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On genuine infinite algebraic tensor products

Chi-Keung Ng

Abstract. In this paper, we study genuine infinite tensor products of
some algebraic structures. By a genuine infinite tensor product of vector
spaces, we mean a vector space

⊗
i∈IXi whose linear maps coincide with

multilinear maps on an infinite family {Xi}i∈I of vector spaces. After es-
tablishing its existence, we give a direct sum decomposition of

⊗
i∈IXi over

a set ΩI;X , through which we obtain a more concrete description and some
properties of

⊗
i∈IXi. If {Ai}i∈I is a family of unital ∗-algebras, we de-

fine, through a subgroup Ωut
I;A ⊆ ΩI;A, an interesting subalgebra

⊗ut
i∈IAi.

When all Ai are C∗-algebras or group algebras, it is the linear span of
the tensor products of unitary elements of Ai. Moreover, it is shown that⊗ut

i∈IC is the group algebra of Ωut
I;C. In general,

⊗ut
i∈IAi can be identified

with the algebraic crossed product of a cocycle twisted action of Ωut
I;A. On

the other hand, if {Hi}i∈I is a family of inner product spaces, we define a
Hilbert C∗(Ωut

I;C)-module
⊗̄mod

i∈I Hi, which is the completion of a subspace
⊗unit

i∈I Hi of
⊗

i∈IHi. If χΩut
I;C

is the canonical tracial state on C∗(Ωut
I;C),

then
⊗̄mod

i∈I Hi ⊗χ
Ωut
I;C

C coincides with the Hilbert space
⊗̄φ1

i∈IHi given by

a very elementary algebraic construction and is a natural dilation of the
infinite direct product

∏⊗i∈I Hi as defined by J. von Neumann. We will
show that the canonical representation of

⊗ut
i∈IL(Hi) on

⊗̄φ1

i∈IHi is injec-
tive (note that the canonical representation of

⊗ut
i∈IL(Hi) on

∏⊗i∈I Hi

is not injective). We will also show that if {Ai}i∈I is a family of unital
Hilbert algebras, then so is

⊗ut
i∈IAi.

1. Introduction

In this paper, we study infinite tensor products of some algebraic structures. In the
literature, infinite tensor products are often defined as inductive limit of finite
tensor products (see, e.g., [4], [21] [9], [14], and [15]). As far as we know, the only
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alternative approach so far is the one by J. von Neumann, concerning infinite direct
products of Hilbert spaces (see [20]). Some authors used this approach to define
infinite tensor products of other functional analytic structures (see, e.g., [3], [11]
and [13]). The work of von Neumann attracted the attention of many physicists
who are interested in “quantum mechanics with infinite degrees of freedom”, as well
as mathematicians whose interest is in the field of operator algebras (see, e.g., [1],
[2], [3], [8], [12], [17], and [19]).

However, von Neumann’s approach is not appropriate for purely algebraic ob-
jects. The aim of this article is to study “genuine infinite algebraic tensor products”
(i.e. ones that are defined in terms of multilinear maps instead of through induc-
tive limits) of some algebraic structures. There are several motivations behind
this study.

1. Conceptually speaking, it is natural to define “infinite tensor products” as
the object that produces a unique linear map from a multilinear map on a given
infinite family of objects (see Definition 2.1). As infinite direct products of Hilbert
spaces are important in both physics and mathematics, it is believed that such
infinite tensor products of algebraic structures are also important.

2. We want to construct an infinite tensor product of Hilbert spaces that is
easier for non-analyst to grasp (compare with the infinite direct product as defined
by J. von Neumann; see Lemma 4.2 and Remark 4.7 (d)) and is more natural (see
Theorem 4.8, Example 4.10 and Example 5.6).

3. Given a family of groups {Gi}i∈I , it is well known that the group algebra of
the group⊕

i∈I
Gi :=

{
[gi]i∈I ∈ Πi∈IGi : gi = e except for finite number of i ∈ I

}
is an inductive limit of finite tensor products. However, if one wants to consider
the group algebra C[Πi∈IGi], one is forced to consider a “bigger version of tensor
products” (see Example 3.1).

In this article, the algebraic structures that we consider are vector spaces, uni-
tal ∗-algebras, inner product spaces, and ∗-representations of unital ∗-algebras on
Hilbert spaces. In our study, we discovered some interesting phenomena about
infinite tensor products that do not have counterparts in the case of finite tensor
products. Most of these phenomena relate to a certain object, ΩI;X , defined as
in Remark 2.4 (d), which “encodes the asymptotic information” of a given fam-
ily {Xi}i∈I .

In Section 2, we will begin our study by defining the infinite tensor product
(
⊗

i∈IXi,ΘX) of a family {Xi}i∈I of vector spaces. Two particular concerns are
bases of

⊗
i∈IXi and the relationship between

⊗
i∈IXi and inductive limits of finite

tensor products of {Xi}i∈I (which depend on choices of fixed elements in Πi∈IXi).
In order to do this, we obtain a direct sum decomposition of

⊗
i∈IXi indexed by

a set ΩI;X (see Theorem 2.5) with all the direct summands being inductive limits
of finite tensor products (see Proposition 2.6 (b)). From this, we also obtain that
the canonical map

Ψ :
⊗

i∈I
L(Xi;Yi) → L(

⊗
i∈I
Xi;

⊗
i∈I
Yi)
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is injective (but not surjective). As a consequence,
⊗

i∈IXi is automatically a
faithful module over the big unital commutative algebra

⊗
i∈IC (see Corollary 2.9

and Example 2.10). Moreover, one may regard the canonical map

ΘC : Πi∈IC →
⊗

i∈I
C

as a generalized multiplication (see Example 2.10 (a)). In this sense, one can make
sense of infinite products like (−1)I .

Clearly,
⊗

i∈IAi is a unital ∗-algebra if all Ai are unital ∗-algebras. We will
study in Section 3, a natural ∗-subalgebra

⊗ut
i∈IAi of

⊗
i∈IAi which is a direct

sum over a subgroup Ωut
I;A of the semigroup ΩI;A. The reasons for considering this

subalgebra are that it has good representations (see the discussion after Proposi-
tion 5.1), and it is big enough to contain C[Πi∈IGi] when Ai = C[Gi] for all i ∈ I
(see Example 3.1 (a)). Moreover, if all Ai are generated by their unitary elements
(in particular, if Ai are group algebras or C∗-algebras), then

⊗ut
i∈IAi is the linear

span of the tensor products of unitary elements in Ai. We will show that
⊗ut

i∈IAi

can be identified with the crossed products of some twisted actions in the sense
of Busby and Smith (i.e., a cocycle action with a 2-cocycle) of Ωut

I;A on
⊗e

i∈IAi

(the unital ∗-algebra inductive limit of finite tensor products of Ai). Moreover, it is
shown that

⊗ut
i∈IC can be identified with the group algebra of Ωut

I;C (Corollary 3.4).
We will also study the center of

⊗ut
i∈IAi in the case when Ai is generated by its

unitary elements (for all i ∈ I).
In Section 4, we will consider tensor products of inner product spaces. If {Hi}i∈I

is a family of inner product spaces, we define a natural inner product on a sub-
space

⊗unit
i∈I Hi of

⊗
i∈IHi (see Lemma 4.2 (b)). In the case of Hilbert spaces, the

completion
⊗̄φ1

i∈IHi of
⊗unit

i∈I Hi is a “natural dilation” of the infinite direct product∏⊗i∈I Hi as defined by J. von Neumann in [20] (see Remark 4.7 (b)). Note that
the construction for

⊗̄φ1

i∈IHi is totally algebraical and is more natural (see Exam-
ple 4.10 and Example 5.6). Note also that one can construct

∏⊗i∈IHi in a similar
way as

⊗̄φ1

i∈IHi (see Remark 4.7 (d)). On the other hand, there is an inner product

C[Ωut
I;C]-module structure on

⊗unit
i∈I Hi which produces

⊗̄φ1

i∈IHi (see Theorem 4.8),
as well as many other pre-inner products on

⊗unit
i∈I Hi (see Remark 4.9 (a)).

Section 5 will be devoted to the study of ∗-representations of unital ∗-algebras.
More precisely, if Ψi : Ai → L(Hi) is a unital ∗-representation (i ∈ I), we define a
canonical ∗-representation⊗φ1

i∈I
Ψi :

⊗ut

i∈I
Ai → L(⊗̄φ1

i∈I
Hi

)
.

We will show in Theorem 5.3 (c) that if all the Ψi are injective, then
⊗φ1

i∈IΨi is also
injective. This is equivalent to the canonical ∗-representations of

⊗ut
i∈IL(Hi) on⊗̄φ1

i∈IHi being injective, and is related to the “strong faithfulness” of the canonical
action of Ωut

I;L(H) on Ωunit
I;H (see Remark 5.4 (b)). Note however, that the corre-

sponding tensor type representation of
⊗ut

i∈IL(Hi) on
∏⊗i∈I Hi is not injective.
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Consequently, if (Hi, πi) is a unitary representation of a group Gi that induces
an injective ∗-representation of C[Gi] on Hi (i ∈ I), then we obtain an injective
“tensor type” ∗-representation of C[Πi∈IGi] on

⊗̄φ1

i∈IHi (see Corollary 5.7). On

the other hand, we will show that
⊕

ρ∈Πi∈IS(Ai)

(⊗̄φ1

i∈IHρi ,
⊗φ1

i∈Iπρi

)
is an injec-

tive ∗-representation of
⊗ut

i∈IAi when all the Ai are C∗-algebras (Corollary 5.9).
Finally, we show that if all the Ai are unital Hilbert algebras, then so is

⊗ut
i∈IAi.

Notation 1.1. i) In this article, all the vector spaces, algebras as well as inner
product spaces are over the complex field C, although some results remain valid if
one considers the real field instead.

ii) Throughout this article, I is an infinite set, and F is the set of all non-empty
finite subsets of I.

iii) For any vector space X , we write X× := X \ {0} and define X∗ to be the
set of linear functionals on X . If Y is another vector space, we denote by X ⊗ Y
and L(X ;Y ) respectively, the algebraic tensor product of X and Y , and the set of
linear maps from X to Y . We also write L(X) := L(X ;X).

iv) If {Xi}i∈I is a family of vector spaces and x ∈ Πi∈IXi, we denote by xi
the “ith-coordinate” of x (i.e. x = [xi]i∈I). If x, y ∈ Πi∈IXi are such that xi = yi
except for a finite number of i ∈ I, we write

xi = yi e.f.

v) If V is a normed space, we denote by L(V ) and V ′ the set of bounded linear
operators and the set of bounded linear functionals, respectively, on V . Moreover,
we set S1(V ) := {x ∈ V : ‖x‖ = 1} and B1(V ) := {x ∈ V : ‖x‖ ≤ 1}.

vi) If A is a unital ∗-algebra, we denote by eA the identity of A and write
UA := {a ∈ A : a∗a = eA = aa∗}.

2. Tensor products of vector spaces

In this section, {Xi}i∈I and {Yi}i∈I are families of non-zero vector spaces.

Definition 2.1. Let Y be a vector space. A map Φ : Πi∈IXi → Y is said to
be multilinear if Φ is linear on each variable. Suppose that

⊗
i∈I Xi is a vector

space and ΘX : Πi∈IXi →
⊗

i∈I Xi is a multilinear map such that for any vector
space Y and any multilinear map Φ : Πi∈IXi → Y , there exists a unique linear
map Φ̃ :

⊗
i∈I Xi → Y with Φ = Φ̃ ◦ ΘX . Then

(⊗
i∈I Xi,ΘX

)
is called the

tensor product of {Xi}i∈I . We will denote ⊗i∈I xi := ΘX(x) (x ∈ Πi∈IXi) and set
X⊗I :=

⊗
i∈I Xi if all Xi are equal to the same vector space X .

