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The effect of projections on dimension

in the Heisenberg group

Zoltán M. Balogh, Estibalitz Durand-Cartagena, Katrin Fässler,
Pertti Mattila and Jeremy T. Tyson

Abstract. We prove analogs of classical almost sure dimension theorems
for Euclidean projection mappings in the first Heisenberg group, equipped
with a sub-Riemannian metric.

1. Introduction

In this paper, we study projection mappings from the Heisenberg group onto hori-
zontal lines and complementary vertical planes. In particular we consider the effect
of such mappings on the Hausdorff dimensions and Hausdorff measure of subsets
of the Heisenberg group considered with respect to a sub-Riemannian metric.

Our results are analogs, in sub-Riemannian geometry, for classical theorems
of Marstrand [16]. We shall employ potential theoretic methods first used in this
context by Kaufman in [13] and later generalized in [17]. There have been many
studies of Marstrand type projection results. For example, a general Fourier ana-
lytic machinery for projection-type theorems was developed by Peres and Schlag
in [21]. See also the survey [19] for an overview of the subject.

This paper represents part of an extensive program aimed at extending geome-
tric measure theory beyond the Euclidean setting, the origins of which date back
to Gromov’s groundbreaking treatise [11].

The Heisenberg group H is the unique analytic nilpotent Lie group whose back-
ground manifold is R3 and whose Lie algebra h admits a vector space decomposition
h = v1⊕v2, where v1 has dimension two, v2 has dimension one, and the Lie bracket
identities [v1, v1] = v2 and [h, v2] = 0 hold.

We identify H with C × R = R3 through exponential coordinates. Points
in H are denoted p = (z, t). We work throughout this paper with the following
convention for the group law:

(1.1) (z, t) ∗ (ζ, τ) = (z + ζ, t+ τ + 2 Im(z ζ)).
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Our results are formulated with respect to a sub-Riemannian structure on the
Heisenberg group. We will work primarily with the well known Heisenberg metric
on H (also known as the Korányi metric). This is the left invariant metric given by

dH(p, q) = ‖q−1 ∗ p‖H,
where ‖ · ‖H is the gauge norm defined by

‖p‖H =
(|z|4 + t2

)1/4
.

Note that dH is bi-Lipschitz equivalent to the Carnot–Carathéodory metric
on H which can be defined using horizontal curves. An absolutely continuous
curve γ : I → H � R3 on an interval I in R is called horizontal if

γ̇(s) ∈ Hγ(s)H for almost every s ∈ I,

where HpH = span{Xp, Yp} with X = ∂x + 2y∂t and Y = ∂y − 2x∂t.

All results which we shall obtain regarding Hausdorff dimensions of subsets
of H are unchanged under bi-Lipschitz change of the metric. The advantage of
working with the metric dH, rather than using the Carnot–Carathéodory metric,
is its simple and explicit form.

There is also a one-parameter family of nonisotropic dilation mappings (δr)r>0

given by
δr(z, t) = (rz, r2t).

We recall that the Hausdorff dimension of the metric space (H, dH) is equal to 4.
In fact, (H, dH) is an Ahlfors 4-regular metric space.

The Heisenberg group H has the structure of an R bundle over the plane R2.
We write π : H → R2 for the mapping

π(z, t) = z,

and note that π is 1-Lipschitz as a map from (H, dH) to (R
2, dE). Here and through-

out this paper, dE denotes the Euclidean metric on any Euclidean space.
A subgroup G of H is called a homogeneous subgroup if it is invariant under the

dilation semigroup (δr)r>0, i.e.,

p ∈ G, r > 0 =⇒ δr(p) ∈ G.

Observe that, under the aforementioned identification of H with R3, homogene-
ous subgroups of H are vector subspaces of R3. For fixed θ ∈ [0, π), let Vθ be
the one-dimensional subspace of R3 spanned by the vector (eiθ, 0). Then Vθ is a
homogeneous subgroup of H. Let Wθ be the Euclidean orthogonal complement
of Vθ, i.e., the two-dimensional subspace of R3 spanned by the vectors (ieiθ, 0)
and (0, 1). Then Wθ is also a homogeneous subgroup of H. We will identify Vθ

with R via the global chart

(1.2) (reiθ , 0)
ϕVθ	−→ r,

and we will identify Wθ with R
2 via the global chart

(1.3) (aieiθ, t)
ϕWθ	−→ (a, t).
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In this paper, we call the homogeneous subgroups Vθ, θ ∈ [0, π), horizontal
subgroups and we call the subgroups Wθ, θ ∈ [0, π), vertical subgroups. Both types
of subgroups are abelian subgroups of H, in addition, vertical subgroups are normal
subgroups of H. Note also that the restriction of dH to a horizontal subgroup Vθ

coincides with the restriction of the Euclidean metric of R3 to Vθ. We therefore may
speak about metric properties of the horizontal subgroups Vθ without reference to
the metric. On the other hand, the restriction of dH to a vertical subgroup Wθ is
given by

(1.4) dH
(
ϕ−1
Wθ

(a, t), ϕ−1
Wθ

(a′, t′)
)
=

(
(a− a′)4 + (t− t′)2

)1/4
,

and is comparable to the parabolic (heat) metric |a− a′|+ |t− t′|1/2 on R2.

For each parameter θ, the pair Vθ and Wθ induces a semidirect group splitting
H = Wθ ∗ Vθ. For p ∈ H, we write

p = pWθ
∗ pVθ

,

where pWθ
∈ Wθ and pVθ

∈ Vθ. In this way, we define the horizontal projection
pVθ

: H → Vθ and vertical projection pWθ
: H → Wθ by the formulas

pVθ
(p) = pVθ

and
pWθ

(p) = pWθ
.

Explicit expressions for these mappings appear in (2.6) and (2.7). The semidi-
rect splitting of H (and more general Carnot groups) into horizontal and vertical
subgroups has played a key role in recent developments concerning intrinsic sub-
Riemannian submanifold geometry and sub-Riemannian geometric measure theory,
see for example [10], [9], [15], and [20].

The mappings pVθ
and pWθ

have rather different characters. The horizontal
projection maps pVθ

are linear projection maps with respect to the underlying
Euclidean structure on R3. Moreover, they are also Lipschitz maps (with Lipschitz
constant 1) and homogeneous group homomorphisms of H. On the other hand, the
vertical projection mappings pWθ

are neither linear, nor (Euclidean) projections,
nor group homomorphisms. These facts highlight the difficulty of working with
the vertical projection mappings in the Heisenberg group. Nevertheless, we will
ultimately be able to derive estimates for the effect of vertical projection on the
Hausdorff dimensions of sets.

We denote by dim the Hausdorff dimension in a general metric space, and
by Hs, s > 0, the corresponding family of Hausdorff measures. By Hs

δ, δ > 0, we
denote the Hausdorff premeasures in dimension s. We will work with these notions
for both the Heisenberg and Euclidean metrics dH and dE on H � R3, so we will
take care to specify the metric with which we are working, writing Hs

H
, Hs

E and
dimH, dimE . Similarly we will denote by BE(p, r), respectively BH(p, r), the ball
of radius r and center p in the metric space (R3, dE), respectively (H, dH). We
emphasize that we always consider closed balls in this paper.



384 Z. Balogh, E. Durand-Cartagena, K. Fässler, P. Mattila, J. T. Tyson

Our main theorems provide universal and almost sure estimates for the (Heisen-
berg) dimensions of horizontal and vertical projections of Borel subsets of H.
By a universal estimate we mean an inequality relating either dimH pVθ

(A) or
dimH pWθ

(A) to dimH A which is valid for all sets A and all angles θ. By an almost
sure estimate we mean an inequality relating these quantities which is valid for all
sets A and for L1-almost every angle θ. Henceforth all measure theoretic state-
ments involving the angle θ will be made with respect to the Lebesgue measure L1.

Let A ⊂ H be a Borel set. Since the horizontal projection maps are Lipschitz
and the horizontal subspaces are one-dimensional, the estimate

(1.5) dim pVθ
(A) ≤ min{1, dimH A}

holds for all θ. Note that the dimension of pVθ
(A) with respect to the Heisen-

berg metric is the same as with respect to the Euclidean distance. We first state
which universal and almost sure lower bounds hold for the dimensions of horizontal
projections.

Theorem 1.1 (Universal lower bounds for horizontal projections). Let A be a
Borel set in H. Then

(1.6) dim pVθ
(A) ≥ max{0, dimHA− 3} for all θ.

The estimate in (1.6) is sharp.

Theorem 1.2 (Almost sure lower bounds for horizontal projections). Let A ⊂ H

be a Borel set. Then

(1.7) dim pVθ
(A) ≥ max{0,min{dimHA− 2, 1}} for a.e. θ.

If dimHA > 3, then H1(pVθ
(A)) > 0 for a.e. θ. The estimate in (1.7) is sharp.

Figure 1 illustrates the sets of universal and almost sure dimension pairs for
horizontal projections on H.
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Figure 1. (a) Universal dimension pairs for horizontal projections; (b) almost sure
dimension pairs for horizontal projections

The proof of Theorem 1.2 is rather straightforward. It uses simple estimates for
the dimension of the projection π(A) combined with classical almost sure dimension
theorems for Euclidean projections. The sharpness parts of Theorems 1.2 and 1.1
are contained in Proposition 3.2.
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The state of our knowledge regarding the effect of the vertical projections on
Hausdorff dimension is less advanced. However, we are able to obtain some results.
Namely, we can show the following theorems. Note that the Hausdorff dimension
of the vertical subgroups Wθ with respect to the Heisenberg metric dH on H is
equal to 3.

Theorem 1.3 (Universal upper and lower bounds for vertical projections). Let
A ⊂ H be a Borel set. Then

(1.8) dimH pWθ
(A) ≤ min{2 dimH A,

1
2 (dimH A+ 3), 3} for all θ,

and

(1.9) dimH pWθ
(A) ≥ max

{
0, 12 (dimHA− 1), 2 dimHA− 5

}
for all θ.

The universal estimates in (1.8) and (1.9) are sharp.

Theorem 1.4 (Almost sure lower bounds for vertical projections). Let A be a
Borel set in H. If dimH A ≤ 1, then

(1.10) dimH pWθ
(A) ≥ dimHA for a.e. θ.

Consequently, for any A,

(1.11) dimH pWθ
(A) ≥ max{min{dimHA, 1}, 2 dimHA− 5} for a.e. θ.

The estimate (1.11) is sharp when dimHA ≤ 1.
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Figure 2. (a) Universal dimension pairs for vertical projections; (b) almost sure dimen-
sion pairs for vertical projections (including conjectured sharp lower bound)

The sharpness statement of Theorem 1.3 is discussed in Proposition 4.10. The
upper bound (1.8) is also sharp as an almost sure statement, see Proposition 5.3.
Examples which prove the sharpness of the lower bound (1.11) in Theorem 1.4 in
the case when dimHA ≤ 1 are given by subsets of the t-axis. We do not know
whether the lower bound (1.11) is sharp in the case when 1 < dimHA < 4 but we
suspect not. We formulate the following:

Conjecture 1.5. For all A ⊂ H, dimH pWθ
(A) ≥ min{dimHA, 3} for a.e. θ. If

dimH A > 3, then H3
H
(pWθ

(A)) > 0 for a.e. θ.
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Proposition 6.1 and Theorem 6.3 provide partial evidence in support of Con-
jecture 1.5.

Figure 2 illustrates the sets of universal and almost sure dimension pairs for
vertical projections on H (including the conjectured sharp lower bound).

The lower bounds in Theorem 1.4 can be improved in case the set A is a subset
of either a horizontal plane or a vertical plane. See Section 7 for details.

We would like to emphasize an important difference between Theorems 1.2
and 1.4 and their Euclidean predecessor, see Theorem 2.3 below. Namely, for
any Borel set A ⊂ Rn, the almost sure dimension of the image PV (A) under a
Euclidean projection on an m-dimensional subspace V can be computed exactly
as a function of dimE A andm. No similar formula holds in the Heisenberg setting,
at least for arbitrary Borel sets. Indeed, the best result which can be obtained is
a pair of (distinct) upper and lower bounds for the Heisenberg dimensions of the
projections. We give a variety of examples to demonstrate the sharpness of our
estimates. Finally, let us remark that we do obtain an exact formula for the
L1-almost sure dimension of the horizontal projection in the low codimensional
case dimH A > 3. Conjecturally, a similar exact formula holds for the vertical
projections under the same assumption on dimHA.

We conclude this introduction with an outline of the paper. In Section 2 we
recall preliminary information concerning almost sure dimension theorems in Eu-
clidean space and the dimension comparison principle in the Heisenberg group.
Section 3 treats the case of the horizontal projection mappings and contains the
proof of Theorems 1.1 and 1.2. Section 4 contains the proof of the universal dimen-
sion bounds for the vertical projection mappings, Theorem 1.3. The main results
of the paper concerning the almost sure dimension theorem for vertical projec-
tions, Theorem 1.4 and the related examples, are presented in Section 5. Since our
results on almost sure dimensions of vertical projections are rather incomplete, we
will discuss several classes of examples where we have a better understanding of
the behavior of the dimension of the projections. The first such class consists of
sets with a certain degree of regularity. This is discussed in Section 6. In Section 7
we sharpen the analysis of the vertical projections, obtaining improved dimen-
sion estimates for projections of subsets of horizontal or vertical planes. Section 8
contains remarks and open questions motivated by this study.

Acknowledgements. Research for this paper was initiated while EDC and JTT
were guests in the Mathematics Institute of the University of Bern in Fall 2009,
and completed while PM was a guest of the same institute in Fall 2010. The
hospitality of the institute is gratefully appreciated.

2. Review of background material

2.1. Dimension and Euclidean projections

Theorems 1.2 and 1.4 are adaptations to the Heisenberg setting of classical almost
sure dimension theorems for Euclidean projections, proved by Marstrand in the
plane [16] and generalized in [17]. We briefly recall the Euclidean theorems.
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Definition 2.1. Let m and n be integers with 0 < m < n. The Grassmanian
G(n,m) is the space of all m-dimensional linear subspaces of Rn.

It is possible to introduce a natural measure γn,m on G(n,m). In the case
m = 1 this measure is fairly simple to describe. In fact, the Grassmanian G(n, 1)
coincides with the real projective space Pn−1

R
, and the measure in question is the

pushforward of the surface measure from Sn−1 under the canonical quotient map
Sn−1 → Pn−1

R
. For instance, G(2, 1) can be identified with P 1

R
, or even more

explicitly with the interval [0, π) (by identifying a line through the origin in R2

with the angle θ ∈ [0, π) which it makes with the positive x-axis). Under the latter
identification, the measure in question is just dθ. Via the canonical identification
of the Grassmanians G(n,m) and G(n, n−m), we could also describe the natural
measure on G(n, n − 1) quite explicitly. However, for 2 ≤ m ≤ n − 2 the story
is more complicated. We refer to Chapter 3 of [18] for the construction of the
measure γn,m on G(n,m). It can be checked that γn,m is equivariant with respect
to the usual action of the orthogonal group O(n) on G(n,m).

Remark 2.2. The measure γn,m can be constructed in another manner. The
Grassmanian G(n,m) is a smooth manifold of dimension m(n − m), and is also
a metric space when equipped with the function d(V,W ) = ||PV − PW ||. Here
PV : Rn → V denotes orthogonal projection from Rn onto a subspace V , and || · ||
denotes the operator norm. Up to a multiplicative constant, the measure γn,m
coincides with the Hausdorff measure Hm(n−m) on the metric space (G(n,m), d).
This follows easily from the fact that both of the measures in question are O(n)
equivariant, and hence uniformly distributed. See Definition 3.3 and Theorem 3.4
in [18] for additional details.

