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Wavelet approach to operator-valued
Hardy spaces

Guixiang Hong and Zhi Yin

Abstract. This paper is devoted to the study of operator-valued Hardy
spaces via the wavelet method. This approach is parallel to that in the
noncommutative martingale case. We show that our Hardy spaces defined
by wavelets coincide with those introduced by Tao Mei via the usual Lusin
and Littlewood–Paley square functions. As a consequence, we give an ex-
plicit complete unconditional basis of the Hardy space H1(R) when H1(R)
is equipped with an appropriate operator space structure.

1. Introduction

In this paper, we exploit Meyer’s wavelet methods to study operator-valued Hardy
spaces. We are motivated by two rapidly developing fields. The first one is the
theory of noncommutative martingale inequalities. This theory was initiated al-
ready in the 1970’s. Its modern period of development began with Pisier and
Xu’s seminal paper [20], in which the authors established the noncommutative
Burkholder–Gundy inequalities and the Fefferman duality theorem between H1

and BMO. Since then many classical results have been successfully transferred to
the noncommutative world (see [11], [14], [15], [1]). In particular, motivated by [9],
Mei [15] developed the theory of Hardy spaces on Rn for operator-valued functions.

Our second motivation is the theory of wavelets founded by Meyer. It is now
well known that this theory is important for many domains, in particular in har-
monic analysis. For instance, it provides powerful tools for the theory of Calderón–
Zygmund singular integral operators. More recently, Meyer’s wavelet methods were
extended to study more sophisticated subjects in harmonic analysis. For example,
the authors of [5] exploited the properties of Meyer’s wavelets to give a char-
acterization of product BMO by commutators; [17] deals with the estimates of
bi-parameter paraproducts.
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It is in this spirit that we wish to understand how useful wavelet methods are
for noncommutative analysis. The most natural and possible way would be first
to do this in the semicommutative case. This is exactly the purpose of the present
paper which could be viewed as the first attempt at developing wavelet techniques
for noncommutative analysis.

A wavelet basis of L2(R) is a complete orthonormal system (wI)I∈D, where D
denotes the collection of all dyadic intervals in R, w is a Schwartz function satisfying
the properties needed for Meyer’s construction in [16], and

wI(x) :=
1

|I| 12
w
(x− cI

|I|

)
,

where cI is the center of I. The central facts that we will need about wavelet bases
are the orthogonality between different wI ’s, that ‖w‖L2(R) = 1, and the regularity
of w,

max(|w(x)|, |w′(x)|) � (1 + |x|)−m, ∀m ≥ 2.

The analogy between wavelets and dyadic martingales is well known. The key
observation is the following parallelism:

∑
|I|=2−n+1

〈f, wI〉wI ∼ dfn ,

where dfn denotes the n-th dyadic martingale difference of f . This parallelism
indicates that martingale methods may be used to deal with wavelets. With this
in mind, we develop the theory of operator-valued Hardy spaces, which are defined
through wavelets, in the way that is well known in the noncommutative martingale
case. Then we show that our Hardy and BMO spaces coincide with Mei’s.

This paper is organized as follows. In Section 1, we will give some preliminar-
ies on noncommutative analysis, and the definitions in our setting of Hp(R,M)
with 1 ≤ p < ∞ and LqMO(R,M) with 2 < q ≤ ∞. In Section 2, we are con-
cerned with three duality results. The most important one is the noncommuta-
tive analogue of the famous Fefferman duality theorem between Hc

1(R,M) and
BMOc(R,M). The second is the duality between Hc

p(R,M) and Lc
p′MO(R,M)

with 1 < p < 2, where we need a noncommutative version of Doob’s inequality.
This is why we consider the case 1 < p < 2 independently. The last one is the
duality between Hc

p(R,M) and Hc
p′(R,M) when 1 < p < ∞. As a corollary of

the last two results, we identify Hc
q(R,M) and Lc

qMO(R,M) with 2 < q < ∞.
Section 3 deals with interpolation for our Hardy spaces. In the last section, we
show that our Hardy spaces coincide with those of [15]. Consequently, we can
give an explicit completely unconditional basis for the space H1(R), when H1(R)
is equipped with an appropriate operator space structure.

We end this introduction by introducing the convention that, throughout the
paper, c will denote an absolute positive constant, which may vary from line to
line, and cp will denote a positive constant depending only on p.
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2. Preliminaries

2.1. Operator-valued noncommutative Lp-spaces

Let M be a von Neumann algebra equipped with a normal semifinite faithful
trace τ and let S+

M be the set of all positive elements x in M with τ(s(x)) < ∞,
where s(x) is the smallest projection e such that exe = x. Let SM be the linear
span of S+

M. Then any x ∈ SM has finite trace, and SM is a w∗-dense ∗-subalgebra
of M.

Let 1 ≤ p < ∞. For any x ∈ SM, the operator |x|p belongs to S+
M (|x| =

(x∗x)
1
2 ). We define

‖x‖p =
(
τ(|x|p)

)1/p
, ∀x ∈ SM.

One can check that ‖ · ‖p is well defined and is a norm on SM. The completion
of (SM, ‖ · ‖p) is denoted by Lp(M) which is the usual noncommutative Lp- space
associated with (M, τ). For convenience, we usually set L∞(M) = M equipped
with the operator norm ‖·‖M. The elements of Lp(M, τ) can be described as closed
densely defined operators on H (H being the Hilbert space on which M acts).
We refer the reader to [21] for more information on noncommutative Lp-spaces.

In this paper, we are concerned with three operator-valued noncommutative
Lp-spaces. The first one is the noncommutative space Lp(M; �c2) (resp. Lp(M; �r2)),
which is studied at length in [9]. For this space, we need the following properties.
In the sequel, p′ will always denote the conjugate index of p.

Lemma 2.1. Let 1 ≤ p < ∞. Then

(2.1) (Lp(M; �c2))
∗ = Lp′(M; �c2).

Thus, for f = (fk)k ∈ Lp(M; �c2) and g = (gk)k ∈ Lp′(M; �c2), we have

|τ(〈f, g〉)| ≤ ‖f‖Lp(M;�c2)
‖g‖Lp′(M;�c2)

,

where

〈f, g〉 =
∑
k

fkg
∗
k.