Let us first give the following simple example showing that non trivial multi-
linear maps with an infinite number of variables do exist. They are also crucial for
some constructions later on.
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Example 2.2. (a) Let Π1
i∈IC := {β ∈ Πi∈IC : βi = 1 e.f.} and set

ϕ1(β) :=

{
Πi∈Iβi if β ∈ Π1

i∈IC,

0 otherwise.

It is not hard to check that ϕ1 is a non-zero multilinear map from Πi∈IC to C. If
φ1 :

⊗
i∈IC → C is the linear functional induced by ϕ1 (the existence of

⊗
i∈IC

will be established in Proposition 2.3 (a)), then φ1 is an involutive unital map.
(b) Let Π0

i∈IC := {β ∈ Πi∈IC :
∑

i∈I |βi − 1| < ∞}. For each β ∈ Π0
i∈IC,

the net {Πi∈Fβi}F∈F converges to a complex number, denoted by Πi∈Iβi (see,
e.g., 2.4.1 in [20]). We define ϕ0(β) := Πi∈Iβi whenever β ∈ Π0

i∈IC and set
ϕ0|Πi∈IC\Π0

i∈IC
≡ 0. As in part (a), ϕ0 induces an involutive unital linear functional

φ0 on
⊗

i∈IC.

Clearly, infinite tensor products are unique (up to linear bijections) if they
exist. The existence of infinite tensor products follows from a similar argument as
that for finite tensor products, but we give an outline here for future reference.

Proposition 2.3. (a) The tensor product
(⊗

i∈I Xi,ΘX

)
exists.

(b) If {Ai}i∈I is a family of algebras (respectively, ∗-algebras), then
⊗

i∈I Ai

is an algebra (respectively, a ∗-algebra) with (⊗i∈I ai)(⊗i∈I bi) := ⊗i∈I aibi (and
(⊗i∈I ai)

∗ := (⊗i∈I a
∗
i )) for a, b ∈ Πi∈IAi.

(c) If Ψi : Ai → L(Xi) is a homomorphism for each i ∈ I, there is a canonical
homomorphism

⊗̃
i∈IΨi :

⊗
i∈I Ai → L

(⊗
i∈I Xi

)
such that

(⊗̃
i∈I

Ψi

)
(⊗i∈I ai)⊗i∈I xi = ⊗i∈I Ψi(ai)xi (a ∈ Πi∈IAi;x ∈ Πi∈IXi).

(d) If A =
⊕∞

n=0An is a graded algebra and
⊕∞

n=0Mn is a graded left A-
module, then

⊕∞
n=0

⊗
k≥nMk is a graded A-module with

am(⊗k≥nxk) = ⊗k≥namxk ∈
⊗

k≥m+n

Mk(am ∈ Am;x ∈ Πk≥nMk).

Proof. Parts (b), (c) and (d) follow from the universal property of tensor products,
and we will only give a brief account for part (a). Let V be the free vector space
generated by elements in Πi∈IXi and let Θ0 : Πi∈IXi → V be the canonical map.
Suppose that W := spanW0, where

W0 :=
{
λΘ0(u) + Θ0(v)−Θ0(w) : λ ∈ C;u, v, w ∈ Πi∈IXi; ∃i0 ∈ I with

λui0 + vi0 = wi0 and uj = vj = wj , ∀j ∈ I \ {i0}
}
.(2.1)

If we put
⊗

i∈I Xi := V/W , and set ΘX to be the composition of Θ0 with the
quotient map from V to V/W , then they will satisfy the requirement in Defini-
tion 2.1. �
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In the following remark, we list some observations that will be used implicitly
throughout this article.

Remark 2.4. (a) As ΘX is multilinear,
⊗

i∈IXi = spanΘX

(
Πi∈IX

×
i

)
.

(b) If I1 and I2 are non-empty disjoint subsets of I with I = I1 ∪ I2, it follows,
from the universal property, that

⊗
i∈I Xi

∼= (⊗
i∈I1

Xi

) ⊗ (⊗
j∈I2

Xj

)
canoni-

cally.
(c)

⊗
i∈I(Xi ⊗ Yi) ∼= (

⊗
i∈IXi)⊗ (

⊗
i∈IYi) canonically.

(d) For any x, y ∈ Πi∈IX
×
i , we write

x ∼ y if xi = yi e.f.

Obviously, ∼ is an equivalence relation on Πi∈IX
×
i , and we set [x]∼ to be the

equivalence class of x ∈ Πi∈IX
×
i . Let ΩI;X be the collection of such equivalence

classes. It is not hard to see that ΩI;C is a quotient group of Πi∈IC×, and that it
acts freely on ΩI;X .

(e) The element ⊗i∈I 1 ∈ C⊗I is non-zero. In fact, if ⊗i∈I 1 = 0, then C⊗I = (0)
(by Proposition 2.3 (b)), and this implies the only multilinear map from Πi∈IC to C
is zero, which contradicts Example 2.2.

The “asymptotic object” ΩI;X defined in (d) above is crucial in the study of
genuine infinite tensor products, as can be seen from our next result. Let us first
give some more notation here. For every u ∈ Πi∈IX

×
i , we set

Πu
i∈IXi := {x ∈ Πi∈IXi : x ∼ u} and

⊗u

i∈I
Xi := spanΘX(Πu

i∈IXi).

If u ∼ v, then Πu
i∈IXi = Πv

i∈IXi, and we will also write Π
[u]∼
i∈I Xi := Πu

i∈IXi

and
⊗[u]∼

i∈I Xi :=
⊗u

i∈I Xi.

Theorem 2.5.
⊗

i∈I Xi =
⊕

ω∈ΩI;X

⊗ω
i∈I Xi.

Proof. Suppose that x(1), . . . , x(n) ∈ Πi∈IX
×
i and that 0 = n0 < · · · < nN = n

is a sequence satisfying x(nk+1) ∼ · · · ∼ x(nk+1) for k ∈ {0, . . . , N − 1}, but
x(nk) � x(nl) whenever 1 ≤ k �= l ≤ N . We first show that if ν1, . . . , νn ∈ C
with

∑n
l=1 νlΘX(x(l)) = 0, then∑nk+1

l=nk+1
νlΘX(x(l)) = 0 (k = 0, . . . , N − 1).

In fact, by the proof of Proposition 2.3 (a), there exist m ∈ N, μ1, . . . , μm ∈ C
and λkΘ0(u

(k)) + Θ0(v
(k))−Θ0(w

(k)) ∈W0 (k = 1, . . . ,m) such that∑n

l=1
νlΘ0(x

(l)) =
∑m

k=1
μk

(
λkΘ0(u

(k)) + Θ0(v
(k))−Θ0(w

(k))
)
.

Observe that if one of the elements in {u(k), v(k), w(k)} is equivalent to x(1) (un-
der ∼), then so are the other two (see (2.1)). After renaming, one may assume
that u(k) ∼ v(k) ∼ w(k) ∼ x(1) for k = 1, . . . ,m1, but none of u(k), v(k) and w(k) is
equivalent to x(1) when k ∈ {m1 + 1, . . . ,m}.
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Since the two sets

{x(n1+1), . . . , x(n)}∪{u(m1+1), . . . , u(m)}∪{v(m1+1), . . . , v(m)}∪{w(m1+1), . . . , w(m)}

and

{x(1), . . . , x(n1)} ∪ {u(1), . . . , u(m1)} ∪ {v(1), . . . , v(m1)} ∪ {w(1), . . . , w(m1)}

are disjoint and elements in Θ0 (Πi∈IXi) are linearly independent in V , we have∑n1

l=1
νlΘ0(x

(l)) −
∑m1

k=1
μk

(
λkΘ0(u

(k)) + Θ0(v
(k))−Θ0(w

(k))
)

= 0.

This implies that
∑n1

l=1 νlΘX(x(l)) = 0. Similarly,
∑nk+1

l=nk+1 νlΘX(x(l)) = 0 for
k = 1, . . . , N − 1.

The above shows that( ωM⊗
i∈I

Xi

)
∩
(M−1∑

k=1

ωk⊗
i∈I

Xi

)
= {0}

when ω1, . . . , ωM are distinct elements in ΩI;X . On the other hand, for every
x ∈ Πi∈IX

×
i , one has ΘX(x) ∈ ⊗[x]∼

i∈I Xi. These give the required equality. �

For any F ∈ F and u ∈ Πi∈IX
×
i , one has a linear map

Ju
F :

⊗
i∈F

Xi −→
⊗u

i∈I
Xi

given by Ju
F (⊗i∈F xi) := ⊗j∈I x̃j (xi ∈ Xi), where x̃j := xj when j ∈ F , and

x̃j := uj when j ∈ I \ F .

For any F,G ∈ F with F ⊆ G, a similar construction gives a linear map Ju
G;F :⊗

i∈F Xi → ⊗
i∈GXi. It is clear that

(⊗
i∈F Xi, J

u
G;F

)
F⊆G∈F

is an inductive
system in the category of vector spaces with linear maps as morphisms.

Proposition 2.6. (a) Ju
F is injective for any u ∈ Πi∈IX

×
i and F ∈ F. Conse-

quently, ΘX(u) �= 0.
(b) The inductive limit of

(⊗
i∈F Xi, J

u
G;F

)
F⊆G∈F

is
(⊗u

i∈I Xi, {Ju
F }F∈F

)
.

Proof. (a) Suppose that a ∈ kerJu
F and ψ ∈ (

⊗
i∈F Xi)

∗. For each j ∈ I \ F ,
choose fj ∈ X∗

j with fj(uj) = 1. Remark 2.4 (b) and the universal property give a
linear map ψ̌ :

⊗
i∈I Xi → C⊗I satisfying

ψ̌(⊗i∈Ixi) = ψ(⊗i∈F xi)
(⊗j∈I\F fj(xj)

)
(x ∈ Πi∈IXi).

Thus, ψ(a)(⊗i∈I 1) = ψ̌(Ju
F (a)) = 0, which implies that a = 0 (as ψ is arbitrary)

as required. On the other hand, if i0 ∈ I, then ΘX(u) = Ju
{i0}(ui0) �= 0.

(b) This follows directly from part (a). �
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Part (b) of the above implies that ΘX(Cω) is a basis for
⊗ω

i∈IXi, where Cω is
as defined in the following result.

Corollary 2.7. (a) Let c : ΩI;X → Πi∈IX
×
i be a cross section. For each ω ∈ ΩI;X

and i ∈ I, we pick a basis Bω
i of Xi that contains c(ω)i and set

Cω := {x ∈ Πω
i∈IXi : xi ∈ Bω

i , ∀i ∈ I}.

If C :=
⋃

ω∈ΩI;X
Cω, then ΘX(C) is a basis for

⊗
i∈I Xi.

(b) If Φi : Xi → Yi is an injective linear map (i ∈ I), the induced linear map⊗
i∈IΦi :

⊗
i∈IXi →

⊗
i∈IYi is injective.

Proposition 2.8. The map Ψ :
⊗

i∈IL(Xi;Yi) → L(
⊗

i∈IXi;
⊗

i∈IYi) (given by
the universal property) is injective.

Proof. Suppose that T (1), . . . , T (n) ∈ Πi∈IL(Xi;Yi)
× are mutually inequivalent ele-

ments (under ∼), F ∈ F, R(1), . . . , R(n) ∈ ⊗
i∈F L(Xi;Yi) with S(k) := JT (k)

F (R(k))
(k = 1, . . . , n) satisfying

Ψ
(∑n

k=1
S(k)

)
= 0.

Using an induction argument, it suffices to show that S(1) = 0.
If n = 1, we take any x ∈ Πi∈IX

×
i with T

(1)
i xi �= 0 (i ∈ I). If n > 1, we claim

that there is x ∈ Πi∈IX
×
i such that

[T
(1)
i xi]i∈I ∈ Πi∈IY

×
i and [T

(k)
i xi]i∈I � [T

(1)
i xi]i∈I (k = 2, . . . , n).

