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Second variation of one-sided

complete minimal surfaces

Francisco Urbano

Abstract. The stability and the index of complete one-sided minimal sur-
faces of certain 3-dimensional Riemannian manifolds with positive scalar
curvature are studied.

1. Introduction

The study of the second variation of the volume of minimal submanifolds in Rie-
mannian manifolds is a classical problem in differential geometry. In fact, the
second variation operator (the Jacobi operator) carries information about the sta-
bility properties of the submanifold when it is considered as a stationary point for
the volume functional. An important particular case in this setting is when the
submanifold is a hypersurface. In this case, the rank of the normal bundle is one,
and we can consider two different situations: the hypersurface is two-sided, i.e., the
normal bundle is trivial, or the hypersurface is one-sided, i.e., the normal bundle is
nontrivial. In the first case, we can define a global unit normal vector field which
trivializes the normal bundle. Then the Jacobi operator, which acts on the sections
of the normal bundle, becomes a Schrödinger operator acting on functions. This
case, perhaps the easiest one, has been studied by many people (see [2], [1], [4], [5],
[6], [11], [16] and the references therein). For one-sided minimal hypersurfaces and
for minimal submanifolds with high codimension, only a few particular situations
have been considered (see [7], [8], [9], [10], [12], [13], [14], [15] and the references
therein).

In the present work, we are interested in the second variation of complete mini-
mal surfaces of Riemannian 3-manifolds. Many interesting results are well known
for compact surfaces. When M is the 3-sphere S

3, Simons [14] proved that the
index of any compact minimal surface of S3 is at least one (in particular there are
no stable ones) and the totally geodesic equators are the only ones with index one.
Later, Urbano [16] classified the orientable compact minimal surfaces of S3 with in-
dex less than six, proving that the surface must be either an equator or the Clifford
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torus which has index five. When M is the real projective space RP3, Onhita [9]
proved that its only stable compact minimal surface is the totally geodesic real
projective plane, and later, Do Carmo, Ritoré and Ros [2] characterized the to-
tally geodesic two-sphere and the Clifford torus as the only orientable two-sided
compact minimal surfaces of RP3 with index one.

For complete two-sided minimal surfaces in 3-manifolds, the starting point was
the characterization of the plane as the only complete stable two-sided minimal
surface in the Euclidean space R3 (see [5], [1], [11]). Later, López-Ros [6] proved
that the catenoid and Enneper’s surface are the only two-sided complete minimal
surfaces of R3 with index one. Fischer-Colbrie and Schoen [5], [4] studied in depth
the second variation of complete two-sided minimal surfaces of 3-dimensional Rie-
mannian manifolds with nonnegative scalar curvature, analyzing, on any complete
Riemannian surface, the index of the Schrödinger operator L = Δ−K+q, where Δ
is the Laplacian, K is the Gauss curvature of the surface and q is a nonnegative
function. In fact, the Jacobi operator of such minimal surfaces can be written
in the above form. Also, in this setting, it is interesting to remark [5], [6] that
a complete finite index two-sided minimal surface of a 3-dimensional Riemannian
manifold with scalar curvature ρ ≥ δ > 0 must be compact.

For complete one-sided minimal surfaces in 3-manifolds, the theory of Fischer-
Colbrie and Schoen cannot be applied, and only some particular situations have
been studied. Perhaps, the most interesting paper in this direction is the paper [12]
of Ros, where he uses new ideas and proves, among other things, that there are
no complete stable one-sided minimal surfaces in R3. A partial case of this was
proved by Ross in [13].

In this paper, we study the stability and the index of complete minimal surfaces
of S3, S2 ×R, and some of their Riemannian quotients like RP3, RP2 ×R, S2 × S1

and RP2 × S1. The main results in the paper are summarized in the following:

The index of any complete and non compact minimal surface of S3,
RP

3, S2 × R or S
2 × S

1 is infinite.

The totally geodesic embedding RP
1 × R ⊂ RP

2 × R is the only stable
orientable complete and non compact minimal surface of RP2 × R.

The totally geodesic embedding S1 × S1 ⊂ S2 × S1 is the only compact
orientable minimal surface of S2 × S

1 with index one.

We remark that, when the surface is two-sided, the first result follows from Fischer-
Colbrie and Schoen theory. Also, RP1×R is an orientable one-sidedminimal surface
in RP2 × R.

The author would like to thank A. Ros for his valuable comments on the paper.

2. Harmonic vector fields on surfaces

As in the proofs of some results we will use harmonic vector fields as test functions,
in this section we recall some properties about harmonic vector fields, which will
be used throughout the paper.
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Given an orientable Riemannian surface Σ, a vector field X on Σ is harmonic if
the associated 1-form ωX is harmonic, i.e., ωX is closed and coclosed. This means
that div (X) = 0 and ∇X is a symmetric tensor, where div is the divergence on Σ
and ∇ is the Levi-Civita connection on Σ.

If ΔΣ is the Laplacian on Σ acting on vector fields and X is a harmonic vector
field, it is easy to check that

(2.1) ΔΣX = KX,

where K is the Gauss curvature of Σ. Also, if J is the complex structure on the
Riemann surface Σ, then X is harmonic if and only if JX is harmonic. LetH(Σ) be
the space of square integrable harmonic vector fields on Σ. Then, if Σ is compact
of genus g, we have that dimH(Σ) = 2g. If Σ is non compact, then dimH(Σ) ≥
2genus (Σ), including the case where the genus of Σ is infinite (see [3], p. 42).

If Σ is a non orientable Riemannian surface and (Σ̃, τ) is its two-fold oriented
covering, where τ is the change of sheet, then any harmonic vector field X on Σ̃
decomposes as X = X+ + X−, where X+ and X− are harmonic vector fields
satisfying τ∗X+ = X+, τ∗X− = −X− and JX− = X+. In this case, H(Σ̃) =
H+(Σ̃) ⊕ H−(Σ̃), where H±(Σ̃) = {X ∈ H(Σ̃) | τ∗X = ±X} and J : H+(Σ̃) →
H−(Σ̃) is an isomorphism.