Lemma 2.2. Let 1 ≤ p0 < p < p1 ≤ ∞, 0 < θ < 1, 1
p = 1−θ

p0
+ θ

p1
. Then

(2.2) [Lp0(M; �c2), Lp1(M; �c2)]θ = Lp(M; �c2).

A similar equality holds for row spaces.

The second space is the �∞-valued noncommutative space Lp(M; �∞), which
is studied by Pisier [19] for an injective M, and by Junge [8] for a general M
(see also [11] and [13] for more properties). For this space, we need the following
property:
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Lemma 2.3. Let 1 ≤ p < ∞. Then

(Lp(M; �1))
∗ = Lp′(M; �∞).

Thus, for x = (xn)n ∈ Lp(M; �1) and y = (yn)n ∈ Lp′(M; �∞), we have

(2.3)
∣∣∑
n≥1

τ(xnyn)
∣∣ ≤ ‖x‖Lp(M;�1)‖y‖Lp′(M;�∞) ,

where Lp(M; �1) is the space of all sequences x = (xn)n such that

‖(xk)k‖Lp(N ;�1) = sup
xn=

∑
k a∗

n,kbn,k

∥∥∥∑
n, k

|an,k|2
∥∥∥1/2
p

∥∥∥∑
n, k

|bn,k|2
∥∥∥1/2
p

.

The third space is Lp(M; �c∞) for 2 ≤ p ≤ ∞, which was introduced in [4] and
is related with the second space by

‖(xn)n‖Lp(M;�c∞) = ‖(|xn|2)n‖L p
2
(M;�∞).

These are normed spaces for the following characterization of the norm:

‖(xn)n‖Lp(M;�c∞) = inf
xn=yna

‖(yn)‖�∞(L∞(M))‖a‖Lp(M).

We need the following interpolation results for these spaces (see [18]):

Lemma 2.4. Let 2 ≤ p0 < p < p1 ≤ ∞, 0 < θ < 1, and 1
p = 1−θ

p0
+ θ

p1
. Then

(2.4) [Lp0(M; �c∞), Lp1(M; �c∞)]θ = Lp(M; �c∞).

2.2. Operator-valued Hardy spaces

In this paper, for simplicity, we denote L∞(R)⊗̄M by N . As indicated in the
introduction, one can observe that we have the operator-valued Calderón identity

(2.5) f(x) =
∑
I∈D

〈f, wI〉wI(x) =
∑
I∈D

∫
R

f(y)wI(y)dywI(x),

which holds when f ∈ L2(N ). As in the classical case, for f ∈ SN , we define the
two Littlewood–Paley square functions as

Sc(f)(x) =
(∑

I∈D

|〈f, wI〉|2
|I| 1I(x)

) 1
2

,(2.6)

Sr(f)(x) =
(∑

I∈D

|〈f∗, wI〉|2
|I| 1I(x)

) 1
2

.(2.7)

For 1 ≤ p < ∞, define

‖f‖Hc
p
= ‖Sc(f)‖Lp(N ) and ‖f‖Hr

p
= ‖Sr(f)‖Lp(N ).
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These are norms, which can be seen easily from the space Lp(N ; �c2(D)). So we
define the space Hc

p(R,M) (resp., Hr
p(R,M)) as the completion of (SN , ‖ · ‖Hc

p
)

(resp., (SN , ‖ · ‖Hr
p
).

Now, we define the operator-valued Hardy spaces as follows: for 1 ≤ p < 2,

(2.8) Hp(R,M) = Hc
p(R,M) +Hr

p(R,M)

with the norm

‖f‖Hp = inf{‖g‖Hc
p
+ ‖h‖Hr

p
: f = g + h, g ∈ Hc

p, h ∈ Hr
p} ,

and for 2 ≤ p < ∞,

(2.9) Hp(R,M) = Hc
p(R,M) ∩Hr

p(R,M)

with the norm

‖f‖Hp = max{‖f‖Hc
p
, ‖f‖Hr

p
}.

We can identify Hc
p(R,M) as a subspace of Lp(N ; �c2(D)), which is related with

the two maps below:

Definition 2.5. (i) The map Φ is defined from Hc
p(R,M) to Lp(N ; �c2(D)) by

(2.10) Φ(f) =
(〈f, wI〉

|I| 12
1I

)
I∈D

.

(ii) The projection map Ψ is defined from L2(N ; �c2(D)) to Hc
2(R,M) by

(2.11) Ψ((gI)) =
∑
I∈D

∫
gI

|I| 12
1Idy · wI .

2.3. Operator-valued BMO spaces

For ϕ ∈ L∞(M;Lc
2(R,

dx
1+x2 )), set

(2.12)
‖ϕ‖BMOc = supJ∈D

∥∥∥( 1

|J |
∑
I⊂J

|〈ϕ,wI〉|2
) 1

2
∥∥∥
M

and

‖ϕ‖BMOr = ‖ϕ∗‖BMOc(R,M).

These are again norms modulo constant functions. Define

BMOc(R,M) = {ϕ ∈ L∞(M;Lc
2(R,

dx
1+x2 )) : ‖ϕ‖BMOc < ∞}, and

BMOr(R,M) = {ϕ ∈ L∞(M;Lr
2(R,

dx
1+x2 )) : ‖ϕ‖BMOr < ∞}.

Now we define

BMO(R,M) = BMOc(R,M) ∩ BMOr(R,M).
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As in the martingale case [11], we can also define Lc
pMO(R,M) for all 2 < p ≤ ∞.

For ϕ ∈ Lp(M;Lc
2(R,

dx
1+x2 )), set

(2.13) ‖ϕ‖Lc
pMO =

∥∥∥( 1

|Ixk |
∑
I⊂Ix

k

|〈ϕ,wI〉|2
)
k

∥∥∥
1
2

L p
2
(N ;�∞)

and
‖ϕ‖Lr

pMO = ‖ϕ∗‖Lc
pMO,

where Ixk denotes the unique dyadic interval with length 2−k+1 that contains x.
We will use the convention adopted in [13] for the norm in L p

2
(N ; �∞). Thus

∥∥∥( 1

|Ixk |
∑
I⊂Ix

k

|〈ϕ,wI〉|2)k
∥∥∥

1
2

L p
2
(N ;�∞)

=
∥∥∥sup

k

+ 1

|Ixk |
∑
I⊂Ix

k

|〈ϕ,wI〉|2
∥∥∥

1
2

L p
2
(N)

These are norms, which follow from the Banach spaces Lp(N⊗̄B(�2(D)); �c∞).
Again, we can define

Lc
pMO(R,M) = {ϕ ∈ Lp(M;Lc

2(R,
dx

1+x2 )) : ‖ϕ‖Lc
pMO < ∞}, and

Lr
pMO(R,M) = {ϕ ∈ Lp(M;Lr

2(R,
dx

1+x2 )) : ‖ϕ‖Lc
rMO < ∞}.