In fact, let Ik := {i ∈ I : T
(k)
i �= T

(1)
i }, which is an infinite set for any k = 2, . . . , n.

For any i ∈ I, we put Ni := {k ∈ {2, . . . , n} : i ∈ Ik} and take any xi ∈
Xi \

(⋃
k∈Ni

ker(T
(k)
i − T

(1)
i ) ∪ kerT

(1)
i

)
(note that Xi cannot be a finite union

of proper subspaces). Thus, T (1)
i xi �= 0 (for each i ∈ I) and T

(k)
i xi �= T

(1)
i xi (for

k ∈ {2, . . . , n} and i ∈ Ik).
Now, we have

Ψ(S(1))
(⊗x

i∈I
Xi

) ∩ (∑n

k=2
Ψ(S(k))

(⊗x

i∈I
Xi

))
= (0)

by Theorem 2.5 and the fact that Ψ(S(l))
(⊗x

i∈IXi

) ∈ ⊗y(l)

i∈IYi, where y(l)i = T
(l)
i xi

(i ∈ I; l = 1, . . . , n). Consequently, Ψ(S(1))
∣∣⊗x

i∈IXi
= 0. As T (1)

i xi �= 0 (i ∈ I), it

is easy to see that R(1) = 0 as required. �

Note that Ψ is not surjective even if Xi = Yi = C (i ∈ I) since in this case, Ψ
is a homomorphism and

⊗
i∈IC is commutative while L(

⊗
i∈IC) is not.

The following result follows from Propositions 2.3 (c) and 2.8 as well as Corol-
lary 2.7 (b). It says that an infinite tensor product of vector spaces is automatically
a faithful module over a big commutative algebra.
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Corollary 2.9. If Xi is a faithful Ai-module (i ∈ I), then
⊗

i∈IXi is a faithful⊗
i∈IAi-module. In particular,

⊗
i∈I Yi is a faithful unital C⊗I-module.

Example 2.10. (a) If β ∈ Πi∈IC×, then
⊗β

i∈IC = C · ⊗i∈I βi. In fact, for any
F ∈ F and μi ∈ C (i ∈ F ), we have Jβ

F (⊗i∈F μi) = (Πi∈F μi/βi) (⊗i∈I βi).

(b) For n ∈ N, let I1, . . . , In be infinite disjoint subsets of I with I =
⋃n

k=1 Ik
and β = (β1, . . . , βn) ∈ (C×)n. Define β̃ ∈ Πi∈IC× by β̃i = βk whenever i ∈ Ik.
Then β �→ [β̃]∼ is an injective group homomorphism from (C×)n to ΩI;C.

(c) Let G be a subgroup of Tn ⊆ (C×)n (where T := {t ∈ C : |t| = 1}). If
β(1), . . . , β(m) are distinct elements in G and β̃(1), . . . , β̃(m) ∈ Πi∈IC× are as in

part (b), then ⊗i∈I β̃
(1)
i , . . . ,⊗i∈I

˜
β
(m)
i are linearly independent in C⊗I . Therefore,

the ∗-subalgebra of C⊗I generated by {⊗i∈I β̃i : β ∈ G} is ∗-isomorphic to the
group algebra C[G].

As ⊗i∈I αi = (Πi∈Iαi)(⊗i∈I 1) if αi = 1 e.f., one may regard ⊗i∈I αi as a
generalization of the product. In this case, one can consider infinite products
like (−1)I .

3. Tensor products of unital ∗-algebras

Throughout this section, Ai is a unital ∗-algebra with identity ei (i ∈ I), and we
set Ωut

I;A := Πi∈IUAi/ ∼.

Notice that in this case, ΩI;A is a ∗-semigroup with identity and Ωut
I;A can

be regarded as a subgroup of ΩI;A with the inverse being the involution on ΩI;A.
Moreover,

⊗
i∈I Ai is a ΩI;A-graded ∗-algebra in the sense that for any ω, ω′ ∈ ΩI;A,

(3.1)
(⊗ω

i∈I
Ai

)
·
(⊗ω′

i∈I
Ai

)
⊆

⊗ωω′

i∈I
Ai and

(⊗ω

i∈I
Ai

)∗
⊆

⊗ω∗

i∈I
Ai.

By Proposition 2.6 (b),
⊗e

i∈IAi can be identified with the unital ∗-algebra
inductive limit of finite tensor products of Ai. We will study the following ∗-sub-
algebra that contains

⊗e
i∈IAi:⊗ut

i∈I
Ai :=

⊕
ω∈Ωut

I;A

⊗ω

i∈I
Ai.

The motivation for considering this subalgebra is partially Example 3.1 (a) be-
low, and partially because it has good representations (see the discussion after
Proposition 5.1 below). Moreover, if all the Ai are linear spans of UAi (in particu-
lar, if they are C∗-algebras or group algebras), then

⊗ut
i∈IAi is the linear span of

ΘA(Πi∈IUAi). If Ai = A for all i ∈ I, we write A⊗I
ut :=

⊗ut
i∈IAi.
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Example 3.1. (a) Let Gi be a group and C[Gi] be its group algebra (i ∈ I).
If Λ : Πi∈IGi → Πi∈IUC[Gi] is the canonical map, then λ := ΘC[G] ◦ Λ gives a
∗-isomorphism from C[Πi∈IGi] to the ∗-subalgebra⊗Λ(Πi∈IGi)

i∈I
C[Gi] :=

∑
t∈Πi∈IGi

⊗Λ(t)

i∈I
C[Gi] ⊆

⊗ut

i∈I
C[Gi].

In fact, λ induces a ∗-homomorphism from C[Πi∈IGi] to
⊗ut

i∈IC[Gi]. Let q :
Πi∈IGi → Πi∈IGi/⊕i∈IGi be the quotient map. For a fixed s ∈ Πi∈IGi, if we set⊕s

i∈I
Gi :=

{
t ∈ Πi∈IGi : q(t) = q(s)

}
,

then s−1
(⊕s

i∈I Gi

)
=

⊕
i∈I Gi. Thus, {λ(t) : t ∈ ⊕s

i∈I Gi} is a set of linearly inde-
pendent elements in

⊗
i∈IC[Gi] (as λ|C[⊕i∈I Gi] is a bijection onto

⊗e
i∈IC[Gi]). On

the other hand, if s(1), . . . , s(n) ∈ Πi∈IGi are such that q(s(k)) �= q(s(l)) whenever
k �= l, then λ(s(1)), . . . , λ(s(n)) are linearly independent in

⊗
i∈IC[Gi] (see Theo-

rem 2.5). Consequently, {λ(t) : t ∈ Πi∈IGi} form a basis for
⊗Λ(Πi∈IGi)

i∈I C[Gi].
(b) It is well known that there is a twisted action (α, u), in the sense of

Busby and Smith, of ΩI;G := Πi∈IGi/⊕i∈IGi on C[
⊕

i∈I Gi] ∼= ⊗e
i∈IC[Gi]

(see 2.1 in [5]) such that C[Πi∈IGi] is ∗-isomorphic to the algebraic crossed product⊗e
i∈IC[Gi]�α,u ΩI;G.

There exists a canonical action Ξ of Πi∈IUAi on
⊗ut

i∈IAi given by inner auto-
morphisms, i.e.

Ξu(a) := (⊗i∈I ui) · a · (⊗i∈I u
∗
i )

(
u ∈ Πi∈IUAi ; a ∈

⊗ut

i∈I
Ai

)
.

This induces an action Ξe of Πi∈IUAi on the subalgebra
⊗e

i∈IAi. The following
result gives an identification of

⊗ut
i∈IAi as the algebraic crossed product (see, e.g.,

page 166 of [16]) of a cocycle twisted action (i.e., a twisted action in the sense of
Busby and Smith) of Ωut

I;A on
⊗e

i∈IAi induced by Ξe.

Before we give this result, let us recall that an abelian group G is divisible if
for any g ∈ G and n ∈ N, there is h ∈ G with g = hn.

Theorem 3.2. (a) There is a cocycle twisted action (Ξ̌,m) of Ωut
I;A on

⊗e
i∈IAi

such that
⊗ut

i∈IAi is Ωut
I;A-graded ∗-isomorphic to (

⊗e
i∈IAi)�Ξ̌,m Ωut

I;A.

(b) Suppose that all the Ai are commutative. If
⊗e

i∈IAi is a unital ∗-subalgebra
of a commutative ∗-algebra B with UB being divisible,

⊗ut
i∈IAi is Ωut

I;A-graded
∗-isomorphic to a unital ∗-subalgebra of B⊗C[Ωut

I;A]. If U⊗
e
i∈IAi

is itself divisible,⊗ut
i∈IAi

∼= (
⊗e

i∈IAi)⊗ C[Ωut
I;A] as Ωut

I;A-graded ∗-algebras.

Proof. Let c : Ωut
I;A → Πi∈IUAi be a cross section with c([e]∼) = e.

(a) For any μ, ν ∈ Ωut
I;A, we set

Ξ̌μ := Ξe
c(μ) and m(μ, ν) := ⊗i∈I c(μ)ic(ν)ic(μν)

−1
i .
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As c(μ)c(ν) ∼ c(μν), we have m(μ, ν) ∈ ⊗e
i∈IAi. It is easy to check that (Ξ̌,m)

is a twisted action in the sense of Busby and Smith. Furthermore, we define
Ψ : (

⊗e
i∈IAi)�Ξ̌,m Ωut

I;A → ⊗ut
i∈IAi by

Ψ(f) :=
∑

ω∈Ωut
I;A

f(ω)(⊗i∈I c(ω)i)
(
f ∈ (

⊗e

i∈I
Ai)�Ξ̌,m Ωut

I;A

)
.

It is not hard to verify that Ψ is a bijective Ωut
I;A-graded ∗-homomorphism.

(b) Let Πe
i∈IUAi := Πe

i∈IAi ∩Πi∈IUAi . By Baer’s theorem, ΘA|Πe
i∈IUAi

can be
extended to a group homomorphism ϕ : Πi∈IUAi → UB. Since

ϕ(c(μ))ϕ(c(ν))ϕ(c(μν))−1 = ⊗i∈I c(μ)ic(ν)ic(μν)
−1
i (μ, ν ∈ Ωut

I;A),

the map Φ :
⊗ut

i∈IAi → B ⊗ C[Ωut
I;A] given by

(3.2) Φ(a) := (a · ⊗i∈I c(ω)
−1
i )ϕ(c(ω)) ⊗ λ(ω)

(
a ∈

⊗ω

i∈I
Ai;ω ∈ Ωut

I;A

)
is a Ωut

I;A-graded ∗-homomorphism. If
∑

ω∈Ωut
I;A
aω ∈ kerΦ (with aω ∈ ⊗ω

i∈IAi),

then for every ω ∈ Ωut
I;A, one has (aω · ⊗i∈I c(ω)

−1
i )ϕ(c(ω)) = 0, which implies

aω = 0, and hence Φ is injective. The image of Φ is the linear span of{
bϕ(c(ω))⊗ λ(ω) : b ∈

⊗e

i∈I
Ai;ω ∈ Ωut

I;A

}
,

and it is clear that Φ is surjective if B =
⊗e

i∈IAi. �

Remark 3.3. (a) The cocycle twisted action (Ξ̌,m) depends on the choice of a
cross section, and different cross sections may give different twisted actions (al-
though their crossed products are all isomorphic). On the other hand, the map Φ
in part (b) also depends on the choice of a cross section as well as the choice of an
extension of ΘA|Πe

i∈IUAi
.

(b) If Si is a set and Ai is a ∗-subalgebra of �∞(Si) (i ∈ I), then by Theo-
rem 3.2 (b),

⊗ut
i∈IAi is a ∗-subalgebra of �∞(Πi∈ISi)⊗C[Ωut

I;A]. Our first proof for
this fact use 18.4 in [6] and 7.1 in [7].