It is interesting to note an easy property which will be used in the paper. Given
a k-dimensional subspace V of H(Σ), there exists an integrable function h on Σ
such that |X |2 ≤ h for any X ∈ V with

∫
Σ |X |2 = 1. In fact if {V1, . . . , Vk} is a

L2-orthonormal basis of V , then X =
∑k

i=1 λiVi with
∑
λ2i = 1. Now it is clear

that h can be taken as the integrable function k2 max{〈Vi, Vj〉, 1 ≤ i, j ≤ k}.

3. Jacobi operator

Let Φ : Σ → (M3, 〈, 〉) be a minimal immersion of a surface Σ in a 3-dimensional
Riemannian manifold M . The Jacobi operator of the second variation of the
area is the strongly elliptic operator, acting on sections of the normal bundle,
L : Γ(T⊥Σ) → Γ(T⊥Σ), given by

L = Δ⊥ + |σ|2 +Ric(n),

where Δ⊥ is the normal Laplacian, σ is the second fundamental form of Φ, and
Ric(n) is the Ricci curvature of any unit normal vector n.

If Ω is a compact domain of Σ, the operator L, with zero boundary conditions,
has discrete spectrum λ1(Ω) < λ2(Ω) < · · · → ∞, and the dimension of each
eigenspace is finite. The index of L in Ω, Index(L,Ω), is the sum of the dimensions
of the eigenspaces corresponding to negative eigenvalues.

The index of the minimal immersion Φ : Σ → M is the index of the operator L
on Σ, which is defined by

Index(Φ) = Index(L) := sup
{
Index(L,Ω) |Ω compact domain of Σ

}
.
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The minimal immersion Φ is called stable if Index(Φ) = 0. This means that the
quadratic form Q : Γ0(T

⊥Σ) → R associated to L is nonnegative,

Q(η) = −
∫
Σ

〈Lη, η〉 dv =

∫
Σ

{|∇⊥η|2 − (|σ|2 +Ric(n))|η|2}dA ≥ 0,

for any compactly supported normal section η ∈ Γ0(T
⊥Σ).

The immersion Φ is called two-sided if T⊥Σ is trivial, i.e., there exists a global
unit normal vector field N . Otherwise, i.e., when T⊥Σ is non trivial, the immersion
is called one-sided. When the ambient manifold M is orientable, Φ is two-sided if
and only if Σ is orientable. This is not true when M is non orientable.

If Φ is two-sided, sections of the normal bundle can be identified with functions
on the surface in the following way:

Γ(T⊥Σ) ≡ C∞(Σ),

η ≡ f, if η = fN,

where N is a global unit normal section to Φ. In this case, it is clear that Δ⊥η =
(Δf)N , and hence the Jacobi operator becomes a Schrödinger operator acting on
functions L : C∞(Σ) → C∞(Σ), given by

L = Δ+ |σ|2 +Ric(N) = Δ−K + (|σ|2 + ρ)/2,

where K is the Gauss curvature of Σ, ρ scalar curvature of M and we have used
the Gauss equation of Φ to obtain the second expression of L.

WhenM is the 3-dimensional unit sphere S3 or the 3-dimensional real projective
space RP

3, the Jacobi operator is given by

L = Δ⊥ + |σ|2 + 2,

whereas ifM is the Riemannian product S2×R, RP2×R, or one of their quotients
S
2 × S

1(r), or RP2 × S
1(r), the Jacobi operator is

L = Δ⊥ + |σ|2 + |ξ�|2,
where S1(r) is the circle of radius r, ξ is a unit parallel vertical vector field on the
ambient manifold and  stands for the tangential component.

Now, we will recount some background about minimal surfaces, which will be
used later. Let Φ = (φ, ψ) : Σ → S2 × R (respectively S2 × S1(r),RP2 × R, or
RP2 × S1(r)) be a minimal immersion of a surface Σ and denote also by 〈, 〉 the
induced metric. If R̄ denotes the curvature operator of the ambient 3-manifold, it
is easy to prove that R̄(e1, e2, e2, e1) = 1− |ξ�|2, where {e1, e2} is an orthonormal
basis on Σ. So, the Gauss equation of Φ can be written as

K = 1− |ξ�|2 − |σ|2
2
.

If Σ is orientable and z = x+ iy is a conformal parameter with induced metric
e2u|dz|2, and ∂z = (∂x − i∂y)/2 and ∂z̄ = (∂x + i∂y)/2 are the corresponding
complex operators, then it is well known that

Θ(z) = 〈Φz, ξ〉 dz
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is a globally defined holomorphic 1-differential on Σ. As |Θ|2 = e2u|ξ�|2/2, we
have that either ξ� = 0 (i.e., Θ ≡ 0) or {p ∈ Σ | ξ�(p) = 0} is isolated. In the
first case, ξ is normal to Φ, and then dψ(v) = 0 for any tangent vector v, i.e., ψ is
constant. Moreover φ : Σ → S2 (respectively φ : Σ → RP2) is a local isometry. In
this case we will say that Σ is a slice. The Gauss equation says that the slices are
totally geodesic surfaces.

Lemma 3.1. Let Φ : Σ → (M3, 〈, 〉) be a minimal immersion of an orientable
surface Σ and X any harmonic vector field on Σ.

1) If M = S3, then LX = 2X + 2〈σ,∇X〉N,
2) If M = S2 × R, then

〈LX,X〉 = (2 − |ξ�|2)〈X, ξ〉2,

3) If M = S2 × S1(r), then

〈LX,X〉 =
(
2− (

1 +
1

r2
) |ξ�|2)〈X, ξ〉2,

where L is the Jacobi operator of the two-sided minimal immersion Φ and X is con-
sidered as an R4-valued function in 1) and 2) and as an R5-valued function in 3).