Define
LpMO(R,M) = Lc

pMO(R,M) ∩ Lr
pMO(R,M).

Note that Lc
∞MO(R,M) = BMOc(R,M). It is easy to check that all the spaces

we have defined here are Banach spaces with respect to the relevant norms.

3. Duality

To prove the first two duality results in this section, we need the following non-
commutative version of Doob’s inequality from [8].

Let (En)n be the conditional expectation with respect to a filtration (Nn)n
of N .

Lemma 3.1. Let 1 < p ≤ ∞ and f ∈ Lp(N ). Then

(3.1) ‖sup
n

+En(f)‖Lp(N ) ≤ cp‖f‖Lp(N ).

Theorem 3.2. We have

(3.2) (Hc
1(R,M))∗ = BMOc(R,M)

with equivalent norms. That is, every ϕ ∈ BMOc(R,M) induces a continuous
linear functional lϕ on Hc

1(R,M) by

(3.3) lϕ(f) = τ

∫
ϕ∗f, ∀f ∈ SN .
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Conversely, for every l ∈ (Hc
1(R,M))∗, there exists a ϕ ∈ BMOc(R,M) such that

l = lϕ. Moreover,

c−1‖ϕ‖BMOc ≤ ‖lϕ‖(Hc
1)

∗ ≤ c‖ϕ‖BMOc

where c > 0 is a universal constant.
Similarly, duality holds between Hr

1 and BMOr, and between H1 and BMO,
with equivalent norms.

In order to adapt the arguments in the martingale case, we need to define the
truncated square functions for n ∈ Z,

Sc,n(f)(x) =
( n∑

k=−∞

∑
|I|=2−k+1

|〈f, wI〉|2
|I| 1I(x)

) 1
2

.

Proof. Since SN is dense in Hc
1(R,M), by an approximation argument we only

need to prove the inequality

|lϕ(f)| ≤ c‖ϕ‖BMOc‖f‖Hc
1

for f ∈ SN . By approximation we may assume that Sc,n(f)(x) is invertible in M
for all x ∈ R and n ∈ Z. Then we have

|lϕ(f)| = |τ
∫

ϕ∗fdx| =
∣∣∣∑

n

τ

∫ ∑
|I|=2−n+1

〈ϕ,wI〉∗wI

∑
|I′|=2−n+1

〈f, wI′〉wI′dx
∣∣∣

=
∣∣∣∑

n

τ

∫ ∑
|I|=2−n+1

〈ϕ,wI〉∗

|I| 12
1I

∑
|I′|=2−n+1

〈f, wI′〉
|I| 12

1I′dx
∣∣∣

≤
∑
n

(
τ

∫ ∣∣ ∑
|I|=2−n+1

〈f, wI〉
|I| 12

1I

∣∣2S−1
c,n(f)

) 1
2

·
(
τ

∫ ∣∣ ∑
|I|=2−n+1

〈ϕ,wI〉
|I| 12

1I

∣∣2Sc,n(f)
) 1

2

≤
(∑

n

τ

∫ ∑
|I|=2−n+1

|〈f, wI〉|2
|I| 1IS

−1
c,n(f)

) 1
2

·
(∑

n

τ

∫ ∑
|I|=2−n+1

|〈ϕ,wI〉|2
|I| 1ISc,n(f)

) 1
2

= A ·B.

In the above estimates, the second equality uses the orthogonality of the wI ’s
on different levels, and the third one the orthogonality of the wI ’s on the same level
and the disjointness of different dyadic I’s on the same level; the first inequality
uses the Hölder inequality of Lemma 2.1, and the second one uses the Cauchy–
Schwarz inequality and the disjointness of different I’s on the same level.
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Now, let us estimate A:

A2 =
∑
n

τ

∫
(S2

c,n(f)− S2
c,n−1(f))S

−1
c,n(f)

=
∑
n

τ

∫
(Sc,n(f)− Sc,n−1(f))(1 + Sc,n−1(f)S

−1
c,n(f))

≤
∑
n

τ

∫
(Sc,n(f)− Sc,n−1(f))‖1 + Sc,n−1(f)S

−1
c,n(f)‖∞

≤ 2
∑
n

τ

∫
(Sc,n(f)− Sc,n−1(f)) = 2‖f‖Hc

1
.

For the first inequality, we have used the Hölder inequality and the positivity
of Sc,n(f)− Sc,n−1(f).

The second term is estimated as follows:

B2 =
∑
k

τ

∫
(Sc,k(f)− Sc,k−1(f))

∑
n≥k

∑
|I|=2−n+1

|〈ϕ,wI〉|2
|I| 1I

=
∑
k

τ
∑
j

(Sc,k(f)− Sc,k−1(f))

∫
Ij
k

∑
n≥k

∑
|I|=2−n+1

|〈ϕ,wI〉|2
|I| 1I

=
∑
k

τ
∑
j

∫
Ij
k

(Sc,k(f)− Sc,k−1(f))
1

|Ijk |
∑
I⊂Ij

k

|〈ϕ,wI〉|2

≤
∑
k

∑
j

τ

∫
Ij
k

(Sc,k(f)− Sc,k−1(f))
∥∥∥ 1

|Ijk|
∑
I⊂Ij

k

|〈ϕ,wI〉|2
∥∥∥
∞

≤ ‖ϕ‖2BMOc

∑
k

∑
j

τ

∫
Ij
k

(Sc,k(f)− Sc,k−1(f))

= ‖ϕ‖2BMOc‖f‖Hc
1
.

We use, in the first equality, the Fubini theorem; and in the second equality, the
fact that Sc,k−1(f) and Sc,k(f) are constant on the dyadic interval Ijk = [j2−k+1,
(j + 1)2−k+1). For the first inequality the Hölder inequality and the positivity of
Sc,n(f)− Sc,n−1(f) are used.

