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On genuine infinite algebraic tensor products

Chi-Keung Ng

Abstract. In this paper, we study genuine infinite tensor products of
some algebraic structures. By a genuine infinite tensor product of vector
spaces, we mean a vector space @), ;X; whose linear maps coincide with
multilinear maps on an infinite family {X; }icr of vector spaces. After es-
tablishing its existence, we give a direct sum decomposition of @), ., X; over
a set 21, x, through which we obtain a more concrete description and some
properties of @, ;Xi. If {A;}ier is a family of unital "-algebras, we de-
fine, through a subgroup Qyt ‘4 € Qr.4, an interesting subalgebra ®Ze[

When all A; are C* algebrab or group algebras, it is the linear span of
the tensor products of unitary elements of A;. Moreover, it is shown that
®ZEI(C is the group algebra of Qut In general, ®fé1A can be identified
with the algebraic crossed product of a cocycle twisted action of Q“t On
the other hand, if {H;}ier is a famlly of inner product spaces, we define a

Hilbert C*(Q}c)-module ® HZ7 which is the completion of a subspace

®;‘é‘}tH of @, Hi. If Xayt, is the canonical tracial state on C*(Q}¢),

mod

then ®161 H; ®XQut C coincides with the Hilbert space ® H; given by

i€l
a very elementary algebralc construction and is a natural dilation of the
infinite direct product [[ ®;cr H; as defined by J. von Neumann. We will

show that the canonical representation of @ ;£(H;) on ®fellHi is injec-
tive (note that the canonical representation of zEI‘C(Hi) on [[®ier Hi
is not injective). We will also show that if {A;}ic; is a family of unital

Hilbert algebras, then so is ®z€ I

1. Introduction

In this paper, we study infinite tensor products of some algebraic structures. In the
literature, infinite tensor products are often defined as inductive limit of finite
tensor products (see, e.g., [4], [21] [9], [14], and [15]). As far as we know, the only
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alternative approach so far is the one by J. von Neumann, concerning infinite direct
products of Hilbert spaces (see [20]). Some authors used this approach to define
infinite tensor products of other functional analytic structures (see, e.g., [3], [11]
and [13]). The work of von Neumann attracted the attention of many physicists
who are interested in “quantum mechanics with infinite degrees of freedom”, as well
as mathematicians whose interest is in the field of operator algebras (see, e.g., [1],
121, 13], (8], [12], [17], and [19]).

However, von Neumann’s approach is not appropriate for purely algebraic ob-
jects. The aim of this article is to study “genuine infinite algebraic tensor products”
(i.e. ones that are defined in terms of multilinear maps instead of through induc-
tive limits) of some algebraic structures. There are several motivations behind
this study.

1. Conceptually speaking, it is natural to define “infinite tensor products” as
the object that produces a unique linear map from a multilinear map on a given
infinite family of objects (see Definition 2.1). As infinite direct products of Hilbert
spaces are important in both physics and mathematics, it is believed that such
infinite tensor products of algebraic structures are also important.

2. We want to construct an infinite tensor product of Hilbert spaces that is
easier for non-analyst to grasp (compare with the infinite direct product as defined
by J. von Neumann; see Lemma 4.2 and Remark 4.7 (d)) and is more natural (see
Theorem 4.8, Example 4.10 and Example 5.6).

3. Given a family of groups {G;}.cr, it is well known that the group algebra of
the group
ie]Gi = {[gi]iej € I/ G; : g; = e except for finite number of i € I}
is an inductive limit of finite tensor products. However, if one wants to consider
the group algebra C[IL;c;G;], one is forced to consider a “bigger version of tensor
products” (see Example 3.1).

In this article, the algebraic structures that we consider are vector spaces, uni-
tal *-algebras, inner product spaces, and *-representations of unital *-algebras on
Hilbert spaces. In our study, we discovered some interesting phenomena about
infinite tensor products that do not have counterparts in the case of finite tensor
products. Most of these phenomena relate to a certain object, €7, x, defined as
in Remark 2.4 (d), which “encodes the asymptotic information” of a given fam-
ily {Xi}ier.

In Section 2, we will begin our study by defining the infinite tensor product
(®);c1Xi,Ox) of a family {X;}icr of vector spaces. Two particular concerns are
bases of (¥),; Xi and the relationship between ), ; X; and inductive limits of finite
tensor products of {X;};er (which depend on choices of fixed elements in IT;¢; X;).
In order to do this, we obtain a direct sum decomposition of ®i€ 1 X; indexed by
a set Qr,x (see Theorem 2.5) with all the direct summands being inductive limits
of finite tensor products (see Proposition 2.6 (b)). From this, we also obtain that
the canonical map

ViR LXiY) = LR, XK, Y



ON GENUINE INFINITE ALGEBRAIC TENSOR PRODUCTS 331

is injective (but not surjective). As a consequence, §);.;X; is automatically a
faithful module over the big unital commutative algebra ), ;C (see Corollary 2.9
and Example 2.10). Moreover, one may regard the canonical map

Oc : LierC — ), C

as a generalized multiplication (see Example 2.10 (a)). In this sense, one can make
sense of infinite products like (—1)7.

Clearly, @, ;A is a unital *-algebra if all A; are unital *-algebras. We will
study in Section 3, a natural *-subalgebra ®?é 1Ai of @, A; which is a direct
sum over a subgroup Q‘}t ', of the semigroup €7, 4. The reasons for considering this
subalgebra are that it has good representations (see the discussion after Proposi-
tion 5.1), and it is big enough to contain C[IL;c;G;] when A; = C[G;] for alli € T
(see Example 3.1 (a)). Moreover, if all A; are generated by their unitary elements
(in particular, if A; are group algebras or C*-algebras), then ®?é ;A is the linear
span of the tensor products of unitary elements in A;. We will show that ®?é 1A
can be identified with the crossed products of some twisted actions in the sense
of Busby and Smith (i.e., a cocycle action with a 2-cocycle) of Q}t, on @5, A4;
(the unital *-algebra inductive limit of finite tensor products of A;). Moreover, it is
shown that ® ;C can be identified with the group algebra of Q ¢« (Corollary 3.4).

We will also study the center of &)}
unitary elements (for all i € I).

ic IAi in the case when A; is generated by its

In Section 4, we will consider tensor products of inner product spaces. If {H;}ier
is a family of inner product spaces, we define a natural inner product on a sub-
space ®uth of @, Hi (see Lemma 4.2 (b)). In the case of Hilbert spaces, the

i€l
completion ®z€ H; of @2} H; is a “natural dilation” of the infinite direct product

[ ®ier H; as defined by J. von Neumann in [20] (see Remark 4.7 (b)). Note that

the construction for ®1E ;H; is totally algebraical and is more natural (see Exam-
ple 4.10 and Example 5.6). Note also that one can construct [| ®;¢; H; in a similar
way as ®1E 1 H; (see Remark 4.7 (d)). On the other hand, there is an inner product
C[Q2}c]-module structure on @;¢; "¢ H; which produces ®Z€I i (see Theorem 4.8),
as well as many other pre-inner products on ®f£}t i (see Remark 4.9 (a)).

Section 5 will be devoted to the study of *-representations of unital *-algebras.
More precisely, if U; : A; — L(H;) is a unital *-representation (i € I), we define a
canonical *-representation

zEI ® A — £ ®’L IHZ)

We will show in Theorem 5.3 (¢) that if all the ¥; are injective, then ®¢1 U, is also
1nJectlve This is equivalent to the canonical *-representations of ®ut L(H;) o

®i€ ;H; being injective, and is related to the “strong faithfulness” of the canonical
action of Q?tﬁ( ) on QP (see Remark 5.4 (b)). Note however, that the corre-

sponding tensor type representation of ®1E]£( i) on [[ ®;er H; is not injective.
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Consequently, if (H;, ;) is a unitary representation of a group G; that induces
an injective *-representation of C[G;] on H; (i € I), then we obtain an injective

“tensor type” *-representation of C[IL;c;G;] on ®Z:IH (see Corollary 5.7). On
the other hand, we will show that @ cr, ., 504,) (®161Hp7,®1617rm) is an injec-
tive *-representation of ®ut A; when all the A; are C*-algebras (Corollary 5. 9)

Finally, we show that if all the A; are unital Hilbert algebras, then so is ®z€ I
Notation 1.1. i) In this article, all the vector spaces, algebras as well as inner
product spaces are over the complex field C, although some results remain valid if
one considers the real field instead.

ii) Throughout this article, I is an infinite set, and § is the set of all non-empty
finite subsets of I.

ili) For any vector space X, we write X* := X \ {0} and define X* to be the
set of linear functionals on X. If Y is another vector space, we denote by X @ Y
and L(X;Y) respectively, the algebraic tensor product of X and Y, and the set of
linear maps from X to Y. We also write L(X) := L(X; X).

iv) If {X;}ier is a family of vector spaces and x € Il;c;X;, we denote by z;
the “i*P-coordinate” of z (i.e. = = [x;];er). If o,y € Il;c; X; are such that x; = y;
except for a finite number of ¢ € I, we write

Ty = Y; e.f.

v) If V' is a normed space, we denote by £(V') and V"’ the set of bounded linear
operators and the set of bounded linear functionals, respectively, on V. Moreover,
weset 61 (V):={xeV:|z|=1} and By(V):={z eV : || < 1}.

vi) If A is a unital *-algebra, we denote by e4 the identity of A and write
Us:={acA:a*a=ey =aa*}.

