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Boundary asymptotic expansions of analytic

self-maps of the unit disk

Vladimir Bolotnikov and Nahum Zobin

Abstract. A characterization of analytic self-maps of the open unit disk in
terms of their Taylor coefficients is due to I. Schur. We present a boundary
analog of this result.

1. Introduction

Analytic self-maps of the open unit disk D have played a prominent role in function
theory beginning with the work of I. Schur [11]. Following the now standard
terminology, we refer to the class of functions f analytic on D and such that
supz∈D

|f(z)| ≤ 1 as the Schur class and denote it by S. Of course this is nothing
else but the unit ball of the space H∞(D). By the maximum modulus principle,
every function f ∈ S is either an analytic map of D into itself or a unimodular
constant function.

One of the results in [11] is the following characterization of Schur class func-
tions in terms of their Taylor coefficients. In its formulation we will make use of
the numbers

γij :=
1

i!j!

∂i+j

∂zi∂z̄j
1

1− |z|2
∣∣∣∣
z=z0

=

min{i,j}∑
�=0

(i + j − �)!

(i − �)!�!(j − �)!
· zj−�

0 z̄i−�
0

(1− |z0|2)i+j−�+1

associated with a point z0 ∈ D, and of the related matrices Γn := [γij ]
n−1
i,j=0 .

Also, given a sequence s = {sj}j≥0 of complex numbers, we let Us
n be the lower

triangular Toeplitz matrix given by

(1.1) U
s
n =

⎡⎢⎢⎢⎢⎣
s0 0 . . . 0

s1 s0
. . .

...
...

. . .
. . . 0

sn−1 . . . s1 s0

⎤⎥⎥⎥⎥⎦ .
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Theorem 1.1. If f(z) =
∑

j≥0 sj(z − z0)
j belongs to S, so that s = {sj}j≥0 is

the sequence of the Taylor coefficients of f(z) at z0 ∈ D, then the matrix

(1.2) Pn = Γn − U
s
nΓnU

s∗
n

is positive semidefinite for all n ≥ 0.

Conversely, if z0 ∈ D and the sequence s = {sj}j≥0 is such that (1.2) holds for
all n ≥ 0, then the power series

∑
j≥0 sj(z − z0)

j extends (uniquely) to a Schur
class function.

In the special case where z0 = 0 (considered by I. Schur) the matrix Γn is the
identity matrix and condition (1.2) takes a particularly elegant form: the Toeplitz
matrices Us

n are contractive for all n ≥ 0.

The objective of this paper is to obtain a boundary analog of the above char-
acterization of Schur. Let T denote the unit circle {z : |z| = 1}. We will write
z →̂ t0 if a point z ∈ D approaches a boundary point t0 ∈ T nontangentially, and
we will write z → t0 if z approaches t0 unrestrictedly in D. Let us assume that
a function f is analytic on D and admits the following nontangential boundary
limits at t0 ∈ T:

(1.3) fj(t0) := lim
z →̂ t0

f (j)(z)/j! = sj for all j ≥ 0.

Then f admits an asymptotic expansion

(1.4) f(z) = s0 + s1(z − t0) + · · ·+ sN (z − t0)
N +O(|z − t0|N+1)

for every N ≥ 0 as z approaches t0 nontangentially. Equation (1.4) is written in a
more compact form as

(1.5) f(z) ∼
∑
j≥0

sj(z − t0)
j .

Aiming at establishing a boundary analog of Theorem 1.1, one should be aware
of two essential distinctions between the interior and the boundary cases. First,
the limits (1.3) do not have to exist for an f ∈ S. Second, even if they exist, the
function f may not be defined uniquely by the asymptotic expansion (1.5) unless
the series

∑
j≥0 sj(z − t0)

j has a positive radius of convergence.

Thus the boundary case suggests an interpolation problem: describe all Schur-
class functions satisfying (1.3) (or equivalently, (1.5)). We will address this issue
on a separate occasion.

Necessary and sufficient conditions for the existence of a function f satisfy-
ing (1.3) are given in Theorem 1.2 below, which is the main result of the paper.
To formulate the result we first introduce some notation and definitions.