Proof. We consider S3, S2 × R ⊂ R4 and S2 × S1(r) ⊂ R5. If ∇0 is the connection
on R

4 or R5 and σ̄ the second fundamental form of M in R
4 or R5, then

∇0
vX = ∇vX + σ(v,X) + σ̄(v,X),

and so, using (2.1),

Δ0X =(K − |σ|2/2)X + 2〈σ,∇X〉N

+

2∑
i=1

{− Āσ̄(ei,X)ei + 2σ̄(ei,∇eiX + σ(ei, X))
}
,

where {e1, e2} is an orthonormal frame on Σ and Ā is the Weingarten endomor-
phism of M in R4 or R5. Hence,

LX = (ρ/2)X + 2〈σ,∇X〉N +

2∑
i=1

{− Āσ̄(ei,X)ei + 2σ̄(ei,∇eiX + σ(ei, X))
}
.

Now, using the expressions of the second fundamental forms of these three mani-
folds in R

4 and R
5, it is easy to prove the lemma. �

Lemma 3.2. Let Φ : Σ → S2×R (respectively S2×S1(r)) be a minimal immersion
of an orientable surface Σ. If Φ is not a slice, then:

1) The tangential component ξ� of the vertical vector field ξ is a harmonic vector
field on Σ with only a discrete number of zeroes. Moreover, the harmonic
vector field Jξ� satisfies 〈Jξ�, ξ〉 = 0 and any vector field X on Σ can be
written, almost everywhere, as X = fξ� + gJξ�, for certain functions f
and g.
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2) If (Σ, τ) → Σ0 is the two-fold oriented covering of a non orientable surface
Σ0 and Φ is the lift of a minimal immersion Φ0 : Σ0 → S

2 × R (respectively
S2 × S1(r)), then τ∗ξ� = ξ� and τ∗Jξ� = −Jξ�.

Proof. Using that ξ is a parallel vector field, it is clear that for any v and w tangent
to Σ we have that

〈∇vξ
�, w〉 = 〈σ(v, w), ξ〉.

This means that ξ� is a harmonic vector field on Σ. Also, the harmonic vector
field Jξ� is perpendicular to ξ, and so {(ξ�)p, (Jξ�)p} are linearly independent
on {p ∈ Σ | ξ�(p) �= 0}. This proves 1).

If Π : Σ → Σ0 is the projection, then Φ = Φ0 ◦Π and so Φ◦τ = Φ. This implies
that τ∗ξ� = ξ�. Also, as τ∗ ◦ J = −J ◦ τ∗, we have that τ∗Jξ� = −Jξ�. �

4. Statement and proof of the main results

In this section we will use some results which appear explicitly in [4], [5], and [6],
or follow from them. For completeness we recall them here. The next result can
be proved using arguments like in Proposition 2 of [4], and so we omit the proof.

Proposition 4.1 ([4]). Let Σ be an orientable complete Riemannian surface and
let τ be an isometry of Σ without fixed points and with τ2 = Id. Let L = Δ+ q be
a Schrödinger operator on Σ with q ◦ τ = q and consider the operator

L− = L|C∞
− (Σ) : C

∞
− (Σ) → C∞

− (Σ),

where C∞− (Σ) = {f ∈ C∞(Σ) | f ◦ τ = −f}. Then L− has finite index k if and
only if there exists a k-dimensional subspace W of L2

−(Σ) having an orthonormal
basis {v1, . . . , vk} with Lvi + λivi = 0, λi < 0 and Q(f) ≥ 0 for any function
f ∈ C∞

0 (Σ) ∩W⊥ with f ◦ τ = −f .

Theorem 4.2 ([4], [5], [6]). Let Σ be a complete Riemannian surface, let L =
Δ−K + q be a Schrödinger operator on Σ, where K is the Gauss curvature of Σ,
and suppose q ≥ 0.

1) If Σ is orientable and Index(L) = 0, then either Σ is conformally equivalent
to the sphere S2 or the complex plane C, or q = 0 and Σ is either a flat torus
or a flat cylinder.

2) If q ≥ c > 0 for some constant c, and there exists a compact set C ⊂ Σ such
that Index(L) = 0 on Σ− C, then Σ is compact.

From here, we obtain:

Corollary 4.3 ([4], [6]). If Φ : Σ → M3 is a two-sided minimal immersion of
a complete and non compact surface in a Riemannian manifold M with scalar
curvature ρ ≥ c > 0, then Index (Φ) = ∞.
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Proof. As Φ is two-sided, the Jacobi operator is the Schrödinger operator L =
Δ −K + (ρ + |σ|2)/2. If Index(Φ) < ∞, from Proposition 1 in [4], there exists a
compact set C ⊂ Σ such that Σ − C is stable. Now the result follows from 2) of
Theorem 4.2. �

Using similar ideas, we can extend Corollary 4.3 to a certain family of one-sided
complete minimal surfaces.

Corollary 4.4. Let Φ : Σ →M3 be a one-sided minimal immersion of a complete
and non compact surface Σ in an orientable Riemannian manifold M with scalar
curvature ρ ≥ c > 0. If the genus of the two-fold oriented covering of Σ is finite,
then Index(Φ) = ∞.

Remark 4.5. As Φ is one-sided and M is orientable, Σ is not orientable. Also,
the orientability of the ambient manifold is necessary in the assumptions, be-
cause RP1 ×R is an orientable complete surface of genus zero, which is embedded
in RP2 × R as a stable minimal one-sided surface (see Theorem 4.10).