Theorem 2.3 (Euclidean Projection Theorem). Let m and n be integers with 0 <
m < n and let A ⊂ Rn be a Borel set. If dimE A ≤ m, then dimE PV (A) = dimE A
for γn,m-a.e. V ∈ G(n,m). If dimE A > m, then Hm(PV (A)) > 0 for γn,m-a.e.
V ∈ G(n,m). In particular,

(2.1) dimE PV (A) = min{dimE A,m} for γn,m-a.e. V .

A Suslin set is the continuous image of a Borel set. Theorem 2.3 extends to
Suslin sets.

Frostman’s lemma is a standard tool used in the proof of lower bounds for
Hausdorff dimension. We denote by M(A) the collection of positive, finite Borel
regular measures supported on a set A of a metric space X .

Theorem 2.4 (Frostman’s lemma). Let A be a Borel (Suslin) subset of a complete
metric space (X, d). Suppose that there exist s > 0, μ ∈ M(A), and r0 ∈ (0,∞] so
that the inequality

(2.2) μ(B(x, r)) ≤ rs

holds for all x ∈ A and 0 < r < r0. Then Hs(A) > 0. In particular, dimA ≥ s.
Conversely, if Hs(A) > 0 then there exists a measure μ ∈ M(A) so that (2.2)

holds for all x ∈ A and r > 0.
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See, e.g., Proposition 4.2 in [8], [12], or Theorem 8.17 in [18].

We say that μ satisfies an upper mass bound on A with exponent s if (2.2) holds
for all x ∈ A and 0 < r < r0.

Next, we state the energy version of Frostman’s lemma. This follows easily
from Theorem 2.4; see Chapter 8 of [18].

Definition 2.5. Let (X, d) be a metric space and let μ ∈ M(X). For s > 0, the
s-energy of μ is

Is(μ) =

∫
X

∫
X

d(x, y)−s dμ(x) dμ(y).

Theorem 2.6 (Energy version of Frostman’s lemma). Let A be a Borel (Suslin)
subset of a complete metric space (X, d) and let s > 0 be such that there exists
μ ∈ M(A) with Is(μ) <∞. Then dimA ≥ s. Conversely, if A is a Borel (Suslin)
subset of a complete metric space (X, d) and s < dimA, then there exists μ ∈ M(A)
with Is(μ) <∞.

2.2. Dimension comparison principle

We will make use of the recent solution to the dimension comparison problem
in H. This problem, originally posed by Gromov in Section 0.6.C of [11], asks for
sharp estimates relating the Euclidean and Heisenberg measures and dimensions
of subsets of H. A nearly complete answer was given by Balogh, Rickly and Serra-
Cassano [4]; the story was completed by Balogh and Tyson [5], who gave examples
demonstrating the sharpness of the lower bound. We state the final result, in its
sharp form.

Theorem 2.7 (Dimension comparison in the Heisenberg group). Let A ⊂ H be a
set with dimE A = α ∈ [0, 3] and dimH A = β ∈ [0, 4]. Then

(2.3) max{α, 2α− 2} =: β−(α) ≤ β ≤ β+(α) := min{2α, α+ 1}.
Moreover, for any pair (α, β) ∈ [0, 3]× [0, 4] satisfying β−(α) ≤ β ≤ β+(α), there
is a compact set Aα,β ⊂ H with dimE Aα,β = α and dimHAα,β = β.

Theorem 2.7 was generalized to arbitrary Carnot groups by Balogh, Tyson and
Warhurst [6].

From now on, we refer to the estimates in (2.3) as the dimension comparison
principle for the Heisenberg group H.

We will also use the dimension comparison principle in vertical subgroups of H.
Due to the special form (1.4) of the restriction of the Korányi metric to such
subspaces, we obtain stronger dimension comparison estimates therein. To wit, we
have

Theorem 2.8 (Dimension comparison in vertical subgroups of the Heisenberg
group). Let A ⊂ Wθ be a set contained in some vertical subgroup Wθ ⊂ H, with
dimE A = α ∈ [0, 2] and dimHA = β ∈ [0, 3]. Then

(2.4) max{α, 2α− 1} =: βW

− (α) ≤ β ≤ βW

+ (α) := min{2α, α+ 1}.
Theorem 2.8 can be proved by adapting the arguments from [6].
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2.3. Explicit formulas for horizontal and vertical projections

We present explicit formulas for the projection mappings pVθ
and pWθ

, and for
the distance between points in H and the corresponding distance between their
projections. Such formulas will be useful in the proofs of Theorems 1.2 and 1.4.

Let θ ∈ [0, π) and let p = (z, t) ∈ H. We recall that the projections pVθ
and pWθ

are determined by the identity

(2.5) p = pWθ
∗ pVθ

.

The horizontal projection pVθ
coincides with the Euclidean orthogonal projection

PVθ
: R3 → Vθ and is given by

(2.6) pVθ
(z, t) = pVθ

=
(
Re(e−iθz)eiθ, 0

)
.

The vertical projection pWθ
can then be determined via (2.5) and is given by

(2.7) pWθ
(z, t) = pWθ

=
(
Im(e−iθz)ieiθ, t− Im(e−2iθz2)

)
.

Denote by p = (z, t) and q = (ζ, τ) two points in H. Observing that

Im((z − ζ)(z + ζ)) = 2 Im(zζ)

and using the formula (1.1) for the group law in H, we record the following expres-
sion for the distance between p and q:

d4H(p, q) = ‖q−1 ∗ p ‖4H = |z − ζ|4 + (t− τ + |z2 − ζ2| sin(ϕ1 − ϕ2))
2.(2.8)

Here we write ϕ1 = arg(z − ζ) and ϕ2 = arg(z + ζ).
Similarly, the distance between pVθ

(p) and pVθ
(q) can be expressed in the form

dH(pVθ
(p), pVθ

(q)) = ‖ pVθ
(q)−1 ∗ pVθ

(p) ‖H = |z − ζ| | cos(ϕ1 − θ)|.
Finally, the distance between pWθ

(p) and pWθ
(q) can be expressed in the form

d4
H
(pWθ

(p) pWθ
(q)) = ‖ pWθ

(q)−1 ∗ pWθ
(p) ‖4

H

= |z − ζ|4 sin4(ϕ1 − θ) + (t− τ − |z2 − ζ2| sin(ϕ2 + ϕ1 − 2θ))2.(2.9)

Note that the vertical projections pWθ
: H → Wθ are locally 1

2 -Hölder continu-
ous with respect to the Heisenberg metric. This is an easy computation involving
the explicit formula for the projection.

3. Projections onto horizontal subspaces

In this section, we discuss the effect of horizontal projections on Borel sets in the
Heisenberg group.

We begin with a lemma on the relationship between the Heisenberg dimension
of a set in H and the Euclidean dimension of its planar projection.

Lemma 3.1. For any set A ⊂ H, we have dimE π(A) ≥ dimH A− 2.
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Proof. We may assume without loss of generality that A is bounded. In fact, let
us assume that |t| ≤ 1 for all points p = (z, t) ∈ A.

Let s > dimE π(A), let ε > 0, and cover the set π(A) with a family of Eu-
clidean balls {BE(zi, ri)}i so that

∑
i r
s
i < ε. Since π : (H, dH) → (R2, dE) is

1-Lipschitz, the fiber π−1(BE(z, r)) contains the ball BH((z, t), r) for any t ∈ R.
We can choose an absolute constant C0 > 0 and Ni ≤ C0r

−2
i values tij so

that the family {BH((zi, tij), C0ri)}j covers the set BE(zi, ri) × [−1, 1]. Then
{BH((zi, tij), C0ri)}i,j covers the set A. Denoting by rad(B) the radius of a ball B,
we compute∑

i,j

rad(BH((zi, tij), C0ri))
s+2 =

∑
i

Ni(C0ri)
s+2 ≤ Cs+3

0

∑
i

rsi ≤ Cs+3
0 ε.

Letting ε → 0 gives Hs+2
H

(A) = 0 so dimHA ≤ s + 2. Letting s → dimE π(A)
completes the proof. �

Proof of Theorems 1.1 and 1.2. Let A ⊂ H satisfy dimHA > 2. By Lemma 3.1,
dimE π(A) ≥ dimHA − 2. Let us identify the one-dimensional subspace of R2

spanned by the vector eiθ with the corresponding one-dimensional subspaceVθ ⊂ H.
This allows us to consider the Euclidean projection map PVθ

as a (1-Lipschitz) map
from R2 to Vθ.

Applying the Euclidean Projection Theorem 2.3 to π(A) (note that π(A) is a
Suslin set) and noting that pVθ

= PVθ
◦ π, we find

dim pVθ
(A) = dimE PVθ

(π(A)) ≥ min{1, dimE π(A)} ≥ min{1, dimHA− 2}
for a.e. θ. This proves (1.7). In the case when dimH A > 3, we use the second
part of Theorem 2.3 to arrive at the desired conclusion H1(pVθ

(A)) > 0 for a.e. θ.
Finally, for any θ, we have

dimH pVθ
A = dimE PVθ

(π(A)) ≥ dimE π(A)− 1 ≥ dimHA− 3.

The proof is complete. �

Both the universal bounds and the almost sure bounds for dimension distortion
by horizontal projections are sharp. We collect relevant examples demonstrating
this in the following proposition.

Proposition 3.2. In each of the following statements, the set A is a compact
subset of H:

(a) For all 0 ≤ β ≤ 1 there exists A so that

dimHA = β and dim pVθ
(A) = β for all θ.

(b) For all 1 ≤ β ≤ 4 there exists A so that

dimHA = β and dim pVθ
(A) = 1 for all θ.

(c) For all 0 ≤ β ≤ 3 there exists A so that

dimH A = β and dim pV0(A) = 0.

If 0 ≤ β ≤ 2 we can choose A so that dim pVθ
(A) = 0 for all θ.
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(d) For all 3 ≤ β ≤ 4 there exists A so that

dimHA = β and dim pV0(A) = β − 3.

(e) For all 2 ≤ β ≤ 3 there exists A so that

dimHA = β and dim pVθ
(A) = β − 2 for all θ.

Recall that a Borel set E is called an s-set, s ≥ 0, if 0 < Hs(E) < ∞. A
bounded metric space (X, d) is said to be Ahlfors regular of dimension s ≥ 0 if
there exists a measure μ ∈ M(X) and a constant C ≥ 1 so that

C−1 rs ≤ μ(B(x, r)) ≤ C rs

for all x ∈ X and 0 < r < diamX . If (X, d) is Ahlfors regular of dimension s, then
dimX = s and μ is comparable to the Hausdorff measure Hs.

Proof. For part (a), let A0 ⊂ V0 and Aπ/2 ⊂ Vπ/2 be compact β-sets. The set
A = A0 ∪ Aπ/2 verifies the stated conditions.

To show part (b) it suffices to construct a compact set A with dimHA = β and
such that π(A) is a planar set which projects onto a one-dimensional subset of Vθ
for every θ. We consider two cases. First, assume that 1 ≤ β ≤ 3. Let S ⊂ [0, 1] be
a compact (β − 1)/2-set and let A = A0 ∪ Aπ/2, where A0 = {(x, t) : 0 ≤ x ≤ 1,
t ∈ S} and Aπ/2 = {(iy, t) : 0 ≤ y ≤ 1, t ∈ S}. Since the restriction of dH to any
vertical subgroup is comparable with the heat metric, dimHA = 1 + 2 dimS = β.
The set π(A) is the union of two line segments which form a right angle at the
origin. For θ = 0 and θ = π/2 one of the two segments is projected to a single
point, but the projection of the entire set π(A) on Vθ is one-dimensional for every
direction θ as desired. Next, assume that 3 < β ≤ 4. In this case, take the set A
to be the union of any compact set of Heisenberg Hausdorff dimension β with the
set {(z, 0) : |z| ≤ 1}. This completes the proof for part (b).

We now turn to the proof of part (c). For the first claim, any compact β-set
A ⊂ W0 suffices. In case 0 ≤ β ≤ 2 we can choose this compact set A to be a
subset of the t-axis, in which case pVθ

(A) = {(0, 0)} for all θ.
Next we consider part (d). We may assume that 3 < β < 4. Let S ⊂ R be a

compact set which is Ahlfors regular of dimension (β − 3), let

B0 =
{
(iy, t) : 0 ≤ y ≤ 1, 0 ≤ t ≤ 1

}
and let

A =
{
p0 ∗ (x, 0) : p0 ∈ B0, x ∈ S

}
.

Then pV0(A) = {(x, 0) : x ∈ S} has dimension β − 3. It suffices to prove that
dimH A ≥ β. We will use Theorem 2.4. It suffices to show that the measure

μ(E) :=

∫
S

H3
H

({p0 ∗ (x, 0) : p0 ∈ B0} ∩ E
)
dHβ−3

E (x)

has the upper mass bound (2.2) on A with exponent β. Let BH(p, r) be a ball
in (H, dH) centered at p = p0 ∗ (x0, 0) ∈ A with radius r.

For x ∈ S, denote by Bx the set of points of the form q ∗ (x, 0), q ∈ B0.
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Lemma 3.3. If BH(p, r) ∩Bx �= ∅, then |x− x0| ≤ r and

H3
H(BH(p, r) ∩Bx) ≤ Cr3

for a constant C independent of p, r and x.

Assuming the lemma we complete the proof in this case:

μ(BH(p, r)) ≤ Cr3 · Hβ−3
E ([x0 − r, x0 + r] ∩A) ≤ C′rβ .

Hence μ satisfies the upper mass bound (2.2) on A with exponent β. By Theo-
rem 2.4, dimHA ≥ β.

It remains to prove the lemma. Suppose that BH(p, r) ∩ Bx �= ∅. Then
BH(p, r) ⊂ BH(q, 2r) for some q ∈ BH(p, r) ∩Bx and

H3
H
(BH(p, r) ∩Bx) ≤ H3

H
(BH(q, 2r) ∩Bx) ≤ Cr3,

since Bx lies in a vertical plane in H. Furthermore, if q = (iy, t) ∗ (x, 0) then
|x − x0| ≤ r. This completes the proof of Lemma 3.3 and hence completes the
construction for part (d).

Finally, we consider part (e). It suffices to construct a compact set A ⊂ H

with dimHA = β such that π(A) is a (β − 2)-dimensional set in the plane whose
dimension is preserved under PVθ

for every θ. Let S ⊂ R be a compact (β− 2)-set
and let A = A0 ∪ Aπ/2, where A0 = {(x, t) : x ∈ S, 0 ≤ t ≤ 1} and Aπ/2 =
{(iy, t) : y ∈ S, 0 ≤ t ≤ 1}. Since the restriction of dH to any vertical subgroup is
comparable with the heat metric, we have that dimHA = dimS+2 = β. Moreover,
dimE π(A) = dimE S = β − 2. The dimension of the set π(A0) is preserved
under PVθ

except for θ = π/2, in which case π(A0) is projected to a single point.
An analogous statement holds for π(Aπ/2) and the exceptional direction θ = 0.
Altogether, it follows for all θ that dim pVθ

(A) = dimPVθ
(π(A)) = β − 2.

The proof of Proposition 3.2 is complete. �

4. Universal bounds for vertical projections

In this section, we start to discuss the effect of vertical projections on the dimen-
sions of Borel sets in the Heisenberg group. Our purpose is to prove Theorem 1.3.

We recall that the projection map pWθ
from H to the vertical subgroup Wθ is

given by

(4.1) pWθ
(z, t) =

(
Im(e−iθz)ieiθ, t− Im(e−2iθz2)

)
.

In contrast with the Euclidean case, this map is not Lipschitz continuous and
hence does not a priori decrease dimension. Indeed, there are cases when this map
increases dimension. Yet, there is still a certain control on the upper dimension
bound coming from the local 1

2 -Hölder continuity of pWθ
with respect to dH. Thus,

for an arbitrary subset A of H and for all θ, we have

(4.2) dimH pWθ
(A) ≤ 2 dimHA.
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Example 4.1. Let A = {(1 + i)s, 0) : s ∈ [0, 1]} ⊂ H be a one-dimensional hori-
zontal line segment. The image of A under the projection pW0 is the graph of a
parabola contained in the vertical subspace W0. Thus pW0(A) is a non-horizontal
smooth curve and so has Hausdorff dimension equal to two. This shows that for
one-dimensional sets the upper bound (4.2) cannot be improved.