First, we let S(n)
t0 , n ≥ 1, denote the class of Schur functions satisfying the

following higher order Carathéodory–Julia condition:

(1.6) f ∈ S(n)
t0

def⇐⇒ f ∈ S and lim inf
z→t0

∂2n−2

∂zn−1∂z̄n−1

1− |f(z)|2
1− |z|2 < ∞.
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The inequality in (1.6) turns out to be equivalent to the Ahern–Clark conditions
(see [1], [5], and [8])

∑
k

1− |ak|2
|t0 − ak|2n +

∫ 2π

0

dμ(θ)

|t0 − eiθ|2n < ∞,

given in terms of the inner-outer factorization of f :

f(z) =
∏
k

āk
ak

· z − ak
1− zāk

· exp
{
−
∫ 2π

0

eiθ + z

eiθ − z
dμ(θ)

}
.

We define S(0)
t0 to be S, and we let S(∞)

t0 :=
⋂

n≥1 S(n)
t0 (observe that the inclusion

S(n+1)
t0 ⊂ S(n)

t0 is proper for every n).

Another relevant object is W+, the Wiener algebra of power series with abso-
lutely converging coefficients:

W+ =
{
f(z) =

∞∑
k=0

bkz
k : ‖f‖W :=

∞∑
k=0

|bk| < ∞
}
.

Since ‖f‖∞ ≤ ‖f‖W , convergence in the norm of W+ implies uniform convergence,
and therefore every function f ∈ W+ can be extended continuously to D. Thus, if
conditions (1.3) hold for a function f ∈ W+, then all the nontangential limits can
be replaced by unrestricted ones.

Given a point t0 ∈ T and a sequence s = {sj}j≥0 of complex numbers, we
introduce a structured n× n matrix

(1.7) P
s
n(t0) =

[
psij

]n
i,j=1

=

⎡⎢⎣ s1 s2 . . . sn
...

...
...

sn sn+1 . . . s2n−1

⎤⎥⎦Ψn(t0)

⎡⎢⎣ s0 . . . sn−1

. . .
...

0 s0

⎤⎥⎦
for every n ≥ 1, where the first factor is a Hankel matrix, the third factor is an
upper triangular Toeplitz matrix (in fact, the adjoint of the matrix Us

n from (1.1)),
and where

Ψn(t0) =

⎡⎢⎢⎢⎢⎢⎢⎣
t0 −t20 · · · (−1)n−1

(
n − 1

0

)
tn0

0 −t30 · · · (−1)n−1
(

n − 1
1

)
tn+1
0

...
. . .

...

0 · · · 0 (−1)n−1
(

n − 1
n − 1

)
t2n−1
0

⎤⎥⎥⎥⎥⎥⎥⎦
is the upper triangular matrix with the entries

(1.8) Ψj� =

{
0, if j > �,

(−1)�−1
(

� − 1
j − 1

)
t�+j−1
0 , if j ≤ �,

(j, � = 1, . . . , n).
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The explicit formulas

(1.9) psij =

j∑
r=1

( r∑
�=1

si+�−1Ψ�r

)
sj−r (i, j ≥ 1)

for the entries of Ps
n(t0) follow directly from (1.8) and (1.7). Observe that the

numbers psij depend only on {t0, s0, . . . , sk} for any pair (i, j) of indices such that
i+ j ≤ k + 1.

The main result of this paper follows:

Theorem 1.2. Given t0 ∈ T and s = {sj}j≥0, there exists a function f ∈ S
satisfying conditions (1.3) if and only if one of the following holds:

(1) |s0| < 1;

(2) |s0| = 1 and there exists an integer n ∈ N such that

(1.10) P
s
n(t0) > 0 and t0 ·

(
psn+1,n − psn,n+1

)
> 0;

(3) |s0| = 1 and

(1.11) P
s
n(t0) ≥ 0 for all n ≥ 1,

where the matrix Ps
n(t0) and the numbers psn+1,n and psn,n+1 are defined in (1.7)

and (1.9), respectively. Moreover,

(a) If |s0| < 1, then for every ε > 0 there are infinitely many functions f ∈ W+

satisfying conditions (1.3), and such that ‖f‖∞ < |s0|+ ε.

(b) In case (2), every function f ∈ S subject to conditions (1.3) belongs to the

set S(n)
t0 \S(n+1)

t0 . There are infinitely many such functions in W+.