Now, let us begin to deal with the other direction, i.e., supposing that l is
a bounded linear functional on Hc

1(R,M), we want to find an operator-valued
function ϕ in BMOc(R,M) such that l = lϕ and lϕ(f) = τ

∫
ϕ∗f for f ∈ SN .

By the embedding operator Φ in (2.10) and by the Hahn–Banach theorem, l extends
to a bounded continuous functional on L1(N ; �c2(D)) of the same norm. Then, by
Lemma 2.1, there exists g = (gI)I∈D such that ‖g‖L∞(N ;�c2(D)) = ‖l‖, and

l(f) = τ

∫ ∑
I∈D

g∗I
〈f, wI〉
|I| 12

1I , ∀f ∈ SN .
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Now let ϕ = Ψ(g), where Ψ is defined as (2.11). The orthogonality of the wI ’s
yields

∥∥∥∑
I⊂J

|〈ϕ,wI〉|2
∥∥∥
M

=
∥∥∥∑

I⊂J

∣∣ ∫ gI

|I| 12
1I

∣∣2∥∥∥
M

≤
∥∥∑

I⊂J

∫
J

|gI |2
∥∥∥
M

≤ |J |
∥∥∥∑

I⊂J

|gI |2
∥∥∥
L∞(N )

≤ |J |
∥∥(gI)I∥∥L∞(N ;�c2(D))

,

where in the first inequality the Kadison–Schwarz inequality has been used. Also
thanks to the orthogonality of the wI ’s, we get

l(f) = τ

∫ ∑
I∈D

g∗I
〈f, wI〉
|I| 12

1I = τ

∫
ϕ∗f

for all f ∈ SN . Therefore, we have completed the proof for the column spaces.
Passing to adjoints, we have the conclusion concerning Hr

1 and BMOr. Finally, by
the classical fact that the dual of a sum space is the intersection space, we obtain
the duality between H1 and BMO. �

Theorem 3.3. Let 1 < p < 2. We have

(3.4) (Hc
p(R,M))∗ = Lc

p′MO(R,M)

with equivalent norms. That is, every ϕ ∈ Lc
p′MO(R,M) induces a continuous

linear functional lϕ on Hc
p(R,M) by

(3.5) lϕ(f) = τ

∫
ϕ∗f, ∀f ∈ SN .

Conversely, for every l ∈ (Hc
p(R,M))∗, there exists an operator-valued function

ϕ ∈ Lc
p′MO(R,M) such that l = lϕ and

c−1
p ‖ϕ‖Lc

p′MO ≤ ‖lϕ‖(Hc
p)

∗ ≤
√
2‖ϕ‖Lc

p′MO .

Similarly, duality holds between Hr
p and Lr

p′ , and between Hp and Lp′MO, with
equivalent norms.

We need the following lemma from [11]. We recall it for the reader’s conve-
nience, but without proof.

Lemma 3.4. Let s and t be two real numbers such that s<t and 0 ≤ s ≤ 1 ≤ t ≤ 2.
Let x and y be two positive operators such that x ≤ y and xt−s, yt−s ∈ L1(N ).
Then

τ

∫
y−s/2(yt − xt)y−s/2 ≤ 2τ

∫
y−(s+1−t)/2(y − x)y−(s+1−t)/2.
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Proof of Theorem 3.3. We only need to prove the first assertion about Hc
p. Since

SN is dense in Hc
p(R,M), by an approximation argument, we only need to prove

the inequality
|lϕ(f)| ≤ c ‖ϕ‖Lc

p′MO ‖f‖Hc
p

for f ∈ SN . By approximation we may assume that Sc,n(f)(x) is invertible in M
for all x ∈ R and n ∈ Z. By the same principle as in the noncommutative martin-
gale case as in [11], we have

|lϕ(f)| = |τ
∫

ϕ∗fdx| =
∣∣∣∑

n

τ

∫ ∑
|I|=2−n+1

〈ϕ,wI〉∗wI

∑
|I′|=2−n+1

〈f, wI′〉wI′ dx
∣∣∣

=
∣∣∣∑

n

τ

∫ ∑
|I|=2−n+1

〈ϕ,wI〉∗

|I| 12
1I

∑
|I′|=2−n+1

〈f, wI′〉
|I| 12

1I′ dx
∣∣∣

≤
∑
n

(
τ

∫ ∣∣ ∑
|I|=2−n+1

〈f, wI〉
|I| 12

1I

∣∣2Sp−2
c,n (f)

) 1
2

·
(
τ

∫ ∣∣ ∑
|I|=2−n+1

〈ϕ,wI〉
|I| 12

1I

∣∣2S2−p
c,n (f)

) 1
2

≤
(∑

n

τ

∫ ∑
|I|=2−n+1

|〈f, wI〉|2
|I| 1I S

p−2
c,n (f)

) 1
2

·
(∑

n

τ

∫ ∑
|I|=2−n+1

|〈ϕ,wI〉|2
|I| 1I S

2−p
c,n (f)

) 1
2

= A ·B.

Now we need Lemma 3.4 to estimate the first term. Take s = 2− p and t = 2.
The lemma yields

A2 =
∑
n

τ

∫
(S2

c,n(f)− S2
c,n−1(f))S

p−2
c,n (f)

=
∑
n

τ

∫
S−(2−p)/2
c,n (f)(S2

c,n(f)− S2
c,n−1(f))S

−(2−p)/2
c,n (f)

≤ 2
∑
n

τ

∫
S−(1−p)/2
c,n (f)(Sc,n(f)− Sc,n−1(f))S

−(1−p)/2
c,n (f)

= 2
∑
n

τ

∫
Sc,n(f)− Sc,n−1(f)S

p−1
c,n (f)

≤ 2
∑
n

τ

∫
Sp
c,n(f)− Sp

c,n−1(f)

= 2 ‖f‖pHc
p
.