(c) If all the Ai are commutative, then
⊗ut

i∈IAi
∼= (

⊗e
i∈IAi)⊗C[Ωut

I;A] as Ωut
I;A-

graded ∗-algebras if and only if there is a group homomorphism π : Ωut
I;A → U⊗

ut
i∈IAi

such that π(ω) ∈ ⊗ω
i∈IAi (ω ∈ Ωut

I;A). In fact, if such a π exists, one may replace
(a · ⊗i∈I c(ω)

−1
i )ϕ(c(ω)) in (3.2) with aπ(ω−1) and show that the corresponding Φ

is a ∗-isomorphism.

Clearly, the second statement of Theorem 3.2 (b) applies to the case when
Ai = Cni for some ni ∈ N (i ∈ I). In particular, Theorem 3.2 (b) and its argument
give the following corollary.

Corollary 3.4. If ϕ1 is as in Example 2.2 (a) and ϕ : Πi∈IT → T is a group ho-
momorphism that extends ϕ1|Π1

i∈IT
(its existence is guaranteed by Baer’s theorem),

then Φ(⊗i∈I αi) := ϕ(α)λ([α]∼) (α ∈ Πi∈IT) is a well-defined ∗-isomorphism from
C⊗I

ut onto C[Ωut
I;C].
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Conversely, it is clear that if ϕ : Πi∈IT → T is any map such that Φ as defined
in the above is a well-defined ∗-isomorphism, then ϕ is a group homomorphism
extending ϕ1|Π1

i∈IT
. On the other hand, there is a simpler proof for Corollary 3.4.

In fact, for α, β ∈ Πi∈IT with α ∼ β, one has ϕ(α)−1 · ⊗i∈I αi = ϕ(β)−1 · ⊗i∈I βi.
Thus, [α]∼ �→ ϕ(α)−1 · ⊗i∈I αi is a well-defined group homomorphism from Ωut

I;C

to U
C

⊗I
ut

such that {ϕ(α)−1 · ⊗i∈I αi : [α]∼ ∈ Ωut
I;C} is a basis for C⊗I

ut .

Example 3.5. For any subgroup G ⊆ Tn, the algebra defined as in Exam-
ple 2.10 (c) is a ∗-subalgebras of C⊗I

ut .

In the remainder of this section, we will show that the center of
⊗ut

i∈IAi is the
tensor product of centers of the Ai when Ai = spanUAi for all i ∈ I.

If A is an algebra and G is a group, we denote by Z(A) and Z(G) the center
of A and the center of G respectively. Clearly, the inclusion Πi∈IUZ(Ai) ⊆ Πi∈IUAi

induces an injective group homomorphism from Ωut
I;Z(A) to Ωut

I;A and we regard the
former as a subgroup of the latter.

Theorem 3.6. Suppose that there is F0 ∈ F with Ai = spanUAi for all i ∈ I0 :=
I \ F0.

(a) Z(Ωut
I;A) = Ωut

I;Z(A). Moreover, Z(Ωut
I;A) = Ωut

I;A if and only if all but a finite
number of the Ai are commutative.

(b) Every element in Ωut
I;A \ Z(Ωut

I;A) has an infinite conjugacy class.

(c) Z
(⊗ut

i∈IAi

)
=

⊗ut
i∈IZ(Ai).

Proof. (a) It is obvious that Ωut
I;Z(A) ⊆ Z(Ωut

I;A). Suppose u ∈ Πi∈IUAi with
[u]∼ /∈ Ωut

I;Z(A). There is an infinite subset J ⊆ I0 such that ui /∈ Z(Ai) (i ∈ J).
For each i ∈ J , one can find vi ∈ UAi such that uivi �= viui. For any i ∈ I\J , we put
vi = ei. Then [v]∼ ∈ Ωut

I;A and [u]∼[v]∼ �= [v]∼[u]∼. Consequently, [u]∼ /∈ Z(Ωut
I;A).

This argument also shows that if the set {i ∈ I : Z(Ai) �= Ai} is infinite, then
Z(Ωut

I;A) �= Ωut
I;A. Conversely, it is clear that Ωut

I;Z(A) = Ωut
I;A if all but a finite

numbers of the Ai are commutative.
(b) Suppose that [u]∼ ∈ Ωut

I;A \ Z(Ωut
I;A) and {in}n∈N is a sequence of distinct

elements in I0 such that uin /∈ Z(Ain) (n ∈ N). For each n ∈ N, choose vin ∈ UAin

with vinuinv
∗
in �= uin . For any prime number p, we set w(p)

in
:= vin (n ∈ Np), and

w
(p)
i := ei if i ∈ I \ {in : n ∈ Np}. If p and q are distinct prime numbers, then

w
(q)
in
uin(w

(q)
in

)∗ = uin �= w
(p)
in
uin(w

(p)
in

)∗ (n ∈ Np \ Nq).

Consequently, w(q)u(w(q))∗ � w(p)u(w(p))∗, and the conjugacy class of [u]∼ is
infinite.

(c) Since Z(
⊗ut

i∈IAi) =
⊗

i∈F0
Z(Ai)⊗Z(

⊗ut
i∈I0

Ai), we may assume that Ai =

spanUAi for all i ∈ I. In this case, Z(
⊗ut

i∈IAi) =
(⊗ut

i∈IAi

)Ξ, where
(⊗ut

i∈IAi

)Ξ
is the fixed point algebra of the action Ξ as defined above. Moreover, one has⊗ut

i∈IZ(Ai) ⊆ Z(
⊗ut

i∈IAi) and it remains to show that
(⊗ut

i∈IAi

)Ξ ⊆ ⊗ut
i∈IZ(Ai).
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Let v(1), . . . , v(n) ∈ Πi∈IUAi be mutually inequivalent elements, let F ∈ F, and
let b1, . . . , bn ∈ ⊗

i∈FAi \ {0} be such that a :=
∑n

k=1J
v(k)

F (bk) ∈
(⊗ut

i∈IAi

)Ξ. We
first claim that [v(k)]∼ ∈ Ωut

I;Z(A) (k = 1, . . . , n). Suppose, to the contrary, that
[v(1)]∼ /∈ Ωut

I;Z(A) = Z(Ωut
I;A). For every u ∈ Πi∈IUAi , one has

Ξu

(
Jv(1)

F (bk)
) ∈ (⊗[uv(1)u∗]∼

i∈I
Ai

) \ {0}.
As Ξu(a) = a, we see that [uv(1)u∗]∼ ∈ {[v(1)]∼, . . . , [v(n)]∼}, which contradicts
the fact that {[uv(1)u∗]∼ : [u]∼ ∈ Ωut

I;A} is an infinite set (by part (b)).
By enlarging F , we may assume that v(k) ∈ Πi∈IUZ(Ai) (k = 1, . . . , n). For

each u ∈ Πi∈IUAi and k ∈ {1, . . . , n}, one has Ξu(J
v(k)

F (bk)) = Jv(k)

F (bk) and so,
bk ∈ Z(

⊗
i∈FAi). Therefore, a ∈ ⊗ut

i∈IZ(Ai), as expected. �

The reader should notice that
⊗ut

i∈IZ(Ai) equals
⊕

ω∈Z(Ωut
I;A)

⊗ω
i∈IZ(Ai) in-

stead of
⊕

ω∈Ωut
I;A

⊗ω
i∈IZ(Ai) (strictly speaking, the latter object does not make

sense).

Example 3.7. (a) If ni ∈ N (i ∈ I), then Z
(⊗ut

i∈IMni(C)
) ∼= C⊗I

ut .

(b) If Gi are icc groups, then Z(
⊗ut

i∈IC[Gi]) ∼= C⊗I
ut canonically.

We end this section with the following brief discussion on the non-unital case.
Suppose that {Ai}i∈I is a family of ∗-algebras, not necessarily unital. If M(Ai)
is the double centraliser algebra of Ai (i ∈ I), we define an ideal,

⊗ut
i∈IAi, of⊗ut

i∈IM(Ai) as follows:⊗ut

i∈I
Ai := span

{
Ju
F (a) : F ∈ F; a ∈

⊗
i∈F

Ai;u ∈ Πi∈IUM(Ai)

}
.

In general,
⊗ut

i∈IAi is not a subset of
⊗

i∈IAi. In a similar fashion, we define⊗e

i∈I
Ai := span

{
Ju
F (a) : F ∈ F; a ∈

⊗
i∈F

Ai;u ∈ Πi∈IUM(Ai);u ∼ e
}
,

which is an ideal of
⊗e

i∈IM(Ai). By the proof of Theorem 3.2 (a), one may identify⊗ut
i∈IAi as the ideal of (

⊗e
i∈IM(Ai)) �Ξ̌,m Ωut

I;M(A) consisting of functions from
Ωut

I;M(A) to
⊗e

i∈IAi having finite supports.

4. Tensor products of inner product spaces

Throughout this section, (Hi, 〈·, ·〉) is a non-zero inner product space (i ∈ I). More-
over, we denote Ωunit

I;H := Πi∈IS1(Hi)/ ∼.
If B is a unital ∗-algebra and X is a unital left B-module, a map 〈·, ·〉B : X ×

X → B is called a (left) Hermitian B-form on X if 〈ax+y, z〉B = a〈x, z〉B+〈y, z〉B
and 〈x, y〉∗B = 〈y, x〉B (x, y, z ∈ X ; a ∈ B). It is easy to see that a Hermitian
B-form on X can be regarded as a B-bimodule map θ : X ⊗ X̃ → B satisfying
θ(x ⊗ ỹ)∗ = θ(y ⊗ x̃) (where X̃ is the conjugate vector space of X regarded as a
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unital right B-module in the canonical way). Consequently, part (a) of the fol-
lowing result follows readily from the universal property of tensor products, while
part (b) is easily verified.

Proposition 4.1. (a) There is a Hermitian C⊗I-form on
⊗

i∈I Hi such that
〈⊗i∈I xi,⊗i∈I yi〉C⊗I := ⊗i∈I 〈xi, yi〉 (x, y ∈ Πi∈IHi).

(b) For a fixed μ ∈ Ωunit
I;H , one has 〈ΘH(x),ΘH(y)〉

C⊗I = Πi∈I〈xi, yi〉(⊗i∈I 1)

(x, y ∈ Πμ
i∈IHi). This induces an inner product on

⊗μ
i∈IHi that coincides with

the one given by the inductive limit of
(⊗

i∈F Hi, J
μ
G;F

)
F⊆G∈F

, in the category of
inner product spaces with isometries as morphisms.

We want to construct a nice inner product space from the above Hermitian
C⊗I -form. A naive idea is to appeal to a construction for Hilbert C∗-modules that
produces a Hilbert space from a positive linear functional on C⊗I . However, the
difficulty is that there is no canonical order structure on C⊗I . Nevertheless, we
will make a similar construction using the functional φ1 in Example 2.2 (a). In this
case, one can only consider a subspace of

⊗
i∈IHi (see Example 4.3 below).

Lemma 4.2. Define 〈ξ, η〉φ1 := φ1(〈ξ, η〉C⊗I ) (ξ, η ∈ ⊗
i∈IHi) and set⊗ct

i∈I
Hi := spanΘH(Πi∈IB1(Hi))

as well as
⊗unit

i∈I Hi := spanΘH(Πi∈IS1(Hi)).

(a) For any μ ∈ Ωunit
I;H , the restriction of 〈·, ·〉φ1 to

⊗μ
i∈I Hi×

⊗μ
i∈I Hi coincides

with the inner product in Proposition 4.1 (b).

(b) 〈·, ·〉φ1
is a positive sesquilinear form on

⊗ct
i∈I Hi and is an inner product

on
⊗unit

i∈I Hi. Moreover, if

K :=
{
y ∈

⊗ct

i∈I
Hi : 〈x, y〉φ1 = 0, ∀x ∈

⊗ct

i∈I
Hi

}
,

then
⊗ct

i∈I Hi = K ⊕⊗unit
i∈I Hi (as vector spaces).