The proof of Theorem 1.3 is given in a series of propositions. Our first statement
indicates the universal upper bounds which hold for the dimensions of vertical
projections. Within a certain dimension range, the trivial upper bound given
in (4.2) can be improved.

Proposition 4.2. Let A ⊂ H be any Borel set. Then, for every θ,

(4.3) dimH pWθ
(A) ≤ min

{
2 dimHA,

1
2 (dimHA+ 3), 3

}
.

The cases 3 < dimHA ≤ 4 and 0 ≤ dimHA < 1 are trivial. The latter follows
from the local 1

2 -Hölder continuity of pWθ
. We will focus on the remaining case

1 ≤ dimHA ≤ 3. The proof in this situation is more involved and uses a covering
argument.

Proposition 4.3. Let A be a Borel subset of H with dimHA ∈ [1, 3]. For all
θ ∈ [0, π) we have

(4.4) dimH pWθ
(A) ≤ 1

2
(dimHA+ 3).

The proof of this proposition is based on two preliminary results. Lemma 4.5,
which describes the images of Heisenberg balls under vertical projections, and
Lemma 4.6, which explains how this set can be covered efficiently by balls in the
vertical plane. This allows us to find good covers for pWθ

(A), which then yields
the desired upper bound for the Hausdorff dimension.

If not otherwise mentioned, we will in the following always identify the vertical
plane Wθ with R2 as described in (1.3). A point p = (αieiθ, τ) in Wθ will be
written in coordinates as (α, τ).

Let 0 < r < 1 and x0 ∈ R. First, we describe the vertical projection in the
direction θ ∈ [0, π) of a ball BH(p0, r) with center p0 = (x0, 0) on the x-axis. We
prove that there is a “core curve” γx0,r

θ such that the image of the ball under pWθ

lies in a small Euclidean neighborhood of the projected curve. For the following
steps of the proof it will be essential to control the size of this neighborhood
independently of the direction θ. This can be achieved if one uses a different curve
depending on whether θ is close to π/2, or it is close to 0 or π.

Definition 4.4. The core curve γx0,r
θ related to x0 ∈ R and 0 < r < 1 is the

subset of H given by

γx0,r
θ :=

{{
(x0 + iy,−2x0y) : y ∈ [−2r, 2r]

}
, if θ ∈ [0, π4 ] ∪ [ 3π4 , π),{

(x0 + x, 0) : x ∈ [−2r, 2r]
}
, if θ ∈ (π4 ,

3π
4 ).
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A direct computation shows that for each θ ∈ [0, π), x0 ∈ R, and 0 < r < 1,
the image under pWθ

of the corresponding core curve γx0,r
θ is the graph of a linear

or quadratic function fx0,r
θ over an interval Ix0,r

θ .

Lemma 4.5. For all θ ∈ [0, π), p0 = (x0, 0) with x0 ∈ R, and 0 < r < 1, we have

pWθ
(BH(p0, r)) ⊆ NE(pWθ

(γx0,r
θ ), 5r2),

where the expression on the right denotes the Euclidean 5r2-neighborhood of the
set pWθ

(γx0,r
θ ).

More precisely,

pWθ
(BH(p0, r))(4.5)

⊆ {
(α, τ) ∈ R

2 : α ∈ Ix0,r
θ , fx0,r

θ (α)− 5r2 ≤ τ ≤ fx0,r
θ (α) + 5r2

}
.

Proof of Lemma 4.5. We discuss the proof for the case θ ∈ (0, π/4]. The other
cases can be treated similarly, using the appropriate core curve.

For an arbitrary point (x′ + iy′, t′) in the ball BH(p0, r), one finds

(4.6) |x′ − x0| ≤ r, |y′| ≤ r and |t′ + 2x0y
′| ≤ r2.

The projection is given by

pWθ
(x′ + iy′, t′) = (−x′ sin θ + y′ cos θ, t′ + (x′2 − y′2) sin 2θ − 2x′y′ cos 2θ)

=: (α′, τ ′).

For points on the core curve, (x0 + iy,−2x0y) ∈ γx0,r
θ , we have

pWθ
(x0 + iy − 2x0y) = (−x0 sin θ + y cos θ,−2x0y + (x20 − y2) sin 2θ − 2x0y cos 2θ)

=: (α, τ).

Thus, as a subset of R2, the set pWθ
(γx0,r
θ ) coincides with the graph of the function

(4.7) fx0,r
θ (α) = −2 tan θ

(
α+ x0

sin θ

)2
+ x20

(
2

sin θ cos θ − 2 tan θ
)

over the interval

Ix0,r
θ = [−x0 sin θ − 2r cos θ,−x0 sin θ + 2r cos θ].

The goal is now to find a point in pWθ
(γx0,r
θ ) which lies close to the point

pWθ
(x′ + iy′, t′). To this end, let

(4.8) y := y′ − (x′ − x0) tan θ

and note that

|y| ≤ |y′|+ |x′ − x0| | tan θ| ≤ (1 + | tan θ|) r ≤ 2r.

It follows (x0 + iy,−2x0y) ∈ γx0,r
θ . We claim that the Euclidean distance between

the points pWθ
(x0 + iy,−2x0y) and pWθ

(x′ + iy′, t′) is at most 5r2.
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First, we observe

|α− α′| = |(x′ − x0) sin θ + (y − y′) cos θ|
= |(x′ − x0) sin θ − (x′ − x0) tan θ cos θ| = 0

for y as in (4.8).
Second, we compute

|τ − τ ′| = | − 2x0y − t′ + (x20 − y2 − x′2 + y′2) sin 2θ − 2 cos 2θ(x0y − x′y′)|.
Inserting y from (4.8) and using trigonometric relations yields

|τ − τ ′| = ∣∣− 2x0y
′ − t′ + 2x0(x

′ − x0) tan θ

+ 2 sin θ cos θ(x20 + 2y′(x′ − x0) tan θ − (x′ − x0)
2 tan2 θ − x′2)

− 2(cos2 θ − sin2 θ)(x0y
′ − x0(x

′ − x0) tan θ − x′y′)
∣∣

=
∣∣− (t′ + 2x0y

′) + 2x0(x
′ − x0) sin θ cos θ + 2x′(x0 − x′) sin θ cos θ

− 2y′(x0 − x′)− 2 sin3 θ
cos θ (x

′ − x0)
2
∣∣

=
∣∣− (t′ + 2x0y

′)− 2(x0 − x′)2 sin θ cos θ − 2y′(x0 − x′)− 2 sin3 θ
cos θ (x

′−x0)2
∣∣

=
∣∣− (t′ + 2x0y

′)− 2(x0 − x′)2 tan θ − 2y′(x0 − x′)
∣∣.

Hence, from (4.6) it follows that

|τ − τ ′| ≤ |t′ + 2x0y|+ 2| tan θ| |x0 − x′|2 + 2|y′| |x0 − x′|
≤ (1 + 2| tan θ|+ 2)r2.

For θ ∈ (0, π/4] this yields
√
(α− α′)2 + (τ − τ ′)2 ≤ 5r2 which concludes the

proof in this case. The proof for θ ∈ [3π/4, π) is very similar. We employ again
the formula (4.7). For θ = 0 we have to consider a linear function instead of
the quadratic function (4.7). The case θ ∈ (π/4, 3π/4) can be treated similarly,
starting from a core curve of the second type. �

Lemma 4.6. Let θ ∈ [0, π) and R > 0. There exist constants c1 > 0 and c2 =
c2(R) > 0 such that for all 0 < r < 1, z0 = |z0|eiθ0 ∈ C with |z0| ≤ R and t0 ∈ R,
the set

pWθ
(BH((z0, t0), r))

can be covered by M balls BWθ
(pj , c1r

2) := BH(pj , c1r
2) ∩ Wθ, j ∈ {1, . . . ,M},

with M ≤ c2/r
3.

Proof. Since the restriction of the Heisenberg metric to the vertical plane Wθ is
comparable to the parabolic heat metric on R2, there exists a constant c1 > 0 such
that

R(p, r2) :=
{
(α, τ) ∈ R

2 : |α− α′| ≤ r2, |τ − τ ′| ≤ r4
} ⊆ BWθ

(p, c1r
2)

for all p = (α′, τ ′) ∈ Wθ and r ≥ 0. It is therefore enough to construct a cover by
rectangles R(pj , r

2), j ∈ {1, . . . ,M}.
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Moreover, it suffices to prove the result for balls centered on the x-axis, i.e.,
for balls BH((z0, t0), r) with z0 = x0 ∈ R and t0 = 0. Indeed, an arbitrary
ball BH((z0, t0), r) can be obtained from BH((|z0|, 0), r) by a (Euclidean) vertical
translation to height t0 and a rotation about the t-axis with rotation angle θ0.
Then, as a subset of R2, the image pWθ

(BH((z0, t0), r)) coincides with a vertical
translation of pWθ−θ0

(BH((|z0|, 0), r)).
Let us consider a ball with radius r < 1, centered at a point p0 = (x0, 0) with

x0 ∈ R, |x0| < R. The goal is to efficiently cover the set

Sθ(x0, r) := {(α, τ) ∈ R
2 : α ∈ Ix0,r

θ , fx0,r
θ (α) − 5r2 ≤ τ ≤ fx0,r

θ (α) + 5r2} ⊆ Wθ

which, by Lemma 4.5, contains the image of BH(p0, r) under pWθ
, by rectangles

R(pj , r
2), j ∈ {1, . . . ,M}.

Let us assume that fx0,r
θ is defined on the entire real line. For given θ and x0,

we fix a particular point

α0 :=

{ − x0

sin θ , if θ ∈ (0, π4 ] ∪ [ 3π4 , π),

0, otherwise.

In the case where fx0,r
θ is a quadratic function, it has an extremal point at α0.

This is shown in the proof of Lemma 4.5 for the case θ ∈ (0, π/4] ∪ [3π/4, π). We
write

(Ix0,r
θ )k := [α0 + kr2, α0 + (k + 1)r2).

It can be checked that the interval Ix0,r
θ has length at most 4r (this is done explicitly

in the proof of Lemma 4.5 for the case θ ∈ (0, π/4]), whereas each interval of the
form (Ix0,r

θ )k has length r2. It follows that Ix0,r
θ has nonempty intersection with

at most

(4.9) N ≤ 6

r

of the disjoint intervals (Ix0,r
θ )k. Let k be such that Ix0,r

θ ∩ (Ix0,r
θ )k �= ∅. Consider

now the portion of Sθ(x0, r) which lies above the interval (Ix0,r
θ )k, more precisely,

{(α, τ) ∈ Sθ(x0, r) : α ∈ (Ix0,r
θ )k}.

In order to see how many rectangles R(pj, r
2) we need to cover this set, we have

to estimate its vertical height. Direct computations for the several possible cases
show that there exists a constant c0 = c0(R) such that for each k ∈ Z with
Ix0,r
θ ∩ (Ix0,r

θ )k �= ∅ there is an interval (Jx0,r
θ )k of length c0r

2 with

(4.10)
{
(α, τ) ∈ Sθ(x0, r) : α ∈ (Ix0,r

θ )k
} ⊆ (Ix0,r

θ )k × (Jx0,r
θ )k.

Hence, because of (4.5) and (4.10), there exists an integer N ′ ∈ N and points

pk,l = (αk,l, τk,l), l ∈ {1, . . . , N ′}
in the vertical plane Wθ with

(4.11) N ′ ≤ c0 + 1

r2
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such that

pWθ

(
BH((x0, 0), r)

) ∩ (
(Ix0,r
θ )k × R

) ⊆ N ′⋃
l=1

R(pk,l, r
2).

From (4.9) and (4.11) it follows that the image pWθ
(BH((x0, 0), r)) can be

covered by

M := N ·N ′ ≤ 6(c0 + 1)

r3

rectangles R(pj, r
2) = R(pk,l, r

2). Since each of these rectangles is contained in a
ball BW(pj , c1r

2), this concludes the proof of Lemma 4.6. �

Proof of Proposition 4.3. We may without loss of generality assume that the set A
is bounded. We denote its Hausdorff dimension by dimH A = s ∈ [1, 3]. Then we
have Hs+ε

H
(A) = 0 for all ε > 0 and thus, for each ε > 0,

(HH)
s+ε
δ (A) = 0 for all δ > 0.

Hence, for all ε > 0 and 0 < δ < 1, there exists a countable collection of balls

BH(pi, ri), i ∈ N, ri ≤ δ,

with

(4.12) A ⊆
⋃
i∈N

BH(pi, ri),

∞∑
i=1

rs+2ε
i < δ.

We write pi = (zi, ti) = (|zi|eiθ0,i , ti). Since the set A is bounded, we may assume
that there exists R > 0 such that |zi| ≤ R for all i ∈ N.

Fix now θ ∈ [0, π). It follows from Lemma 4.6 that there exist c1, c2 > 0
(independent of pi and ri), constants Mi with Mi ≤ c2/r

3
i , and points pi,j , i ∈ N

and j ∈ {1, . . . ,Mi} such that

(4.13) pWθ
(A) ⊆

⋃
i∈N

Mi⋃
j=1

BWθ
(pi,j , c1r

2
i ).

For σ ≥ 0, notice that

∑
i,j

diam(BWθ
(pi,j , c1r

2
i ))

σ+ε =
∑
i∈N

Mi∑
j=1

(2c1r
2
i )
σ+ε =

∑
i∈N

Mi(2c1)
σ+εr2σ+2ε

i

≤ (2c1)
σ+εc2

∑
i∈N

r
(2σ−3)+2ε
i .

Now if σ is chosen such that 2σ − 3 = s, i.e.,

σ =
1

2
(s+ 3) =

1

2
(dimHA+ 3),

it follows

(4.14)
∑
i,j

diam(BWθ
(pi,j , c1r

2
i ))

σ+ε < (2c1)
σ+εc2 δ.
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From (4.13) and (4.14), we conclude that

(HH)
σ+ε
2c1δ2

(pWθ
(A)) ≤ (2c1)

σ+ε c2 δ.

Letting δ tend to zero yields

Hσ+ε
H

(pWθ
(A)) = 0

and thus,

dimH pWθ
(A) ≤ σ =

1

2
(dimHA+ 3),

as desired. This concludes the proof of Proposition 4.3. �

Next, we discuss universal lower dimension bounds for vertical projections. We
will prove two propositions. Proposition 4.7 is the vertical analog of Lemma 3.1.
Observe that the failure of the vertical projection to be Lipschitz resurfaces in
the proof of this result; see (4.15). Proposition 4.9 uses a slicing theorem for
dimensions of intersections of sets with planes in Euclidean space together with the
dimension comparison principle. Taken together, these two propositions establish
the universal lower bounds in Theorem 1.3.

Proposition 4.7. Let A ⊂ H be Borel with dimHA ≥ 1. Then, for every θ,

dimH pWθ
(A) ≥ 1

2
(dimHA− 1).

In the proof, we use the following elementary estimate whose proof we omit.
Compare Lemma 4.4 in [10].

Lemma 4.8. There exists an absolute constant C > 0 so that

||a−1 ∗ b ∗ a||4
H
≤ ‖b‖4

H
+ C ‖b‖2

H

whenever a and b are points in H with ||a||H ≤ 1 and ||b||H ≤ 1.

Proof of Proposition 4.7. We may assume without loss of generality that A is
bounded. In fact, let us assume that |z| ≤ 1 for all points p = (z, t) ∈ A.

Fix θ ∈ [0, π), let s > dimH pWθ
(A), let ε > 0, and cover the set pWθ

(A) with a
family of Heisenberg balls {BH((zi, ti), ri)}i so that

∑
i r
s
i < ε.