Proof of Corollary 4.4. Let (Σ̃, τ) be the two-fold oriented covering of Σ with τ
the change of sheet on Σ̃. As the genus of Σ̃ is finite, Lemma 9 in [12] implies that
there exists a compact subset C ⊂ Σ, such that Σ− C is orientable. Hence, as M
is orientable, Φ : Σ−C →M is a two-sided minimal immersion and so the Jacobi
operator on Σ− C is L = Δ−K + (ρ+ |σ|2)/2.

If Index(Σ) is finite, then Index(Σ − C) is finite too. So, from Proposition 1
in [4], there exists a compact subset K ⊂ Σ−C, such that Σ− (C ∪K) is stable.
Hence Σ is a complete surface and the Schrödinger operator L = Δ−K+(ρ+|σ|2)/2
on Σ satisfies that Index(L) = 0 on Σ − (C ∪K). By 2) of Theorem 4.2, Σ must
be compact. This proves the corollary. �

Hence, for orientable ambient 3-manifolds with scalar curvature ρ ≥ c > 0,
the remaining case to study is when the two-fold oriented covering of the one-
sided complete and non compact minimal surface has infinite genus. We have not
obtained a general result, but following [12] and using harmonic vector fields as
test functions, we have found the answer for some particular 3-manifolds.

Theorem 4.6. Let Φ : Σ → M be a minimal immersion of a complete surface Σ
in a 3-dimensional Riemannian manifold M .

1) If M = S3 and Σ is not compact, then Index(Φ) = ∞.

2) If M = S2 ×R, then either Σ = S2, Φ(Σ) = S2 × {t}, t ∈ R and Φ is stable,
or Index(Φ) = ∞.

3) If M = S2 × S1(r), r ≥ 1, and Σ is not compact, then Index(Φ) = ∞.

Proof. As the only compact minimal surfaces of S2×R are the slices S2×{t}, t ∈ R,
which are stable, Corollaries 4.3 and 4.4 imply that we can assume that Φ is one-
sided, i.e., Σ is not orientable and that the two-fold oriented covering Σ̃ of Σ has
infinite genus.
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Let τ be the change of sheet in Σ̃ and Π : Σ̃ → Σ the projection. Then,
Φ̃ = Φ ◦Π is also a minimal immersion which is two-sided. Let Ñ be a global unit
vector field normal to Φ̃. As Φ is one-sided, Ñ ◦ τ = −Ñ . Also, we can identify
sections of the normal bundle of Φ, Γ(T⊥Σ), with functions on Σ̃ which are odd
with respect to τ :

Γ(T⊥Σ) ≡ C∞
− (Σ̃) =

{
f ∈ C∞(Σ̃) | f ◦ τ = −f},(4.1)

η ≡ f, if η̃ = fÑ,(4.2)

where η̃ is the lift of η to Φ̃ . Also, if L̃ = Δ̃ − K̃ + ρ/2 + |σ̃|2/2 is the Jacobi
operator of Φ̃, it is clear that

2Q(η) = Q̃(η̃) = Q̃(f) = −
∫
Σ̃

fL̃f dÃ,

for any compactly supported η ∈ Γ(T⊥Σ).
To prove the result, we suppose that Index(Φ) = k and we will find a contra-

diction.
From Proposition 4.1, there exist functions {v1, . . . , vk} in L2(Σ̃) with vi ◦ τ =

−vi and L̃vi + λivi = 0, λi < 0, and such that if f ∈ C∞
0 (Σ̃) satisfies f ◦ τ = −f

and is L2-orthogonal to vi, 1 ≤ i ≤ k, then

Q̃(f) ≥ 0.

As the genus of Σ̃ is infinite, the space H(Σ̃) of L2-harmonic vector fields on Σ̃ has
also infinite dimension. Let V be an l-dimensional (l > 4k ifM = S3 or S2×R and
l > 5k if M = S2 × S1(r)) subspace of H−(Σ̃). When M = S2 × R or S2 × S1(r),
we will chose V with a different restriction. In fact, in these cases, if the harmonic
vector field Jξ� (see Lemma 3.2) satisfies

∫
Σ̃
|Jξ�|2 < ∞, i.e., Jξ� ∈ H−(Σ̃), we

will take V to be L2-orthogonal to the line spanned by Jξ�. If
∫
Σ̃
|Jξ�|2 = ∞, we

will impose no further restrictions on V .

Let {Un |n ∈ N} be an exhaustion of the complete surface Σ̃ and {ϕn |n ∈ N}
cut-off functions on Σ̃ with supp (ϕn) ⊂ Un, |∇ϕn|2 ≤ 1, and ϕn ◦ τ = ϕn.

For each n ∈ N, let Fn : V → R
4k (respectively R

5k) be the linear map given by

Fn(X) =
(∫

Σ̃

ϕnv1X, . . . ,

∫
Σ̃

ϕnvkX
)
.

As l > 4k (respectively l > 5k), we can choose Xn ∈ kerFn with
∫
Σ̃
|Xn|2 = 1. So,

for each n, the function ϕnXn has compact support, is L2-orthogonal to vi, 1 ≤
i ≤ k and, as Xn ∈ H−(Σ̃), we have that ϕnXn ◦ τ = −ϕnXn. Hence

Q̃(ϕnXn) ≥ 0, ∀n ∈ N.

Now,

Q̃(ϕnXn) = −
∫
Σ̃

ϕnΔ̃ϕn|Xn|2 −
∫
Σ̃

1

2
〈∇̃ϕ2

n, ∇̃|Xn|2〉 −
∫
Σ̃

ϕ2
n〈L̃Xn, Xn〉.
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As div (|Xn|2∇̃ϕ2
n) = 〈∇̃ϕ2

n, ∇̃|Xn|2〉+2(ϕnΔ̃ϕn+ |∇̃ϕn|2)|Xn|2, we finally obtain∫
Σ̃

ϕ2
n〈L̃Xn, Xn〉 ≤

∫
Σ̃

|∇̃ϕn|2|Xn|2, ∀n ∈ N.