(c) If I = I1 ∪ I2 and I1 ∩ I2 = ∅, then
⊗unit

i∈I Hi = (
⊗unit

i∈I1
Hi) ⊗ (

⊗unit
j∈I2

Hj)
as inner product spaces.

Proof. (a) This part is clear.

(b) It is obvious that 〈·, ·〉φ1
is a sesquilinear form on

⊗ct
i∈I Hi. Let

E :=
{
x ∈ Πi∈IB1(Hi) : ‖xi‖ < 1 for an infinite number of i ∈ I

}
and K̃ := span ΘH(E). Clearly,

⊗ct
i∈I Hi = K̃ ⊕ ⊗unit

i∈I Hi. Moreover, if u ∈
Πi∈IB1(Hi) and v ∈ E, then 〈ui, vi〉 �= 1 for an infinite number of i ∈ I, which
implies that 〈⊗i∈I ui,⊗i∈I vi〉φ1 = 0. Consequently, K̃ ⊆ K.



On genuine infinite algebraic tensor products 343

We claim that 〈ξ, ξ〉φ1
≥ 0 (ξ ∈ ⊗ct

i∈I Hi). Suppose that ξ =
∑n

k=1 λk⊗i∈I u
(k)
i

with λ1, . . . , λn ∈ C and u(1), . . . , u(n) ∈ Πi∈IB1(Hi). Then

〈ξ, ξ〉φ1
=

∑n

k,l=1
λkλ̄lφ1

(⊗i∈I 〈u(k)i , u
(l)
i 〉).

As in the above, φ1
( ⊗i∈I 〈u(k)i , u

(l)
i 〉) = 0 if either u(k) or u(l) is in E. Thus, by

rescaling, we may assume that

u(1), . . . , u(n) ∈ Πi∈IS1(Hi).

Furthermore, we assume that there exist 0 = n0 < · · · < nm = n such that
u(np+1) ∼ · · · ∼ u(np+1) for all p ∈ {0, . . . ,m− 1}, but u(np) � u(nq) whenever 1 ≤
p �= q ≤ m. It is not hard to check that u(k) ∼ u(l) if and only if 〈u(k)i , u

(l)
i 〉 = 1 e.f.

(as ‖u(k)i ‖, ‖u(l)i ‖ ≤ 1). Consequently, if 1 ≤ p �= q ≤ m,

(4.1) φ1
(⊗i∈I 〈u(k)i , u

(l)
i 〉) = 0 when np < k ≤ np+1 and nq < l ≤ nq+1.

Therefore, in order to show 〈ξ, ξ〉φ1
≥ 0, it suffices to consider the case when

u(k) ∼ u(l) for all k, l ∈ {1, . . . , n}, which is the same as ξ ∈ ⊗u(1)

i∈I Hi. Thus,
〈ξ, ξ〉φ1

≥ 0 by part (a).
Next, we show that 〈·, ·〉φ1

is an inner product on
⊗unit

i∈I Hi. Suppose that

ξ =
∑n

k=1 λk⊗i∈I u
(k)
i with λ1, . . . , λn ∈ C and u(1), . . . , u(n) ∈ Πi∈IS1(Hi) such

that 〈ξ, ξ〉φ1
= 0. If n0, . . . , nm are as above, then

φ1

(〈∑np+1

k=np+1
λk⊗i∈I u

(k)
i ,

∑nq+1

l=nq+1
λl⊗i∈I u

(l)
i

〉
C⊗I

)
= 0,

because of (4.1) and the positivity of 〈·, ·〉φ1 . Hence, we may assume u(k) ∼ u(l)

for all k, l ∈ {1, . . . , n}, and apply part (a) to conclude that ξ = 0.
Finally, as 〈·, ·〉φ1

is an inner product on
⊗unit

i∈I Hi and we have both
⊗ct

i∈I Hi =

K̃ ⊕⊗unit
i∈I Hi and K̃ ⊆ K, we obtain K ⊆ K̃ as well.

(c) Observe that the linear bijection Ψ : (
⊗

i∈I1
Hi)⊗ (

⊗
j∈I2

Hj) →
⊗

i∈I Hi

as in Remark 2.4 (b) restricts to a surjection from (
⊗unit

i∈I1
Hi) ⊗ (

⊗unit
j∈I2

Hj) to⊗unit
i∈I Hi. Moreover, for any u, u′ ∈ Πi∈I1S1(Hi) and v, v′ ∈ Πj∈I2S1(Hj),

we have (u, u′) ∼ (v, v′) as elements in Πi∈IS1(Hi) if and only if u ∼ u′ and
v ∼ v′. Thus, the argument in part (b) tells us that〈

(⊗i∈I1ui)⊗ (⊗j∈I2vj), (⊗i∈I1u
′
i)⊗ (⊗j∈I2v

′
j)
〉
φ1

= 〈⊗i∈I1ui,⊗i∈I1u
′
i〉φ1〈⊗j∈I2vj ,⊗j∈I2v

′
j〉φ1 .

This shows that Ψ
∣∣
(
⊗unit

i∈I1
Hi)⊗(

⊗unit
j∈I2

Hj)
is inner product preserving. �

We denote by
⊗̄μ

i∈IHi and
⊗̄φ1

i∈IHi the completions of
⊗μ

i∈I Hi and
⊗unit

i∈I Hi,
respectively, under the norms induced by 〈·, ·〉φ1 .
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Example 4.3. If Hi = C (i ∈ I), then the sesquilinear form 〈·, ·〉φ1 is not positive
on the whole space

⊗
i∈IHi since

〈
(⊗i∈I 1/2−⊗i∈I 2), (⊗i∈I 1/2−⊗i∈I 2)

〉
φ1

= −2.

Set Πeu
i∈IHi := {x ∈ Πi∈IHi : xi ∈ S1(Hi) except for a finite number of i} and

let K be an inner product space. A multilinear map Φ : Πeu
i∈IHi → K (i.e. Φ is

coordinatewise linear) is said to be componentwise inner product preserving if for
any μ, ν ∈ Ωunit

I;H ,

〈Φ(x),Φ(y)〉 = δμ,νΠi∈I 〈xi, yi〉 (x ∈ Πμ
i∈IHi; y ∈ Πν

i∈IHi),

where δμ,ν is the Kronecker delta.

Theorem 4.4. (a)
⊗̄φ1

i∈IHi
∼= ⊕̄�2

μ∈Ωunit
I;H

⊗̄μ

i∈IHi canonically as Hilbert spaces.

(b) ΘH |Πeu
i∈IHi : Π

eu
i∈IHi →

⊗unit
i∈I Hi is a componentwise inner product preserv-

ing multilinear map. For any inner product space K and any componentwise inner
product preserving multilinear map Φ : Πeu

i∈IHi → K, there is a unique isometry
Φ̃ :

⊗unit
i∈I Hi → K such that Φ = Φ̃ ◦ΘH |Πeu

i∈IHi .

Proof. (a) Clearly,
⊗unit

i∈I Hi =
∑

μ∈Ωunit
I;H

⊗μ
i∈IHi. Moreover, as in the proof of

Lemma 4.2 (b), the two subspaces
⊗μ

i∈IHi and
⊗ν

i∈IHi are orthogonal if μ and ν
are distinct elements in Ωunit

I;H . The rest of the argument is standard.
(b) It is easy to see that ΘH |Πeu

i∈IHi is componentwise inner product preserving.
The uniqueness of Φ̃ follows from the fact that ΘH(Πeu

i∈IHi) generates
⊗unit

i∈I Hi.
To show the existence of Φ̃, we first define a multilinear map Φ0 : Πi∈IHi →
K by setting Φ0 = Φ on Πeu

i∈IHi and Φ0 = 0 on Πi∈IHi \ Πeu
i∈IHi. Let Φ̃0 :⊗

i∈IHi → K be the induced linear map and set Φ̃ := Φ̃0|⊗unit
i∈I Hi

. Suppose that
u, v ∈ Πi∈IS1(Hi), ξ ∈ ⊗u

i∈IHi and η ∈ ⊗v
i∈IHi. If u � v, then 〈ξ, η〉φ1 =

0 = 〈Φ̃(ξ), Φ̃(η)〉. Otherwise, there exist F ∈ F and ξ0, η0 ∈ ⊗
i∈F Hi such that

ξ = Ju
F (ξ0), η = Jv

F (η0) and ui = vi if i ∈ I \ F . In this case, 〈Φ̃(ξ), Φ̃(η)〉 =
〈ξ0, η0〉 = 〈ξ, η〉φ1 . �

Example 4.5. Suppose that Φ and ϕ are as in Corollary 3.4, and {δμ}μ∈Ωunit
I;C

is the canonical orthonormal basis for �2
(
Ωunit

I;C

)
. Note that Ωut

I;C = Ωunit
I;C and

consider the linear bijection J : C[Ωut
I;C] → C[Ωunit

I;C ] given by J(λ([α]∼)) := δ[α]∼
(α ∈ Πi∈IT). By Example 2.10 (a) and Theorem 4.4 (a), the map J ◦ Φ induces
a Hilbert space isomorphism Φ̂ :

⊗̄φ1

i∈IC → �2
(
Ωunit

I;C

)
such that Φ̂(⊗i∈I βi) =

ϕ(β)δ[β]∼ (β ∈ Πi∈IT).

We would like to compare
⊗̄φ1

i∈IHi with the infinite direct product as defined
in [20], when {Hi}i∈I is a family of Hilbert spaces. Let us first recall from Defi-
nition 3.3.1 in [20] that x ∈ Πi∈IHi is a C0-sequence if

∑
i∈I

∣∣‖xi‖ − 1
∣∣ converges.

As in Definition 3.3.2 in [20], if x and y areC0-sequences such that
∑

i∈I

∣∣〈xi, yi〉−1
∣∣
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converges, then we write x ≈ y. Denote by [x]≈ the equivalence class of x under
≈, and by ΓI;H the set of all such equivalence classes (see Definition 3.3.3 in [20]).

Let
∏⊗i∈IHi be the infinite direct product Hilbert space as defined in [20],

and let
∏⊗i∈I xi be the element in

∏⊗i∈IHi corresponding to a C0-sequence x
as in Theorem IV of [20]. Notice that if x ∈ Πeu

i∈IHi, then x is a C0-sequence, and
we have a multilinear map

Υ : Πeu
i∈IHi −→

∏
⊗i∈IHi.

On the other hand, for any C ∈ ΓI;H , we denote by
∏⊗C

i∈IHi the closed subspace
of

∏⊗i∈IHi generated by {∏⊗i∈I xi : x ∈ C} (see Definition 4.1.1 in [20]).

Proposition 4.6. Let {Hi}i∈I be a family of Hilbert spaces.
(a) [x]∼ �→ [x]≈ (x ∈ Πi∈IS1(Hi)) gives a well defined surjection κH : Ωunit

I;H →
ΓI;H . Moreover, for any x, y ∈ Πi∈IS1(Hi), there is a bijection between κ−1

H ([x]≈)
and κ−1

H ([y]≈).

(b) There exists a linear map Υ̃ :
⊗unit

i∈I Hi → ∏⊗i∈IHi such that Υ = Υ̃ ◦
ΘH |Πeu

i∈IHi and Υ̃ |⊗μ
i∈IHi

extends to a Hilbert space isomorphism Υ̃μ :
⊗̄μ

i∈IHi →∏⊗κH(μ)
i∈I Hi (μ ∈ Ωunit

I;H ).

Proof. (a) Clearly, if x ∼ z, then x ≈ z and κH is well defined. Lemma 3.3.7 in [20]
tells us that κH is surjective. Furthermore, there exists a unitary ui ∈ L(Hi) such
that uixi = yi (i ∈ I), and [ui]i∈I induces the required bijective correspondence in
the second statement.