Claim: We can choose C0 > 0 and a number Ni ≤ C0r
−1/2
i of values (zij , tij)

contained in the fiber p−1
Wθ

(zi, ti) so that the family {BH((zij , tij), C0
√
ri)}j covers

the set p−1
Wθ

(BH((zi, ti), ri)).

To prove the claim, it suffices to show that

(4.15) p−1
Wθ

(BH(q, r) ∩Wθ) ∩BH((0, 0), 1) ⊂ NH(q ∗ Vθ, C
√
r)

for some constant C > 0, whenever q ∈ Wθ and 0 < r ≤ 1. Here NH(S, δ) denotes
the δ-neighborhood of a set S ⊂ H in the metric dH, that is,

NH(S, δ) =
⋃
s∈S

BH(s, δ).
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The inclusion in (4.15) is a consequence of the following statement:

For all q′ ∈ Wθ so that dH(q, q
′) ≤ r and for all p′ ∈ Vθ so that

‖p′‖H ≤ 1, there exists p ∈ Vθ so that dH(q
′ ∗ p′, q ∗ p) ≤ C

√
r.

To establish this statement, choose p = p′. Then

dH(q
′ ∗ p′, q ∗ p)4 = ‖ p−1 ∗ (q−1 ∗ q′) ∗ p ‖4H ≤ dH(q, q

′)4 + CdH(q, q
′)2

by Lemma 4.8. Since dH(q, q
′) ≤ r by assumption and r ≤ 1, we conclude that

dH(q
′ ∗ p′, q ∗ p)4 ≤ Cr2

which finishes the proof of the claim.

With the claim in hand, the rest of the proof of Proposition 4.7 proceeds exactly
as for its horizontal counterpart. The family {BH((zij , tij), C0

√
ri)}i,j covers the

set A and we compute∑
i,j

rad(BH((zij , tij), C0
√
ri))

2s+1 =
∑
i

Ni(C0
√
ri)

2s+1 ≤ C2s+2
0

∑
i

rsi ≤ C2s+2
0 ε.

Letting ε → 0 gives H2s+1
H

(A) = 0, so dimHA ≤ 2s + 1. Letting s tend to
dimH pWθ

(A) completes the proof. �

Proposition 4.9. Let A ⊂ H be Borel with dimHA ≥ 3. Then

dimH pWθ
(A) ≥ 2 dimH A− 5 for every θ.

Proof. It suffices to assume that dimH A > 3. By the dimension comparison prin-
ciple,

dimE A ≥ dimHA− 1 > 2.

Let 0 < ε < dimHA− 3. According to the classical Euclidean intersection theorem
(see Theorem 10.10 in [18]), there exists a plane Π in R3 for which

dimE(A ∩ Π) ≥ dimE A− 1− ε ≥ dimHA− 2− ε > 1.

Furthermore, we may assume that Π is not a vertical plane, i.e., Π is a t-graph:
the graph of a function u : C → R. Let us write

Π =
{
(z, t) : t = u(z) := 2Re(az) + b

}
for some a ∈ C and b ∈ R. Consider the map F : R2 → R2 given as the composition
of the graph map id⊗u, the vertical projection pWθ

, and the coordinate chart ϕWθ

(see (1.3)). Written in complex notation,

F (z) = (Im(e−iθz), 2Re(az) + b− Im(e−2iθz2)).

The Jacobian determinant of F is given by

detDF (z) = 2 Im(e−iθ(z − ia))

and the restriction of pWθ
to {(z, u(z)) ∈ Π : detDF (z) �= 0} is locally bi-Lipschitz.
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Observe that
γ =

{
(z, u(z)) ∈ Π : detDF (z) = 0

}
is a line. Since dimE(A∩Π) > 1, dimE(A∩ (Π \ γ)) = dimE(A∩Π), and it follows
that

dimE pWθ
(A) ≥ dimE pWθ

(A ∩ (Π \ γ))(4.16)

= dimE(A ∩ (Π \ γ)) = dimE(A ∩Π) ≥ dimHA− 2− ε.

To complete the proof, we use the dimension comparison principle again to switch
back from the Euclidean dimension of the projected set to its Heisenberg dimen-
sion. Since pWθ

(A) is contained in Wθ, we can use the improved lower dimension
comparison bound from Theorem 2.8. Using (4.16) we obtain

dimH pWθ
(A) ≥ βW

− (dimE pWθ
(A)) ≥ βW

− (dimH A− 2− ε),

and thus, letting ε tend to zero,

dimH pWθ
(A) ≥ 2 dimHA− 5,

as asserted in the statement. The proof is complete. �

The result of Theorem 1.3 follows by combining Propositions 4.2, 4.7 and 4.9.

We now turn to the proof of the sharpness statement of Theorem 1.3.

Proposition 4.10. In each of the following statements, the set A is a compact
subset of H:

(a) For all 0 ≤ β ≤ 1 there exists A so that

dimHA = β and dimHpW0(A) = 0.

(b) For all 1 ≤ β ≤ 3 there exists A so that

dimH A = β and dimH pW0(A) = (β − 1)/2.

(c) For all 3 ≤ β ≤ 4 there exists A so that

dimH A = β and dimH pW0(A) = 2β − 5.

(d) For all 0 ≤ β ≤ 1 there exists A so that

dimHA = β and dimH pW0(A) = 2β.

(e) For all 1 ≤ β ≤ 3 there exists A so that

dimHA = β and dimH pW0(A) =
1

2
(β + 3).

(f) For all 3 ≤ β ≤ 4 there exists A so that

dimHA = β and dimH pW0(A) = 3.
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Proof of Proposition 4.10. For a proof of statements (d), (e) and (f), i.e., for the
sharpness of the upper dimension bounds, see the proof of Proposition 5.3, where
sets are constructed for which the corresponding dimension values hold for all
directions θ, and not merely for θ = 0. In the following, we discuss the sharpness
of the lower dimension bound, i.e., the cases (a), (b) and (c).

Assume that 0 ≤ β ≤ 1. Let A ⊂ V0 be a compact β-set. Then the set
pW0(A) = {(0, 0)} is zero-dimensional. This gives an example of a set A satisfy-
ing (a).

Examples for (b) and (c) are based on the following special case (β = 3), which
we describe first. Let B0 = {(iy, 0) : y ∈ R} be the y axis and let

(4.17) A0 = p−1
W0

(B0) = {(x+ iy, 2xy) : x, y ∈ R}.

Then dimHB0 = 1, while dimHA0 = 3.
Next, assume that 1 < β < 3; we construct a set A satisfying (b). The desired

set is constructed as a subset of the set A0 defined in (4.17). Let S ⊂ R be a
compact Ahlfors regular set of dimension (β − 1)/2 and consider the set

A = p−1
W0

({(iy, 0) : y ∈ S}).

Clearly dimH pW0(A) = dimE pW0(A) = (β − 1)/2. By Theorem 1.3,

1

2
(dimH A− 1) ≤ dimH pW0(A),

so it suffices to verify that dimHA ≥ β. Again we will appeal to Theorem 2.4; the
details are similar to those in the proof of Proposition 3.2 (d).

Define a set function μ on A by

μ(E) =

∫
S

H1
H(E ∩ Ly) dH(β−1)/2

E (y), for Borel sets E ⊆ A,

where Ly := p−1
W0

(iy, 0). Let BH(p, r) be a ball in (H, dH) centered at p ∈ A with
radius r. Write p = (x0 + iy0, 2x0y0) for some y0 ∈ S and x0 ∈ R.

Lemma 4.11. If BH(p, r) ∩ Ly �= ∅, then |y − y0| ≤ r2 and

H1
H(BH(p, r) ∩ Ly) ≤ Cr,

for a constant C independent of p, r and y.

Assuming the lemma we complete the proof in this case:

μ(BH(p, r)) ≤ Cr · H(β−1)/2
E ({y : BH(p, r) ∩ Ly �= ∅})

≤ Cr · H(β−1)/2
E ([y0 − r2, y0 + r2] ∩ A) ≤ C′rβ

for C′ > 0 independent of p and r. Hence μ satisfies the upper mass bound (2.2)
on A with exponent β. By Theorem 2.4, dimH A ≥ β.
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It remains to prove the lemma. Suppose that BH(p, r) ∩ Ly �= ∅. Then
BH(p, r) ⊂ BH(q, 2r) for some q ∈ BH(p, r) ∩ Ly and

H1
H
(BH(p, r) ∩ Ly) ≤ H1

H
(BH(q, 2r) ∩ Ly) ≤ Cr

since Ly is a horizontal line. Furthermore, if q = (x+ iy, 2xy) then

p−1 ∗ q = (
(x − x0) + i(y − y0), 2(x+ x0)(y − y0)

)
.

Since dH(p, q) ≤ r we conclude

|x− x0| ≤ r and |2(x+ x0)(y − y0)| ≤ r2.

We may restrict to the subset of A consisting of points (x+ iy, t) for which |x| ≥ 1
and consider only radii r < 1. Then

|x+ x0| ≥ 2|x| − |x− x0| ≥ 2− r > 1

and so

|y − y0| ≤ Cr2.

This completes the proof of Lemma 4.11 and ends the construction when β ∈ [1, 3].

Finally, assume that 3 < β ≤ 4. The desired set in this case is constructed as
a union of a collection of vertical translates of the set A0 defined in (4.17). Let
S ⊂ R be a compact Ahlfors regular set of dimension β − 3 and let

A =
⋃
s∈S

τ(0,s)(A0),

where τq : H → H, τq(p) = q ∗ p, denotes left translation by q ∈ H. Then A ⊂ H is
compact and pW0(A) ⊃ {(iy, s) : y ∈ [0, 1], s ∈ S}, whence

dimH pW0(A) ≥ 1 + 2(β − 3) = 2β − 5.

By Theorem 1.3, 2 dimHA − 5 ≤ dimH pW0(A), so it suffices to verify that
dimH A ≥ β. Define a set function μ on A by setting

μ(E) =

∫
S

H3
H
(E ∩Σs) dHβ−3

E (s), for Borel sets E ⊆ A,

where Σs = τ(0,s)(A0). Let BH(p, r) be a ball in (H, dH) centered at p ∈ A with
radius r. Write p = (x0 + iy0, 2x0y0 + s0) for some s0 ∈ S and x0, y0 ∈ R.
Then p ∈ Σs.

Lemma 4.12. If BH(p, r) ∩ Σs �= ∅, then |s− s0| ≤ Cr and

H3
H(BH(p, r) ∩ Σs) � Cr3.
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Assuming the lemma we complete the proof in this case:

μ(BH(p, r)) ≤ Cr3 · Hβ−3
E ({s : BH(p, r) ∩Σs �= ∅})

≤ Cr3 · Hβ−3
E ([s0 − r, s0 + r] ∩ A) ≤ Crβ .

Hence μ satisfies the upper mass bound (2.2) on A with exponent β. By Theo-
rem 2.4, dimHA ≥ β.

It remains to prove the lemma. Suppose that BH(p, r) ∩ Σs �= ∅. Then
BH(p, r) ⊂ BH(q, 2r) for some q ∈ BH(p, r) ∩ Σs and

H3
H
(BH(p, r) ∩ Σs) ≤ H3

H
(BH(q, 2r) ∩ Σs) ≤ Cr3

since Σs is a smooth submanifold. Furthermore, if q = (x+ iy, 2xy + s) then

p−1 ∗ q = (
(x− x0) + i(y − y0), (s− s0) + 2(x+ x0)(y − y0)

)
.

Since dH(p, q) ≤ r we conclude

|y − y0| ≤ r and |(s− s0) + 2(x+ x0)(y − y0)| ≤ r2

and so
|s− s0| ≤ r2 + C|y − y0| ≤ Cr.

This completes the proof of Lemma 4.12, and ends the construction in the case
β ∈ [3, 4]. �

5. Almost sure bounds for vertical projections

The goal of this section is to prove an almost sure lower bound for vertical projec-
tions (Theorem 1.4) and to verify that the given universal upper bound is sharp
even as an almost sure statement.

The arguments concerning the lower bound go along the lines of the proof of
the corresponding Euclidean result. However, it is considerably more difficult to
establish the integrability of certain functions given in terms of the Heisenberg
distance between projected points and the proof works only for a restricted range
of dimensions, namely, dimHA ≤ 1.

Here is the main proposition of this section.

Proposition 5.1. Let A ⊂ H be a Borel set with dimHA ≤ 1. Then, for a.e. θ,

dimH pWθ
(A) ≥ dimH A.

Corollary 5.2. Let A ⊂ H be a Borel set. Then, for a.e. θ,

dimH pWθ
(A) ≥ min{dimH A, 1}.

To prove the corollary, let A be a Borel subset of H with dimHA > 1 and
choose a subset B ⊂ A with dimHB = 1. For almost every parameter θ, we have
dimH pWθ

(A) ≥ dimH pWθ
(B) ≥ dimHB = 1.
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Proof of Proposition 5.1. Fix 0 < σ < dimHA. By Theorem 2.6, there exists
μ ∈ M(A) with

Iσ(μ) =

∫
A

∫
A

dH(p, q)
−σ dμ(p) dμ(q) <∞.

Using this measure, we will define a family of measures {μθ}θ∈[0,π) so that μθ ∈
M(pWθ

(A)) and

(5.1)

∫ π

0

Iσ(μθ) dθ <∞.

Once this done, the proof is finished by another appeal to Theorem 2.6 (since the
integrand of (5.1) must be finite for almost every θ) and by taking the limit as σ
increases to dimHA.

It remains to construct the measures μθ and verify (5.1). Consider the push-
forward measure μθ := (pWθ

)�μ defined by

(pWθ
)�μ(E) = μ(p−1

Wθ
(E)).

It is not hard to see that μθ is in M(pWθ
(A)). By Fubini’s theorem and the

definition of the pushforward measure, the integral in (5.1) is equal to

(5.2)

∫
A

∫
A

∫ π

0

dH(pWθ
(p), pWθ

(q))−σ dθ dμ(p) dμ(q).

We claim that the quantity in (5.2) is bounded above by an absolute constant
multiple of Iσ(μ), i.e.,∫

A

∫
A

∫ π

0

dH(pWθ
(p), pWθ

(q))−σ dθ dμ(p) dμ(q)(5.3)

≤ C

∫
A

∫
A

dH(p, q)
−σ dμ(p) dμ(q).

Unlike the Euclidean case, the distance dH(pWθ
(p), pWθ

(q)) is not related to the
distance dH(p, q) in any simple way. This means that we are not able to prove (5.3)
by bounding the inner integral pointwise by dH(p, q)

−σ as in the Euclidean case.
The main technical difficulties in the proof lie in the verification of (5.3).

In order to prove (5.3), we split the domain of integration A×A into two pieces,
according to the two terms which appear in the formula (2.8) for the Heisenberg
distance. Let

A1 :=
{
(p, q) ∈ A×A : |z − ζ|2 ≥ ∣∣t− τ + |z2 − ζ2| sin(ϕ1 − ϕ2)

∣∣ }
and

A2 :=
{
(p, q) ∈ A×A : |z − ζ|2 < ∣∣t− τ + |z2 − ζ2| sin(ϕ1 − ϕ2)

∣∣ }.
First, suppose that (p, q) ∈ A1. We observe the following distance estimates in

this case:

dH(p, q)
4 ≤ 2|z − ζ|4 and dH(pWθ

(p), pWθ
(q))4 ≥ |z − ζ|4 sin4(ϕ1 − θ).
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Then∫ π

0

dH(pWθ
(p), pWθ

(q))−σ dθ ≤ |z − ζ|−σ
∫ π

0

dθ

| sin(ϕ1 − θ)|σ ≤ C1dH(p, q)
−σ,

where C1 = 2σ/4
∫ π
0 | sin θ|−σ dθ <∞. Note that in this case we use the assumption

σ < 1, and also that the constant C1 is independent of p and q.
Next, suppose that (p, q) ∈ A2. Let us introduce the abbreviated notation

a := |z2 − ζ2|, b := t− τ, and ϕ0 := ϕ2 − ϕ1.