2. Tensor products of vector spaces
In this section, {X;}icr and {Y;}ier are families of non-zero vector spaces.

Definition 2.1. Let Y be a vector space. A map ® : II;c;X; — Y is said to
be multilinear if ® is linear on each variable. Suppose that &), ; X; is a vector
space and Ox : [Lier X; — @,c; Xi is a multilinear map such that for any vector
space Y and any multilinear map @ : IT;c; X; — Y, there exists a unique linear
map ® : Ricr Xi = Y with & = ® 0 Oy. Then (®1E] Xl,@X) is called the
tensor product of {X;}ier. We will denote ®jer 2 := Ox () (x € ;e X;) and set
xel .= X, Xi if all X; are equal to the same vector space X.

Let us first give the following simple example showing that non trivial multi-
linear maps with an infinite number of variables do exist. They are also crucial for
some constructions later on.
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Example 2.2. (a) Let IT};;C := {8 € II;¢;C: §; =1 e.f.} and set

or(8) = {Hielﬂi if g € I, C,

0 otherwise.

It is not hard to check that ¢ is a non-zero multilinear map from II;¢;C to C. If
#1 : Q,;c;C — C is the linear functional induced by ¢; (the existence of @), ;C
will be established in Proposition 2.3 (a)), then ¢; is an involutive unital map.
(b) Let 1% ,C := {3 € MiesC : 3,/ |Bi — 1| < oo}. For each g € IIj.,C,
the net {Il;cpf;}regz converges to a complex number, denoted by IL;c;f5; (see,
e.g., 2.4.1 in [20]). We define ¢o(8) := Il;crB8; whenever § € H?eI(C and set
wolm,. o, ¢ = 0. Asin part (a), ¢o induces an involutive unital linear functional

¢o on ;¢ C.

Clearly, infinite tensor products are unique (up to linear bijections) if they
exist. The existence of infinite tensor products follows from a similar argument as
that for finite tensor products, but we give an outline here for future reference.

Proposition 2.3. (a) The tensor product (®i€1 Xi,@x) exists.

(b) If {Ai}ier is a family of algebras (respectively, *-algebras), then @;c; Ai
is an algebra (respectively, a *-algebra) with (®;ecr a;)(®icr b;) = Rier a;b; (and
(®ier ai)* == (Qier a])) for a,b € i1 4;.

(c) If U; : A; — L(X;) is a homomorphism for each i € I, there is a canonical
homomorphism ®i€1\lli : ®ier Ai = L (®ye; Xi) such that

(

(d) If A = ., A, is a graded algebra and @.-, M, is a graded left A-
module, then @~ ®y>,, M is a graded A-module with

ieI\IIi)(@iEI a;)Ricr vi = ®ier Vi(a))z: (o € WierAijz € Hier Xa).

U (Qk>nTk) = Qk>nOmT) € ® Mi(am € Az € I, My).
k>m+n

Proof. Parts (b), (c) and (d) follow from the universal property of tensor products,
and we will only give a brief account for part (a). Let V' be the free vector space
generated by elements in Il;c; X; and let ©¢ : IL;c; X; — V be the canonical map.
Suppose that W := span W, where

Wy = {/\@o(u) + O¢(v) — Op(w) : XA € Cyu,v,w € U Xy; Jig € I with
(2.1) Mgy + Vi, = wi, and uj = v; = w;,Vj € I\ {io}}.
If we put @, ; X; := V/W, and set ©x to be the composition of Oy with the

quotient map from V' to V/W, then they will satisfy the requirement in Defini-
tion 2.1. O
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In the following remark, we list some observations that will be used implicitly
throughout this article.

Remark 2.4. (a) As O is multilinear, ®,.;X; = span O x (e X,*).

(b) If I; and I, are non-empty disjoint subsets of I with I = I U I, it follows,
from the universal property, that @,.; X; = (®i€]1 Xi) ® (®j€12 Xj) canoni-
cally.

(€) ®;er(Xi ®Yi) = (®;e1Xi) ® (®;e,Yi) canonically.
(d) For any z,y € ;e X, , we write

r~y if z;=vy; ef.

Obviously, ~ is an equivalence relation on IL;c; X, , and we set [z]. to be the
equivalence class of z € IL;e; X, Let Q7. x be the collection of such equivalence
classes. It is not hard to see that Q¢ is a quotient group of II;c;C*, and that it
acts freely on 7. x.

(e) The element ®;c; 1 € C®! is non-zero. In fact, if ®;c;1 = 0, then C®1 = (0)
(by Proposition 2.3 (b)), and this implies the only multilinear map from IT;¢;C to C
is zero, which contradicts Example 2.2.

The “asymptotic object” Q5. x defined in (d) above is crucial in the study of
genuine infinite tensor products, as can be seen from our next result. Let us first
give some more notation here. For every u € Il;e1 X/, we set

I X i={x € jc; X; : o ~u} and ® Xi = span O x (ITic; X5).

If u ~ v, then I, X; = ITY_; X;, and we will also write HMNXz = I X,

] el el iel
U~ p—
and ®151 i= ®ie] Xi.

Theorem 2.5. @, ; X; = @w€ﬂl;x e Xi-

Proof. Suppose that z(1) ... z(® € Hzer and that 0 =ng < -<ny=n
is a sequence satisfying 2™+t ~ ... ~ 2+ for k € {0,. — 1}, but
() () whenever 1 < k # 1 < N. We first show that 1f 1/1,...,1/n e C
with 31, 10 x(z)) = 0, then

i€l

s 0y — — _
Zl:nk—&-lyl@X(m )=0 (k=0,...,N—1).

In fact, by the proof of Proposition 2.3 (a), there exist m € N, py,..., iy, € C
and A\, Og(u®) 4+ 0y (v*)) — Oy (w*) € Wy (k =1,...,m) such that

lelm@o(x(l)) — Zkiluk (MO0 (u®)) + O (v ™)) — Oy (w™))).

Observe that if one of the elements in {u®) v(*) w*)} is equivalent to 2" (un-
der ~), then so are the other two (see (2.1)). After renaming, one may assume
that u®) ~ v®) ~w®) ~ 2D for k =1,...,mq, but none of u®, v*) and w® is
equivalent to (") when k € {m; +1,...,m}.
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Since the two sets
(oD gt MmN (Mt (M)
and

{2 2™y u {w®, L u YU oM oMU D)L w(™)Y

are disjoint and elements in ©¢ (Il;c;X;) are linearly independent in V', we have

S uo®) = 3" i (MBo(u®) + B0 (v®) — By(w®)) = 0.

This implies that > ', 0 x(z(") = 0. Similarly, ?:";;Jrl 1©x(z®) = 0 for
k=1,... N—1
The above shows that

WM M—1 Wi

(©x)n (¥ ®@x) -1
el k=1 icl
when wi,...,wy are distinct elements in €, x. On the other hand, for every
x € ;er X/, one has Ox(z) € ®£§IN X;. These give the required equality. O

For any F' € § and u € IL;c; X} , one has a linear map

@ @Y

given by Ji(Qier i) = ®jer &; (x; € X;), where &; := x; when j € F, and
Zj:=wu; when j € I\ F.

For any I, G € § with ' C G, a similar construction gives a linear map Je.p
Ricr Xi = Qe Xio It is clear that (®i€FXi,J5;F)FgG€3 is an inductive
system in the category of vector spaces with linear maps as morphisms.

Proposition 2.6. (a) J§ is injective for any v € I;er X and F € §. Conse-
quently, ©x (u) # 0.

(b) The inductive limit of (Q;c Xi’Jg;F)FgGeg is (e Xis{Jp}res)-

Proof. (a) Suppose that a € ker Ji and ¢ € (&Q);cp Xi)*. For each j € I\ F,
choose f; € X7 with f;(u;) = 1. Remark 2.4 (b) and the universal property give a

linear map ¢ : ®,; X; — C®/ satisfying

P(®ieri) = V(Qier ) (Qjenr f(x5)) (z € Wier X;).

Thus, ¢(a)(®:er 1) = ¥ (Jk(a)) = 0, which implies that a = 0 (as ¢ is arbitrary)
as required. On the other hand, if ip € I, then ©x(u) = J@O}(uio) # 0.