(c) In case (3), every function f ∈ S, subject to (1.3), belongs to S(∞)
t0 .

Remark 1.3. The numbers psn+1,n and psn,n+1 are the entries of the structured
matrix Ps

n+1(t0); thus the second inequality in (1.10) implies that Ps
n+1(t0) is not

Hermitian. On the other hand, since the factors Ψn(t0) and Us∗
n in (1.7) are upper

triangular, then for every k < n, the matrix Ps
k(t0) is a leading submatrix of Ps

n(t0).
Therefore, the number n in part (2) of Theorem 1.2 is the greatest positive integer
such that the matrix Ps

n(t0) is positive definite.

Remark 1.4. The existence of a function f ∈ S satisfying condition (1.4) for
a fixed N ≥ 0 was studied in [2]. It was shown that once such a truncated
problem admits a solution, it admits a rational solution as well. Although we
cannot guarantee the existence of a rational solution in the present infinite context,
Theorem 1.2 shows that at least in cases (1) and (2), there exist solutions from the
Wiener algebra. In the course of the proof we will show that there are solutions
which belong to W+ along with all their derivatives.

The outline of the paper is the following: the sufficiency of case (1) in Theo-
rem 1.2 is justified in Section 2; the rest of the proof of the theorem is presented
in Section 3.
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2. The first sufficient condition

Lemma 2.1. Let {bk}k≥1 be a sequence of real numbers. For every ε > 0, there
exists a function f ∈ W+ such that

(2.1) f(1) = 0, f (k)(1) = bk (k ≥ 1) and ‖f‖∞ < ε.

Proof. Our proof is based on a modification of a beautiful construction suggested
by Emile Borel [7] in 1895, which, in turn, was seemingly inspired by a construc-
tion proving that a conditionally convergent series of real numbers can be made
convergent to any given sum by a permutation of its terms (B. Riemann).

Without loss of generality we may assume that b1 �= 0. Indeed, if the prob-
lem (2.1) has a solution for every b1 �= 0, then we can find a function f ∈ W+ with
‖f‖∞ < ε/2 satisfying the interpolation conditions (2.1) with b1 = ε/2. Then the

function f̃(z) = f(z)− ε
2 · z will satisfy the conditions (2.1) with b1 = 0.

Assuming that b1 �= 0, we construct recursively

1. a decreasing sequence {cj}j≥1 of positive numbers such that

(2.2)

∞∑
j=1

cj = ∞ and

∞∑
j=1

cj
j

< ε;

2. an increasing sequence {nk}k≥0 of natural numbers, and a sequence {Bk}k≥1

of nonzero real numbers such that

(2.3)
∣∣∣Bk − sign(Bk)

nk∑
j=nk−1+1

cj

∣∣∣ ≤ cnk
for all k ≥ 1.

In what follows, we use the notation δk := sign(Bk) = Bk/|Bk|. The numbers cj
will be picked from { ε

3j ,
ε
2j } for every j ≥ 1. The conditions (2.2) will be satisfied

for any cj ’s chosen in this way, since

∞∑
j=1

cj ≥
∞∑
j=1

ε

3j
= ∞ and

∞∑
j=1

cj
j

≤
∞∑
j=1

ε

2j2
=

π2ε

12
< ε.

In fact, we start by taking cj = ε
3j for all j ≥ 1, but then in the course of

construction, some of cj ’s will be modified to ε
2j .

To start the recursion, we let n0 = 0 and B1 = b1. For k = 1, we let

(2.4) δ1 := sign(B1) =
B1

|B1| and n1 := min
{
n ∈ N :

n∑
j=1

cj ≥ |B1|
}
.

Note that n1 is well defined due to the first condition in (2.2). By the definition
of n1 we have n1 ≥ 1 and ∣∣∣B1 − δ1

n1∑
j=1

cj

∣∣∣ ≤ cn1 .
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Using n1 and δ1 from (2.4), define the polynomial

p1(z) = δ1

n1∑
�=1

c�
�
z�

and the real number

(2.5) B2 := b2 − p′′1(1) = b2 − δ1

n1∑
�=1

(� − 1)c�.