(b) By the argument of Theorem 4.4 (b), one can construct a linear map Υ̃ such
that Υ = Υ̃ ◦ΘH |Πeu

i∈IHi . By the argument of part (a), we see that Υ̃
(⊗[u]∼

i∈I Hi

) ⊆∏⊗[u]≈
i∈I Hi (u ∈ Πi∈IS1(Hi)). Furthermore, by Lemma 4.2 (a), Proposition 4.1 (b)

and Theorem IV in [20], we see that Υ̃|⊗[u]∼
i∈I Hi

is an isometry. Finally, Υ̃|⊗[u]∼
i∈I Hi

has dense range (by Lemma 4.1.2 of [20]). �

Notice that Υ̃ is, in general, unbounded but Remark 4.7 (b) below tells us that⊗̄φ1

i∈IHi is a “natural dilation” of
∏⊗i∈I Hi. On the other hand, Remark 4.7 (d)

says that it is possible to construct
∏⊗i∈I Hi in a way similar to

⊗̄φ1

i∈IHi. Note

however, that the construction of
⊗̄φ1

i∈IHi is totally algebraic and
⊗̄φ1

i∈IHi itself
seems to be more natural (see Theorem 4.8 and Example 5.6 below).

Remark 4.7. Suppose that {Hi}i∈I is a family of Hilbert spaces.
(a) ∼ and ≈ are different even in the case when I = N and Hi = C (i ∈ N)

because one can find x, y ∈ Πi∈NT with xi �= yi for all i ∈ N but for which∑∞
i=1

∣∣〈xi, yi〉 − 1
∣∣ converges. In fact, κ−1

H ([x]≈) is an infinite set.
(b) By Lemma 4.1.1 in [20], we have∏

⊗i∈IHi =
⊕̄�2

C∈ΓI;H

∏
⊗C

i∈IHi.
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Therefore, Theorem 4.4 (a) and Proposition 4.6 tell us that for a fixed γ0 ∈ ΓI;H ,
one has a canonical Hilbert space isomorphism⊗̄φ1

i∈I
Hi

∼= �2
(
κ−1
H (γ0)

)⊗̄(∏⊗i∈IHi

)
.

(c) For each i ∈ I, let Ki be an inner product space such that Hi is the
completion of Ki. Then

⊗̄φ1

i∈IKi is, in general, not canonically isomorphic to⊗̄φ1

i∈IHi because Ωunit
I;K � Ωunit

I;H if Ki � Hi for an infinite number of i ∈ I. On the
other hand, if I is countable, for any x ∈ Πi∈IS1(Hi), there exists y ∈ Πi∈IS1(Ki)
such that x ≈ y. This shows that the restriction, κH;K , of κH to Ωunit

I;K is also a
surjection onto ΓI;H . However, we do not know if the cardinality of κ−1

H;K(C) are
the same for different C ∈ ΓI;H .

(d) If φ0 is as in Example 2.2 (b), it is easy to see that

〈
∏

⊗ui,
∏

⊗vi〉 = φ0
(〈⊗i∈I ui,⊗i∈I vi〉C⊗I

)
(u, v ∈ Πunit

i∈I Hi).

Thus, the sesquilinear form φ0
(〈·, ·〉C⊗I

)
produces

∏⊗Hi. If one wants a self-
contained alternative construction for

∏⊗Hi, one needs to establish the positivity
of φ0

(〈·, ·〉C⊗I

)
, which can be reduced to showing the positivity when all Hi are of

the same finite dimension.

In the remainder of this section, we show that
⊗unit

i∈I Hi can be completed into
a C∗(Ωut

I;C)-module, which gives many pre-inner products on
⊗unit

i∈I Hi including
〈·, ·〉φ1 . In the following, we use the convention that the A-valued inner product of
an inner product A-module is A-linear in the first variable (where A is a pre-C∗-
algebra). On the other hand, we recall that if G is a group and λg is the canonical
image of g in C[G], the map

∑
g∈Gαgλg �→ αe (αg ∈ C), where e ∈ G is the

identity, extends to a faithful tracial state χG on C∗(G).

Theorem 4.8. (a) There exists an inner product C[Ωut
I;C]-module structure on⊗unit

i∈I Hi. If
⊗̄mod

i∈I Hi is the Hilbert C∗(Ωut
I;C)-module given by the completion of

this C[Ωut
I;C]-module, we have a canonical Hilbert space isomorphism

(4.2)
⊗̄φ1

i∈I
Hi

∼= (⊗̄mod

i∈I
Hi

)⊗̄χΩut
I;C

C.

(b) If G ⊆ Ωut
I;C is a subgroup and EG : C∗(Ωut

I;C) → C∗(G) is the canonical con-
ditional expectation, there is an inner product C[G]-module structure on

⊗unit
i∈I Hi,

whose completion coincides with the Hilbert C∗(G)-module
(⊗̄mod

i∈I Hi

)⊗̄EGC
∗(G).

Proof. (a) Clearly,
⊗unit

i∈I Hi is a C⊗I
ut -submodule of the C⊗I -module

⊗
i∈IHi (see

Proposition 2.3 (c)). Moreover, one has a linear “truncation” E from C⊗I =(⊕
ω∈ΩI;C\Ωut

I;C

⊗ω
i∈IC

)⊕ C⊗I
ut to C⊗I

ut sending (α, β) to β. Define

〈ξ, η〉
C

⊗I
ut

:= E
(〈ξ, η〉C⊗I

) (
ξ, η ∈

⊗unit

i∈I
Hi

)
,
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which is a Hermitian C⊗I
ut -form because by (3.1), we have

E(ab) = E(a)b and E(a∗) = E(a)∗ (a ∈ C⊗I ; b ∈ C⊗I
ut ).

For any u, v ∈ Πi∈IS1(Hi), we write u ∼s v if there exists β ∈ Πi∈IT such that
ui = βivi e.f. Then ∼s is an equivalence relation on Πi∈IS1(Hi) satisfying

(4.3) u ∼s v if and only if 〈⊗i∈I ui,⊗i∈I vi〉C⊗I ∈ C⊗I
ut .

Let Φ and ϕ be as in Corollary 3.4. Suppose that ξ =
∑n

k=1 αk⊗i∈I u
(k)
i with

α1, . . . , αn ∈ C and u(1), . . . , u(n) ∈ Πi∈IS1(Hi). We first show that Φ(〈ξ, ξ〉
C

⊗I
ut
) ∈

C∗(Ωut
I;C)+. As in the proof of Lemma 4.2 (b), it suffices to consider the case when

u(k) ∼s u
(1) for any k ∈ {1, . . . , n} (because of relation (4.3)). Let F ∈ F and

β(1), . . . , β(n) ∈ Πi∈IT be such that u(k)i = β
(k)
i u

(1)
i (i ∈ I \ F ; k = 1, . . . , n). For

any k, l ∈ {1, . . . , n}, we have

Φ
(
(Πi∈F 〈u(k)i , u

(l)
i 〉i)(⊗i∈I\F β

(k)
i β

(l)
i )

)
= 〈ϕ̃F (u

(k)), ϕ̃F (u
(l))〉F ,

where ϕ̃F (u
(k)) :=

(
ϕ(β(k))Πi∈Fβ

(k)
i

)−1
(⊗i∈F u

(k)
i ) ⊗ λ[β(k)]∼ and 〈·, ·〉F is the

canonical C[Ωut
I;C]-valued inner product on (

⊗
i∈F Hi)⊗ C[Ωut

I;C]. Therefore,

Φ(〈ξ, ξ〉
C

⊗I
ut

) =
〈∑n

k=1
αkϕ̃F (u

(k)),
∑n

k=1
αkϕ̃F (u

(k))
〉
F

≥ 0.

Next, we show that χΩut
I;C

◦Φ ◦E = φ1. Let α ∈ Πi∈IC×. If α � 1, then χΩut
I;C

◦
Φ◦E(⊗i∈I αi) = 0 (as Φ(E(⊗i∈I αi)) /∈ C ·λ[1]∼ \ {0}, whether or not [α]∼ ∈ Ωut

I;C)
and we also have φ1(⊗i∈I αi) = 0. If α ∼ 1, then ⊗i∈I αi = (Πi∈Iαi)(⊗i∈I 1) =
(Πi∈Iαi)λ[1]∼ , which implies that χΩut

I;C
(Φ(⊗i∈I αi)) = Πi∈Iαi = φ1(⊗i∈I αi).

Thus, we have

(4.4) χΩut
I;C

(
Φ(〈ξ, η〉

C
⊗I
ut

)
)
= 〈ξ, η〉φ1

(
ξ, η ∈

⊗unit

i∈I
Hi

)
.

As a consequence, if Φ(〈ξ, ξ〉
C

⊗I
ut
) = 0, we know from Lemma 4.2 (b) that ξ = 0.

This gives an inner product C[Ωut
I;C]-module structure on

⊗unit
i∈I Hi. Furthermore,

the required isomorphism
⊗̄φ1

i∈IHi
∼= (

⊗̄mod

i∈I Hi)⊗̄χ
Ωut
I;C

C also follows from (4.4).

(b) Since
⊗unit

i∈I Hi is a C[G]-module (we identify C[G] with
⊕

ω∈G

⊗ω
i∈IC under

the ∗-isomorphism Φ of Corollary 3.4), every element in (
⊗unit

i∈I Hi) ⊗C[G] C[G] is
of the form ξ ⊗C[G] 1 for some ξ ∈ ⊗unit

i∈I Hi. Moreover, if ξ, η ∈ ⊗unit
i∈I H , then

(4.5) 〈ξ⊗C[G]1, η⊗C[G]1〉(⊗̄mod
i∈I C)⊗̄EG

C∗(G)
= EG(Φ(〈ξ, η〉C⊗I

ut
)) = Φ(EG(〈ξ, η〉C⊗I )),

where EG is the linear “truncation” map from C⊗I to
⊕

ω∈G

⊗ω
i∈IC defined as

in part (a). Therefore, Φ(EG(〈·, ·〉C⊗I )) is a positive Hermitian C[G]-form on⊗unit
i∈I Hi. Obviously, χΩut

I;C
= χG ◦ EG, and by (4.4),

χG(Φ(EG(〈ξ, η〉C⊗I ))) = χΩut
I;C

(Φ(〈ξ, η〉
C

⊗I
ut

)) = 〈ξ, η〉φ1

(
ξ, η ∈

⊗unit

i∈I
H
)
.
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This implies that Φ(EG(〈·, ·〉C⊗I )) is non-degenerate (since 〈·, ·〉φ1 is non-degenerate
by Lemma 4.2 (b)). Now, equation (4.5) tells us that the Hilbert C∗(G)-module(⊗̄mod

i∈I Hi

)⊗̄EGC
∗(G) is the completion of

⊗unit
i∈I Hi under the norm induced by

the C[G]-valued inner product Φ(EG(〈·, ·〉C⊗I )). �

Let {e} be the trivial subgroup of Ωut
I;C. Since one can identify E{e} with φ1

(through the argument of Theorem 4.8 (b)), one has⊗̄φ1

i∈I
Hi

∼= (⊗̄mod

i∈I
Hi

)⊗̄E{e}C.

Remark 4.9. (a) For any subgroup G ⊆ Ωut
I;C and any faithful state ϕ on C∗(G),

the Hilbert space ((⊗̄mod

i∈I
Hi

)⊗̄EGC
∗(G)

)
⊗̄ϕC

induces an inner product on
⊗unit

i∈I Hi.
(b) If x ∈ Π0

i∈IC (see Example 2.2 (b)), then supi∈I |xi| < ∞. This, together
with the surjectivity of κC (see Proposition 4.6 (a)), tells us that ΓI;C is a group
under the multiplication: [x]≈ · [y]≈ := [xy]≈ (where (xy)i := xiyi for any i ∈ I).
Moreover, κC : Ωut

I;C = Ωunit
I;C → ΓI;C is a group homomorphism, which induces a

surjective ∗-homomorphism κ̄C : C∗(Ωut
I;C) → C∗(ΓI;C).