The last inequality has used two elementary inequalities: 0 ≤ Sc,n−1(f) ≤ Sc,n(f)

implies Sp−1
c,n−1(f) ≤ Sp−1

c,n (f) for 0 < p− 1 < 1; and

τ(Sp
c,n−1(f)) ≤ τ(S

1
2
c,n−1(f)S

p−1
c,n (f)S

1
2
c,n−1(f)).
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The second term can be deduced from the nontrivial duality results in Lemma 2.3
for 1 < p < ∞ as follows:

B2 =
∑
k

τ

∫
S2−p
c,k (f)− S2−p

c,k−1(f)
∑
n≥k

∑
|I|=2−n+1

|〈ϕ,wI〉|2
|I| 1I

=
∑
k

τ
∑
j

S2−p
c,k (f)− S2−p

c,k−1(f)

∫
Ij
k

∑
n≥k

∑
|I|=2−n+1

|〈ϕ,wI 〉|2
|I| 1I

=
∑
k

τ
∑
j

∫
1Ij

k
(x)S2−p

c,k (f)(x) − S2−p
c,k−1(f)(x)

1

|Ijk |
∑
I⊂Ij

k

|〈ϕ,wI〉|2dx

=
∑
k

τ

∫
S2−p
c,k (f)(x)− S2−p

c,k−1(f)(x)
1

|Ixk |
∑
I⊂Ix

k

|〈ϕ,wI〉|2dx

≤ ‖
∑
k

S2−p
c,k (f)− S2−p

c,k−1(f)‖L(p′/2)′

∥∥∥ sup
k

1

|Ixk |
∑
I⊂Ix

k

|〈ϕ,wI 〉|2
∥∥∥
Lp′/2

= ‖ϕ‖2Lc
p′MO‖f‖

2−p
Hc

p
.

The first equality uses the Fubini theorem, and the second one uses the fact that
Sc,k−1(f) and Sc,k(f) are constant on the dyadic intervals with length 2−k+1.

For the other direction, we can carry out the proof as in the case p = 1. Suppose
that l is a bounded linear functional on Hc

p(R,M). By the embedding operator
Φ, by the Hahn–Banach theorem, and by the results in Lemma 2.1, we can find
g = (gI)I∈D such that ‖g‖Lp′(N ;�c2(D)) = ‖l‖ and

l(f) = τ

∫ ∑
I∈D

g∗I
〈f, wI〉
|I| 12

1I , ∀f ∈ SN .

Now let ϕ = Ψ(g) be as defined in (2.11). The orthogonality of the wI ’s yields

∥∥sup
n

+ 1

|Ixn |
∑
I⊂Ix

n

|〈ϕ,wI〉|2
∥∥
Lp′/2(N )

=
∥∥sup

n

+ 1

|Ixn |
∑
I⊂Ix

n

|
∫

gI

|I| 12
1I |2

∥∥
Lp′/2(N )

≤
∥∥sup

n

+ 1

|Ixn |
∑
I⊂Ix

n

∫
Ix
n

|gI |2
∥∥
Lp′/2(N )

≤
∥∥sup

n

+ 1

|Ixn |

∫
Ix
n

∑
I⊂Ix

n

|gI |2
∥∥
Lp′/2(N )

≤
∥∥sup

n

+ 1

|Ixn |

∫
Ix
n

∑
I∈D

|gI |2
∥∥
Lp′/2(N )

≤ c
∥∥∑

I∈D
|gI |2

∥∥
Lp′/2(N )

= c
∥∥(gI)I∥∥Lp′(N ;�c2(D))

,

where for the first inequality we have used the Kadison–Schwarz inequality, and
the last inequality is (3.1). Also due to the orthogonality of the wI ’s, we get

l(f) = τ

∫ ∑
I∈D

g∗I
〈f, wI〉
|I| 12

1I = τ

∫
ϕ∗f,

for all f ∈ SN . Therefore, we have completed the proof. �
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Instead of using the noncommutative Doob’s inequality, we will use the follow-
ing noncommutative Stein inequality from [20] to prove the duality between the
spaces Hc

p, 1 < p < ∞.
Let (En)n be the conditional expectation with respect to a filtration (Nn)n

of N .

Lemma 3.5. Let 1 < p < ∞ and a = (an)n ∈ Lp(N ; �c2). Then there exists a
constant depending only on p such that

(3.6)
∥∥∥(∑

n

|Enan|2
) 1

2

∥∥∥
Lp(N )

≤ cp

∥∥∥(∑
n

|an|2
) 1

2

∥∥∥
Lp(N )

.

Theorem 3.6. For any 1 < p < ∞, we have

(3.7) (Hc
p(R,M))∗ = Hc

p′(R,M).

Proof. By a reasoning similar to that in the proof of Theorem 3.2, we calculate

|lϕ(f)| = |τ
∫

ϕ∗fdx| =
∣∣∣∑

n

τ

∫ ∑
|I|=2−n+1

〈ϕ,wI〉∗wI

∑
|I′|=2−n+1

〈f, wI′〉wI′dx
∣∣∣

=
∣∣∣∑

n

τ

∫ ∑
|I|=2−n+1

〈ϕ,wI〉∗

|I| 12
1I

〈f, wI〉
|I| 12

1Idx
∣∣∣

≤
∥∥(∑

I∈D

|〈f, wI〉|2
|I| 1I

) 1
2
∥∥
Lp(R,M)

·
∥∥(∑

I∈D

|〈ϕ,wI〉|2
|I| 1I

) 1
2
∥∥
Lp′(R,M)

.

Now, we turn to the proof of the inverse direction. Take a bounded linear
functional l ∈ (Hc

p(R,M))∗. By the embedding operator Φ and the Hahn–Banach
extension theorem, l extends to a bounded linear functional on Lp(N ; �c2) with the
same norm. Thus by (2.1), there exists a sequence g = (gI)I such that

‖g‖Lq(N ;lc2(D)) = ‖l‖

and

l(f) = τ

∫ ∑
I∈D

g∗p
〈f, wI〉
|I| 12

1I , ∀f ∈ SN .

Now let ϕ = Ψ(g) where Ψ is defined in (2.11). Then, applying the Stein inequal-
ity (3.5) to the conditional expectation

EI(h) =
∑
J

1

|J |

∫
J

h(y)dy · 1J ,

where J is a dyadic interval with the same length as I, we get

‖ϕ‖Hc
p′(R,M) = ‖

(∑
I∈D

| 1|I|

∫
I

gIdy · 1I |2
) 1

2 ‖Lp′(N )

≤ ‖
(∑
I∈D

|EI(gI)|2
) 1

2 ‖Lp′(N ) ≤ cp′‖
(∑
I∈D

|gI |2
) 1

2 ‖Lp′(N ).