Using Lemma 3.1, we get

∫
Σ̃

|∇̃ϕn|2|Xn|2 ≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

∫
Σ̃

ϕ2
n|Xn|2, when M = S

3,

∫
Σ̃

ϕ2
n(2− |ξ�|2)〈Xn, ξ〉2, when M = S

2 × R,

∫
Σ̃

ϕ2
n(2− (1 +

1

r2
)|ξ�|2)〈Xn, ξ〉2, when M = S

2 × S
1(r).

It is clear that the sequence of harmonic vector fields Xn converges in V , up to
extraction of a subsequence, to a harmonic vector field X with

∫
Σ̃
|X |2 = 1. Using

the remark made at the end of Section 2, we have that

lim

∫
Σ̃

|∇ϕn|2|Xn|2 =

∫
Σ̃

lim |∇ϕn|2|Xn|2 = 0,

because |∇ϕn|2 → 0. So, when M = S3,

0 = lim

∫
Σ̃

ϕ2
n|Xn|2 =

∫
Σ̃

limϕ2
n|Xn|2 =

∫
Σ̃

|X |2 = 1,

which is a contradiction. When M = S2 × R, we have

0 = lim

∫
Σ̃

ϕ2
n(2 − |ξ�|2)〈Xn, ξ〉2

=

∫
Σ̃

limϕ2
n(2 − |ξ�|2)〈Xn, ξ〉2 =

∫
Σ̃

(2− |ξ�|2) 〈X, ξ〉2,

which implies that 〈X, ξ〉 = 0. When M = S2 × S1(r), we have

0 = lim

∫
Σ̃

ϕ2
n

(
2− (1 +

1

r2
)|ξ�|2) 〈Xn, ξ〉2 =

∫
Σ̃

(
2− (1 +

1

r2
)|ξ�|2) 〈X, ξ〉2.

As r ≥ 1, we have that either r = 1 and |ξ�|2 = 1 or 〈X, ξ〉 = 0. In the first
case, Σ̃ is a covering of the totally geodesic torus S1 × S1, and so it genus cannot
be infinite. So, 〈X, ξ〉 = 0.

Hence, in the last two cases, using Lemma 3.2, we obtain that the harmonic
vector field X ∈ V is given by X = λJξ� for a certain nonzero real number λ.
Hence, 1 = λ2

∫
Σ̃
|Jξ�|2 and so Jξ� ∈ H−(Σ̃). As, in this case, Jξ� is orthogonal

to V , we get again a contradiction. This finishes the proof. �

Now, we extend the results of Theorem 4.6 to minimal surfaces in the real
projective space. Although we use a similar idea, the proof is more complicated
and in it we will use different test functions.

Theorem 4.7. Let Φ: Σ → RP
3 be a minimal immersion of a complete non

compact surface. Then Index(Φ) = ∞.
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Proof. Following reasoning as in the previous theorem, we can assume that Φ is
one-sided, i.e., Σ is not orientable, and that the two-fold oriented covering (Σ̃, τ)
of Σ has infinite genus. Then, Φ̃ = Φ ◦ Π is a two-sided minimal immersion of Σ̃
into RP3. We consider two cases.

First case: Φ̃ admits a lift Ψ to S3.

(Σ̃, τ)

Φ̃, 2-sided

����
���

���
���

��

Π

��

Ψ �� S3

��
Σ

Φ

1-sided
�� RP3

In this case we can identify sections Γ(T⊥Σ) of the normal bundle to Φ with
functions on Σ̃ which are odd with respect to τ :

Γ(T⊥Σ) ≡ C∞
− (Σ̃),

η ≡ f, if η̃ = fÑ,

where η̃ is the lift of η to Ψ. Moreover the quadratic forms associated to Φ and Ψ
satisfy

2Q(η) = Q̃(η̃) = Q̃(f),

for any compactly supported f ∈ C∞
− (Σ̃). Now, the immersion Ψ is subject to the

same conditions that the immersion Φ̃ in 1) of Theorem 4.6. So the result follows
making the same proof than in 1) of Theorem 4.6.

Second case: Φ̃ cannot be lifted to S3. Then, the two-fold covering S3 → RP3

induces a two-fold covering Σ̂ → Σ̃ of a connected surface Σ̂. If τ̂ is the change of
sheet, then Φ̂ ◦ τ̂ = −Φ̂ and Φ̂ is two-sided.

(Σ̂, τ̂)

Π̂
��

Φ̂

����
���

���
���

��

(Σ̃, τ)

Φ̃, 2-sided

����
���

���
���

��

Π

��

S
3

��
Σ

Φ

1-sided
�� RP3

Now, we can lift τ to Σ̂ as follows: given x ∈ Σ̂, τ(x) = y if τ(Π̂(x)) = Π̂(y) and
Φ̂(x) = Φ̂(y). As y is uniquely determined, the lift of τ to Σ̂, which will be denoted
also by τ , is well defined.

Let N be a unit vector field normal to Φ̂. As Φ̃ is two-sided and Φ is one-sided,
then N ◦ τ = −N . Also, as N projects to Φ̃, then N ◦ τ̂ = −N .

Now, we can identify normal sections of Φ with functions on Σ̂ with the follow-
ing symmetries:

Γ(T⊥Σ) ≡ C∞
± (Σ̂) =

{
f ∈ C∞(Σ̂) | f ◦ τ̂ = f, f ◦ τ = −f},

η ≡ f, η̂ = fN,
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where η̂ is the lift of η to Φ̂. It is clear that η̂ ◦ τ = −η̂ ◦ τ̂ = η̂, and so the function
f satisfies f ◦ τ̂ = −f ◦ τ = f .