Observe that the condition (p, q) ∈ A2 implies that either b is nonzero, or that
both a and sinϕ0 are nonzero. We also have

dH(p, q)
4 ≤ 2(b+ a sinϕ0)

2

and

dH(pWθ
(p), pWθ

(q))4 ≥ (b− a sin(ϕ0 + 2ϕ1 − 2θ))2.

Hence,∫ π

0

dH(pWθ
(p), pWθ

(q))−σ dθ ≤
∫ π

0

|b− a sin(ϕ0 + 2ϕ1 − 2θ)|−σ/2 dθ

=
1

2

∫ 2π

0

|b + a sin θ|−σ/2 dθ

and

dH(p, q)
−σ ≥ 2−σ/4 |b+ a sinϕ0|−σ/2,

so it suffices to find a constant C2 independent of a, b and ϕ0 for which

(5.4)

∫ 2π

0

dθ

|b+ a sin θ|σ/2 ≤ C2

|b+ a sinϕ0|σ/2

whenever either b �= 0 or a sinϕ0 �= 0.
We finish the proof by verifying (5.4) for some explicit constant C2. If a = 0,

then (5.4) is satisfied for C2 = 2π, so assume a �= 0. Then (5.4) is equivalent to

(5.5)

∫ 2π

0

dθ

|r + sin θ|σ/2 ≤ C2

|r + sinϕ0|σ/2

where r = b/a. By a change of variables, we may assume without loss of generality
that r ≥ 0. Observe that (5.5) is implied by

(5.6)

∫ 2π

0

dθ

|r + sin θ|σ/2 ≤ C2

(1 + r)σ/2
,

so we are reduced to verifying (5.6).



406 Z. Balogh, E. Durand-Cartagena, K. Fässler, P. Mattila, J. T. Tyson

Consider the function

g(r) := (1 + r)σ/2
∫ 2π

0

dθ

|r + sin θ|σ/2 .

A straightforward computation shows that g is monotone decreasing on the

interval [1,∞), with g(1) = 2σ/2
∫ 2π

0 (1 + sin θ)−σ/2 dθ, which is finite since σ < 1.
Suppose that 0 ≤ r < 1 and write r = sinψ for an appropriate ψ. To obtain a
bound which is uniform in ψ, we use a trigonometric identity, the Cauchy–Schwarz
inequality and change of variables to obtain

g(sinψ) =

∫ 2π

0

( 1 + sinψ

| sinψ + sin θ|
)σ/2

dθ =

∫ 2π

0

( 1 + sinψ

|2 sin(ψ+θ2 ) cos(ψ−θ2 )|
)σ/2

dθ

≤
∫ 2π

0

| sin(ψ+θ2 )|−σ/2| cos(ψ−θ2 )|−σ/2 dθ

≤
(∫ 2π

0

| sin(ψ+θ2 )|−σ dθ
)1/2(∫ 2π

0

| cos(ψ−θ2 )|−σ dθ
)1/2

= 2

∫ π

0

| sin θ|−σ dθ.

The latter integral is finite since σ < 1. This completes the proof. �

The lower bound in Theorem 1.4 follows by combining Proposition 4.7, Proposi-
tion 4.9 and Corollary 5.2. The almost sure upper bound for the vertical projections
is the same as the universal upper bound which was proved in Proposition 4.2, and
this bound is sharp.

Proposition 5.3. In each of the following statements, the set A is a compact
subset of H.

(a) For all 0 ≤ β ≤ 1 there exists A such that

dimHA = β and dimH pWθ
(A) = 2β for all θ.

(b) For all 1 < β < 3 there exists A such that

dimHA = β and dimH pWθ
(A) =

1

2
(β + 3) for all θ.

(c) For all 3 ≤ β ≤ 4 there exists A such that

dimH A = β and dimH pWθ
(A) = 3 for all θ.

Proof. First, we construct a set A satisfying (a) for every θ. Let A ⊂ V0 be a
compact β-set. Then pWθ

(A) has Heisenberg Hausdorff dimension 2β for every
θ �= 0. Compare Example 4.1. To construct an example which works for every
value of θ, let A be the union of two compact β-sets, one contained in V0 and one
contained in Vπ/2.
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It is not hard to find a set A with

dimHA = dimH pWθ
A = 3, for every θ ∈ [0, π).

Take for instance

A = {(z, 0) : |z| ≤ 1}.
The case (c) becomes then quite simple. Indeed, given β ∈ [3, 4], let C ⊂ H be any
compact β-set which contains the set A. Then pWθ

(C) ⊃ pWθ
(A) has dimension 3

for every θ.

It remains to discuss the case (b). For a fixed number β ∈ (1, 3), we choose a
Cantor set C of Euclidean dimension (β − 1)/2 on the interval [0, 2π) and set

A :=
{
(reiϕ, 0) : r ∈ [ 12 , 1], ϕ ∈ C

}
.

We will prove that dimHA = β. The set A is made up of horizontal curves, more
precisely, radial segments inside the plane t = 0. For almost every direction, the
projection onto a vertical plane will be a non-horizontal parabola. This leads to
the desired increase in dimension.

To define the set C, we employ the similarity maps S1(x) = λx and S2(x) =
λx+ 1− λ on R with

λ := 4
1

1−β ∈ (0, 12 ).

The resulting invariant set C(λ) = S1(C(λ)) ∪ S2(C(λ)) is a compact subset of

[0, 1] with 0 < H(β−1)/2
E (C(λ)) <∞ and thus dimE C(λ) =

log 2
− log λ = β−1

2 . We set

C :=

8⋃
i=1

fi(C(λ)),

where fi(ϕ) =
π
8ϕ+ (i− 1)π4 , and denote further

Ai :=
{
(reiϕ, 0) : r ∈ [ 12 , 1], ϕ ∈ fi(C(λ))

}
for i ∈ {1, . . . , 8}.

Each set Ai consists of radial segments of length 1/2, emanating from a Cantor
set on the unit circle.

The statement given in (b) then follows from the two subsequent lemmas:

Lemma 5.4. The set A has dimension dimH(A) = β.

Lemma 5.5. For an arbitrary θ ∈ [0, π), the set pWθ
(A) has dimension

dimH(pWθ
(A)) =

β + 3

2
.

This finishes the proof of Proposition 5.3. �
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Proof of Lemma 5.4. Proof of the upper bound. Fix i ∈ {1, . . . , 8}. From 0 <

H(β−1)/2
E (fi(C(λ))) <∞ it follows that

0 < H
β−1
2

E (Bi) <∞,

where Bi := {(eiϕ, 0) : ϕ ∈ fi(C(λ))}. Hence, for all ε > 0 and 0 ≤ δ < 1, there
exists a countable family of balls

BE(pn, rn), n ∈ N with rn ≤ δ

such that

Bi ⊆
⋃
n∈N

BE(pn, rn) and
∑
n∈N

r
β−1
2 + ε

2
n < δ.

We may without loss of generality assume that the center pn = (eiϕn , 0) lies on the
unit circle in the plane. We will cover the segments

�n := {(reiϕn , 0) : r ∈ [0, 12 ]}
in an efficient way by small sets.

Let p = (reiϕn , 0) be a point on �n. Consider first the rectangle

Q((r, 0),
√
2rn) :=

{
(z, 0) = (x+ iy, 0) : |x− r| ≤ √

2rn, |y| ≤ 2rn
}

in the plane centered at the point (r, 0) on the x-axis. Rotate it to the point p
on �n, i.e.,

Q(p,
√
2rn) =

{
(eiϕnz, 0) : (z, 0) ∈ Q((r, 0),

√
2rn)

}
.

This set is contained in the Heisenberg ball BH(p, c0
√
rn) for a constant c0 > 0

which does not depend on p or r.
We will cover the set Ai by sets of the form Q(p,

√
2rn) with p ∈ �n. Recall that

the line segment �n has length 1/2 and each rectangle Q(p,
√
2rn) centered on �n

has length
√
2rn in direction of �n. It follows that there exist points pn,1, . . . , pn,Nn

on �n such that

Nn ≤ 2√
rn

and �n ⊂
Nn⋃
j=1

Q(pn,j ,
√
2rn).

We claim that
{Q(pn,j,

√
2rn)}j∈{1,...,Nn},n∈N

covers the set Ai. To see this, let p = (reiϕ, 0) be a point in Ai. Assume that ϕ is
different from all ϕn, n ∈ N. The point (eiϕ, 0) lies in one of the balls BE(pn, rn)
because they build a cover for the set Bi on the unit circle. Hence, p has distance
at most rn from the line segment �n which is attached at the point (eiϕn , 0), thus
it lies in one of the rectangles

{Q(pn,j,
√
2rn)}j∈{1,...,Nj}.
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Since each of these rectangles is contained in a Heisenberg ball with the same
center and radius c0

√
rn, it follows

Ai ⊆
⋃
n∈N

Nn⋃
j=1

BH(pn,j, c0
√
rn)

with

(HH)
β+ε

2c0
√
δ
(Ai) ≤

∑
n,j

diam(BH(pn,j , c0
√
rn))

β+ε =
∑
n∈N

Nn(2c0
√
rn)

β+ε

≤
∑
n∈N

2√
rn

(2c0)
β+ε r

β+ε
2

n = 2 (2c0)
β+ε

∑
n∈N

r
β−1
2 + ε

2
n < δ.

Letting δ tend to zero, we see that Hβ+ε
H

(Ai) = 0 for all ε > 0 and thus

dimHAi ≤ β,

which concludes the proof of the upper dimension bound in Lemma 5.4.

Proof of the lower bound. A lower bound for dimH(A) can be obtained from the
mass distribution principle (Frostman’s lemma). We have to find r0 > 0 and a
positive and finite measure μ on A such that

μ(BH(p, r) ∩ A) ≤ rβ for all p ∈ A, 0 < r < r0.

For a Borel subset E ⊆ A, we define

μ(E) :=

∫
C

H1
E(�ϕ ∩ E) dν(ϕ),

where ν is a Frostman measure on the (β − 1)/2-dimensional set C, that is, a
positive and finite measure on C with

ν
(
(ϕ− r, ϕ+ r) ∩ C) ≤ r

β−1
2 for all ϕ ∈ C, r > 0.

The set function μ is by definition positive and finite on A.
Since

BH(p, r) ∩ A ⊆ {
(ρeiϕ, 0) : |ρ− ρ0| < r, |ϕ− ϕ0| < πr2

}
, for p = (ρ0e

iϕ0 , 0),

it follows
μ(BH(p, r) ∩ A) ≤ r · (πr2)β−1

2 = π
β−1
2 rβ

for all 0 < r < r0. An appropriate normalization of μ yields the desired Frostman
measure to establish the lower bound for dimHA. �

In the subsequent discussion on dimH pWθ
(A) we will again identify vertical

planes in H with R
2, so that a point (αieiθ, τ) in Wθ is denoted by (α, τ).
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Proof of Lemma 5.5. It is enough to prove

dimH pWθ
(A) ≥ (β + 3)/2.

This is again done by the mass distribution principle. Let us first explain how the
set pWθ

(A) looks. For almost every direction θ ∈ [0, π), the line segment

�ϕ = {(reiϕ, 0) : r ∈ [ 12 , 1]}, ϕ ∈ C,

is mapped onto a parabola. Let us fix θ ∈ [0, π). We will prove that

dimH pWθ
(Ai) ≥ β + 3

2

for one of the subsets A1, . . . , A8. This implies the lower bound for dimH pWθ
(A).

The reason why we work only with a subset of A is that we can then ensure that
there exists ε > 0 such that

ϕ− θ ∈ [ε, π2 − ε] for all ϕ ∈ fi(C(λ)),

for an appropriate choice of i ∈ {1, . . . , 8}, hence we can control the argument ϕ−θ.
This will be useful in the sequel. A direct computation shows that the set pWθ

(�ϕ)
coincides with the graph of the quadratic function

fϕ : Iϕ → R, fϕ(α) = −2 cot(ϕ− θ)α2,

with Iϕ = [ 12 sin(ϕ−θ), sin(ϕ−θ)]. Recall that we have chosen i such that sin(ϕ−θ)
is positive and bounded away from 0 and 1 for all ϕ ∈ fi(C(λ)).

We define a Frostman measure μ on pWθ
(Ai) as follows:

μ(E) =

∫
fi(C(λ))

H1
E(pWθ

(�ϕ) ∩ E) dν(ϕ), for Borel sets E ⊆ pWθ
(Ai),

where ν is a Frostman measure on fi(C(λ)) which satisfies an upper mass bound
with exponent (β − 1)/2. It is not hard to see that μ is positive and finite
on pWθ

(Ai). To conclude the proof, it suffices to show that there exists r0 > 0
such that

μ(BH(p, r) ∩ pWθ
(Ai)) ≤ r

β+3
2 for all p ∈ pWθ

(Ai) and 0 < r < r0.

Let p = (α, τ) ∈ pWθ
(Ai). Since BH(p, r) ∩ pWθ

(Ai) is a subset of Wθ, it is
comparable to the rectangle

R(p, r) =
{
(α′, τ ′) : |α− α′| < r, |τ − τ ′| < r2

}
.

It is therefore enough to prove that

μ(R(p, r) ∩ pWθ
(Ai)) ≤ r

β+3
2 for all p ∈ pWθ

(Ai) and 0 < r < r0.
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To this end we estimate the measure H1
E(pWθ

(�ϕ) ∩ R(p, r)) for all ϕ ∈ fi(C(λ)).
Recall that pWθ

(�ϕ) is the graph of the function fϕ and therefore, if pWθ
(�ϕ) ∩

R(p, r) �= ∅, we have

(5.7) H1
E(pWθ

(�ϕ)∩R(p, r)) =
∫ α2

α1

√
1 + (f ′

ϕ(α))
2 dα ≤

√
1 + 16 cot2(ε) (α2−α1),

where 0 < α1 < α2 < 1 are such that fϕ(α1) = τ + r2/2 and fϕ(α2) = τ − r2/2.
We observe that

r2 = 2 cot(ϕ− θ)(α2
2 − α2

1)

and thus,

(5.8) α2 − α1 =
r2

2 cot(ϕ− θ)(α1 + α2)
≤ r2

2 cot(π2 − ε) sin(ε)
.

Together, (5.7) and (5.8) imply that there exists a constant c0 > 0, independent
of p, r, and ϕ, such that

H1
E(pWθ

(�ϕ) ∩R(p, r)) ≤ c0r
2.

Hence,

(5.9) μ(R(p, r) ∩ pWθ
(Ai)) ≤ c0r

2 · ν({ϕ ∈ fi(C(λ)) : pWθ
(�ϕ) ∩R(p, r) �= ∅}).

The parabolas pWθ
(�ϕ) are graphs of functions of the type gc(α) = cα2, α ∈ R. A

rectangle R(p, r) in R2 with center p = (α, τ) intersects the graph of gc only for
particular values of c. If p ∈ pWθ

(Ai), it follows from the choice of i that

α ≥ 1

2
sin(ϕ− θ) ≥ 1

2
sin(ε)

and

τ = −2 cot(ϕ− θ)α2 ≤ −1

2
cot(π2 − ε) sin2(ε).

We choose now

r0 :=
√
cot(π2 − ε) sin2(ε).

This ensures that τ+r2/2 < 0 for 0 < r < r0. The graph of gc crosses the rectangle
R(p, r) only if

τ − r2

2

(α− r
2 )

2
≤ c ≤ τ + r2

2

(α+ r
2 )

2
.

Here, we consider gc for c = −2 cot(ϕ− θ) since the set pWθ
(�ϕ) is the graph of fϕ.

Hence, the parabola pWθ
(�ϕ) intersects the rectangle R(p, r) only if

ϕ− := cot−1

(− τ
2 − r2

4

(α+ r
2 )

2

)
+ θ ≤ ϕ ≤ cot−1

(− τ
2 + r2

4

(α− r
2 )

2

)
+ θ =: ϕ+.