(b) This follows directly from part (a). O
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Part (b) of the above implies that ©x (C*) is a basis for ;. ;X;, where C* is
as defined in the following result.

Corollary 2.7. (a) Let ¢ : Qr,x — HieIXiX be a cross section. For each w € Qr.x
and i € I, we pick a basis BY of X; that contains c(w); and set

CY:={z el Xz € B Viel}

If C:=U,eq,  C¥, then ©x(C) is a basis for @
(b) If ®, : X; — Y; is an injective linear map (i € I), the induced linear map
Ric1®i: Qi1 Xi = Qe Yi is injective.

Proposition 2.8. The map V¥ : @, L(Xi;Yi) = L(Q;c; Xi; Q;c;Yi) (given by
the universal property) is injective.

il Xi.

Proof. Suppose that T ... T € T;c;L(X;;Y;)* are mutually inequivalent ele-
ments (under ~), F € §, RV, ..., R™ € ®,_ L(X;;Y;) with S*) = J%"“) (RM))

(k=1,...,n) satisfying
‘I’(Zk:fg(k)) = 0.

Using an induction argument, it suffices to show that S = 0.
If n =1, we take any = € IL;c; X with Ti(l):ni #0(el). If n>1, we claim
that there is z € ;e X, such that

[T-(l)l'i]iél € IiesY;  and [T-(k)fﬂi]z‘el et [T'(l)l“z‘]iel (k=2,...,n).

In fact, let I* :={i € I: Ti(k) #* Ti(l)}, which is an infinite set for any k =2,...,n.
For any i € I, we put N; := {k € {2,...,n} : i € I*} and take any z; €
Xi\ (UkeNj, ker(Ti(k) - Ti(l)) U ker Ti(l)) (note that X; cannot be a finite union

of proper subspaces). Thus, Ti(l):ci # 0 (for each i € I) and Ti(k):ni # Ti(l):ci (for
ke{2,...,n} and i € I¥).

Now, we have

WS, %) (

- 0
by Theorem 2.5 and the fact that U(S")(®7.;X;) € ®gEZIYi, where ygl) = Ti(l)mi
(ie;l=1,...,n). Consequently, \II(S(l))|®f€IXi =0. As Ti(l):ni #0 (i €l),it

is easy to see that R(Y) = 0 as required. O

n

k=2qj(s(k))( ieIXi)) =0

Note that ¥ is not surjective even if X; =Y; = C (i € I) since in this case, ¥
is a homomorphism and ), ;C is commutative while L(§),;C) is not.

The following result follows from Propositions 2.3 (¢) and 2.8 as well as Corol-
lary 2.7 (b). It says that an infinite tensor product of vector spaces is automatically
a faithful module over a big commutative algebra.
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Corollary 2.9. If X; is a faithful A;-module (i € 1), then &);c;X; is a faithful
. A;-module. In particular . Y; is a faithful unital C®T-module.
Rier p » Wier

Example 2.10. (a) If 5 € T;c;C*, then ®f€I(C = C - ®jes fi. In fact, for any
Fe§and p; € C (i € F), we have J}(®icr 1) = (Wicr i/ B;) (Rier By)-

(b) For n € N, let I1,..., I, be infinite disjoint subsets of I with I = J;_; Ix
and 8 = (B1,...,Bn) € (C*)". Define B € ILie;C* by B; = ) whenever i € I.
Then 5 — [8]~ is an injective group homomorphism from (C*)™ to Qy.c.

(¢) Let G be a subgroup of T" C (C*)™ (where T := {t € C : |t| = 1}). If
W, ce ,W are distinct elements in G and E(B, .. .,E(\m/) € IT;c;C* are as in

part (b), then ®;¢r ﬁi(l), ey Quer ﬁi(m) are linearly independent in C®!. Therefore,
the *-subalgebra of C®! generated by {®cr B; : B € G} is *-isomorphic to the
group algebra C[G].

As ®ier ap = (ierai)(®ier 1) if a; = 1 ef., one may regard ®;c; o; as a
generalization of the product. In this case, one can consider infinite products
like (—1)7.

3. Tensor products of unital *-algebras

Throughout this section, A; is a unital *-algebra with identity e; (i € I), and we
set Q‘I‘fA = 1erUan,/ ~.

Notice that in this case, Q7.4 is a *-semigroup with identity and Qj!, can
be regarded as a subgroup of €;,4 with the inverse being the involution on Q. 4.

Moreover, @), ; A; is a 1, a-graded *-algebra in the sense that for any w,w’ € Qr; 4,

By (QL,4) (®L4)c @4 ma (Q,4) < @ A

By Proposition 2.6 (b), ®f€1Ai can be identified with the unital *-algebra
inductive limit of finite tensor products of A;. We will study the following *-sub-
algebra that contains @), A;:

t w
A= D, @A
iel weQyt, iel

The motivation for considering this subalgebra is partially Example 3.1 (a) be-
low, and partially because it has good representations (see the discussion after
Proposition 5.1 below). Moreover, if all the A; are linear spans of Uy, (in particu-
lar, if they are C*-algebras or group algebras), then ®?é ;A; is the linear span of

©a(WierUa,). If Ay = Afor all i € I, we write AS = @i, A;.
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Example 3.1. (a) Let G; be a group and C[G;] be its group algebra (i € I).
If A : ierGi — IlierUgg,) is the canonical map, then A := O¢|g) o A gives a
*-isomorphism from C[II;c;G;] to the *-subalgebra

A(1L;erGy) A) ut
®ie[ C[Gi] = Ztel‘liezGi®ieI C[Gi] S ®ieIC[Gi]'
In fact, A induces a *-homomorphism from C[IL;c;G;] to ®;121(C[ i Let g :

WierGi — WierGi/®ierG; be the quotient map. For a fixed s € ;e G, if we set
Gi = {t €llic/Gi: q(t) = q(s)},

then s~ (Pi.; Gi) = Pie; Gi- Thus, {A(t) : t € @j; Gi} is aset of linearly inde-
pendent elements in &, ;C[G;] (as A|cig, _, ¢, Is a bijection onto i, ClGi]). On
the other hand, if s(V), ..., s(™ € I;c;G; are such that ¢(s®)) # ¢(sV) whenever
k # 1, then A(s™),.. /\(s(")) are linearly independent in ®z€] [G;] (see Theo-
rem 2.5). Consequently, {\(¢) : ¢t € II;c;G;} form a basis for ®i€] ’GIGi)(C[Gi].

(b) It is well known that there is a twisted action (a,u), in the sense of
Busby and Smith, of Q¢ = Iie;Gi/®ierGi on C[P,;; Gi] = ®f€IC[Gi]
(see 2.1 in [5]) such that C[II;c;G;] is *-isomorphic to the algebraic crossed product
®161C[G ] Na u QI HeR

There exists a canonical action = of IL;c;U4, on ® A; given by inner auto-

morphisms, i.e.

i€l

_ " ut
Eu(a) = (Qierui) - a - (Qieruy) (u €TierUa;za € ®i€IAz)

This induces an action =Z¢ of 1I;c;U4, on the subalgebra ®e

serAi- The following
result gives an identification of ®;lé ;A as the algebraic crossed product (see, e.g.,

page 166 of [16]) of a cocycle twisted action (i.e., a twisted action in the sense of
Busby and Smith) of Q}!, on ®;.;A; induced by Z°.

Before we give this result, let us recall that an abelian group G is divisible if
for any g € G and n € N, there is h € G with g = h"™.

Theorem 3.2. (a) There is a cocycle twisted action (Z,m) of Qs on Qi Ai
such that ® [Ai is Qfty-graded *-isomorphic to (QjeAi) X Q‘I‘tA

(b) Suppose that all the A; are commutative. If ®i€IA1 s a unital *-subalgebra
of a commutative *-algebra B with Up being divisible, ®;121Ai 18 Q‘I‘;tA-gmded
*-isomorphic to a unital *-subalgebra of B ® (C[Q‘}tA] If Uge,, A, 18 itself divisible,
Qic1Ai = (R Ai) @ CIQY,] as QY -graded *-algebras.

=2,m

Proof. Let ¢ : Qffy — M;c;Ua, be a cross section with c([e].) = e.
(a) For any u,v € Qff,, we set

1

[1]¢

W= B and muy) = s c(p)icw)ic(u);
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As c(p)e(v) ~ c(ur), we have m(p,v) € @y Ai. It is easy to check that (Z,m)
is a twisted action in the sense of Busby and Smith. Furthermore, we define
U (e Ai) Xz Qs = @ieAi by

\Il(f) = ZwEQ‘}FAf( )(®1€IC f€ ® A _m )

It is not hard to verify that ¥ is a bijective Q‘I‘ '4-graded *-homomorphism.