Wavelet approach to operator-valued Hardy spaces 305

By the orthogonality of the wI ’s, we have

l(f) = τ

∫ ∑
I∈D

g∗I
〈f, wI〉
|I| 12

1I = τ

∫
ϕ∗f,

for all f ∈ SN . �

From the proof of the second part of Theorem 3.2, Theorem 3.3 and Theo-
rem 3.6, we obtain the boundedness of Ψ, which we state as a corollary:

Corollary 3.7. (i) Let 1 < p < ∞. Then Ψ is a projection map from Lp(N ; �c2(D))
onto Hc

p(R,M) if we identify the latter as a subspace of the former.

(ii) For 2 < p ≤ ∞, Ψ is a bounded map from Lp(N ; �c2(D)) to Lc
pMO(R,M).

Theorem 3.3 and Theorem 3.6 immediately imply the following corollary:

Corollary 3.8. Let 2 < p < ∞. Then

Hc
p(R,M) = Lc

pMO(R,M), ∀ 2 < p < ∞,

with equivalent norms.

4. Interpolation

This section is devoted to interpolation for our wavelet Hardy spaces. The inter-
polation results below will be needed in the next section to compare our Hardy
spaces with those of Mei.

Lemma 4.1. Let 1 < p0 < p < p1 < ∞. We have

(4.1) [Hc
p0
(R,M),Hc

p1
(R,M)]θ = Hc

p(R,M)

with equivalent norms, where θ satisfies 1
p = 1−θ

p0
+ θ

p1
.

Proof. The embedding map Φ yields

[Hc
p0
,Hc

p1
]θ ⊂ Hc

p.

On the other hand, it is the projection map Ψ from Lp(N ; �c2(D)) onto Hc
p(R,M)

stated in Corollary 3.7 that yields the inverse direction. �

Theorem 4.2. Let 1 ≤ q < p < ∞. We have

(4.2) [BMOc(R,M),Hc
q(R,M)] q

p
= Hc

p(R,M)

with equivalent norms.



306 G. Hong and Z. Yin

Proof. We will prove the theorem using the same general strategy as in [18].

Step 1. We prove the conclusion for 2 < q < p < ∞. The identity can be
seen easily from the following two inclusions. On the one hand, the operator Φ
from (2.10), together with (2.2), yields

[Hc
1(R,M),Hc

q′(R,M)] q
p
⊂ Hc

p′(R,M).

Then by duality and Corollary 3.8, we have

(4.3) Lc
pMO(R,M) ⊂ [BMOc(R,M), Lc

qMO(R,M)] q
p
.

On the other hand, the operator T identifying Lc
pMO(R,M) as a subspace of

Lp(L∞(N⊗̄B(�2(D)); �c∞) and defined by

(4.4) T (ϕ) = 〈f, wI〉|Itk|−
1
21I⊂It

k
(I)⊗ eI,1,

together with Lemma 2.4, yields

(4.5) [BMOc(R,M), Lc
qMO(R,M)] q

p
⊂ Lc

pMO(R,M).

Step 2. We prove the conclusion for 1 < q < p < ∞. This step can be divided
into two substeps.

Substep 2.1: p > 2. Let p < s < ∞. By Step 1, we have

[BMOc(R,M),Hc
p(R,M)] p

s
= Hc

s(R,M).

On the other hand, by Theorem 4.1, we have

[Hc
q,Hc

s]θ = Hc
p,

where here (and in the rest of the paper) θ denotes the interpolation parameter.
Then Wolff’s interpolation theorem yields the result.

Substep 2.2: p ≤ 2. Let s > 2, then by Substep 2.1, we have

[BMOc(R,M),Hc
p(R,M)] p

s
= Hc

s(R,M).

Together with Lemma 4.1, Wolff’s interpolation theorem yields the result.

Step 3. We prove the conclusion for 1 = q < p < ∞. Take s > max(p, 2).
By Step 2 and duality (see Theorem 4.3.1 in [2]), we get

[Hc
1,Hc

s]θ = Hc
p.

Then together with Step 2, Wolff’s interpolation yields the conclusion. �

Theorem 4.3. For 1 < p < ∞, we have

Hp(R,M) = Lp(N )

with equivalent norms.
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Proof. There are several ways to prove this result. One can prove it by the strategy
used in [20] together with Stein’s inequality (3.5). Here, we just use that Lp(M)
with 1 < p < ∞ is a UMD space and our (wI)I is a complete orthonormal basis.

So, by Theorem 3.8 in [7], we have

‖f‖Lp(N ) �
(
E

∥∥∥ ∑
I∈D

εI
〈f, wI〉
|I| 12

1I

∥∥∥p
Lp(N )

) 1
p

.

We complete the proof for 2 ≤ p < ∞ by Khintchine’s inequalities. Now, let us
prove the case 1 < p < 2. Let f ∈ Hp(R,M), then for any ε > 0, by the definition
of Hp(R,M), there exists a decomposition f = fc + fr such that

‖fc‖Hc
p(R,M) + ‖fr‖Hr

p(R,M) ≤ ‖f‖Hp(R,M) + ε.

Take any g ∈ Lp′(N ), by the results for p′ > 2, the operator-valued Calderón
identity (2.5) yields

|τ
∫

gf∗| = |
∑
I∈D

τ

∫ 〈g, wI〉
|I| 12

1I ·
〈f∗, wI〉
|I| 12

1I |

≤ |
∑
I∈D

τ

∫ 〈g, wI〉
|I| 12

1I ·
〈f∗

c , wI〉
|I| 12

1I |+ |
∑
I∈D

τ

∫ 〈g, wI〉
|I| 12

1I ·
〈f∗

r , wI〉
|I| 12

1I |

≤ ‖Sc(g)‖Lp′(N )‖Sc(fc)‖Lp(N ) + |Sr(g)‖Lp′(N )‖Sr(fr)‖Lp(N )

≤ cp′‖g‖Lp′ (‖f‖Hp(R,M) + ε).