(c) It is natural to ask whether
(
(
⊗̄mod

i∈I Hi)⊗̄κ̄C
C∗(ΓI;C)

)⊗̄χΓI;C
C is isomorphic

to
∏⊗i∈I Hi canonically. Unfortunately, this is not the case. In fact, for any

x, y ∈ Πunit
i∈I Hi, we write x ≈T y if there exists α ∈ Πi∈IT with α ≈ 1 such that

xi = αiyi e.f. It is easy to check that ≈T is an equivalence relation in general
standing strictly between ∼ and ≈. Moreover, one has〈

((⊗i∈I xi)⊗κ̄C
1)⊗χΓI;C

1, ((⊗i∈I yi)⊗κ̄C
1)⊗χΓI;C

1
〉
= 0 whenever x �≈T y,

while
〈∏⊗i∈I xi,

∏⊗i∈I yi
〉
= 0 whenever x �≈ y. Note however, that if all

Hi = C, then ≈T and ≈ coincide, and one can show that the two Hilbert spaces(
(
⊗̄mod

i∈I C)⊗̄κC
C∗(ΓI;C)

)⊗̄χΓI;C
C and

∏⊗i∈I C coincide canonically.

Example 4.10. (a) It is clear that
⊗̄mod

i∈I C = C∗(Ωut
I;C). For any state ϕ on

C∗(Ωut
I;C), the Hilbert space (

⊗̄mod

i∈I C)⊗̄ϕC is the GNS construction of ϕ.

(b) If G is a subgroup of Ωut
I;C, we have

(⊗̄mod

i∈I
C
)⊗̄EGC

∗(G) ∼= �2(Ωut
I;C/G)⊗̄C∗(G).

In fact, let q : Ωut
I;C → Ωut

I;C/G be the quotient map and σ : Ωut
I;C/G → Ωut

I;C be
a cross section. One has a bijection from Ωut

I;C to (Ωut
I;C/G) × G sending ω to

(q(ω), σ(q(ω)−1)ω).



On genuine infinite algebraic tensor products 349

This gives a bijective linear map Δ : C[Ωut
I;C] →

⊕
Ωut

I;C/G
C[G] such that for any

ω ∈ Ωut
I;C and ε ∈ Ωut

I;C/G,

Δ(λω)ε :=

{
λσ(ε−1)ω if q(ω) = ε

0 otherwise.

Let Φ :
⊗unit

i∈I C = C⊗I
ut → C[Ωut

I;C] and ϕ : Πi∈IT → T be as in Corollary 3.4.
Suppose that α, β ∈ Πi∈IC×. If [αβ−1]∼ does not belong to G, then we have
EG(〈⊗i∈I αi,⊗i∈I βi〉C⊗I ) = 0 and〈

Δ ◦ Φ(⊗i∈I αi

)
,Δ ◦ Φ(⊗i∈I βi

)〉
⊕�2

Ωut
I;C

/G
C[G]

= 0.

On the other hand, if [αβ−1]∼ ∈ G, then〈
Δ ◦ Φ(⊗i∈I αi

)
,Δ ◦ Φ(⊗i∈I βi

)〉
⊕�2

Ωut
I;C

/G
C[G]

= ϕ(αβ−1)λ[αβ−1]∼ = Φ(⊗i∈I αiβ
−1
i ) = Φ(EG(〈⊗i∈I αi,⊗i∈I βi〉C⊗I )).

This shows that Δ◦Φ is an inner product C[G]-module isomorphism from
⊗unit

i∈I C
(equipped with the inner product C[G]-module structure as in Theorem 4.8 (b))
onto

⊕�2

Ωut
I;C/G

C[G].

5. Tensor products of ∗-representations of ∗-algebras

In this section, {(Ai, Hi,Ψi)}i∈I is a family of unital ∗-representations, in the
sense that Ai is a unital ∗-algebra, Hi is a Hilbert space and Ψi : Ai → L(Hi) is a
unital ∗-homomorphism (i ∈ I).

Suppose that Ψ0 :=
⊗̃

i∈IΨi :
⊗

i∈IAi → L(
⊗

i∈IHi) is the map as in Propo-
sition 2.3 (c). It is easy to check that

(5.1)
〈
Ψ0(a)ξ, η

〉
C⊗I =

〈
ξ,Ψ0(a

∗)η
〉
C⊗I

(
a ∈

⊗
i∈I
Ai; ξ, η ∈

⊗
i∈I
Hi

)
.

Furthermore, one has the following result (which is more or less well known).

Proposition 5.1. For any μ ∈ Ωunit
I;H , the map

⊗̃
i∈IΨi induces a unital ∗-repre-

sentation
⊗μ

i∈IΨi :
⊗e

i∈I Ai → L(⊗̄μ

i∈IHi). If all the Ψi are injective, then so is⊗μ
i∈IΨi.

Consequently, one has a unital ∗-representation of
⊗e

i∈IAi on the Hilbert space⊗̄φ1

i∈IHi. However, it seems impossible to extend it to a unital ∗-representation of⊗
i∈IAi on

⊗̄φ1

i∈IHi. The biggest ∗-subalgebra
⊗

i∈IAi that we can think of, for
which such an extension is possible, is the subalgebra

⊗ut
i∈IAi. Example 5.6 (a)

also tells us that it is probably the right subalgebra to consider.
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Let us digress a little bit and give another ∗-representation of
⊗ut

i∈IAi, which
is a direct consequence of Proposition 5.1, Theorem 3.2 (a) and Theorem 4.1 in [5]
(it is not hard to verify that the representation as given in Theorem 4.1 of [5] is
injective when

⊗μ
i∈IΨi is injective). Note however, that such a ∗-representation is

not canonical since it depends on the choice of a cross section c : Ωut
I;A → Πi∈IUAi

(see Remark 3.3 (a)).

Corollary 5.2. Suppose that the Ψi are injective. For any μ ∈ Ωunit
I;H , the injection⊗μ

i∈IΨi induces an injective unital ∗-representation of
⊗ut

i∈IAi on (
⊗̄μ

i∈IHi) ⊗
�2(Ωut

I;A).

Let us now return to the discussion of the tensor product type representation
of

⊗ut
i∈IAi. Observe that {Ψi}i∈I induces a canonical action αΨ : Ωut

I;A × Ωunit
I;H →

Ωunit
I;H . For simplicity, we will denote αΨ

ω (μ) by ω · μ (ω ∈ Ωut
I;A;μ ∈ Ωunit

I;H ).

Theorem 5.3. (a) The map
⊗̃

i∈IΨi induces a unital ∗-representation
⊗φ1

i∈I Ψi :⊗ut
i∈IAi → L(⊗̄φ1

i∈IHi

)
.

(b)
(⊗̄φ1

i∈IHi, (
⊗φ1

i∈IΨi)|⊗e
i∈IAi

)
=

⊕
μ∈Ωunit

I;H

(⊗̄μ

i∈IHi,
⊗μ

i∈IΨi

)
.

(c) If all Ψi are injective, then so is
⊗φ1

i∈IΨi.

Proof. (a) Set Ψ0 :=
⊗̃

i∈IΨi. For any μ ∈ Ωunit
I;H , ω ∈ Ωut

I;A and a ∈ Πω
i∈IAi, it is

clear that

(5.2) Ψ0(⊗i∈I ai)
(⊗μ

i∈I
Hi

) ⊆
⊗ω·μ

i∈I
Hi.

Suppose that u ∈ ω and F ∈ F are such that ai = ui for i ∈ I \ F . If ξ = Jx
F ′(ξ0)

where x ∈ μ, F ′ ∈ F with F ⊆ F ′ and ξ0 ∈ ⊗
i∈F ′ Hi, then

〈Ψ0(⊗i∈I ai)ξ,Ψ0(⊗i∈I ai)ξ〉C⊗I =〈(⊗
i∈F

Ψi(ai)⊗ id
)
ξ0,

(⊗
i∈F

Ψi(ai)⊗ id
)
ξ0
〉
(⊗i∈I 1).

This implies that Ψ0(⊗i∈I ai) is bounded on
(⊗unit

i∈I Hi, 〈·, ·〉φ1

)
(see Theorem 4.4 (a)

and Proposition 4.1 (b)) and produces a unital homomorphism
⊗φ1

i∈IΨi :
⊗ut

i∈IAi

→ L(⊗̄φ1

i∈IHi

)
. Now, relation (5.1) tells us that

⊗φ1

i∈IΨi preserves the involution.
(b) This part follows directly from the argument of part (a).

(c) Set Ψ :=
⊗φ1

i∈IΨi. Suppose that v(1), . . . , v(n) ∈ Πi∈IUAi are mutually
inequivalent elements, F ∈ F, b(1), . . . , b(n) ∈ ⊗

i∈F Ai and a(k) := Jv(k)

F (b(k))
(k = 1, . . . , n) are such that

Ψ
(∑n

k=1
a(k)

)
= 0.

By induction, it suffices to show that a(1) = 0.
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By replacing a(k) with (v(1))−1a(k) if necessary, we may assume that v(1)i = ei
(i ∈ I). If n = 1, we take an arbitrary ξ ∈ Πi∈IS1(Hi). If n > 1, we claim that
there exists ξ ∈ Πi∈IS1(Hi) such that

(5.3) ξ � [V
(k)
i ξi]i∈I (k = 2, . . . , n),

where V (k)
i := Ψi(v

(k)
i ). In fact, if k ∈ {2, . . . , n} and i ∈ Ik := {i ∈ I : v

(k)
i �= ei}

(which is an infinite set), the subset S1(Hi) ∩ ker(V
(k)
i − idHi) is nowhere dense

in S1(Hi) as ker(V
(k)
i − idHi) is a proper closed subspace of Hi (note that Ψi is

injective). For any i ∈ I, we consider Ni := {k ∈ {2, . . . , n} : i ∈ Ik}. By the Baire
category theorem, for every i ∈ I, one can choose ξi ∈ S1(Hi) \

⋃
k∈Ni

ker(V
(k)
i −

idHi). Now, ξ := [ξi]i∈I will satisfy relation (5.3).

Since Ψ(a(1))
(⊗ξ

i∈IHi

) ⊆ ⊗ξ
i∈IHi and⊗ξ

i∈I
Hi ∩

∑n

k=2
Ψ(a(k))

(⊗ξ

i∈I
Hi

)
= {0}

(because of Theorem 2.5 as well as (5.2) and (5.3)), we have Ψ(a(1))|⊗ξ
i∈IHi

= 0.

Therefore, part (b) and Proposition 5.1 tells us that a(1) = 0. �

Remark 5.4. (a) By the argument proving Theorem 5.3 (c), if all the Ψi are
injective, then αΨ is strongly faithful in the sense that for any finite subset F ⊆
Ωut

I;A \ {e}, there exists μ ∈ Ωunit
I;H with ω · μ �= μ (ω ∈ F ).

(b) If y, z ∈ Πi∈IHi are C0-sequences and u, v ∈ Πi∈IUAi , then

(5.4) y ≈ z if and only if [Ψi(ui)yi]i∈I ≈ [Ψi(ui)zi]i∈I

and [Ψi(ui)yi]i∈I ≈ [Ψi(vi)yi]i∈I whenever u ∼ v. Thus, {Ψi}i∈I induces an action
α̃Ψ : Ωut

I;A×ΓI;H → ΓI;H . Again, we write ω ·γ for α̃Ψ
ω (γ) (ω ∈ Ωut

I;A; γ ∈ ΓI;A). The
map κH in Proposition 4.6 (a) is equivariant in the sense that κH ◦ αΨ

ω = α̃Ψ
ω ◦ κH

(ω ∈ Ωut
I;A).

(c) If all the Ai are C∗-algebras and all the Ψi are irreducible, then αΨ is
transitive.