(b) Let IS ; Uy, := 11 ; A; N1ieUa,. By Baer’s theorem, @A|H§EIUAi can be
extended to a group homomorphism ¢ : IL;c;U4, — Up. Since

plc(m)e(c())ele(ur) ™ = @ier c(p)ic(v)ic(u);
the map @ : Q).

! (M)V € Qlll;tA)v

zEIAi — B ® C[Q}!,] given by

(32 Ba) = (a-Sicr ) ele@) ©Mw) (a€ @ Anwe QL)

is a QYt,-graded *-homomorphism. If > v a¥ € ker® (with a* € Qi Ai),

then for every w € Qply, one has (a - ®ier c( ); De(e(w)) = 0, which implies
“ =0, and hence @ is injective. The image of ® is the linear span of

{bp(c(w)) @ AMw) be®jIAi;w€Q‘;fA

and it is clear that @ is surjective if B = ;. A O

wEQ“

Remark 3.3. (a) The cocycle twisted action (Z,m) depends on the choice of a
cross section, and different cross sections may give different twisted actions (al-
though their crossed products are all isomorphic). On the other hand, the map ®
in part (b) also depends on the choice of a cross section as well as the choice of an
extension of @A|H$GIUAi'

(b) If S; is a set and A; is a *-subalgebra of £>°(S;) (i € I), then by Theo-
rem 3.2 (b), ®i¢;A; is a *-subalgebra of £ (I;eS;) @ C[QYY,]. Our first proof for
this fact use 18.4 in [6] and 7.1 in [7].

(c) If all the A; are commutative, then &:r;4; = (®5c;A: )®(C[Q“t ] as Qffy-

graded *-algebras if and only if there is a group homomorphism 7 : Q 4= U®
such that m(w) € Q¢ Ai (w € Q). In fact, if such a 7 exists, one may replace
(a- ®ierc(w); He(e(w)) in (3.2) with ar(w™") and show that the corresponding ®
is a *-isomorphism.

Clearly, the second statement of Theorem 3.2 (b) applies to the case when
A; = C™ for some n; € N (i € I). In particular, Theorem 3.2 (b) and its argument
give the following corollary.

Corollary 3.4. If ¢ is as in Example 2.2 (a) and ¢ : I;c;T — T is a group ho-
momorphism that extends <P1|H}€,T (its existence is guaranteed by Baer’s theorem),
then ®(®Ricr o) = p(@)\([a]~) (o € e T) is a well-defined *-isomorphism from
C& onto ClQyc]-
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Conversely, it is clear that if ¢ : II;c;T — T is any map such that ¢ as defined
in the above is a well-defined *-isomorphism, then ¢ is a group homomorphism
extending <p1|n7;€IT. On the other hand, there is a simpler proof for Corollary 3.4.
In fact, for a, B € I T with a ~ 3, one has (o)™t - ®jer a; = 9(B) 7! - Ricr Bi-
Thus, [a]~ — @(a)™! - @ier a; is a well-defined group homomorphism from QY

to Uger such that {o(a)™" - ®ier ai : [a]~ € Qi) is a basis for (oA

Example 3.5. For any subgroup G C T", the algebra defined as in Exam-
ple 2.10 (c) is a *-subalgebras of C%/.

In the remainder of this section, we will show that the center of @', A; is the

iel
tensor product of centers of the A; when A; = spanUy, for all i € I.

If A is an algebra and G is a group, we denote by Z(A) and Z(G) the center
of A and the center of G respectively. Clearly, the inclusion IL;c;U z(A;) € IierUa,
induces an injective group homomorphism from Q‘;}Z( ) to Q‘}t 4 and we regard the
former as a subgroup of the latter.

Theorem 3.6. Suppose that there is Fy € § with A; = spanUa, for alli € Iy :=
I\ Fp.

(a) Z(QFy) = QllltZ(A) Moreover, Z(Qyty) = Qty if and only if all but a finite
number of the A; are commutative.

(b) Every element in Qs \ Z(Qf!4) has an infinite conjugacy class.
() Z(®ierAi) = ®f§12( i)-

Proof. (a) It is obvious that QY 24y S Z(Qf4). Suppose u € M;crUa, with
[ul~ & Q!5 4)- There is an infinite subset J C Iy such that u; ¢ Z(A;) (i € J).
For each i € J, one can find v; € Uga, such that u;v; # v;u;. For any i € I\.J, we put
v; = e;. Then [v]. € QFfy and [u]. [v]N # [v]~[u]~. Consequently, [u]. ¢ Z(Q}!,).
This argument also shows that if the set {i € I:Z(A;) # A;} is infinite, then
Z(Qys) # Q4. Conversely, it is clear that Qf, ,) = Qfyy if all but a finite
numbers of the A; are commutative.

(b) Suppose that [u]. € Q' \ Z(QF,) and {in}nen is a sequence of distinct
elements in Iy such that u;, ¢ Z(A4;,) (n € N). For each n € N, choose v;,, € Uy,

with v;, u;, v} # w;,. For any prime number p, we set w( P = =v;, (n € Np), and

w® = e; if i € I'\ {in, : n € Np}. If p and ¢ are distinct prime numbers, then

3

wi i, () = wi, # wlui, (w])" (0 € Np\Ng).
Consequently, w@u(w@)* = wPu(w®)* and the conjugacy class of [u]. is
infinite.

(c) Since Z(®je ;Ai) = Ricr, Z(Ai)® Z(®Z€IOA ), we may assume that A;

span Uy, for all 7 € I. In this case, Z(®féIA ) = (®21A ) , where (®i€IAi)“

is the fixed point algebra of the action = as defined above. Moreover, one has
Qe Z(A;) € Z(Qe;Ai) and it remains to show that (®je; 4 ) ®£1Z( i)

1||
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Let v, ..., 0" € I;c;U4, be mutually inequivalent elements, let F' € {S’, and
let by,...,bn € @;cpAi \ {0} be such that a := ZzzlJl%(k) (b) € (®21A )", We
first claim that [v(®)]. € Que Z(A) (k=1,...,n). Suppose, to the contrary, that

V] ¢ Qut 74) = Z(Qf!4). For every u € TierUa,, one has

= (2 o) e (@ oy,

i€l
As Z,(a) = a, we see that [uv 1)u ] € {[vM]~,...,[v™].}, which contradicts
the fact that {[uv(l)u |~ i [ulo € QY4 } is an infinite set (by part (b)).
By enlarging F, we may assume that v*) & icrUza,) (K =1,...,n). For
each u € I;erUy, and k € {1,...,n}, one has _u(JF(k)( b)) = J}’;(k) (b) and so,

b € Z(Q);cpAi). Therefore, a € ®;1;IZ( i), as expected. O

The reader should notice that ®;121Z( i) equals GaweZ(Q‘;FA) Qe Z(A;) in-

stead of eaweﬂ‘}fA Qe Z(A;) (strictly speaking, the latter object does not make

sense).
Example 3.7. (a) If n; € N (i € I), then Z(®j¢, M,,(C)) = CZ/ .

(b) If G; are icc groups, then Z(®f€tIC[ i]) = C&! canonically.

We end this section with the following brief discussion on the non-unital case.
Suppose that {A;}ier is a family of *-algebras, not necessarily unital. If M (A;)
is the double centraliser algebra of A; (i € I), we define an ideal, ®;1é 1A, of
Qe M(4;) as follows:

ut

eIAi = span {J}é(a) FeFae ®ieFAi;u € HiEIUM(Ai)}-

In general, Q'

ierAi is not a subset of ®i€ ;A;. In a similar fashion, we define

'eIAi := span {JF(a) :F e ac ®Z_€FAi;u € WierUnreayy;u ~ e},
which is an ideal of @7, M (A;). By the proof of Theorem 3.2 (a), one may identify
Qe ;A as the ideal of (S, M(A)) =, Qf'yr(a) consisting of functions from

QI;M(A) to ®iEIAi having finite supports.

4. Tensor products of inner product spaces

Throughout this section, (H;, (-,+)) is a non-zero inner product space (i € I). More-
over, we denote Q‘I”}‘} =161 (H;)/ ~.

If B is a unital *-algebra and X is a unital left B-module, a map (-,")p : X X
X — Biscalled a (left) Hermitian B-form on X if (ax+y,z)p = a{z,z) g+ (y, 2)B
and (z,y)5 = (y,2)p (z,y,2 € X;a € B). It is easy to see that a Hermitian
B-form on X can be regarded as a B-bimodule map 0 : X ® X — B satisfying
0(z @ §)* = 0(y ® ) (where X is the conjugate vector space of X regarded as a
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unital right B-module in the canonical way). Consequently, part (a) of the fol-
lowing result follows readily from the universal property of tensor products, while
part (b) is easily verified.

Proposition 4.1. (a) There is a Hermitian C®!-form on &, .; H; such that
(®ier Ti, ®icr Yi)cor = ier (i, ¥i) (€Y € IierH;).