It follows from the Mean Value Theorem that

0 ≤ ϕ+ − ϕ− ≤ 1

2

1

(α− r
2 )

2(α+ r
2 )

2

∣∣− 2ατr + α2r2 + r4

4

∣∣.
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Notice that

α− r

2
≥ 1

2
sin(ε)− 1

2

√
cot(π2 − ε) sin2(ε) =

1

2
sin(ε)

(
1−

√
cot(π2 − ε)

)
.

We can choose ε small enough such that the right-hand side is positive. Hence,
there exists a constant c1 > 0 such that

|ϕ+ − ϕ−| ≤ c1r.

Since {
ϕ ∈ fi(C(λ)) : pWθ

(�ϕ) ∩R(p, r) �= ∅} ⊆ (ϕ−, ϕ+)

and ν is a measure on fi(C(λ)) which satisfies an upper mass bound with exponent
(β − 1)/2, we conclude

ν({ϕ ∈ fi(C(λ)) : pWθ
(�ϕ) ∩R(p, r) �= ∅}) ≤

(c1
2

) β−1
2

r
β−1
2

and thus, by (5.9), there follows

μ(R(p, r) ∩ pWθ
(Ai)) ≤ c0 r

2
(c1
2

) β−1
2

r
β−1
2 =: c3 r

β+3
2

for all p ∈ pWθ
(Ai) and 0 < r < r0. This concludes the proof of Lemma 5.5. �

6. Projections of submanifolds

In this section, we discuss first vertical projections of sets that possess a certain
amount of regularity to substantiate the conjecture formulated in the introduc-
tion. In Proposition 6.1 we provide evidence for this conjecture. Note that sets
satisfying the assumptions of Proposition 6.1 necessarily have positive Euclidean
Hausdorff 2-measure. By the dimension comparison principle, sets A ⊂ H with
dimH A > 3 also have positive Euclidean Hausdorff 2-measure. The conclusion
in Proposition 6.1 is weaker than we would like. We do not know whether the
projection must coincide with (or even contain) a continuous curve for at least
one θ.

Proposition 6.1. Let A ⊂ H be such that π(A) = Ω is a domain. If pWθ
(A) is the

t-graph of a continuous function for a single value θ = θ0, then H3
H
(pWθ

(A)) > 0
for every θ �= θ0.

Proof. As before, we begin with the representation (4.1) for the vertical projection.
From the assumptions it follows that A is the t-graph of a function u over Ω. Note
that we do not assume that u is continuous (although we will shortly see that in
fact, u must be continuous).

By performing a rotation if needed, we may assume that θ0 = 0. We compute

ϕW0 ◦ pW0 ◦ (id⊗u)(z) = (Im z, u(z)− Im(z2)).
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By assumption, this coincides with the graph map of a continuous function h.
Thus

u(z) = h(Im z) + Im(z2)

and so u is in fact continuous. Furthermore, for any θ,

Fθ(z) := ϕWθ
◦ pWθ

◦ (id⊗u)(z) = (Im(e−iθz), h(Im z) + Im(z2)− Im(e−2iθz2)).

We claim that Fθ(Ω) has positive area for any θ �= 0. By Fubini’s theorem,

(6.1) H2
E(Fθ(Ω)) =

∫
H1
E

(
({a} × R) ∩ Fθ(Ω)

)
da.

Let us observe that a point (a, t) lies in Fθ(Ω) if and only if the following conditions
hold:

a = Im(e−iθz) and t = h(Im z) + Im(z2)− Im(e−2iθz2)

for some z ∈ Ω.
Assume that 0 < θ < π and write z = x+ iy. Then

(6.2) a = y cos θ − x sin θ

and

(6.3) t = h(y) + 2xy − 2(y cos θ − x sin θ)(x cos θ + y sin θ).

Substituting (6.2) into (6.3) yields

t = h(y) + (2 cot θ)y2 − (4 csc θ)ay + (2 cot θ)a2 =: h(y) +Qθ,a(y).

For a positive H1
E measure set of values of the variable a, the integrand in (6.1) is

equal to the H1
E measure of the image of

(6.4)
{
y :

(y cos θ − a

sin θ
, y
)
∈ Ω

}
under the map h + Qθ,a. The set in (6.4) is a union of open intervals, and the
map h + Qθ,a is continuous, hence the integrand in (6.1) is strictly positive for a
positive H1

E measure set of values of a. Consequently,

H2
E(Fθ(Ω)) > 0.

This completes the proof. �

Similarly as in Proposition 6.1, we consider in the following the effect of vertical
projections on subsets with additional regularity assumptions. This allows a more
precise statement than in the general case of arbitrary Borel subset.

Theorem 6.2. For any C1 curve γ in H, the value of dimH pWθ
γ can be equal

to 0 or 1 for at most two values of θ, and is equal to 2 for all other values of θ.
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Theorem 6.3. For any C1 surface Σ in H, the value of dimH pWθ
Σ can be equal

to 1 or 2 for at most one value of θ, and is equal to 3 for all other values of θ.

Note that dimH γ can be equal to either 1 or 2 for a C1 curve γ, depending on
whether or not γ is a horizontal curve. However, dimH Σ is equal to 3 for all C1

surfaces Σ. See, for example, Section 0.6.C in [11].

Recall also that the restriction of the Heisenberg metric to Wθ is comparable
with the heat metric; see (1.4).

A C1 curve γ which lies in Wθ is horizontal (as a curve in H) if and only if
it is contained in a horizontal line. In other words, if γ ⊂ Wθ for some θ, then
γ′ ∈ HγH if and only if γ ⊂ {t = c} for some c.

For θ ∈ [0, π) and c ∈ R, let us define

Σθ,c := p−1
Wθ

({t = c} ∩Wθ).

Note that Σθ,c consists of points in H of the form ((r + ia)eiθ, c + 2ar), where
a, r ∈ R. Equivalently, Σθ,c is the graph of the function t = ϕθ,c(x, y) given by

ϕθ,c(x, y) = 2(x cos θ + y sin θ)(y cos θ − x sin θ) + c.

From the preceding remarks we observe:

Proposition 6.4. (1) Let γ be a C1 curve in H. Then pWθ
(γ) is horizontal if and

only if there exists c so that γ ⊂ Σθ,c.

(2) Let Σ be a C1 surface in H. Then pWθ
(Σ) is horizontal if and only if there

exists c so that Σ ⊂ Σθ,c.

We also need a lemma on the intersection properties of the surfaces Σθ,c.

Lemma 6.5. (1) Let (θ1, c1) and (θ2, c2) be distinct, c1, c2 ∈ R. If θ1 �= θ2, then
Σθ1,c1 ∩Σθ2,c2 is a C1 curve. If θ1 = θ2 and c1 �= c2, then Σθ1,c1 ∩Σθ2,c2 is empty.

(2) Let (θ1, c1), (θ2, c2) and (θ3, c3) be pairwise distinct. If the θi’s are all
pairwise distinct, then Σθ1,c1 ∩ Σθ2,c2 ∩ Σθ3,c3 is a point. If exactly two of the
θi’s are equal, then Σθ1,c1 ∩ Σθ2,c2 ∩ Σθ3,c3 is a C1 curve. If θ1 = θ2 = θ3, then
Σθ1,c1 ∩ Σθ2,c2 ∩Σθ3,c3 is empty.

Proof of Theorems 6.2 and 6.3. If γ is a C1 curve in H, then pWθ
γ is either a C1

curve or a point in Wθ. If it is a curve, then its dimension is either equal to 1 or
equal to 2, depending on whether or not the curve is horizontal. By the proposition,
this curve is horizontal if and only if γ is contained in Σθ,c for some c. By the
lemma, at most two distinct surfaces of this type can intersect along a C1 curve.
This completes the proof of Theorem 6.2.

Now suppose that Σ is a C1 surface in H. Then pWθ
(Σ) is either a C1 surface,

a C1 curve or a point in Wθ. The rest of the argument is similar to the one in the
previous paragraph. �
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7. Projections of subsets of horizontal or vertical planes

In this section, we discuss methods to improve the lower dimensional bounds for
vertical projections. Energy integrals can be used to obtain better lower bounds
for sets of dimension at most two lying inside a horizontal plane, or for sets of
dimension at least one lying inside a vertical plane.

Recall that in order to obtain lower bounds for the dimension of projections,
the goal was to ascertain that the integral

(7.1)

∫
G(n,m)

Is((PV )�μ) dγn,m(V ),

respectively
∫ π
0
Is((pWθ

)�μ) dθ in the Heisenberg case, was finite for any given
s < dimA and μ ∈ M(A) with Is(μ) < ∞. To obtain the finiteness of an integral
as in (7.1) in the Euclidean case, one shows that

(7.2)

∫
G(n,m)

d(PV (p), PV (q))
−s dγn,m(V ) ≤ c d(p, q)−s,

and uses the finiteness of Is(μ).
In this section, we establish estimates of the type (7.2) for Heisenberg vertical

projections and apply them to get dimension bounds for vertical projections of
subsets of horizontal or vertical planes. In Subsection 7.1 such a result is proved
for points in a horizontal plane when s < 2. Moreover, we show that this pointwise
bound does not hold in general for larger s. In Subsection 7.2 we establish a
similar result for vertical planes with different exponents on the two sides of the
inequality (7.2).

It is not hard to see that one cannot in general get a pointwise estimate of the
form (7.2). But one could hope that the set of points (p, q) where this bound does
not hold is small with respect to the measure μ. In that case, one could anticipate
proving the finiteness of an integral of the type (7.1). In Subsection 7.3 we show
that this hope is vain. We give examples where the integral is infinite, even in case
the projections are known to be of dimension at least s.

We use the following notation. For a pair of functions f, g : A → [0,∞] we
write

f(p) � g(p)

if there exist constants c0, c1 > 0 such that

(7.3) c0f(p) ≤ g(p) ≤ c1f(p) for all p ∈ A.

If only one of the two inequalities hold, we write accordingly

(7.4) f(p) � g(p) or f(p) � g(p).

We denote by p = (z, t) and q = (ζ, τ) points in H and use the following
abbreviated notation:

(7.5) ϕ1 = arg(z − ζ), ϕ2 = arg(z + ζ).
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In the proofs of the dimension theorems, one works with integrals of the form

Js(p, q) =

∫ π

0

dH(pWθ
(p), pWθ

(q))−s dθ

=

∫ π

0

(|z − ζ|4 sin4(ϕ1 − θ) + (t− τ − |z2 − ζ2| sin(ϕ1 + ϕ2 − 2θ))2
)−s/4

dθ.(7.6)

(The arguments ϕ1 and ϕ2 are not well defined for z − ζ = 0 or z + ζ = 0, but
in this case also |z − ζ| = 0 or |z2 − ζ2| = 0, which will ensure that the respective
terms vanish.)

The following result will be applied several times. We skip the easy proof.

Lemma 7.1. Let p0 = (z0, t0) be a point in H with |z0| = R > 0. Then, for all
0 < r < R/2 and all points p = (z, t) and q = (ζ, τ) in BH(p0, r), the distance
|z − ζ| is comparable to |z2 − ζ2|.

7.1. Dimension estimates for sets lying in a horizontal plane

In this section, the dimension parameter s will be fixed. All implicit constants in
relations of type (7.3) or (7.4) are allowed to depend on s, but are independent of
all other parameters or variables.

Proposition 7.2. Assume that 0 < s < 2. Let z0 ∈ C, z0 �= 0, and let t0 ∈ R.
Then

(7.7) Js(p, q) � dH(p, q)
−s

for points p and q in {p = (z, t) ∈ H : t = t0} ∩BH((z0, t0),
1
20 |z0|).

Proof. By applying a preliminary dilation, we may assume without loss of gener-
ality that |z0| = 1. Let p = (z, t0) and q = (ζ, t0) be distinct points in BH(p0,

1
20 ),

where p0 = (z0, t0). By Lemma 7.1, we have

(7.8) |z2 − ζ2| = |z − ζ||z + ζ| � |z − ζ| =: a.

Note that

0 < a = |z − ζ| ≤ |z − z0|+ |z0 − ζ| ≤ dH(p, p0) + dH(p0, q) <
1
10 .

By Lemma 7.1 and substituting ψ = 2ϕ1 − 2θ, we have

Js(p, q) �
∫ 2π

0

(
a4 sin4(ψ2 ) + a2 sin2(ψ − α)

)−s/4
dψ,

with α = ϕ1 − ϕ2 + kπ, where k ∈ N is chosen so that α lies in [0, π).
Using some elementary estimates for the sine function, we conclude that

(7.9)

∫ 2π

0

(
a4 sin4 ψ2 + a2 sin2(ψ − α)

)−s/4
dψ � a−s

∫ 2π

0

h(ψ)−s/4 dψ
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for α ∈ [0, π/2), where

h(ψ) = min{ψ, 2π − ψ}4 +
(min{|ψ − α|, |ψ − α− π|, |ψ − α− 2π|}

a

)2

.

We split the integral on the right-hand side of (7.9) into four terms, integrating
over the intervals [0, π/2+α], [π/2+α, π], [π, 3π/2+α] and [3π/2+α, 2π] in turn.
In each of the resulting integrals, we perform a linear change of variables to rewrite
the integral as an integral over the interval [0, 1]. For instance, the substitution
x = c−1ψ with c = α+ π/2 ∈ [π/2, π) in the first term yields

(7.10) a−s
∫ α+π/2

0

(
ψ4 +

(
ψ−α
a

)2)−s/4
dψ � a−s

∫ 1

0

(
x4 +

(
x−β
a

)2)−s/4
dx,

with β = α
α+π/2 ∈ [0, 1/2]. Each of the remaining three integrals is dominated

by the integral on the right hand side of (7.10). This is easily seen by evaluating
separately each integral.

If α ∈ [π/2, π], we see in the same way that

Js(p, q) � a−s
∫ 2π

α+π
2

(
(ψ − 2π)4 +

(
ψ−α−π

a

)2 )−s/4
dψ

� a−s
∫ 1

0

(
x4 +

(
x−β
a

)2 )−s/4
dx,(7.11)

with β = π−α
(3π/2)−α ∈ [0, 1/2].

Let us consider integrals of the type
∫ 1

0 (x
4 + (x−βa )2)−s/4 dx with β ∈ [0, 1/2]

and a ∈ (0, 1).

Lemma 7.3. For 0 < s < 2, β ∈ [0, 1/2] and a ∈ (0, 1), we have

(7.12)

∫ 1

0

(
x4 +

(x− β

a

)2 )−s/4
dx � as/2.

Proof of Lemma 7.3. First, assume that β > 0. We integrate over intervals where
one of the summands is dominating. Fix δ = aβ2 and note that δ ≤ β/2. Let I
denote the integral in (7.12). We split the region of integration into three subre-
gions, integrating over [0, β− δ], [β− δ, β+ δ] and [β + δ, 1], respectively. By some
elementary calculations we find

I �
∫ β−δ

0

(
β−x
a

)−s/2
dx+

∫ β+δ

β−δ
x−s dx+

∫ 1

β+δ

(
x−β
a

)−s/2
dx

� as/2(β1−s/2 − δ1−s/2) +
∫ β+δ

β−δ
x−s dx+ as/2((1 − β)1−s/2 − δ1−s/2).

(7.13)

By the Mean Value Theorem,
∫ β+δ
β−δ x

−s dx = 2δ(1−s)ξ−s for some ξ in [β−δ, β+δ].
Further calculations yield

(7.14) I � as/2(β1−s/2+(1−β)1−s/2)+δβ−s = as/2(β1−s/2+(1−β)1−s/2)+aβ2−s.

Since s < 2 and a, β < 1 we conclude that I � as/2 as desired.