Taking the sup and letting ε → 0, we get the desired result.
Finally, we prove the inverse inequality. Let f ∈ Lp(N ). By duality, we can

find two sequences of functions (Fc,I)I ∈ Lp(N ; �c2(D)) and (Fr,I)I ∈ Lp(N ; �r2(D))

such that Fc,I + Fr,I = 〈f, wI〉|I|−
1
21I and

‖(Fc,I)I‖Lp(N ;�c2(D)) + ‖(Fr,I)I‖Lp(N ;�r2(D)) ≤ ‖f‖Lp(N ).

Let fc = Ψ((Fc,I)I) and fr = Ψ((Fr,I)I). By identity (2.5), we have f = fc+fr.
On the other hand, by the Stein inequality (3.5), we have that ‖fc‖Hc

p(R,M) ≤
‖(Fc,I)I‖Lp(N ;�c2(D)) and ‖fr‖Hr

p(R,M) ≤ ‖(Fr,I)I‖Lp(N ;�r2(D)). So we have found
the desired decomposition of f . �

Theorem 4.4. The following results hold with equivalent norms:

(i) Let 1 ≤ q < p < ∞. We have

(4.6) [BMO(R,M), Lq(N )] q
p
= Lp(N ).

(ii) Let 1 < q < p ≤ ∞. We have

(4.7) [H1(R,M), Lp(N )] p′
q′

= Lq(N ).

(iii) Let 1 < p < ∞. We have

(4.8) [BMO(R,M),H1(R,M)] 1
p
= Lp(N ).
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In order to prove this theorem, we need the following result from the theory of
interpolation. We formulate it here without proof.

Lemma 4.5. Let A0, B0, A1, and B1 be four Banach spaces satisfying the property
needed for interpolation. Then

[A0 +B0, A1 +B1]θ ⊃ [A0, A1]θ + [B0, B1]θ

and
[A0 ∩B0, A1 ∩B1]θ ⊂ [A0, A1]θ ∩ [B0, B1]θ.

Proof of Theorem 4.4. (i) We use a strategy, similar to, but different from, that
used to prove Theorem 4.2.

Step 1. We prove the results for 2 ≤ q < p < ∞. By Theorem 4.3, Theorem 4.2
and Lemma 4.5, we have

[BMO(R,M), Lq(N )] q
p
⊂ Lp(N ).

The inverse direction follows from L∞(N ) ⊂ BMO(R,M):

Lp(N ) = [L∞(N ), Lq(N )] q
p
⊂ [BMO(R,M), Lq(N )] q

p
.

Step 2. We prove the results for 1 ≤ q < 2 ≤ p < ∞. By Step 1, we have

[BMO(R,M), L2(N )] 2
p
= Lp(N ).

Together with
L2(N ) = [Lp(N ), Lq(N )]θ,

Wolff’s interpolation yields the conclusion.

Step 3. We prove the results for 1 ≤ q < p < 2. By Step 2, we have

[BMO(R,M), Lp(N )] p
2
= L2(N ).

Together with
Lp(N ) = [L2(N ), Lq(N )]θ,

Wolff’s interpolation yields the conclusion.

(ii) The results for 1 < q < p < ∞ can be immediately proved by duality and
the partial results in (i). For p = ∞, take q < s < ∞. Then, by Wolff’s argument,
we get the conclusion.

(iii) First, we prove the conclusion for p < 2. By (i) and (ii), we have

[BMO(R,M), Lp(N )] p

p′
= Lp′(N ) and [H1(R,M), Lp′(N )] p

p′
= Lp(N ).

We end with Wolff’s argument. The proof for p > 2 is the same. Finally, when
p = 2, we can take s > 2. By the results for p �= 2 and the reiteration theorem
(see Theorem 4.6.1 in [2]), we get

L2 = [Ls, Ls′ ]θ = [BMO(R,M),H1(R,M)] 1
s
,BMO(R,M),H1(R,M)] 1

s′
]θ

= [BMO(R,M),H1(R,M)]θ.

�
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5. Comparison with Mei’s results

We denote by Hc
p(R,M) the column Hardy space defined in [15] through operator-

valued Lusin square function, and by BMOc(R,M) the column bounded mean
oscillation space appearing in matrix-valued harmonic analysis (see, e.g., [15]). We
have the following result:

Theorem 5.1. We have

BMOc(R,M) = BMOc(R,M)

with equivalent norms. Similar results holds for the row spaces. Consequently,
BMO(R,M) = BMO(R,M) with equivalent norms.

The theorem can be easily seen from the corresponding BMO(R, H)-spaces.
However, we also use the idea in the proof of Theorem 1.2 in [7] to prove the
theorem.

Proof. BMOc(R,M) ⊂ BMOc(R,M). Let ϕ ∈ BMOc(R,M). As in the begin-
ning of the proof of Theorem 1.2 in [7], fix a finite interval I ⊂ R, and consider
the collections of dyadic intervals:

(1) D1 := {J ∈ D; 2|J | > |I|},

(2) D2 := {J ∈ D; 2|J | ≤ |I|, 2J ∩ 2I = ∅},

(3) D3 := {J ∈ D; 2|J | ≤ |I|, 2J ∩ 2I �= ∅}.
Let aJ = 〈ϕ, ωJ 〉. Then we have an a priori formal series

ϕ1(x) =
∑
J∈D1

aJ [ωJ(x)− ωJ(cI)], ϕi(x) =
∑
J∈Di

aJωJ(x), i = 2, 3,

where cI is the center of the interval I. Write ϕI = ϕ1+ϕ2 +ϕ3. By an argument
similar to that in [7], we only need to prove

‖ 1

|I|

∫
I

|ϕI(x)|2dx‖M < ∞.

By scaling we can assume:

sup
I

1

|I| ‖
∑
J⊂I

|aJ |2‖ = 1.

Then we have the obvious bound ‖aJ‖ ≤ |J | 12 for the individual terms.