(b) For a fized i € QyYf, one has (©u(x), 0w (y))cor = Wier (i, yi)(Rier 1)
(z,y € Wi H;). This induces an inner product on @' H; that coincides with
the one given by the inductive limit of (®ieF Hi’Jg;F)FCGGS’ in the category of

inner product spaces with isometries as morphisms.

icl

We want to construct a nice inner product space from the above Hermitian
C®I_form. A naive idea is to appeal to a construction for Hilbert C*-modules that
produces a Hilbert space from a positive linear functional on C®!. However, the
difficulty is that there is no canonical order structure on C®’. Nevertheless, we
will make a similar construction using the functional ¢; in Example 2.2 (a). In this

case, one can only consider a subspace of X),.;H; (see Example 4.3 below).

Lemma 4.2. Define (§,1)4, := ¢1((§,n)cer) (§,1 € Qe Hi) and set
ct
®i€IHi := span O (Ilie; B1(H;))

as well as ®?£}t ;= span Oy (;c ;&1 (H;)).
(a) For any p € Q‘I‘n}l}, the restriction of (-,-)¢, to Qle; Hi x @l Hy coincides
with the inner product in Proposition 4.1 (b).
(b) (- 7)y, is a positive sesquilinear form on RS

iel
unit .
on Q..; H;. Moreover, if

i€l
ct ct
K = {y € ®i€IHi {2, y)g, =0,Vx € ®i€IHi},
then ®je, Hi = K @ ®;’£}t i (as vector spaces).

() IfI=N UL and I N Iy = 0, then Q2 H; = (R} Hy) @ (Q'ey, Hj)
as inner product spaces.

H; and is an inner product

Proof. (a) This part is clear.

(b) It is obvious that (-,-), is a sesquilinear form on (o)

iel Hz Let

= {z € We;B1(H;) : ||z;]| <1 for an infinite number of i € I'}

and K := span Oy (E). Clearly, 'L, H; = K ® Q') H;. Moreover, if u €
WierB1(H;) and v € E, then (u;,v;) # 1 for an infinite number of 7 € I, which

implies that (®;er u;, iecr vi)g, = 0. Consequently, K C K.
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We claim that (¢,€),, > 0 (¢ € @5t H;). Suppose that & = S 4, \@icruf”
with A1,..., A\, € C and M, ... u™ € Il;c; B, (H;). Then

€8y, = Z:l Mo (@ier (i ul)).

As in the above, ¢1(® er (u W, 5”)) = 0 if either u®) or v is in E. Thus, by
rescaling, we may assume that

U(l), .. ,u(") € HiEIGI(Hi)-

Furthermore, we assume that there exist 0 = ng < -+ < n,, = n such that
u D) ~ o yen) for all p € {0,...,m — 1}, but u(™) 0 u(") whenever 1 <
p # g < m. It is not hard to check that u(®) ~ u® if and only if <u§k), uz(.l)> =1lef.
(as |\u§k)|\, ||u£l)|| < 1). Consequently, if 1 <p # g <m,

(4.1) o1( ®ier <u§k),u£—l)>) =0 whenn, <k <n,p1 and ng <l < ngqa.

Therefore, in order to show (&, £> > 0, it suffices to consider the case when

u® ~ u® for all k,1 € {1,...,n}, which is the same as £ € ® H Thus,
(§:€)y, = 0 by part (a).

Next, we show that (-, ~>¢1 is an inner product on ®;’£}t H;. Suppose that

E= 30 M®ier ugk) with A,..., A\, € Cand uM, ... u™ € ;c;&,(H;) such
that <§,£>¢1 =0. If ng, ..., n,, are as above, then

P <<Zk:;+1)\k®iel U'Ek)v Zl:;:+1)‘l®i€1 uz('l)>(c®1> =0

because of (4.1) and the positivity of (-,-)4,. Hence, we may assume u*) ~ o
for all k,1 € {1,...,n}, and apply part (a) to conclude that £ = 0.

161

Finally, as (-,-); is an inner product on ®r£}tH and we have both ®; , H; =
K& Q@ H; and K C K, we obtain K C K as well.

(c) Observe that the linear bijection ¥ : (Q);c;, Hi) ® (Qer, Hj) = Qicr Hi
as in Remark 2.4 (b) restricts to a surjection from (®3§}t1 H;) ® (®;211t2 Hj) to
QM H;. Moreover, for any u,u’ € Ilier,&1(H;) and v,v' € e, &1(H;),
we have (u,u’) ~ (v,v’) as elements in II;c;S1(H;) if and only if v ~ «' and
v ~ v'. Thus, the argument in part (b) tells us that

(®ienui) ® (¥jerv;), (Rien ;) @ (Rjenv))),
= <®i€[1ui7 ®i€11u;>¢1 <®j€12vj, ®j€12v;'>¢1 .

This shows that \Il\( Qurit is inner product preserving. O

ieh, H)®(Qjer, Hj

We denote by ®z€1Hi and ® (H; the completions of Q' H; and ®f£}t
respectively, under the norms induced by (-, )y -
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Example 4.3. If H; = C (i € I), then the sesquilinear form (-, )4, is not positive
on the whole space &), ; H; since <(®i€1 1/2—®ier2), (Rier1/2—Ricr 2)>¢1 = -2

Set HfgIH ={x € s H; : x; € 61(H;) except for a finite number of ¢} and
let K be an inner product space. A multilinear map ® : II$¢  H; — K (i.e. @ is
coordinatewise linear) is said to be componentwise inner product preserving if for

unit

any w,v € Q.
(@(x), ®(y)) = O pllicr (wisyi) (v € Wi Hiy € T Hy),

where 0, is the Kronecker delta.

Theorem 4.4. (a) ®z€] & @#eﬂumt ®Z€IH canonically as Hilbert spaces.

unit . .
(b) Omlney, m, e Hy — Qe; Hi is a componentwise inner product preserv-
g multilinear map. For any inner product space K and any componentwise inner

product preserving multilinear map ® : 1I58 H; — K, there is a unique isometry

o : ®;’£}tHz — K such that ® = d o Ol m

i€l
Lemma 4.2 (b), the two subspaces @', H; and @) H; are orthogonal if ;i and v

are distinct elements in Q‘}I}‘} The rest of the argument is standard.

Proof. (a) Clearly, @™ H, = D ey Qe Hi. Moreover, as in the proof of

(b) It is easy to see that © H|H?Ez 77, is componentwise inner product preserving.

The uniqueness of ® follows from the fact that © (IS, H;) generates Rier
To show the existence of ®, we first define a multilinear map @, : I IH —
K by setting & = ® on II{{;H; and &9 = 0 on e H; \ TS H;.  Let D, :

&, Hi — K be the induced linear map and set P = q)0|®,‘;g‘,“Hi' Suppose that
u,v € ier&1(H;), £ € Qe Hi and n € Q. Hi. If u = v, then (£,1)y, =
0 = (®(£), ®(n)). Otherwise, there exist F € § and &, 1o € &), Hi such that
&= JE(o), n = Jp(no) and u; = v; if ¢ € I'\ F. In this case, (2(§),®(n)) =
(€0, m0) = (€ Mgy - =

mt

Example 4.5. Suppose that ® and ¢ are as in Corollary 3.4, and {5H}HEQ\I,$t
is the canonical orthonormal basis for ¢? (Q‘}?&t) Note that Qff. = Q}lf(‘cit and
consider the linear bijection J : C[Q}%] — CIQFE] given by J(A([a]~)) = dja).
(o € e T). By Example 2.10 (a) and Theorem 4.4 (a), the map J o ® induces
a Hilbert space isomorphism @ : ® C — 12 (Q‘I”(‘Clt) such that <i>(®i€1 Bi) =
©(B)djg). (B € MiesT).

icl

We would like to compare ®Ze ;H; with the infinite direct product as defined
in [20], when {H;}er is a family of Hilbert spaces. Let us first recall from Defi-
nition 3.3.1 in [20] that « € Il H; is a Co-sequence if 3, |[|@:]| — 1| converges.
As in Definition 3.3.2 in [20], if # and y are Cp-sequences such that » _,; | (@i, yi) —1|
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converges, then we write x &~ y. Denote by [z]~ the equivalence class of x under
~, and by I'r.;r the set of all such equivalence classes (see Definition 3.3.3 in [20]).

Let [] ®ierH; be the infinite direct product Hilbert space as defined in [20],
and let [] ®;er z; be the element in [ ®;e7H; corresponding to a Cy-sequence x
as in Theorem IV of [20]. Notice that if x € II{¢; H;, then z is a Co-sequence, and
we have a multilinear map

Y15 H; — [ @ierHs.

On the other hand, for any € € I'y,z7, we denote by [] ®i€€IHi the closed subspace
of [[ ®ierH; generated by {[[ ®icrzi : © € €} (see Definition 4.1.1 in [20]).