If Q and Q̂ are the quadratic forms associated to the minimal immersions Φ
and Φ̂,

4Q(η) = Q̂(η̂) = Q̂(f) = −
∫
Σ̂

fL̂f,

for any compactly supported function f ∈ C∞
± (Σ̂), where L̂ : C∞

± (Σ̂) → C∞
± (Σ̂) is

given by
L̂ = Δ̂− K̂ + (3 + |σ̂|2/2).

To prove the result, we suppose that Index(Φ) = k and we will find a contradiction.
From Proposition 4.1, there exist functions {v1, . . . , vk} in L2(Σ̂) with vi ◦ τ =

−vi, vi ◦ τ̂ = vi and L̂vi + λivi = 0, λi < 0, and such that if f is a compactly
supported function in C∞

± (Σ̂) which is L2-orthogonal to vi, 1 ≤ i ≤ k, then

Q̂(f) ≥ 0.

As the genus of Σ̂ is infinite, the space H(Σ̂) of L2-harmonic vector fields on Σ̂
has also infinite dimension. Let V be an l-dimensional (l > 16k) subspace of H(Σ̂)
such that τ∗X = −X and τ̂∗X = X for any X ∈ V . Let Y be any compactly
supported function in C∞± (Σ̂,R4) which is L2-orthogonal to vj , j = 1, 2, 3, 4. Let

{Un |n ∈ N} be an exhaustion of the complete surface Σ̂ and let {ϕn |n ∈ N} be

cut-off functions on Σ̂ satisfying supp (Y ) ⊂ {p ∈ Σ̃ |ϕn(p) = 1}, supp (ϕn) ⊂ Un,
|∇ϕn|2 ≤ 1, and ϕn ◦ τ = ϕn ◦ τ̂ = ϕn.

Let {a1, . . . , a4} be an orthonornal basis of R4. For each n∈N, let Fn : V → R16k

be the linear map given by

Fn(X) =
( ∫

Σ̂

ϕnvi〈Φ̂, aj〉X
)
ij
.

As l > 16k, there exists Xn ∈ kerFn with
∫
Σ̂
|Xn|2 = 1. So, for each n and

each j ∈ {1, 2, 3, 4}, the functions ϕn〈Φ̂, aj〉Xn have compact support and they
are L2-orthogonal to vi, 1 ≤ i ≤ k. Using the properties of Xn and ϕn with
respect to τ and τ̂ and the fact that Φ̂ ◦ τ = Φ̂ and Φ̂ ◦ τ̂ = −Φ̂, we obtain that
ϕn〈Φ̂, aj〉Xn ◦ τ = −ϕn〈Φ̂, aj〉Xn ◦ τ̂ = −ϕn〈Φ̂, aj〉Xn.

Now, for each t ∈ R, let Ft = ϕn〈Φ̂, aj〉Xn + tY . Then Ft ∈ C∞
± (Σ̂,R4), has

compact support and is L2-orthogonal to vi, 1 ≤ i ≤ k. Hence

0 ≤ Q̂(Ft), ∀t ∈ R.

This means that

(4.3) Q̂(〈Φ̂, aj〉Xn, Y )2 ≤ Q̂(Y )Q̂(ϕn〈Φ̂, aj〉Xn), Q̂(Y ) ≥ 0, 1 ≤ j ≤ 4.

Making a computation like in the proof of the above theorem, we obtain

Q̂(ϕn〈Φ̂, aj〉Xn) =

∫
Σ̂

|∇̂ϕn|2〈Φ̂, aj〉2|Xn|2 −
∫
Σ̂

ϕ2
n〈L̂(〈Φ̂, aj〉Xn), 〈Φ̂, aj〉Xn〉,
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for all n ∈ N and 1 ≤ j ≤ 4. Now, using Lemma 3.1 it is not difficult to see that

〈L̂(〈Φ̂, aj〉Xn), 〈Φ̂, aj〉Xn〉 = 〈Φ̂, aj〉Δ̂〈Φ̂, aj〉|Xn|2 + 〈Φ̂, aj〉2〈L̂Xn, Xn〉
+

1

2
〈∇̂〈Φ̂, aj〉2, ∇̂|Xn|2〉 = 1

2
〈∇̂〈Φ̂, aj〉2, ∇̂|Xn|2〉

However,
∑4

j=1〈∇̂〈Φ̂, aj〉2, ∇̂|Xn|2〉 = 0, and so

4∑
j=1

Q̂(ϕn〈Φ̂, aj〉Xn) =

∫
Σ̂

|∇ϕn|2|Xn|2.

Using an argument similar to that in the proof of Theorem 4.6 we obtain

lim

∫
Σ̂

|∇ϕn|2|Xn|2 = 0,

and so from (4.3) we get

0 =

4∑
j=1

lim Q̂(〈Φ̂, aj〉Xn, Y )2 =

4∑
j=1

Q̂(〈Φ̂, aj〉X,Y )2,

where X = limXn ∈ V , after extracting a subsequence. As Y is arbitrary, we
finally get that L̂(〈Φ̂, a〉X) = 0, ∀a ∈ R4. In particular, using Lemma 3.1 we
deduce that 0 = 〈L̂(〈Φ̂, a〉X), Φ̂〉 = −2〈X, a〉, which is a contradiction. �

In [15], Torralbo and Urbano classified the compact stable minimal subman-
ifolds of the product of two spheres. As a particular case of that classification,
the authors obtain that the slices S2 × {p}, p ∈ S1(r) are the only compact stable
minimal surfaces in S

2×S
1(r). In the next result we study the index of a compact

minimal surface of S2 × S1(r).

Theorem 4.8. Let Φ : Σ → S2 × S1(r), r ≥ 1, be a minimal immersion of a
compact surface Σ.

1) If Σ is orientable of genus g, then Index (Φ)≥ 2g−1
5 . Moreover, Index (Φ) = 1

if and only if r = 1 and Φ is the totally geodesic embedding S1×S1 ⊂ S2×S1.