If B2 �= 0, then its construction is finished. In case the expression on the right-
hand side of (2.5) equals zero, we modify cn1 to cn1 = ε

2n1
. This modification does

not change (2.4), but now, the formula (2.5) defines a nonzero B2. We then let

δ2 := sign(B2) =
B2

|B2| and n2 := min
{
n ∈ N :

n∑
j=n1+1

cj ≥ |B2|
}

which completes the first step of construction. It is clear that n2 ≥ n1 + 1 > n1.

Let us assume that we have already chosen the numbers B1, . . . , Bk ∈ R \ {0}
and 1 ≤ n1 < n2 < · · · < nk. Then we also have the numbers δj = sign(Bj) = ±1
and the sequence {cj}j≥1 where so far cj =

ε
3j for all j with possible exceptions for

j ∈ {n1, . . . , nk} where cj =
ε
2j . Using the above numbers define the polynomial

(2.6) pk(z) =

k∑
j=1

δj

nj∑
�=nj−1+1

c�z
�

�(�− 1) · · · (�− j + 1)

and let

Bk+1 := bk+1 − p
(k+1)
k (1)

= bk+1 −
k∑

j=1

δj

nj∑
�=nj−1+1

�(�− 1) · · · (�− k) c�
�(�− 1) · · · (�− j + 1)

.(2.7)

If the Bk+1 defined above is not zero, then its construction is finished. If the right-
hand side expression in (2.7) vanishes, we modify cnk

to cnk
= ε

2nk
. This modi-

fication does not affect the previous steps, and on the other hand, formula (2.7)
with the modified cnk

defines a nonzero Bk+1. Observe that since 1 ≤ n1 and
ni < ni+1, it follows that ni > i and then we have for every � ≥ nj−1 + 1,

�− j + 1 > nj−1 − (j − 1) > 0,

so that all the denominators in (2.7) are positive. We now let

δk+1 := sign(Bk+1) and nk+1 := min
{
n ∈ N :

n∑
j=nk+1

cj ≥ |Bk+1|
}
.

By the very definition of nk+1, we have nk+1 > nk and

(2.8)
∣∣∣Bk+1 − δk+1

nk+1∑
j=nk+1

cj

∣∣∣ ≤ cnk+1
.
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The construction of the sequences {cj}, {nk} and {Bk} is completed. We now
define the function

(2.9) g(z) =

∞∑
j=1

δj

nj∑
�=nj−1+1

c�z
�

�(�− 1) · · · (�− j + 1)
.

It is readily seen from (2.9) and (2.2) that

(2.10) ‖g‖W =

∞∑
j=1

nj∑
�=nj−1+1

c�
�(�− 1) · · · (� − j + 1)

≤
∞∑
j=1

cj
j

< ε.

Fix an integer k > 0 and let pk be the polynomial given in (2.6) so that

(2.11) g(z) = pk(z) + hk(z),

where

(2.12) hk(z) =

∞∑
j=k+1

δj

nj∑
�=nj−1+1

c�z
�

�(�− 1) · · · (�− j + 1)
.

Since this power series converges uniformly on compact subsets of D, we can dif-
ferentiate it to get

dkhk(z)

dzk
=

∞∑
j=k+1

δj

nj∑
�=nj−1+1

�(�− 1) · · · (�− k + 1)c�z
�−k

�(�− 1) · · · (�− j + 1)

=

∞∑
j=k+1

δj

nj∑
�=nj−1+1

c�z
�−k

(� − k) · · · (� − j + 1)
.

Therefore,∥∥∥dkhk

dzk

∥∥∥
W

=

∞∑
j=k+1

nj∑
�=nj−1+1

c�
(� − k) · · · (� − j + 1)

≤
∞∑

j=k+1

cj
j − k

≤
∞∑

j=k+1

ε

2j(j − k)
=

ε

2k

k∑
j=1

1

j
<

ε

2k
(1 + ln(k + 1)).(2.13)

Thus, h
(k)
k belongs to W+ and hence g

(k)
k belongs to W+ as well. In particular,

h
(k)
k and g

(k)
k are continuous in the closed unit disk and we thus have, from (2.11),

(2.14) g(k)(1) = p
(k)
k (1) + h

(k)
k (1).