Proposition 4.6. Let {H;};cr be a family of Hilbert spaces.

(a) [#]~ = [2]~ (z € Wier&1(H;)) gives a well defined surjection k= QFE —
Tr.. Moreover, for any x,y € IS (H;), there is a bijection between /{Hl([m]z)
and w7y (lyl~)-

(b) There exists a linear map T : ®;1g}tH — [1®icrH; such that T = T o

Hi_>

@H|neu H and Y |®u u, extends to a Hilbert space isomorphism T ®z€[

[T Hi (n e Q).

Proof. (a) Clearly, if v ~ z, then  ~ z and kp is well defined. Lemma 3.3.7 in [20]
tells us that kg is surjective. Furthermore, there exists a unitary w; € £(H;) such
that w;x; = y; (¢ € I), and [u;];er induces the required bijective correspondence in
the second statement.

(b) By the argument of Theorem 4.4 (b), one can construct a linear map T such
that T = To Om|mse, i, By the argument of part (a), we see that T(@MN H;) C
11 ®£Z]I H; (u € ;161 (H;)). Furthermore, by Lemma 4.2 (a), Proposition 4.1 (b)
and Theorem IV in [20], we see that T| i~ g, 1 an isometry. Finally, T e

iel v LGI

has dense range (by Lemma 4.1.2 of [20]). IIJ
Notice that T is, in general, unbounded but Remark 4.7 (b) below tells us that
®?€11Hl is a “natural dilation” of [[ ®;e; H;. On the other hand, Remark 4.7(d)

says that it is possible to construct H ®ier H; in a way similar to ® H,. Note
H,; itself

Z€I
however, that the construction of ®1E H; is totally algebraic and ®
seems to be more natural (see Theorem 4.8 and Example 5.6 below).

icl

Remark 4.7. Suppose that {H;}icr is a family of Hilbert spaces.

(a) ~ and =~ are different even in the case when I = N and H; = C (i € N)
because one can find x,y € Il;enT with x; # y; for all i € N but for which
Sooey [{@is yi) — 1| converges. In fact, k7 ([z]~) is an infinite set.

(b) By Lemma 4.1.1 in [20], we have

— 02
H®i€IHi = GBGGFI;HH@gGIHi'
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Therefore, Theorem 4.4 (a) and Proposition 4.6 tell us that for a fixed vy € 'y,
one has a canonical Hilbert space isomorphism

é1

®i€1H’L = e H@zeIH
(c) For each i € I, let K; be an inner product space such that H; is the

completlon of K;. Then ®z€ I

®161H because Q% © QYN if Ky © H; for an infinite number of ¢ € I. On the
other hand, if I is countable for any z € ;e 61 (H;), there exists y € 11,161 (K;)
such that x ~ y. This shows that the restriction, kp.x, of kg to Qumt is also a

K; is, in general, not canonically isomorphic to

surjection onto I'y, 7. However, we do not know if the cardinality of s H K(Qﬁ) are
the same for different € € I'y, 5.

(d) If ¢ is as in Example 2.2 (b), it is easy to see that
H Ui, H®Uz = ®z€1 Ui, Qier vl>(C®1) (u,v € H;lg}tHl)

Thus, the sesquilinear form ¢0(<~, ~>C®z) produces [[®H;. If one wants a self-
contained alternative construction for [[ ® H;, one needs to establish the positivity
of ¢g ((, ~>C®1), which can be reduced to showing the positivity when all H; are of
the same finite dimension.

unit

In the remainder of this section, we show that X),c; H; can be completed into

a C*(Q}ic)-module, which gives many pre-inner products on ®i€ ; H; including
(-,-)¢: - In the following, we use the convention that the A-valued inner product of
an inner product A-module is A-linear in the first variable (where A is a pre-C*-
algebra). On the other hand, we recall that if G is a group and A, is the canonical
image of g in C[G], the map >  c a4\ = ac (g € C), where e € G is the
identity, extends to a faithful tracial state xg on C*(G).

Theorem 4.8. (a) There exists an inner product C[Q}ic]-module structure on

mod

QN H;. If ey Hi is the Hilbert C* (Q}ic)-module given by the completion of

this C[QY}c]-module, we have a canonical Hilbert space isomorphism

— 1 — mod

(4.2) ®i€1Hi = (®i61 Hi)®xﬂ‘z’fc(c'

(b) If G € QY is a subgroup and Eg : C* (i) — C*(G) is the canonical con-
ditional expectation, there is an inner product C[G]-module structure on ®uth

whose completion coincides with the Hilbert C*(G)-module (®?;OldHi)®gGC (G).

Proof. (a) Clearly, ®?§}tH is a C%/-submodule of the C®/-module ®), ; H; (see

Proposition 2.3(c)). Moreover, one has a linear “truncation” E from C®! =
(@WEQI_C\QM QiC) & C®! to C®I sending (a, 8) to 8. Define

<£7 77>(C§t1 = E(<£7 77>(C®1) (57 ne ®j:;tHl),
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which is a Hermitian C%/-form because by (3.1), we have
E(ab) = E(a)b and E(a*) = E(a)* (acC®;beC%).

For any u,v € IL;c;61(H;), we write u ~g v if there exists 8 € II;c;T such that
= B;v; e.f. Then ~g is an equivalence relatlon on IL;c; &1 (H;) satisfying

(4.3) ur~gv if and only if (®;c5u;, Qier vi)cor € (Cut .

Let ® and ¢ be as in Corollary 3.4. Suppose that £ = >"7_| axQer u(k) with
a1y .., € Cand uM ... u™ € ;e ;& (H;). We first show that ®((¢, §>C®1)

C*(Y'c)+- As in the proof of Lemma 4.2 (b), it suffices to consider the case when
u® ~g u® for any k € {1,...,n} (because of relation (4.3)). Let F' € § and
BM ..., ™ e ;e;T be such that ugk) = ﬁi(k)uz(-l) (teI\F;k=1,...,n). For
any k,l € {1,...,n}, we have

((Wier (")) (@iene BV 5)) = (@r@®). or(@)r,
where @p(uF)) := (@(6(k))niepﬁik ) (®zeF u ) ® Ao, and (-,)p is the
canonical C[Q2}]-valued inner product on (&, Hi) ® C[Q}ic]. Therefore,

(& E)cer) = <Z::1ak¢F(u(k))aZn OékSZF(U(k))> > 0.

k=1 F

Next, we show that xqu o ®oE = ¢;. Let a € IL;c;C*. If o ¢ 1, then Xy, ©
Do E(®iera;) =0 (as ‘I>(E(®z€1 a;)) ¢ C-Any. \ {0}, whether or not [a]. € QF%)
and we also have ¢1(®;er ;) = 0. If a ~ 1, then ®;er a; = (ier)(®ier 1) =
(Iierevi)Apy.., which implies that xqu (®(@icr i) = licrai = ¢1(®ier o).

Thus, we have

(4.4) Xy, (2(Emesn) = (Endor (Ene @) Hy).

As a consequence, if (I)(<f,£>c®t1) = 0, we know from Lemma 4.2 (b) that £ = 0.

unit

el
mod

=~ (Qy Hi)®XQ%(C also follows from (4.4).

This gives an inner product (C[Q?t(c]—module structure on ), ; H;. Furthermore,

the required isomorphism ®Z€ 7

(b) Since ®r£}tH is a C[G]-module (we identify C[G] with 5 ®'e;C under
the *-isomorphism ® of Corollary 3.4), every element in (®f£} H;) ®cjq) ClG] is

of the form § ®cj¢g) 1 for some £ € ®;l§i1tHi. Moreover, if £,n € ®?§}tH then

(45) <£®C[G] 1, 77®(C[G] 1>(®fi"€01dc)®gc C*(G) = EG((I)«&, ﬂ)cg@tf )) = (I)(EG(<£7 77>(C®1 )),
where E¢ is the linear “truncation” map from C®' to @, . ®ie;C defined as

in part (a). Therefore, ®(Ec((,)cer)) is a positive Hermitian C[G]-form on
®?£}tHz Obviously, xqu. = X © &g, and by (4.4),

xa(®(Fa (€ nee)) = xap (2(&meer) = Ems, (Ene @ H)
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This implies that ®(Eq((-, -)cer)) is non-degenerate (since (-, -), is non-degenerate
by Lemma 4.2 (b)). Now, equation (4.5) tells us that the Hilbert C*(G)-module

mod unit

(®i€] H;)®e,C*(G) is the completion of ¢, H; under the norm induced by
the C[G]-valued inner product ®(Eq({-,)cer)). O

Let {e} be the trivial subgroup of Q‘};ﬁc. Since one can identify Fy., with ¢;
(through the argument of Theorem 4.8 (b)), one has

®z€[ i ® H )@, C.