2) If Σ is nonorientable, then Index (Φ) ≥ g−1
5 , where g is the genus of the

two-fold oriented covering of Σ.

Remark 4.9. Note that when r > 1, there are no compact orientable minimal
surfaces of index one in S2×S1(r). Also, the idea used in the proof does not work for
r < 1. In the case where r < 1, not only the totally geodesic embedding S1×S

1(r) ⊂
S2 × S1(r) has index one, but also any m-sheeted covering of S1 × S1(mr) →
S1 × S1(r) with m ≤ 1/r has index one.

Proof. First we prove that Index (Φ) ≥ 2g−1
5 . When g = 0 the above inequality

is irrelevant and when g = 1 is known, because the only stable compact mini-
mal surfaces of S2 × S1(r) have genus zero. So we can assume that g ≥ 2. Let
m = Index(Φ). As in this case the immersion is two-sided, the Jacobi operator L
acts on functions. Let {ϕ1, . . . , ϕm} be eigenfunctions of L corresponding to the
negative eigenvalue λ1, . . . , λm. Considering S2 × S1(r) ⊂ R5 and an orthonormal
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frame {a1, . . . , a5} in R5, we define the linear function F : H(Σ) → R5m by

F (X) =
(∫

Σ

ϕ1X, . . . ,

∫
Σ

ϕmX
)
,

where X is considered as an R5-valued function.
Suppose that X ∈ kerF . Then X is L2-orthogonal to each ϕi, 1 ≤ i ≤ m and

hence Q(X) ≥ 0. From Lemma 3.1, we have that

0 ≤ Q(X) = −
∫
Σ

〈X, ξ〉2
[
2− (1 +

1

r2
)|ξ�|2

]
≤ 0,

where the last inequality holds because we suppose r2 ≥ 1. This implies that either
r = 1 and |ξ�|2 = 1, or 〈X, ξ〉 = 0. In the first case, Σ is a finite covering of the
totally geodesic torus S1×S1, and so it has genus one, which is not the case. Hence
〈X, ξ〉 = 0, and from Lemma 3.2, X = λJξ�, with λ ∈ R, that is, dimkerF ≤ 1.
As 2g = dimH(Σ) = dimkerF + dim ImF ≤ 1 + 5m, we get the result.

If Σ is compact and nonorientable, let Σ̃ be the two-fold oriented covering of Σ
and τ the change of sheet in Σ̃. Using the same argument as in previous results, the
index of Φ is the index of the Schrödinger operator L̃ = Δ̃− K̃ +1+ |σ̃|2/2 acting
on C∞− (Σ̃) = {f ∈ C∞(Σ̃) | f ◦τ = −f}. From Proposition 4.1, let {ϕ1, . . . , ϕm} be

eigenfunctions of L̃, with ϕi ◦ τ = −ϕi, corresponding to the negative eigenvalues
λ1, . . . , λm, where m is the index of Φ. In this case, we define the linear map
F : H−(Σ̃) → R5m by

F (X) =
(∫

Σ̃

ϕ1X, . . . ,

∫
Σ̃

ϕmX
)
,

where X is considered as an R5-valued function. Following the same idea as above
and taking into account that dimH−(Σ̃) = g, we prove 2).

Finally, it is easy to check that the totally geodesic embedding S1 × S1(r) ⊂
S2 × S1(r), r ≥ 1, has index one if and only if r = 1.

Conversely, let Φ : Σ → S2 × S1(r), r ≥ 1, be a minimal immersion of an
orientable and compact surface Σ with index one. If Φ = (φ, ψ), for each a ∈ R2

the function 〈ψ, a〉 : Σ → R satisfies

v(〈ψ, a〉) = 〈ψ∗(v), a〉 = 〈v, ξ〉〈ξ, a〉.
Hence

∇〈ψ, a〉 = 〈ξ, a〉 ξ�.
Hence the Laplacian of 〈ψ, a〉 is given by

Δ〈ψ, a〉 = 〈σ̄(ξ�, ξ), a〉+ 〈ξ, a〉div ξ� = − 1

r2
〈ξ�, ξ〉〈ψ, a〉 = −|ξ�|2

r2
〈ψ, a〉.

Therefore, the Jacobi operator of the surface Σ acting on 〈ψ, a〉 is given by

L 〈ψ, a〉 = (
(1− 1/r2)|ξ�|2 + |σ|2)〈ψ, a〉,

and

Q(〈ψ, a〉) = −
∫
Σ

((1 − 1/r2)|ξ�|2 + |σ|2)〈ψ, a〉2 dA ≤ 0.
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If V = {〈ψ, a〉, a ∈ R2} and dimV ≤ 1, then there exists a non zero vector a
in R

2 such that 〈ψ, a〉 = 0 and so ψ is constant. Hence Φ(Σ) is a slice of S2×S
1(r),

which is stable. So dimV = 2. Now, as the index of Σ is one and ξ� has only
isolated zeroes, one gets that σ = 0 and r = 1. Then, Φ(Σ) is a finite covering
of the totally geodesic surface S1 × S1. As the index is one, the surface must be
S1 × S1 and the proof of 1) is complete. �

To finish, we will take RP2 × R as the ambient manifold. This 3-manifold is
non orientable (its two-fold oriented covering is S2 × R) and so the two-sidedness
of its immersed surfaces does not follow from their orientability. In any case, from
Corollary 4.3, a two-sided stable complete minimal surface of RP2 × R must be
compact and then the surface is a slice RP2 × {t}, which is stable. When the
minimal surface Σ is one-sided, Σ can be orientable or non orientable. In the
first case we classify the stable ones. Hence, the classification of stable one-sided
complete minimal surfaces of RP2 × R is still open for the non orientable ones.