Since, by virtue of (2.6),

pk(z) = pk−1(z) + δk

nk∑
�=nk−1+1

c�z
�

�(�− 1) · · · (� − k + 1)
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and hence, p
(k)
k (1) = p

(k)
k−1(1) + δk

∑nk

�=nk−1+1 c�, we conclude, from (2.14),

g(k)(1) = p
(k)
k−1(1) + δk

nk∑
�=nk−1+1

c� + h
(k)
k (1).

Using the definition (2.7) of Bk, we can write the last equality as

g(k)(1) = bk −Bk + δk

nk∑
�=nk−1+1

c� + h
(k)
k (1)

which together with (2.3) gives us the following estimate:

∣∣g(k)(1)− bk
∣∣ ≤ ∣∣∣Bk − δk

nk∑
�=nk−1+1

c�

∣∣∣+ ∣∣h(k)
k (1)

∣∣
≤ cnk

+ ‖h(k)
k ‖W <

ε

2k
(2 + ln(k + 1)) < 2ε,(2.15)

where the third inequality is a consequence of (2.13) and of the inequality cnk
≤

ε
2nk

≤ ε
2k . Furthermore, the function

(2.16) h(z) =

∞∑
k=1

bk − g(k)(1)

k!
(z − 1)k

is entire due to (2.15). Therefore h ∈ W+. We now conclude from (2.16) and (2.15)
that for every z ∈ D,

(2.17) |h(z)| ≤
∞∑
k=1

|bk − g(k)(1)| · 2k
k!

< 2ε(e2 − 1) (z ∈ D).

It follows from (2.10) that

(2.18) |g(1)| ≤ ‖g‖W < ε,

and it is readily seen from (2.16) that

(2.19) h(1) = 0 and h(k)(1) = bk − g(k)(1) for all k ≥ 1.

We now conclude from (2.19) that the function f(z) = g(z) + h(z)− g(1) satisfies
all the interpolation conditions in (2.1). Furthermore, it belongs to W+ since g
and h do. Finally, we can construct such an f with ‖f‖∞ arbitrarily small, since
by (2.10), (2.18) and (2.19),

‖f‖∞ ≤ ‖g‖W + ‖h‖∞ + |g(1)| < ε+ 2ε(e2 − 1) + ε = 2e2ε.

�
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The next theorem proves the sufficiency of condition (1) and part (a) of the
second statement in Theorem 1.2.

Theorem 2.2. Let t0 ∈ T, ε > 0 and s = {sj}j≥0 be given and let us assume
that |s0| < 1. Then there exist infinitely many functions f ∈ W+ satisfying condi-
tions (1.3) and such that ‖f‖∞ < |s0|+ ε.

Proof. We assume without loss of generality that t0 = 1. For every k ≥ 1, we
represent the number sk in the form

sk = b1k + ib2k where bk1, b2k ∈ R.

According to Lemma 2.1, we can find functions f1, f2 ∈ W+ such that

(2.20) fi(1) = 0, f
(k)
i (1) = bik (k ≥ 1) and ‖fi‖∞ < ε/4 (i = 1, 2).

Again by Lemma 2.1, we can find a function h ∈ W+ with ‖h‖∞ < ε/4 and such
that

(2.21) h(t0) = 0, h′(t0) = 1, h(j)(t0) = 0 for j ≥ 2.

Due to the second condition in (2.21), ‖h‖∞ > 0. We thus can find a sequence
{hj}j≥1 of nonzero functions in W+ satisfying conditions (2.21) and such that
‖hj+1‖∞ < ‖hj‖∞ < ‖h‖∞. Then for every j ≥ 1, the function

(2.22) fj(z) = s0 + f1(z) + if2(z) + h(z)− hj(z)

satisfies conditions (1.3) and ‖f‖∞ < |s0| + ε. Observe that the sum of the three
first terms on the right-hand side of (2.22) gives a particular solution of the inter-
polation problem (1.3) while the two last terms produce a solution of the corre-
sponding homogeneous problem for every j ≥ 1. �

3. Completion of the proof of Theorem 1.2

The outline of the rest of the paper is the following. We first prove the sufficiency
of case (2). Then we prove the sufficiency of case (3) and briefly discuss the
determinacy of the problem (i.e., the existence of a unique solution) which may
occur only in case (3). Then we show that in all cases other than (1), (2) and (3),
the problem has no solutions, and finally, we prove parts (b) and (c) from the
second statement of the theorem.