418 Z. Balogh, E. Durand-Cartagena, K. Fässler, P. Mattila, J. T. Tyson

The case β = 0 is even simpler. In this case,

I =

∫ 1

0

(
x4 + x2

a2

)−s/4
dx � as/2

∫ 1

0

x−s/2 dx � as/2.

This completes the proof of the lemma. �

In view of Lemma 7.3, (7.11) implies that

(7.15) Js(p, q) � a−s/2 = |z − ζ|−s/2.
Our next goal is to compare this last expression to the distance between the two
points p and q. To this end, note that

dH(p, q)
4 � a4 + a2 sin2(ϕ1 − ϕ2) ≤ 2a2.

and therefore

(7.16) a−s/2 � dH(p, q)
−s.

Combining (7.15) and (7.16) completes the proof of Proposition 7.2. �

Remark 7.4. A statement analogous to Proposition 7.2 does not hold for s > 2.
Let us observe that the estimate in (7.14) holds for all s > 0 and β > 0; the implicit
constants depend on s but not on β. Keeping only the final term yields

I � a β2−s.

Recall that β � α if 0 ≤ α ≤ π/2 while β � π − α if π/2 ≤ α ≤ π. Put simply,
β � sinα and consequently,

Js(p, q) = a−sI � a1−s(sinα)2−s.

If (7.7) were true, it would then imply

a1−s(sinα)2−s � (a4 + a2 sin2 α)−s/4.

The latter statement is true if and only if

(7.17) a2 + sin2 α � a2(s−2)/s (sinα)4(s−2)/s,

however, it is clear that (7.17) is impossible if a is either much smaller or much
larger than sinα. This shows that the estimate

(7.18) Js(p, q) � dH(p, q)
−s

cannot hold on BH(1,
1
20 ) ∩ {(z, t) ∈ H : t = t0} if s > 2 for any t0 ∈ R.

Proposition 7.2 can be applied to obtain an almost sure lower dimension bound
for subsets in a horizontal plane of Hausdorff dimension at most 2.

Proposition 7.5. Let A be a Borel set lying inside a horizontal plane {(z, t) ∈ H :
t = t0}. If dimHA ≤ 2, then dimH pWθ

(A) ≥ dimHA for almost every θ ∈ [0, π).
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Proof. In view of Theorem 1.4, we may assume without loss of generality that
dimH A > 1. We may also assume that A ⊂ BH(p0, r) for some p0 = (z0, t0) with
r < 1

20 |z0|, since H \ {z = 0} can be covered with countably many such balls. Let
s < dimHA. By the energy version of Frostman’s lemma, there exists μ ∈ M(A)
with Is(μ) <∞. Then∫ π

0

Is((pWθ
)�μ) dθ =

∫
A

∫
A

∫ π

0

1

dH(pWθ
(p), pWθ

(q))s
dθ dμ(p) dμ(q)

=

∫
A

∫
A

Js(p, q) dμ(p) dμ(q),

where Js(p, q) is as in (7.6). Since A is a subset of BH(p0, r) inside the horizontal
plane {t = t0}, we can apply Proposition 7.2 to obtain

Js(p, q) � dH(p, q)
−s.

Then ∫ π

0

Is((pWθ
)�μ) dθ �

∫
A

∫
A

dH(p, q)
−s dμ(p) dμ(q) = Is(μ)

is finite, which implies that Is((pWθ
)�μ) <∞ and thus dimH pWθ

(A) ≥ s for almost
every θ ∈ [0, π). Letting s tend to dimH A gives the desired conclusion. �

Remark 7.6. An analogous proof can be used to show that a set A inside a
horizontal plane {(z, t) ∈ H : t = t0} with dimE A ≤ 1 has

(7.19) dimH pWθ
(A) ≥ 2 dimE A for almost every θ ∈ [0, π).

One applies the intermediate result (7.15) instead of the final result of Proposi-
tion 7.2. In view of the upper bound (4.3), we conclude from (7.19) that

dimH pWθ
(A) = 2 dimE A for almost every θ ∈ [0, π)

whenever A is a subset of a horizontal plane with dimE A ≤ 1.
Let us briefly indicate why (7.19) holds. To avoid confusion, we denote by IEs (μ)

the s-energy of a measure μ computed with respect to the Euclidean metric and
by IHs (μ) the s-energy of μ computed with respect to the Heisenberg metric. Let A
be a subset of a horizontal plane with dimE A ≤ 1. We may assume without loss
of generality that A is contained inside an appropriate ball so that the conclusion
of Proposition 7.2 is valid for points p = (z, t) and q = (ζ, τ) in A.

Let s < 2 dimE A be arbitrary. Then s < 2 and so (7.15) is valid for this value
of s. Choose a measure μ on A so that IEs/2(μ) is finite. We conclude that∫ π

0

IHs ((pWθ
)�μ) dθ =

∫
A

∫
A

∫ π

0

dH(pWθ
(p), pWθ

(q))−s dθ dμ(p) dμ(q)

=

∫
A

∫
A

Js(p, q) dμ(p) dμ(q) �
∫
A

∫
A

|z − ζ|−s/2 dμ(p) dμ(q)

=

∫
A

∫
A

dE(p, q)
−s/2 dμ(p) dμ(q) = IEs/2(μ)
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is finite. Here we used the fact that dE(p, q) = |z − ζ| for points p = (z, t) and
q = (ζ, τ) lying in a horizontal plane. Thus IHs ((pWθ

)�μ) is finite for almost every θ
and so dimH(pWθ

(A)) ≥ s for almost every θ. Letting s increase to 2 dimHA
completes the proof.

7.2. Dimension estimates for sets lying in a vertical plane

In this section we consider sets which lie inside a vertical plane Wθ0 . We will
study integrals Js(p, q) for distinct points p, q ∈Wθ0 and s ∈ (1, 2). Let us assume
further that p and q are contained in a ball of the form

(7.20) BH

(
(ieiθ0 , 0), 1

20

)
.

As before, this is not a restrictive assumption.

We will prove:

Proposition 7.7. Assume that 1 < s < 2 and let

(7.21) σ = 2s− 1.

Let θ0 ∈ [0, 2π]. Then

(7.22) Js(p, q) � dH(p, q)
−σ

for points p, q ∈ Wθ0 ∩BH((ie
iθ0 , 0), 1

20 ).

Note that 1 < s < σ < 3.

Proof. Let p = (z, t) and q = (ζ, τ) as before. From

(|z − ζ|4 + (t− τ)2
)1/4

= dH(p, q) ≤ dH(p, (ie
iθ0 , 0)) + dH((ie

iθ0 , 0), q) < 1
10

it follows that

(7.23) |z − ζ| < 1
10 and |t− τ | < 1

100 .

By reordering the points p and q if necessary, we may without loss of generality
assume that t− τ ≥ 0. We denote

A := |z2 − ζ2| = |z − ζ||z + ζ| and B := t− τ ,

and observe that A � |z − ζ|, see Lemma 7.1. The statement for A = 0 is trivial,
we will therefore from now on assume that A �= 0.

We note that the two angles ϕ1 = arg(z − ζ) = arg((|z| − |ζ|)ieiθ0) and ϕ2 =
arg(z + ζ) = arg((|z| + |ζ|)ieiθ0) coincide if |z| ≥ |ζ| and differ by π if |z| < |ζ|.
Then for all θ ∈ [0, π) we find

dH(pWθ
(p), pWθ

(q))4 = |z − ζ|4 sin4(ϕ1 − θ) + (B ±A sin(2(ϕ1 − θ)))2

� A4 sin4(ϕ1 − θ) + (B ±A sin(2(ϕ1 − θ)))2 ,
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where the choice of the sign coincides with the sign of |ζ| − |z|. Substituting
ψ = 2(ϕ1 − θ) or ψ = −2(ϕ1 − θ) as appropriate, we conclude in either case that

(7.24) Js(p, q) �
∫ 2π

0

(A4 sin4(ψ2 ) + (B −A sinψ)2)−s/4 dψ.

For some α0 ∈ {0, π/4, . . . , 7π/4} we have

Js(p, q) �
∫ α0+π/4

α0

(
A4 sin4(ψ2 ) + (B −A sinψ)2

)−s/4
dψ

�
∫ α0+π/4

α0

(
A4 sin4 ψ + (B −A sinψ)2

)−s/4
dψ.

Substituting x = sinψ yields

Js(p, q) �
∫ x1

x0

(
A4x4 + (B − Ax)2

)−s/4 dx√
1− x2

for some x0, x1 ∈ [0, 1] satisfying

(7.25) |x0 − x1| ≤ π

4
< 1.

In view of (7.25) we conclude that either x0 ≥ π/32 or x1 ≤ 1 − π/32 must be
true. If x0 ≥ π/32, then

Js(p, q) � J1 :=

∫ 1

0

(
A4 + (B −Ax)2

)−s/4 dx√
1− x

,

while if x1 ≤ 1− π/32, then

Js(p, q) � J2 :=

∫ 1

0

(
A4x4 + (B −Ax)2

)−s/4
dx.

Our goal is to bound J1 and J2 from above by a multiple of (A4 + B2)−σ/4. We
accomplish this by considering various possibilities for the parameters A and B.
Throughout what follows, we make repeated use of the following elementary es-
timates. We omit the easy proofs, which proceed by splitting the integrals into
pieces on which each respective factor in the integrand is dominating.

Lemma 7.8. Let 1 < s < 2 and α, δ ∈ [0, 1]. Then,

(i) if α+ δ ≤ 1, then
∫ 1

α+δ
(y − α)−s/2 dy√

y � max{δ, α2 }(1−s)/2;

(ii) if α ≤ δ and δ − α < 1, then
∫ 1

δ−α(y + α)−s/2 dy√
y � δ(1−s)/2;

(iii) if δ ≤ α, then
∫ α−δ
0 (α− y)−s/2 dy√

y � α−s/2(α − δ)1/2.



422 Z. Balogh, E. Durand-Cartagena, K. Fässler, P. Mattila, J. T. Tyson

Estimation of J1. In this subsection, we discuss the integral

J1 :=

∫ 1

0

(
A4 + (B −Ax)2

)−s/4 dx√
1− x

.

We consider several possible cases depending on the relative sizes of the parame-
ters A and B.

If 2A ≤ B then the conclusion of Proposition 7.7 is trivially established. Indeed,
in that case

J1 ≤
∫ 1

0

∣∣B −Ax
∣∣−s/2 dx√

1− x
� B−s/2

∫ 1

0

dx√
1− x

� B−s/2 � (A4 +B2)−s/4 � dH(p, q)
−σ

where we used the facts that A4 +B2 � B2 and s < σ.
For the remainder of this subsection, we assume that B ≤ 2A. We consider

two cases.

Case 1: B ≤ A.

Assume first that 2A ≤ 1−B/A. We integrate over domains where each of the
terms A4 and (B − Ax)2 is dominating. Note that |B − Ax| = A2 if and only if
x = B/A±A. In the present case, B/A+A ≤ 1, however, B/A−A can have any
sign. We find that J1 is comparable to∫ max{0,BA−A}

0

(B −Ax)−s/2
dx√
1− x

+

∫ B
A+A

max{0,BA−A}
A−s dx√

1− x

+

∫ 1

B
A+A

(Ax−B)−s/2
dx√
1− x

.

The second integral is � A1−s(1−B/A)−1/2. The first and third integrals can
be estimated with the help of Lemma 7.8. Using parts (i) and (iii) of that lemma
with α = 1 − B/A and δ = A, we find that each of the remaining integrals is
� A−s/2(1 −B/A)(1−s)/2. Altogether, this yields

J1 � A−s/2(1− B
A

)(1−s)/2
+A1−s(1− B

A

)−1/2
.

Since 1−B/A � A, we conclude that

(7.26) J1 � A1/2−s.

Now, suppose that 2A ≥ 1−B/A. From the fact that A < 1/3 it follows that
B/A−A ≥ 0, however, B/A+A can be either greater or smaller than 1. Similarly
as in the previous case, we find that J1 is comparable to∫ B

A−A

0

(
B −Ax

)−s/2 dx√
1− x

+

∫ min{B
A+A,1}

B
A−A

A−s dx√
1− x

+

∫ 1

min{B
A+A,1}

(
Ax−B

)−s/2 dx√
1− x

.
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The second integral is � A−s(1 − B/A + A)1/2 � A1/2−s. Again, the first
and third integrals can be estimated with the help of Lemma 7.8. Using parts (i)
and (iii) of that lemma with α = 1 − B/A and δ = A, we find that each of the
remaining integrals is � A1/2−s. Altogether, we conclude that

(7.27) J1 � A1/2−s.

Case 2: A ≤ B.

First, suppose that B/A − A ≤ 1. Note also that B/A + A > 1 in this case.
Similar computations as in the previous case yield

J1 �
∫ B

A−A

0

(
B −Ax

)−s/2 dx√
1− x

+

∫ 1

B
A−A

A−s dx√
1− x

� A1/2−s +A−s(1− B
A +A

)1/2
.

Here we have applied Lemma 7.8 (ii) with α = B/A − 1 and δ = A to the first
integral. Since B ≥ A it follows that 1−B/A+ A ≤ A and hence

(7.28) J1 � A1/2−s.

Finally, suppose that B/A− A ≥ 1. Analogously to what was done as before,
using Lemma 7.8 (ii) with α = δ = B/A− 1, we obtain

J1 �
∫ 1

0

(
B −Ax

)−s/2 dx√
1− x

= A−s/2
∫ 1

0

(
B
A − 1 + y

)−s/2 dy√
y
� A−s/2(B

A − 1
)(1−s)/2

.

Note that B/A − 1 ≤ 1 since B ≤ 2A. To complete the proof, we note that
B/A− 1 ≥ A in this case, whence

(7.29) J1 � A1/2−s.

By comparing (7.26), (7.27), (7.28), and (7.29) we see that in all cases J1 �
A1/2−s = A−σ/2. Since we assumed B ≤ 2A we have A4 +B2 � A2 and so

J1 � A−σ/2 � (A4 +B2)−σ/4 � dH(p, q)
−σ.

Estimation of J2. We continue by examining the integral

J2 =

∫ 1

0

(
A4x4 + (B −Ax)2

)−s/4
dx.

Again the idea is to integrate over intervals where one of the summands A4x4 and
(B−Ax)2 is dominating. In order to see how these intervals should be chosen, we
introduce the function

f(x) = A2x2 − |B −Ax|
and note that, for x ∈ [0, 1], we have f(x) = 0 if and only if

x = (2A)−1(
√
1 + 4B − 1) or x = (2A)−1(1−√

1− 4B).
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Since B ≤ 1/100, we have that B/A− 2B2/A ≤ (2A)−1(
√
1 + 4B − 1) ≤ B/A

and B/A ≤ (2A)−1(1−√
1− 4B) ≤ B/A+ 2B2/A. If x ∈ [0, B/A− 2B2/A] then

f(x) < 0 and so

(7.30) (A4x4 + (B −Ax)2)−s/4 � (B −Ax)−s/2.

Next, suppose that x ∈ [B/A − 2B2/A,B/A + 2B2/A]. Since B is small, we see
that

A2x2 ≥ B2(1− 2B)2 � B2 � |B −Ax|
and so

(7.31) (A4x4 + (B −Ax)2)−s/4 � A−sx−s.

Finally, if B/A+2B2/A < 1 and x ∈ [B/A+2B2/A, 1] then again f(x) < 0 and so

(7.32) (A4x4 + (B −Ax)2)−s/4 � (Ax−B)−s/2.

As in the estimation of J1, we may assume without loss of generality that B ≤ 2A.

Case 1: B/A− 2B2/A < 1.

Combining (7.30), (7.31) and (7.32), we see that

J2 �
∫ B

A− 2B2

A

0

(B −Ax)−s/2 dx+

∫ min{B
A+ 2B2

A ,1}

B
A− 2B2

A

A−sx−s dx

+

∫ 1

min{B
A+ 2B2

A ,1}
(Ax −B)−s/2 dx.