Theorem 4.10. Let Φ : Σ → RP
2 × R be a minimal immersion of an orientable

complete surface. Then Φ is stable if and only if

1) Σ = S2,Φ(Σ) = RP2 × {t}, t ∈ R, or

2) Φ is the totally geodesic embedding of RP1 × R into RP2 × R.

Remark 4.11. Note that the stable totally geodesic embedding RP1×R ⊂ RP2×R

is the quotient, under the projection S2 × R → RP2 × R, of the totally geodesic
embedding S1 × R ⊂ S2 × R whose index is infinite.

Proof. It is clear that the totally geodesic immersion of S2 into RP2×R given in 1)
is stable. Also, as the totally geodesic embedding RP1 ⊂ RP2 is a stable geodesic,
it is not difficult to check that the embedding given in 2) is also stable.

Conversely, we suppose that Φ is stable. If Φ is two-sided, by Corollary 4.3,
Σ is compact. As Σ is orientable, we obtain that Σ = S2 and Φ(Σ) = RP2 × {t}.

If Φ is one-sided then Σ is non compact, because the only two compact examples
are two-sided.

(Σ̃, τ)

2:1

��

Φ̃=(Ψ,h) �� S2 × R

��
Σ

Φ

1-sided
�� RP2 × R

Let S2 × R → RP2 × R be the projection. As Σ is orientable, Φ does not lift
to S2 × R, and so the above covering induces a two-fold covering Σ̃ → Σ of a
connected surface Σ̃. If τ is the change of sheet and Φ̃ = (Ψ, h) : Σ̃ → S2 × R the
corresponding minimal immersion, then Ψ ◦ τ = −Ψ and Φ̃ is two-sided.

Now we can identify sections of the normal bundle of Φ with functions on Σ̃
which are odd with respect to τ in the following way:

Γ(T⊥Σ) ≡ C∞
− (Σ̃) =

{
f ∈ C∞(Σ̃) | f ◦ τ = −f}

η ≡ f, if η̃ = fN,
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where η̃ is the lift of η to Φ̃ and N is a unit vector field normal to Φ̃. As Φ is
one-sided, then N ◦ τ = −N and so, f ◦ τ = −f , because η̃ ◦ τ = η̃.

Moreover, it is easy to check that if η ∈ Γ0(T
⊥Σ) and f ∈ C∞

− (Σ̃) is the
corresponding function with η̃ = fN , then

2Q(η) = Q̃(η̃) = Q̃(f) = −
∫
Σ̃

fL̃f,

where L̃ : C∞
− (Σ̃) → C∞

− (Σ̃) is given by

L̃ = Δ̃− K̃ + (1 + |σ̃|2/2).
Given ϕ ∈ C∞

0 (Σ), its lift ϕ̃ ∈ C∞
0 (Σ̃) satisfies ϕ̃ ◦ τ = ϕ̃. Then, the R3-valued

function ϕ̃Ψ (Ψ : Σ̃ → S2, Ψ ◦ τ = −Ψ) has compact support and ϕ̃Ψ ◦ τ = −ϕ̃Ψ.
As Φ is stable,

(4.4) 0 ≤ Q̃(ϕ̃Ψ).

Now we compute Q̃(ϕ̃Ψ). First, L̃(ϕ̃Ψ) = (Δ̃ϕ̃)Ψ+ ϕ̃L̃Ψ+2∇E
∇̃ϕ̃

Ψ, where ∇E

is the connection on R4.
First, Δ̃Ψ = −(

∑2
i=1 |Ψ∗ei|2)Ψ = −(1+C̃2)Ψ, where {e1, e2} is an orthonormal

frame on T Σ̃. Using the Gauss equation for Φ̃, we obtain L̃(Ψ) = −2C̃2Ψ+|σ̃|2Ψ =
−2K̃Ψ. Hence,

Q̃(ϕ̃Ψ) = −
∫
Σ̃

ϕ̃Δ̃ϕ̃dÃ+

∫
Σ̃

2ϕ̃2K̃dÃ−
∫
Σ̃

〈∇E
∇̃ϕ̃2Ψ,Ψ〉dÃ =

∫
Σ̃

(|∇̃ϕ̃|2+2ϕ̃2K̃
)
dÃ.

As K̃ and ϕ̃ are even with respect to τ , together (4.4) and the above computation
imply that, for any ϕ ∈ C∞

0 (Σ),

0 ≤ Q̃(ϕ̃Ψ) =
1

2

∫
Σ

(|∇ϕ|2 + 2Kϕ2
)
dA ≤

∫
Σ

(|∇ϕ|2 +Kϕ2
)
dA.

The above inequality means that the Schrödinger operator Δ − K, on the
complete and orientable Riemannian surface Σ, satisfies Index(Δ−K) = 0.

From Theorem 4.2, as Σ is non compact, we have that either Σ is conformally
equivalent to C, which is impossible because Σ admits a connected two-fold cover-
ing, or Σ is a flat cylinder. In this case (see Section 3), it is not difficult to check
that Δ|ξ�|2 = 4(1 − |ξ�|2)2. So |ξ�|2 is a subharmonic function that satisfies
|ξ�|2 ≤ 1. As Σ is complete and flat, the maximum principle implies that |ξ�|2
is constant, and so |ξ�|2 = 1. In particular Φ is a totally geodesic immersion.
Hence Σ must be a finite covering of the totally geodesic embedding of RP1 × R

into RP2 × R, but, among such coverings, only RP1 × R is stable. �

The proof given for Theorem 4.10, with minor changes, allows to prove:

Theorem 4.12. Let Φ : Σ → RP2×S1(r) be a minimal immersion of an orientable
complete surface. Then Φ is stable if and only if

1) Σ = S2,Φ(Σ) = RP2 × {p}, p ∈ S1(r), or

2) Φ is the totally geodesic immersion of RP1 × R into RP
2 × S

1(r), or

3) Φ is the totally geodesic embedding of RP1 × S1(r) into RP2 × S1(r).
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