3.1. The sufficiency of case (2)

To justify the desired sufficiency we apply a certain Schur-type reduction. This
reduction applies whenever

(3.1) |s0| = 1 and P
s
n(t0) > 0
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and leads us to an equivalent (in the sense of solvability) Schur-class problem

(3.2) E(z) ∼
∑
j≥0

Ej(z − t0)
j ,

with the target sequence {Ej}j≥0 completely determined by the original sequence
{sj}j≥0. It turns out that the inequality t0 ·

(
psn+1,n − psn,n+1

)
> 0 implies |E0| < 1

and the result will follow from Theorem 2.2. The details are furnished below.

Assuming that the conditions (3.1) are met, we let

T =

⎡⎢⎢⎢⎢⎣
t0 0 . . . 0

1 t0
. . .

...
. . .

. . . 0
0 1 t0

⎤⎥⎥⎥⎥⎦ , E =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ , M =

⎡⎢⎢⎢⎣
s0
s1
...

sn−1

⎤⎥⎥⎥⎦
(T ∈ Cn×n and E ∈ Cn) and let P̃ be the positive definite matrix given by

P̃ := P
s
n +MM∗.

It is not hard to show that the numbers M∗P̃−1M and E∗P̃−1E are less than one.
We let

α =

√
1−M∗P̃−1M, and β =

√
1− E∗P̃−1E

and define the functions

a(z) = E∗(P̃− zPs
n(t0)T

∗)−1M,(3.3)

b(z) = β
(
1− zE∗(P̃− zPs

n(t0)T
∗)−1T−1E

)
,(3.4)

c(z) = α
(
1− zM∗T ∗(P̃− zPs

n(t0)T
∗)−1M

)
,(3.5)

d(z) = zαβM∗(Ps
n(t0))

−1
P̃(P̃− zPs

n(t0)T
∗)−1T−1E.(3.6)

Some of their properties are recalled below.

Theorem 3.1. Let us assume that the conditions (3.1) are met and let a, b, c,
and d be defined as in (3.3)–(3.6). Then,

1. The function S =
[
a b
c d

]
is rational and inner in D. In particular, its entries

(3.3)–(3.6) are rational Schur-class functions analytic on T.

2. aj(t0) := a(j)(t0)/j! = sj for j = 0, . . . , 2n− 1.

3. The functions b and c have zero of multiplicity n+ 1 at t0 and do not have
other zeroes in C. Furthermore,

t2n0 bn(t0) = (−1)n−1cn(t0)d(t0)s0 �= 0.

4. |d(t0)| = 1 and |d(ζ)| < 1 for every ζ ∈ D \ {t0}.
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The first three statements were proved in [4] (see Theorem 6.4 and Lemma 6.5
there). The last statement is a simple consequence of statements (1) and (3).
Indeed, for every ζ ∈ T, the matrix

S(ζ) =

[
a(ζ) b(ζ)
c(ζ) d(ζ)

]
is unitary. Since b(t0) = c(t0) = 0, then |b(t0)| = 1. Since b(ζ)c(ζ) �= 0 for every
ζ ∈ T \ {t0}, it follows that |d(ζ)| < 1. By the maximum modulus principle, the
latter inequality also holds for all ζ ∈ D.

Theorem 3.2. Given t0 ∈ T and s0, . . . , s2n−1, s2n ∈ C, let us assume that the
conditions (3.1) are met. Let a, b, c, and d be the functions given in (3.3)–(3.6).
Then a function f belongs to S and satisfies conditions

(3.7) fj(t0) := lim
z →̂ t0

f (j)(z)/j! = sj for j = 0, . . . , 2n

if and only if it is of the form

(3.8) f(z) = a(z) +
b(z) c(z) E(z)
1 − d(z) E(z)

for some function E ∈ S such that

(3.9) lim
z →̂ t0

E(z) = E0 :=
d(t0) (s2n − a2n(t0))

(−1)n−1 t
2n
0 |cn(t0)|2s0 + s2n − a2n(t0)

.