These integrals can be evaluated exactly. We obtain

(7.33)
J2 � B1−s/2 − (2B2)1−s/2

A
+

(
B
A − 2B2

A

)1−s − (
min{BA + 2B2

A , 1})1−s
As

+
(A−B)1−s/2 − (2B2)1−s/2

A
· H(A−B − 2B2),

where H(x) = 1 if x > 0 and H(x) = 0 if x ≤ 0 is the Heaviside step function.
Applying the Mean Value Theorem to the second term on the right hand side

of (7.33) and making a trivial estimate in the first and last terms gives

J2 � B1−s/2

A
+

(
min{BA + 2B2

A , 1} − (BA − 2B2

A )
)
ξ−s

As
+

(
A−B

)1−s/2
A

for some ξ ∈ [
B
A
− 2B2

A
,min{B

A
+ 2B2

A
, 1}]

� B1−s/2

A
+A−sB

2

A

(B
A

− 2B2

A

)−s
+A−s/2.

Since B − 2B2 < A and B is small, we have B � A and so

J2 � A−s/2 +A−sB
2

A

(B
A

− 2B2

A

)−s
� A−s/2 +

B2−s

A
� A−s/2 +A1−s � A−σ/2
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by the definition of σ (see (7.21)). Since B ≤ 2A we have A4 +B2 � A2 and so

J2 � (A4 +B2)−σ/4 � dH(p, q)
−σ

as desired.

Case 2: B/A− 2B2/A ≥ 1.

In this case,

J2 �
∫ 1

0

(B −Ax)−s/2 dx.

Again we split the integral. For x ∈ [0, 1/2], we have B − Ax ≥ Bx (since A ≤ B
in this case). For x ∈ [1/2, 1] we find that B −Ax ≥ B(1− x). Hence

J2 �
∫ 1

2

0

B−s/2x−s/2 dx+

∫ 1

1
2

B−s/2(1− x)−s/2 dx

� B−s/2 ≤ B−σ/2 � (A4 +B2)−σ/4 � dH(p, q)
−σ.

With all the previous computations in hand, and recalling that Js(p, q) is
bounded above by the maximum of J1 and J2, the proof of Proposition 7.7 is
complete. �

Remark 7.9. The result of Proposition 7.7 carries over without difficulty to ar-
bitrary balls BH(p0, r) with p0 = (z0, t0) and r <

1
20 |z0|.

We use Proposition 7.7 to prove the following theorem on the almost sure
dimensions of vertical projections of subsets of vertical planes.

Theorem 7.10. Let A be a Borel set of dimension dimH A > 1 lying inside a
vertical plane Wθ0 . Then, for almost every θ ∈ [0, π),

dimH pWθ
(A) ≥ dimHA

2
+

1

2
.

Proof. As A lies inside a vertical plane, its Hausdorff dimension with respect to
dH can be at most 3. In Proposition 7.7 an estimate for Js(p, q) was established
for points p and q in the intersection of a particular ball with Wθ0 , cf. Remark 7.9.
One can argue similarly as in the proof of Proposition 7.5 and assume without loss
of generality that A lies inside such a ball.

Since dimHA > 1, there exists σ ∈ (1, dimHA) and μ ∈ M(A) so that
Iσ(μ) <∞. Let s := σ/2 + 1/2. Then 1 < s < 2. By Proposition 7.7, we see
that Js(p, q) is bounded above by a multiple of dH(p, q)

−σ, whence∫ π

0

Is((pWθ
)�(μ)) dθ =

∫
A

∫
A

Js(p, q) dμ(p) dμ(q)

�
∫
A

∫
A

dH(p, q)
−σ dμ(p) dμ(q) = Iσ(μ)
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which is finite. Thus dimH pWθ
(A) ≥ s for almost every θ. Letting σ increase to

dimH A yields

dimH pWθ
(A) ≥ dimHA

2
+

1

2
for almost every θ.

This completes the proof of the theorem. �

7.3. Further examples

We give some additional examples related to the theorems about projection onto
vertical subspaces Wθ.

Example 7.11. We give an example of a set where the lower bound for the
projections is known but cannot be derived by the energy method in the usual
way. Let

(7.34) A =
{
(x, x2) : x ∈ [0, 2]

}
.

We will prove the following: for any s < dimH A = 2 and μ ∈ M(A) with
Is(μ) <∞,

(7.35)

∫ π

0

I3/2((pWθ
)�μ) dθ = ∞.

However,

(7.36) dimH pWθ
(A) = 2 for all but one θ ∈ [0, π).

To see why (7.36) holds, observe that

pWθ
(x, x2) =

{
(−x sin θ ieiθ, (1 + sin 2θ)x2) : x ∈ [1, 2]

}
.

Hence, pWθ
(A) is a parabola for all θ ∈ [0, π) except θ = 3π/4, in which case it is

a horizontal line segment. One can easily verify that the sets pWθ
(A) for θ �= 3π/4

are non horizontal and hence have dimension two.
Now let s < dimHA and take μ ∈ M(A) with Is(μ) < ∞. Such a measure

exists by the energy version of Frostman’s lemma. By the Fubini–Tonelli theorem
and the integration formula for pushforward measures, we find∫ π

0

I3/2((pWθ
)�μ) dθ =

∫
A

∫
A

∫ π

0

dH(pWθ
(p), pWθ

(q))−3/2 dθ dμ(p) dμ(q).

We will now estimate the integral K =
∫ π
0 dH(pWθ

(p), pWθ
(q))−3/2 dθ for arbitrary

points p = (x, x2) and q = (y, y2) in A. For such points, we find

dH(pWθ
(p), pWθ

(q)) =
(
(y − x)4 sin4 θ + (1 + sin 2θ)2(x2 − y2)2

)1/4
.

Since x, y ∈ [1, 2], we have that |x2 − y2| ≤ 4|x− y| and therefore,

dH(pWθ
(p), pWθ

(q)) ≤ 2
(
a4 sin4 θ + a2(1 + sin(2θ))2

)1/4
,

where a = |x− y|.
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Then,

K �
∫ π

0

(
a4 sin4 θ + a2(1 + sin(2θ))2

)−3/8
dθ

=

∫ 2π

0

(
a4 sin4(ψ2 ) + a2(1 − sinψ)2

)−3/8
dψ

≥
∫ π/2

0

(
a4 sin4(ψ2 ) + a2(1 − sinψ)2

)−3/8
dψ

�
∫ π/2

0

(
a4 sin4 ψ + a2(1− sinψ)2

)−3/8
dψ,

where we used the fact that 0 ≤ sin(ψ/2) ≤ sinψ for ψ ∈ [0, π/2]. Substituting
sinψ = x yields

K �
∫ 1

0

(
a4x4 + a2(1 − x)2

)−3/8 dx√
1− x

.

Further elementary computations yield

K �
∫ 1

1−a

(
a4 + a2(1− x)2

)−3/8 dx√
1− x

� a−3/2

∫ 1

1−a

dx√
1− x

� a−1.

In order to compare this to the distance between p and q, we observe that

dH(p, q) =
(
(x− y)4 + (x2 − y2)2

)1/4 � a1/2

and thus
K � dH(p, q)

−2.

Therefore, ∫ π

0

I3/2((pWθ
)�μ) dθ � I2(μ).

Since A has finite Hausdorff 2-measure, I2(μ) is infinite for all μ ∈ M(A).
Hence (7.35) holds.

Remark 7.12. More generally, take a subset A of the parabola in (7.34) with
dimH A > 0 and 0 < s < dimHA. There exists μ ∈ M(A) such that Is(μ) < ∞,
but Iu(μ) = ∞ for all u > s.

Using Proposition 7.7, it can be proved that
∫ π
0
Iσ((pWθ

)�μ) dθ is finite provided
that σ ≤ s/2+1/2. One could hope that even if we cannot get a pointwise estimate
as in Proposition 7.7 for σ > s/2 + 1/2, nevertheless the set of points where this
bound does not hold might be small with respect to μ so that we could still apply
the energy method as usual to derive 1

2 (dimHA+1) as an almost sure lower bound
for the vertical projections.

However, a reasoning analogous to that in the preceding example yields that for
all σ > s/2 + 1/2, ∫ π

0

Iσ((pWθ
)�μ) dθ � I2σ−1(μ) = ∞.

This shows that the energy method cannot be applied in the usual way to improve
the lower bound which was obtained in Theorem 7.10.
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As we have shown earlier, the estimate

(7.37) Js(p, q) � dH(p, q)
−s

holds for p and q in an arbitrary set A ⊂ H when s < 1. In Proposition 7.2
an analogous estimate was obtained for larger s under the additional assumption
that A is contained in a horizontal plane. The following example shows that one
cannot hope to obtain (7.37) for an arbitrary set and s ≥ 1.

Example 7.13. There exist points p, q ∈ BH((1, 0),
1
20 ) so that Js(p, q) = ∞ for

all s > 1.
Choose p = (z, t) and q = (ζ, τ) with |z2 − ζ2| = t− τ > 0 and ϕ2 − ϕ1 = π/2,

where ϕ1 and ϕ2 are defined in (7.5). Denoting a = |z2 − ζ2| = t− τ , we find that

Js(p, q) �
∫ π

0

(
a4 sin4(ϕ1 − θ) + a2(1− sin(ϕ1 + ϕ2 − 2θ))2

)−s/4
dθ

�
∫ π

0

(
a4 sin4(ψ2 ) + a2(1− cosψ)2

)−s/4
dψ

�
∫ π/2

0

(
a4 sin4(ψ2 ) + a2(1 − cos(ψ))2

)−s/4
dψ

�
∫ π/2

0

(
a4 sin4 ψ + a2(1− cos(ψ))2

)−s/4
dψ.

The substitution x = sinψ leads to

Js(p, q) �
∫ 1

0

(
a4x4 + a2(1−

√
1− x2)2

)−s/4
dx.

For x ∈ [0, 1] one has the estimate 1−√
1− x2 � x2, whence

Js(p, q) � (a4 + a2)−s/4
∫ 1

0

x−s dx = ∞ whenever s > 1.

8. Final remarks

In this final section, we present concluding remarks and suggestions for future
work.

8.1. Sharpness of the lower bound for vertical projections

While we know that our upper dimension bound for vertical projections is sharp,
this need not be the case for the lower bound. It could be a subject of further
research to study this lower bound. Our belief that the current lower bound might
not be sharp is motivated by the partial results which we obtain under additional
assumptions on the regularity or the shape of the set A. If the lower bound given
in Theorem 1.4 is still optimal, examples to prove the sharpness should be sought
among less regular, fractal-type sets which are not entirely contained in a horizontal
or vertical plane.
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8.2. Projection of horizontal sets

In order to better understand the behavior of the vertical projections, it might be
enlightening to study the effect of these mappings on the dimension of so-called
horizontal subsets A of H which realize equality in the dimension comparison
statement (2.3). In the low codimensional case (dimHA ≥ 2) horizontal sets have
been constructed as invariant sets for self-similar iterated function systems. An
example of such a set is the so-called Heisenberg square A, a self-similar subset of H
first considered by Strichartz. According to [22] and [3], the Hausdorff dimension
of A is equal to two, in fact,

0 < H2
H
(A) <∞

and, by Theorem 1.14 in [3], every π-section of A coincides with the graph of a
special function of bounded variation (SBV) on Q = [0, 1]2. Let us fix an angle
θ ∈ [0, π). In order to better understand the effect of the vertical projection pWθ

on
the Heisenberg square, we slice the set A with planes that are orthogonal (in the
Euclidean sense) to Wθ and study the images of these slices under the projection.

To this end, we identify the horizontal subgroup Vθ with a linear subspace
of R2. We denote by Qθ the orthogonal projection of Q to the orthocomplement
Wθ ∩ {t = 0} of Vθ and we denote by Qθa the set of points (r + ia)eiθ in Q
which project to iaeiθ in the orthocomplement. Note that Qθa is either empty,
or a singleton, or corresponds to a one-dimensional interval via the identification
(r + ia)eiθ ↔ r. We write uθa for the function

uθa(r) = u((r + ia)eiθ)

defined on Qθa. By Theorems 3.107 and 3.108 of [1],

uθa ∈ SBV for H1-a.e. a.

Let Gθa denote the graph of the restriction of u to Qθa. Using (4.1) we find that

pWθ
(Gθa) =

{
(iaeiθ, uθa(r) − 2ar) : (r + ia)eiθ ∈ Qθa

}
.

It might be interesting to study the size of the set pWθ
(Gθa), or, equivalently, of

{uθa(r) − 2ar : r ∈ Qθa},
considered as a subset of a vertical line. This might be useful to estimate or
compute the Hausdorff dimension of pWθ

(A), similarly to what was done in the
proof of Proposition 6.1.

8.3. Exceptional sets

Associated to every almost sure dimension theorem is a corresponding problem
concerning exceptional sets. Theorem 2.3 asserts that, for a Borel set A ⊂ Rn, the
exceptional set {

V ∈ G(n,m) : dimPV (A) < min{dimA,m}}
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has zero γn,m-measure. It is natural to ask whether the size of this exceptional set
can be controlled in a quantitative fashion. Namely, when σ < min{dimA,m},
how large can the Hausdorff dimension of the exceptional set {V ∈ G(n,m) :
dimPV (A) ≤ σ} be? This question was answered by Kaufman and Mattila [13],
[14], [17]; see also Falconer [7] and Peres–Schlag [21]. For simplicity we restrict
to the case n = 2, m = 1. Let A ⊂ R2 be Borel. Kaufman [13] showed that the
set of lines L ∈ G(2, 1) for which dimPL(A) < s = dimA has Hs measure zero
when s < 1. Falconer [7] gave complementary results for dimA > 1, one of which
asserts that the set of lines L ∈ G(2, 1) for which dimPL(A) < σ ≤ dimA has
dimension bounded above by 1 + σ − dimA. Coupling this with Lemma 3.1 gives
preliminary information about the size of exceptional sets for the dimensions of
horizontal projections in the Heisenberg group.

Proposition 8.1. Let A ⊂ H be a Borel set with 3 < dimHA ≤ 4. For each
2 < σ ≤ dimHA,

dim
({θ : dim pVθ

(A) < σ − 2}) ≤ 1 + σ − dimHA.

The proof is quite easy. By Lemma 3.1, dimE π(A) ≥ dimHA − 2. Applying
the aforementioned result of Falconer yields

dim
({θ : dim pVθ

(A) < σ − 2}) ≤ 1 + (σ − 2)− dimE π(A)

≤ 1 + (σ − 2)− (dimHA− 2) = 1 + σ − dimHA,

as desired.
Other problems related to exceptional sets could be posed. In particular, it

would be interesting to obtain some estimates on the size of exceptional sets asso-
ciated to the almost sure dimension statements in Theorem 1.4.

8.4. Higher dimensional Heisenberg groups

We anticipate that the results of this paper extend to the Heisenberg groups Hn =
Cn ×R = R2n+1 of arbitrary dimension. We expect similar results to hold for the
semidirect splitting ofHn into any horizontal subgroup of dimensionm, 1 ≤ m ≤ n,
and its complementary vertical subgroup. The horizontal subgroup can be identi-
tified with a subspace of the base space R2n. Note however that not every member
of the Grassmanian G(2n,m) generates a horizontal subgroup of Hn. The correct
class of subspaces to consider are the isotropic subspaces of dimensionm inside R2n,
equipped with its standard symplectic structure. The resulting isotropic Grassma-
nian is a submanifold of G(2n,m) whose dimension is m(2n −m) − (

m
2

)
. It can

be equipped with a natural measure, either as the appropriate Hausdorff measure
in this dimension for the metric obtained by restricting the metric from G(2n,m),
or by a direct construction similar to that of the measures γn,m on G(n,m). This
construction provides a natural framework to investigate dimensions of projections
in the Heisenberg groups of arbitrary dimension. We plan to return to this topic
in a later paper.1

1Note added in print: some of the results of the present paper have recently been generalized
in [2] to higher dimensional Heisenberg groups.
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