiss, G.: On the theory of harmonic functions of several vari-
ables. I. The theory of Hp-spaces. Acta Math. 103 (1960), 25–62.

[49] Triebel, H. and Winkelvoß, H.: Intrinsic atomic characterizations of function
spaces on domains. Math. Z. 221 (1996), no. 4, 647–673.

[50] Viviani, B.E.: An atomic decomposition of the predual of BMO(ρ). Rev. Mat.
Iberoamericana 3 (1987), no. 3-4, 401–425.

[51] Wilson, J.: On the atomic decomposition for Hardy spaces. Pacific J. Math. 116
(1985), no. 1, 201–207.

[52] Yan, L.: Classes of Hardy spaces associated with operators, duality theorem and
applications. Trans. Amer. Math. Soc. 360 (2008), no. 8, 4383–4408.



292 D. Yang and S. Yang

[53] Yang, Da. and Yang, Do.: Real-variable characterizations of Hardy spaces asso-
ciated with Bessel operators. Anal. Appl. (Singap.) 9 (2011), no. 3, 345–368.

[54] Yang, D. and Yang, S.: Orlicz–Hardy spaces associated with divergence operators
on unbounded strongly Lipschitz domains of Rn. To appear in Indiana Univ. Math. J.
Preprint available at arXiv:1107.2971.

[55] Yosida, K.: Functional analysis. Reprint of the sixth (1980) edition. Classics in
Mathematics. Springer-Verlag, Berlin, 1995.

Received January 12, 2011; revised April 5, 2011.

Dachun Yang: School of Mathematical Sciences, Beijing Normal University, Labo-
ratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875,
People’s Republic of China.

E-mail: dcyang@bnu.edu.cn

Sibei Yang: School of Mathematical Sciences, Beijing Normal University, Labora-
tory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875,
People’s Republic of China.

E-mail: yangsibei@mail.bnu.edu.cn

The first author is supported by the National Natural Science Foundation (Grant No.
11171027) of China and Program for Changjiang Scholars and Innovative Research Team in
University of China.

mailto:dcyang@bnu.edu.cn
mailto:yangsibei@mail.bnu.edu.cn

	Introduction
	Preliminaries
	The divergence form elliptic operator L
	Orlicz functions

	Proof of Theorem 1.9