Furthermore, if psn+1,n and psn,n+1 are the numbers determined from t0 and
s0, . . . , s2n via the formula (1.9) and E0 is defined as in (3.9), then

(3.10) t0 ( p
s
n+1,n − psn,n+1 ) =

|cn(t0)|2(1 − |E0|2)
|d(t0)− E0|2

.

For the proof, see Corollary 4.4 and Lemma 4.6 in [2]. The next theorem
justifies the second sufficient condition in Theorem 1.2.

Theorem 3.3. Let t0 ∈ T, s = {sj}j≥0 and n ≥ 1 satisfy the conditions (1.10).
Then there are infinitely many functions f ∈ S ∩W+ subject to (1.3).

Proof. Every f ∈ S satisfying conditions (1.3) clearly meets conditions (3.7) and
therefore, it is of the form (3.8) for some E ∈ S subject to the boundary condi-
tion (3.9). Furthermore, since the coefficient functions a, b, c, and d are rational
functions analytic in the closed unit disk and since the transformation E → f given
by formula (3.8) is invertible, it follows that f of the form (3.8) admits boundary
limits fj(t0) (nontangential or unrestricted) for all j > 2n if and only if E admits
boundary limits Ej(t0) of the same type for all j ≥ 1. It was shown in Theo-
rem 4.3 of [2] that the limits f2n+1(t0), . . . , f2n+k(t0) are completely determined
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by E1(t0), . . . , Ek(t0) and vice versa. Letting k → ∞ we conclude that f belongs
to S and satisfies conditions (1.3) if and only if it is of the form (3.8) for some
E ∈ S subject to the conditions

(3.11) Ej(t0) = Ej (j ≥ 0),

where E0 is given by (3.9) and all the other Ej’s are uniquely determined from t0
and s = {sj}j≥0. Recall that E0 satisfies equality (3.10) and cn(t0) �= 0.

Since t0
(
psn+1,n − psn,n+1

)
> 0, it follows from (3.10) that |E0| < 1. By Theo-

rem 2.2, there are infinitely many functions E ∈ S∩W+ satisfying conditions (3.11).
For each such E , the function f of the form (3.8) belongs to S and satisfies condi-
tion (1.5). It remains to show that any such f belongs to W+.

Since a, b, c, and d are rational Schur functions, they belong to W+. The
membership of f of the form (3.8) in W+ will follow from Wiener’s theorem once
we have shown that

(3.12) 1− d(z) E(z) �= 0 for all z ∈ D.

Observe that the latter inequality holds for every z ∈ D \ {t0} by part (4) in
Theorem 3.1. On the other hand, since cn(t0) �= 0 and since |d(t0)| = 1, it follows
from (3.9) that d(t0) E(t0) �= 1 which completes the proof of (3.12) and therefore,
of the theorem. �

3.2. The sufficiency of case (3)

The next result justifying the requested sufficiency is known:

Theorem 3.4. Let t0 ∈ T and s = {sj}j≥0 meet conditions (1.11). Then there
exists an f ∈ S subject to (1.3).

Proof. If Ps
n(t0) > 0 for all n ≥ 1, then the existence of f subject to (1.3) was

proved in [10] (see also [9]). This f may be unique or not, depending on the
convergence or divergence of certain series (see Theorems 4.1 and 4.3 in [10]). In the
indeterminate case, the solution set admits a Nevanlinna-type linear fractional
parametrization which we do not recall here.

Now let us assume that Ps
n(t0) ≥ 0 is singular for some n ∈ N. Since Ps

n(t0)
is a leading submatrix of Ps

m(t0) for all m > n, it follows that Ps
m(t0) ≥ 0 is also

singular for all m > n. On the other hand, if |s0| = 1 and Ps
n(t0) and Ps

n(t0)
are both positive semidefinite and singular, then there is a unique function f ∈ S
satisfying (1.3) for j = 0, . . . , 2n− 1; moreover this unique f is a Blaschke product
of degree equal to the rank of Ps

n. Letting n go to infinity, we conclude that the
same finite Blaschke product f of degree equal deg f = minn(rankP

s
n(t0)) satisfies

conditions (1.3) for all j ≥ 0. �
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3.3. Complementary cases

Let us now assume that none of the cases (1)–(3) listed in Theorem 1.2 applies to
the given data t0 ∈ T and s = {sj}j≥0. Then we have exactly one of the following
four cases:

(4) |s0| > 1;

(5) |s0| = 1 and Ps
1(t0) = s1t0s0 �≥ 0;

(6) |s0| = 1 and there is an integer n ≥ 1 such that

P
s
n(t0) ≥ 0, detPs

n(t0) = 0 and P
s
n+1(t0) �≥ 0;

(7) |s0| = 1 and there is an integer n ≥ 1 such that

P
s
n(t0) > 0, P

s
n+1(t0) �≥ 0 and t0 ·

(
psn+1,n − psn,n+1

) ≤ 0,

where the matrices P
s
n(t0), P

s
n+1(t0) and the numbers psn+1,n, p

s
n,n+1 are defined

via formulas (1.7) and (1.9).

As we already mentioned, the solvability criterion for the truncated prob-
lem (1.4) for a fixed N ≥ 0 was established in [2]. It follows from this criterion
that all the cases (4)–(7) above fall into the “negative” side: in each case there is
an N ≥ 0 such that the boundary conditions

fj(t0) := lim
z→t0

f (j)(z)/j! = sj (j = 0, . . . , N)

are satisfied by no Schur-class function f . In case (4), N = 0 since s0 cannot be
equal to the boundary limit of an f ∈ S by the very definition of the class S.
In case (5), N = 1 by the Carathéodory–Julia theorem. In cases (6) and (7),
N = 2n+ 3; we refer to [2] for more details.

In any event, in each of the cases (4)–(7), the infinite problem (1.3) has no
Schur-class solutions. Since the cases (4)–(7) are complementary to the cases (1)–(3)
in Theorem 1.2, and all together cover all the possibilities, the “only if” part in
the first statement of Theorem 1.2 follows.

3.4. The boundary behavior of solutions

The functions of the class S(n)
t0 defined in (1.6) can be characterized in terms of

their boundary angular derivatives as follows:

Theorem 3.5. Let us assume that we are given a function f ∈ S, a point t0 ∈ T

and an integer n ∈ N. Then f belongs to the class S(n)
t0 if and only if the nontan-

gential boundary limits fj(t0) exist for j = 0, . . . , 2n− 1 and satisfy

|f0(t0)| = 1 and P
f
n(t0) ≥ 0,

where the matrix Pf
n(t0) is defined by

P
f
n(t0) =

⎡⎢⎣ f1(t0) . . . fn(t0)
...

...
fn(t0) . . . f2n−1(t0)

⎤⎥⎦Ψn(t0)

⎡⎢⎣ f0(t0) . . . fn−1(t0)
. . .

...

0 f0(t0)

⎤⎥⎦ .
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The proof can be found in [3]. Observe that Pf
n(t0) has the same structure as

the matrix P
s
n(t0) (1.7), but is constructed from the boundary limits fj(t0) of f

rather than from arbitrary parameters sj .

Corollary 3.6. Let us assume that f ∈ S satisfies conditions (1.3) for given t0 ∈ T

and s = {sj}j≥0.

1. If conditions (1.11) are met, then f belongs to S(∞)
t0 .

2. If conditions (1.10) are met, then f belongs to S(n)
t0 \S(n+1)

t0 .

Proof. Since f satisfies conditions (1.3), we obviously have f0(t0) = s0 and Pf
n(t0) =

Ps
n(t0) ≥ 0 for every n ≥ 1. Thus conditions (1.11) tell us that f(t0)| = |s0| = 1

and Pf
n(t0) ≥ 0 for every n ≥ 0. By Theorem 3.5, f belongs to S(n)

t0 for every

n ≥ 1 and thus, f ∈ S(∞)
t0 which completes the proof of part (1). In case the

conditions (1.10) are in force, we again invoke Theorem 3.5 to conclude that f

belongs to S(n)
t0 and does not belong to S(n+1)

t0 . �

3.5. Conclusion

The following summary shows that the proof of Theorem 1.2 is completed. Indeed,
the “if” part of the first statement (that is, the sufficiency of conditions (1)–(3))
was established in Theorems 2.2, 3.3 and 3.4, while the “only if” part was justified
in Subsection 3.3. Part (a) of the second statement is covered by Theorem 2.2 and
statements (b) and (c) are covered by Theorem 3.3 and Corollary 3.6.
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