Corollary 5.5. There exists a unital ∗-representation
∏⊗i∈I Ψi :

⊗ut
i∈IAi →

L(∏⊗i∈I Hi

)
such that for any μ ∈ Ωunit

I;H , ω ∈ Ωut
I;A and b ∈ ⊗ω

i∈IAi,

(5.5)
(∏⊗i∈I Ψi

)
(b) ◦ Υ̃μ = Υ̃ω·μ ◦ (⊗φ1

i∈I
Ψi

)
(b)

∣∣⊗̄μ
i∈IHi

,

where Υ̃μ is as in Proposition 4.6 (b).

Proof. By Proposition 4.6 (b), there is a bounded linear map(∏⊗i∈I Ψi

)
(b) :

∏
⊗κH(μ)

i∈I Hi →
∏

⊗ω·κH(μ)
i∈I Hi
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such that equality (5.5) holds (see also Remark 5.4 (b)). Since we have

supμ∈Ωunit
I;H

∥∥(⊗φ1

i∈I
Ψi)(b)|⊗̄μ

i∈IHi

∥∥ <∞

(because of Theorem 5.3 (a)), we know from Proposition 4.6 (a) and Lemma 4.1.1
in [20] that (

∏⊗i∈IΨi)(b) induces an element in L(∏⊗i∈IHi), which clearly gives
a ∗-representation. �

It is natural to ask if
∏⊗i∈IΨi is injective if all the Ψi are. However,

∏⊗i∈IΨi

is never injective as can be seen from Example 5.6 (b) and the discussion follow-
ing it.

Example 5.6. For any i ∈ I, let Ai = C = Hi and let ιi : Ai → L(Hi) be the
canonical map. Suppose that Φ, ϕ and Φ̂ are as in Example 4.5.

(a) Let Λ : C[Ωut
I;C] → L(�2(Ωut

I;C)) be the left regular representation. For every
α, β ∈ Πi∈IT, one has(

Φ̂∗ ◦ Λ(λ[α]∼) ◦ Φ̂
)
(⊗i∈I βi) = ϕ(α−1)⊗i∈I αiβi

=
(⊗φ1

i∈I
ιi
)
(Φ−1(λ[α]∼))(⊗i∈I βi).

Consequently,
⊗φ1

i∈Iιi can be identified with Λ (under Φ and Φ̂).

(b) Let α ∈ Πi∈IT be such that α � 1 but α ≈ 1 with Πi∈Iαi = 1. If β ∈ Πi∈IC
is a C0-sequence with ‖∏⊗i∈I βi‖ = 1, one has ‖∏⊗i∈I αiβi‖ = 1 and〈∏⊗i∈I αiβi,

∏
⊗i∈I βi

〉
= 1,

which imply that
∏⊗i∈I αiβi =

∏⊗i∈I βi. Therefore, (
∏⊗i∈I ιi)(⊗i∈I αi) =

id but ⊗i∈I αi �= ⊗i∈I 1. Consequently,
∏⊗i∈I ιi is not injective (actually,

(
∏⊗i∈I ιi) ◦ Φ−1 is not injective as a group representation of Ωut

I;C).

In general, even
(∏⊗i∈I Ψi

)|⊗ut
i∈ICei

is not injective. In fact, suppose that α
is as above. For any C0-sequence ξ ∈ Πi∈IHi, with ‖∏⊗i∈I ξi‖ = 1, the same
argument as Example 5.6 (b) tells us that

∏⊗i∈I αiξi =
∏⊗i∈I ξi. Thus,(∏⊗i∈I Ψi

)
(⊗i∈I ei −⊗i∈I αiei) = 0.

On the other hand, by Theorem 5.3 and Corollary 5.5, there exist canonical
∗-homomorphisms

Jφ1 :
⊗ut

i∈I
L(Hi) → L(⊗̄φ1

i∈I
Hi

)
and JΠ :

⊗ut

i∈I
L(Hi) → L(∏⊗i∈I Hi

)
.

Notice that Jφ1 is injective but JΠ is never injective.
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Corollary 5.7. Let πi : Gi → UL(Hi) be a unitary representation of a group Gi,
for each i ∈ I.

(a) There exist canonical unitary representations
⊗φ1

i∈Iπi and
∏⊗i∈I πi of

Πi∈IGi on
⊗̄φ1

i∈IHi and
∏⊗i∈I Hi respectively.

(b) If the induced ∗-representation π̂i : C[Gi] → L(Hi) is injective for all i ∈ I,

the induced ∗-representation
⊗̂φ1

i∈Iπi of C[Πi∈IGi] is also injective.

Proof. (a) Let
⊗ut

i∈Iπi := ΘL(H) ◦Πi∈Iπi : Πi∈IGi →
⊗ut

i∈IL(Hi). Then⊗φ1

i∈I
πi := Jφ1 ◦

⊗ut

i∈I
πi and

∏
⊗i∈I πi := JΠ ◦

⊗ut

i∈I
πi

are the required representations.

(b) By Theorem 5.3 (c),
⊗φ1

i∈I π̂i is injective. As
⊗̂φ1

i∈Iπi is the restriction of⊗φ1

i∈I π̂i on C[Πi∈IGi] (see Example 3.1 (a)), it is also injective. �

Corollary 5.8.
∏⊗i∈I Ψi is never irreducible, and neither is

⊗φ1

i∈IΨi.

Proof. Let τi : C → Ai be the canonical unital map and set Ψ̌i := Ψi ◦ τi (i ∈ I).
Suppose that α, β ∈ Πi∈IT with α �≈ β and ξ ∈ Πunit

i∈I Hi. Then [αiξi]i∈I �≈ [βiξi]i∈I

and the two unit vectors(∏⊗i∈I Ψ̌i

)
(⊗i∈I αi)

(∏⊗i∈I ξi
)

and
(∏⊗i∈I Ψ̌i

)
(⊗i∈I βi)

(∏⊗i∈I ξi
)

are orthogonal. Consequently, dim (
∏⊗i∈I Ψ̌i)(C

⊗I
ut ) > 1. As (

∏⊗i∈I Ψi) ◦
(
⊗

i∈Iτi) =
∏⊗i∈I Ψ̌i, we have (

∏⊗i∈I Ψ̌i)(C
⊗I
ut ) ⊆ Z

(
(
∏⊗i∈I Ψi)(

⊗ut
i∈IAi)

)
and

∏⊗i∈I Ψi is not irreducible. A similar but easier argument also shows that⊗φ1

i∈IΨi is not irreducible. �

For any C∗-algebra A, we denote by S(A) and (Hρ, πω, ξω) the state space of A
and the GNS construction of ω ∈ S(A), respectively. We would like to consider a
natural injective ∗-representation of

⊗ut
i∈IAi defined in terms of (Hωi , πωi).

If ρ ∈ Πi∈IS(Ai) and ρ̌ is defined as

ρ̌(a) :=
〈(⊗φ0

i∈I
πρi

)
(a)(⊗i∈I ξρi ), (⊗i∈I ξρi)

〉 (
a ∈

⊗ut

i∈I
Ai

)
,

then the closure of
(⊗φ1

i∈Iπρi

)
(
⊗ut

i∈IAi)(⊗i∈I ξρi) will coincide with

Hρ̌ :=
⊕̄

ω∈Ωut
I;A

⊗̄ω·[ξρ]∼
i∈I

Hρi ⊆
⊗̄φ1

i∈I
Hρi .

We set πρ̌(a) :=
(⊗φ1

i∈Iπρi

)
(a)|Hρ̌ . Notice that if all the ρi are pure states, then

Hρ̌ =
⊗̄φ1

i∈IHρi (see Remark 5.4 (c)).
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Corollary 5.9. Let Ai be a C∗-algebra (i ∈ I). The ∗-representation ΨA :=⊕
ρ∈Πi∈IS(Ai)

(Hρ̌, πρ̌) is injective. Consequently, the ∗-representation

ΦA :=
⊕

ρ∈Πi∈IS(Ai)

(⊗̄φ1

i∈I
Hρi ,

⊗φ1

i∈I
πρi

)
is also injective.

Proof. Suppose that (Hi,Ψi) is a universal ∗-representation of Ai (i ∈ I). Let F ,
u(1), . . . , u(n), b(1), . . . , b(n), and a(1), . . . , a(n) be as in the proof of Theorem 5.3 (c)
with ΨA

(∑n
k=1a

(k)
)
= 0. Again, it suffices to show that a(1) = 0, and we may

assume that u(1)i = ei (i ∈ I). If n = 1, we take any x ∈ Πi∈IS1(Hi). If n > 1, we
take an element x ∈ Πi∈IS1(Hi) satisfying

x �
[
Ψi

(
u
(k)
i

)
xi
]
i∈I

(k = 2, . . . , n)

(the argument of Theorem 5.3 (c) ensures its existence). Let us set ρi(a) :=
〈Ψi(a)xi, xi〉 when i ∈ I \ F , and pick any ρi ∈ S(Ai) when i ∈ F . For every
i ∈ I \ F , one may regard

(
Hρi , πρi

)
as a subrepresentation of (Hi,Ψi) such that

ξρi ∈ Hρi is identified with xi ∈ Hi. Then x can be considered as an element in
Hρ̌. Since x �

[
πρi

(
u
(k)
i

)
xi
]
i∈I

for all 2 ≤ k ≤ n, the argument of Theorem 5.3 (c)
tells us that (⊗[x]∼

i∈I
πρi

)
(a(1))η = 0

(
η ∈

⊗x

i∈I
Hρi

)
.

Consequently,
(⊗

i∈Fπρi

)(
b(1)

)
= 0 and b(1) = 0 (as ρi is arbitrary when i ∈ F ).

The second statement follows readily from the first one. �

Notice also that
(⊗̄φ1

i∈IHρi ,
⊗φ1

i∈Iπρi

)
is in general not a cyclic representation,

and (Hρ̌, πρ̌) can be regarded as a cyclic analogue of it.

We end this paper with the following result concerning tensor products of
Hilbert algebras.

Corollary 5.10. Let {Ai}i∈I be a family of unital Hilbert algebras (see, e.g.,
Definition VI.1.1 in [18]) such that ‖ei‖ = 1 (i ∈ I). Then A :=

⊗ut
i∈IAi is also a

unital Hilbert algebra with ‖⊗i∈I ei‖ = 1.

Proof. Note that since ‖ei‖ = 1, one has ‖ui‖ = 1 for any ui ∈ UAi . Thus, we
have

⊗ut
i∈IAi ⊆ ⊗unit

i∈I Ai, which gives an inner product 〈·, ·〉A on A. Observe
that

⊗ω
i∈IAi is orthogonal to

⊗ω′

i∈IAi (in terms of 〈·, ·〉A) whenever ω and ω′ are
distinct elements in Ωut

I;A. Thus, in order to show that the involution of A is an
isometry, it suffices to check that ‖x∗‖ = ‖x‖ whenever x ∈ ⊗ω

i∈IAi and ω ∈ Ωut
I;A.

In fact, for any u ∈ Πi∈IUAi , F ∈ F and a ∈ ⊗
i∈FAi, we have

‖Ju
F (a)

∗‖ = ‖Ju∗
F (a∗)‖ = ‖a∗‖ = ‖a‖ = ‖Ju

F (a)‖,
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because the involution of
⊗

i∈FAi is an isometry. Let Hi be the completion of Ai

(with respect to the inner product) and let Ψi : Ai → L(Hi) be the canonical
unital ∗-representation (i ∈ I). Since⊗φ1

i∈I
Ψi(a)b = ab (a, b ∈ A),

Theorem 5.3 (a) tells us that for each x ∈ A, one has 〈xy, z〉A = 〈y, x∗z〉A (y, z ∈ A)
and sup‖y‖≤1 ‖xy‖ <∞. Finally, as A is unital, we see that A is a Hilbert algebra
(with ‖⊗i∈I ei‖ = 1). �

Consequently, if all the Ai are weakly dense unital ∗-subalgebras of finite von
Neumann algebras, then so is

⊗ut
i∈IAi.
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