We have the following estimates for ϕ1:

‖ 1

|I|

∫
I

|ϕ1(x)|2dx‖ ≤ 1

|I|

( ∑
J∈D1

‖aJ‖|ωJ(x) − ωJ(cI)|
)2

dx

≤ c
1

|I|

∫
I

[ ∑
J∈D1

|J | 12 |I||J |− 3
2

(
1 +

dist(I, J)

|J |

)−2]2
dx

= c
[ ∞∑
j=0

∑
|J|∈(2j−1,2j]|I|

|I||J |−1
(
1 +

dist(I, J)

|J |

)−2]2
< ∞.
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For ϕ2,∥∥∥ 1

|I|

∫
I

|ϕ2(x)|2dx
∥∥∥ ≤ 1

|I|

∫
I

‖
∑
D2

aJωJ(x)‖2dx ≤ 1

|I|

∫
I

(∑
D2

‖aJ‖|ωJ(x)|
)2

dx

≤ c
1

|I|

∫
I

[∑
D2

|J | 12 |J |− 1
2

(dist(I, J)
|J |

)−2]2
dx

= c

[ ∞∑
j=1

∑
|J|∈(2−j−1,2−j)|I|,dist(I,J)>2−1|I|

(dist(I, J)
|J |

)−2
]2
< ∞.

And for ϕ3,∥∥∥ 1

|I|

∫
I

|ϕ3(x)|2dx
∥∥∥ ≤ 1

|I|

∥∥∥ ∑
J∈D3

|aJ |2
∥∥∥ ≤ 1

|I|

∥∥∥ ∑
J⊂4I

|aJ |2
∥∥∥ < ∞ .

Hence, we deduce that:

∥∥∥
∫
I

|ϕI(x)|2dx
∥∥∥
M

≤ c

3∑
i=1

∥∥∥
∫
I

|ϕi(x)|2dx
∥∥∥
M

≤ c|I| .

Now we turn to the proof of the inverse direction, BMOc(R,M)⊂BMOc(R,M).
Let ϕ ∈ BMOc(R,M). The proof is very similar to that of Lemma 4.1 in Mei’s
work [15]. For any dyadic interval I ⊂ R, write ϕ = ϕ1 + ϕ2 + ϕ3, where
ϕ1 = (ϕ− ϕ2I)χ2I , ϕ2 = (ϕ − ϕ2I)χ2Ic , ϕ3 = ϕ2I .

Thus ∑
J⊂I

|〈ϕ, ωJ 〉|2 ≤ 2
(∑

J⊂I

|〈ϕ1, ωJ〉|2 +
∑
J⊂I

|〈ϕ2, ωJ〉|2
)
.

We have the following estimates for ϕ1:∥∥∥∑
J⊂I

|〈ϕ1, ωJ〉|2
∥∥∥ ≤

∥∥∥
∫

|ϕ1(x)|2dx
∥∥∥ ≤ c

∥∥∥
∫
2I

|ϕ− ϕ2I |2
∥∥∥ ≤ c |I| .

And for ϕ2,

∥∥∥∑
J⊂I

|〈ϕ2, ωJ〉|2
∥∥∥ =

∥∥∥∑
J⊂I

∣∣ ∞∑
k=1

∫
2k+1I/2kI

ϕ2ωJdx
∣∣2∥∥∥

≤
∥∥∥∑

J⊂I

( ∞∑
k=1

1

22k

∫
2k+1I/2kI

|ϕ2|2
)( ∞∑

k=1

22k
∫
2k+1I/2kI

|ωJ |2
)∥∥∥

≤ c
( ∞∑

k=1

1

22k

∥∥∥
∫
2k+1I

|ϕ− ϕ2I |2
∥∥∥)(∑

J⊂I

∞∑
k=1

22k
∫
2k+1I/2kI

|ωJ |2
)

≤ c |I| ‖ϕ‖2BMOc

∞∑
j=0

2j
∞∑
k=1

∫
2k+1I/2kI

22k
|2−jI|3
|2kI|4 ≤ c |I| .

Therefore, ‖
∑

J⊂I |〈ϕ, ωJ 〉|2‖ ≤ c|I|, which completes our proof. �
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Combined with Theorem 3.3 and Theorem 4.2, we have the following corollary:

Corollary 5.2. For 1 ≤ p < ∞, we have

Hc
p(R,M) = Hc

p(R,M).

Similar results hold for Hr
p and Hr

p , and for Hp and Hp.

If M = C, H1(R,C) is just the usual Hardy space H1(R) on R. H1(R) also has
the following characterization:

H1(R) = {f ∈ L1(R) : H(f) ∈ L1(R)},

where H is the Hilbert transform. For any f ∈ H1(R),

‖f‖H1(R) ≈ ‖f‖L1(R) + ‖H(f)‖L1(R).

Thus H1(R) can be viewed as a subspace of L1(R) ⊕1 L1(R). The latter direct
sum has its natural operator structure as an L1 space. This induces an operator
space structure on H1(R). Although (wI)I∈D is an unconditional basis of H1(R),
Ricard [22] (see also [23]) proved that H1(R) does not have a complete uncon-
ditional basis. However, in noncommutative analysis, one can introduce another
natural operator space structure on H1(R) as follows: S1(H1(R)) = H1(R, B(�2)),
where S1 is the trace class on �2. Then we have the following result. Note that
Ricard [23] obtained a similar result using Hilbert space techniques.

Corollary 5.3. The complete orthogonal system (wI)I∈D of L2(R) is a completely
unconditional basis for H1(R) if we define the operator space structure imposed
on H1(R) by S1(H1(R)) = H1(R, B(�2)).

Proof. Fix a finite subset I ⊂ D. Let Tεf :=
∑

I∈I εI〈f, wI〉wI , where εI = ±1.
By the definition of Hc

1(R,M), the orthogonality of (wI)I∈D yields immediately
that

‖Tεf‖Hc
1
=

∥∥∥(∑
I∈I

|〈f, wI〉|2
|I| 1I(x)

) 1
2
∥∥∥
L1(N )

≤
∥∥∥(∑

I∈D

|〈f, wI〉|2
|I| 1I(x)

) 1
2
∥∥∥
L1(N )

= ‖f‖Hc
1
.

Similarly, the above inequality holds forHr
1(R,M). Now, let f ∈ H1(R,M). Then,

for any ε > 0, there exists a decomposition f = g + h such that

‖g‖Hc
1(R,M) + ‖h‖Hr

1(R,M) ≤ ‖f‖H1(R,M) + ε.

Therefore

‖Tεf‖H1(R,M) ≤ ‖Tεg‖Hc
1(R,M) + ‖Tεh‖Hc

1(R,M)

≤ ‖g‖Hc
1(R,M) + ‖h‖Hr

1(R,M) ≤ ‖f‖H1(R,M) + ε.

Letting ε → 0, we get the result. �
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