Remark 4.9. (a) For any subgroup G C Q‘}C and any faithful state ¢ on C*(G),
the Hilbert space |
(R, Hi)®sGC*<G>)®¢<C

unlt
Z€I

(b) If z € Y. ,;C (see Example 2.2 (b)), then sup,;c; |;| < oo. This, together
with the surjectivity of k¢ (see Proposition 4.6 (a)), tells us that I';,c is a group
under the multiplication: [z]x - [y]~ = [zy]~ (wWhere (zy); := z;y; for any i € I).
Moreover, k¢ : Q‘I‘;t(c = Q‘}ﬁ‘ét — I'7,c is a group homomorphism, which induces a
surjective *-homomorphism #c : C*(Q}:) — C*(T'rc).

induces an inner product on )

mod

(c) It is natural to ask whether ((Q);c; Hi)®RcC*(FI;C))®xr,;CC is isomorphic
to [[ ®ser H; canonically. Unfortunately, this is not the case. In fact, for any
T,y € H?g}tHl, we write x ~7 y if there exists a € Il;;T with a ~ 1 such that
r; = a;y; ef. It is easy to check that =7 is an equivalence relation in general
standing strictly between ~ and ~. Moreover, one has

<((®’i61 ‘rl) Qre 1) ®XFI;C L, ((®i€1 yi) Qre 1) ®X1“I;C 1> =0 whenever z #r y,

while <H®iel iy [ ®icr yl> = 0 whenever x % y. Note however, that if all

H,; = C, then ~1 and = coincide, and one can show that the two Hilbert spaces
mod

<(®iel C)®@kC*(Tr.c)) @y, . C and [] @ser C coincide canonically.

mod

Example 4.10. (a) It is clear that ®1E] = C*(Q}c). For any state ¢ on

C*(QY!c), the Hilbert space (®ZI C)®,C is the GNS construction of ¢.

(b) If G is a subgroup of QY ‘¢, we have

—_mod

(X, C)@esC"(G) = F(QYc/G)BC(G).

In fact, let ¢ : QY — Q?C/G be the quotient map and o Q}”C/G — QU be
a cross section. One has a bijection from Q}le to (Qf/G) x G sendmg w to

(q(w), o(q(w)™Hw).
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This gives a bijective linear map A : C[Q}] — @Q% /i C[G] such that for any
w € Qe and € € QY /G,

A = {Meww ifglw) =

0 otherwise.

Let & : @I)C = C% — C[Q}] and ¢ : MigfT — T be as in Corollary 3.4.

Suppose that a, € I;c;C*. If [~ !~ does not belong to G, then we have
Ec((®ier i, ®ier Bi)cor) = 0 and

(Ao ®(Rier i), Ao ®(es 5i)>@mt ,6Cl6 T 0.
On the other hand, if [a37!]. € G, then
(Ao ®(®ier i), Ao ®(Rier 5z)>@f2t 6 Cl6]
= w(@B N Aap11. = ®(Qier i) = ¥(Ea((Rier i, Qicr Bi)cer))-

This shows that Ao ® is an inner product C|G]-module isomorphism from @]t} C

(equipped with the inner product C[G]-module structure as in Theorem 4.8 (b))
22
onto @Q%/G C[G].

5. Tensor products of *-representations of *-algebras

In this section, {(A;, H;, ;) }ier is a family of unital *-representations, in the
sense that A; is a unital *-algebra, H; is a Hilbert space and U, : A; — L(H;) is a
unital *-homomorphism (i € I).

Suppose that ¥y := ®iel‘l’i : Qe Ai = L(Q;¢ Hi) is the map as in Propo-
sition 2.3 (c). It is easy to check that

(51) <\P0(a)£777>(c®1 = <£, \I/O( 7) Cc®I a € ® Aufﬂ? € ® H
Furthermore, one has the following result (which is more or less well known).

Proposition 5.1. For any u € Q?I‘Il}, the map ®i€1‘lli induces a unital *-repre-
sentation @l Ui Qe Ai — LIQhe  Hy). If all the ¥, are injective, then so is
zHeI Wi
Consequently, one has a unital *-representation of ®e A; on the Hilbert space
®Ze ;H;. However, it seems impossible to extend it to a unital *-representation of

;e Ai on ®161H The biggest *-subalgebra @),.;4; that we can think of, for

which such an extension is possible, is the subalgebra ®Ze ;Ai. Example 5.6 (a)
also tells us that it is probably the right subalgebra to consider.
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Let us digress a little bit and give another *-representation of ®;’Et ;A;, which
is a direct consequence of Proposition 5.1, Theorem 3.2 (a) and Theorem 4.1 in [5]
(it is not hard to verify that the representation as given in Theorem 4.1 of [5] is
injective when ®z€ ;¥; is injective). Note however, that such a *-representation is
not canonical since it depends on the choice of a cross section ¢ : Q‘}t 4 — icrUg,
(see Remark 3.3 (a)).

Corollary 5.2. Suppose that the VU; are injective. For any ju € Q‘I”}‘}, the injection

@fag}i induces an injective unital *-representation of ®;’€tIAi on (®561H1) ®
Q).

Let us now return to the discussion of the tensor product type representation
of ®21A1 Observe that {U;};c; induces a canonical action a¥ : Q‘}TA. X Q?I‘Il} —
QY. For simplicity, we will denote al(p) by w-p (we Qpa; € QEY).

Theorem 5.3. ( ) The map ®ieI\II induces a unital *-representation Q%
®iL A — L(QILHy).

(b) (®z€[ i (®1,€I i)|®f€IA-) = @#QQ“““ (®161Hl> ?e[ll]i)'

(c) If all O, are injective, then so is Q%

161

161

Proof. (a) Set ¥q := ®iel‘l’i~ For any p € Qyf, w € Qffy and a € T Ay, it is
clear that

(5:2) Wo(®ier ai)(®j€IHi) c ®::;Hz

Suppose that u € w and F' € § are such that a; = u; fori € I\ F. If £ = J%, (&)
where x € p, F' € § with F C F" and & € @, p Hi, then

(Uo(®icr ai)&, Yo(Rier ai)§)cer =
(&, Vi) @id)éo, (), Vila:) ©id)&o) (@ier 1)-
This implies that Wo(®;e;a;) is bounded on (@) Hi, (-, )4, ) (see Theorem 4.4 (a)
and Proposition 4.1 (b)) and produces a unital homomorphism ®?€1 (¥ ®;1é 1A
— £(®1E] ;). Now, relation (5.1) tells us that ®Z€I
(b) This part follows directly from the argument of part (a).
(¢c) Set ¥ : ®Z€I ;. Suppose that vV, ... v € T;c;Ua, are mutually

inequivalent elements, F € §, b, ... bW ¢ X,ecp Ai and alk) = J}é(k)(b(k))
(k=1,...,n) are such that

P, preserves the involution.

n
\I/(Zkzla(k)) = 0.

By induction, it suffices to show that a*) = 0.
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By replacing a(®) with (v(l)) ) if necessary, we may assume that v( ) = =e;

(t€I). If n =1, we take an arbltrary £ €ie;S(H;). Iftn > 1, we clalm that
there exists £ € Hngl( ;) such that

(5.3) ¢ o VPl  (k=2,...,n),

where V;(k) = \I/i(vik)). In fact, if k € {2,...,n}and i € [¥:= {i € I : vik) #e;}
(which is an infinite set), the subset &1(H;) N ker(Vi(k) —idg,) is nowhere dense
in 61(H;) as ker(‘/;(k) —idp,) is a proper closed subspace of H; (note that U; is
injective). For any i € I, we consider N; := {k € {2,...,n} :i € I*}. By the Baire
category theorem, for every i € I, one can choose & € &1(H;) \ Upep, ker(‘/;(k) -
idg, ). Now, & := [§]ier will satisfy relation (5.3).

Since ¥(aV) )(®1€I i) € ®161H and

0 Y ) (@) 1) = o)

(because of Theorem 2.5 as well as (5.2) and (5.3)), we have ¥(a(! )|® =0.
'LGI
Therefore, part (b) and Proposition 5.1 tells us that a(*) = 0. O

Remark 5.4. (a) By the argument proving Theorem 5.3 (c), if all the ¥, are
injective, then o is strongly faithful in the sense that for any finite subset F C
Qpty \ {e}, there exists p € Q% with w - p # p (w € F).

(b) If y, z € ;e H; are Cy-sequences and u, v € I;c;U4,, then

(5.4) y~z ifand only if [W;(u;)yilier = [Vi(ui)zilier

and [U;(u;)yilier ~ [¥;(v;)yi]icr whenever u ~ v. Thus, {¥; };cr induces an action

av: Q?AXFIH — I'r.g. Again, we write w- -y for &Y (7) (we QIA,’y €Tr.4). The
map kg in Proposition 4.6 (a) is equivariant in the sense that kg oY = &Y oky
(w € Qfip)-

(c) If all the A; are C*-algebras and all the ¥; are irreducible, then a¥ is
transitive.

Corollary 5.5. There exists a unital *-representation || Qier Vi : ®£1A —
L(T1®ier Hi) such that for any p € Qy, w € Qpty and b € @i As,

¢1

(5.5) ([[®ier W) () o T = T4 0 ( Olgr n "

where T* is as in Proposition 4.6 (b).

Proof. By Proposition 4.6 (b), there is a bounded linear map

(H®ie[ ;) (b) : H@f&(“)]{ N H ® KH(H)H
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such that equality (5.5) holds (see also Remark 5.4 (b)). Since we have

(@, w)O)gr | < o0

SUPpeay

(because of Theorem 5.3 (a)), we know from Proposition 4.6 (a) and Lemma 4.1.1
in [20] that (]| ®ser ¥;)(b) induces an element in L([| ®;es H;), which clearly gives
a *-representation. O

It is natural to ask if [[ ®;e; U; is injective if all the U; are. However, [[ ®;er ¥;
is never injective as can be seen from Example 5.6 (b) and the discussion follow-
ing it.

Example 5.6. For any i € I, let A; = C = H; and let ¢; : A; — L(H;) be the
canonical map. Suppose that ®, ¢ and ® are as in Example 4.5.

(a) Let A : C[Q}] — L(£2(Q)) be the left regular representation. For every
«, B € Il T, one has

((i* o A(/\[a]w) o ci)) (®i€[ 61) _ gp(ail)@ie[ Oéiﬁi
(®Zﬂ) (@7 (Ajag ) (Rier Bi)-

Consequently, ®f€1 ;ti can be identified with A (under ® and ®).

(b) Let a € IL;¢; T be such that o = 1 but @ &~ 1 with I;e;o; = 1. If § € IL;¢,C
is a Cy-sequence with || [] ®:es Bi|| = 1, one has || [[ ®iecr i f:]| = 1 and

<H®iel a;fi, H@iel 5z> =1,

which imply that [[®er a;8i = [[ ®ier Si- Therefore, ([[ ®icr ti)(®ier i) =
id but ®;er a; # ®;er 1. Consequently, [[®ier ¢ti is not injective (actually,
(I1 ®ier ti) o @1 is not injective as a group representation of Q‘I‘tc)

In general, even (H Ricr ‘Ili) |®l_lé1(cei is not injective. In fact, suppose that «
is as above. For any Cy-sequence & € I;crH;, with || [ ®:er &[] = 1, the same
argument as Example 5.6 (b) tells us that [[ ®ier ;& = [[ ®ier &. Thus,

(H Rier ‘1’1) (®ier e — ®ier aze;) = 0.

On the other hand, by Theorem 5.3 and Corollary 5.5, there exist canonical
*~homomorphisms

ut

— %1 ut
Jo L(H) = £(Q), Hi) and JU: Q) L(H) = L(]] @ier Hi).

i€l

Notice that J?! is injective but J™ is never injective.
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Corollary 5.7. Let m; : G; — Ugp,) be a unitary representation of a group Gj,
for each i € 1.

(a) There exist canonical unitary representations ®j’€117ri and [[®ier m of
;e G; on ®?€11Hi and [ ®ier H; respectively.
(b) If the induced *-representation 7; : C[G;] — L(H;) is injective for all i € I,

the induced *-representation ®?Ell7ri of C[ILierG;] is also injective.

P?”OOf. (a) Let ®;lélﬂ'i = @L(H) OHiEIﬂi : HiEIG'L' — ®f21£( ) Then

t ut

®f€11m = J¢lo®je1m and H®i€1m = Jno®ie1m

are the required representations.

(b) By Theorem 5.3 (c), ®f€1m is injective. As ® c7Ti is the restriction of
®Z€Iﬁ'1 on C[IL;c;G;] (see Example 3.1 (a)), it is also injective. O

Corollary 5.8. [[®ier ¥; is never irreducible, and neither is ®1E]

Proof. Let 7, : C — A; be the canonical unital map and set U, =007, (tel).
Suppose that «, 8 € Il;c;T with a % 3 and £ € H?g}EH Then [;&ilier % [Bi&ilicr
and the two unit vectors

(H®ie] U;)(®ier Oéz‘)(H®z‘eI€i) and (H®i€1 ‘i’i)(®ielﬁi)(H®ieI§i)

are orthogonal. Consequently, dim (J]®ser T)CE) > 1. As ([[®ier W) 0

(®yerm) = [1®ier ¥y, we have ([[@ier i) (CH) S Z(([T®ier Wi)(@fézfl )
and [ ®;er ¥; is not irreducible. A similar but easier argument also shows that

®?€1 ;V; is not irreducible. =

For any C*-algebra A, we denote by S(A) and (H,, 7y, ) the state space of A
and the GNS construction of w € S(A), respectively. We would like to consider a
natural injective *-representation of ®?é ;A; defined in terms of (H.,, m.,).

If p € ;e S(A;) and p is defined as

pa) = () 1) (@) (@11 &), (Brer &) (ae @) A,

then the closure of (®f61]7rpi) (®?21Ai)(®i€1 &,,) will coincide with

[§p]~ — $1

®w€§2‘“ ®z€[ Hy: ®ie[ pi

We set m5(a) := (®1617Tp1)(a)|H,;~ Notice that if all the p; are pure states, then
H; = ®Z)€1]Hpi (see Remark 5.4 (c)).
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Corollary 5.9. Let A; be a C*-algebra (i € I). The *-representation U, =
@peHiGIS(Ai)(HﬁvWﬁ) is injective. Consequently, the *-representation

®4 = P (@ Ho R
A pEMlic1S(A;) i€l pm el p’

is also injective.

Proof. Suppose that (H;, ¥;) is a universal *-representation of 4; (i € I). Let F,
u® o u™ M b and o), a(™ be as in the proof of Theorem 5.3 (c)
with \I/A(Zzzla(k)) = 0. Again, it suffices to show that a!) = 0, and we may
assume that u(l) =e¢; (t€l). If n=1, we take any « € I1;c;61(H;). If n > 1, we
take an clement € e 61 (H;) Satlsfylng
k
T [\Ilz(ug ))xi]iel (k=2,...,n)

(the argument of Theorem 5.3 (c) ensures its existence). Let us set p;(a) :=
(¥;(a)x;, x;) when ¢ € I\ F, and pick any p; € S(A4;) when ¢ € F. For every
i € I\ F, one may regard (Hpi,wpi) as a subrepresentation of (H;, V;) such that
&y, € H,, is identified with z; € H;. Then x can be considered as an element in
Hj. Since x ~ [7Tp (u(k)) i]z‘el for all 2 < k < n, the argument of Theorem 5.3 (c)

tells us that
[z]~ x
(®iel Tr’”)(a(l))n =0 (77 € ®ieIHpi)'

Consequently, (®,c7p,) (b™) =0 and b(V) = 0 (as p; is arbitrary when i € F).
The second statement follows readily from the first one. O

Notice also that (®Z€1HPL,®zE[7rP ) is in general not a cyclic representation,
and (Hj, ;) can be regarded as a cyclic analogue of it.

We end this paper with the following result concerning tensor products of
Hilbert algebras.

Corollary 5.10. Let {A;}icr be a family of unital Hilbert algebms (see, e.g.,
Definition VI.1.1 in [18|) such that ||e;| =1 (i € I). Then A := @, A; is also a
unital Hilbert algebra with ||®;cr el = 1.

el

Proof. Note that since ||e;|| = 1, one has ||u;|| = 1 for any u;, € Ua,. Thus, we

have @4, A; € @) A,, which gives an inner product (--)4 on A. Observe

that @ A is orthogonal to ®Z€I (in terms of (-,-)4) whenever w and w’ are
distinct elements in Qy!,. Thus, in order to show that the involution of A is an
isometry, it suffices to check that [|*[| = [|z|| whenever 2 € @;¢;A; and w € Q}t,.
In fact, for any v € I;c;Uy,, F' € § and a € ®ieFAiv we have

175 (@)1l = I17% (@) = lla*ll = llall = [|TE(a)ll,
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because the involution of ®i€ pA; is an isometry. Let H; be the completion of A;
(with respect to the inner product) and let ¥; : A, — L(H;) be the canonical
unital *-representation (i € I). Since

é1

Q) Wi(a)h = ab (a,be A),
i€l

Theorem 5.3 (a) tells us that for each x € A, one has (zy, z)4 = (y,2*2)a (y,z € A)

and sup <1 [|zy[| < co. Finally, as A is unital, we see that A is a Hilbert algebra

(with [|®ier eil| = 1). .

Consequently, if all the A; are weakly dense unital *-subalgebras of finite von
Neumann algebras, then so is ®;1é 1A
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