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Minimal smoothness conditions
for bilinear Fourier multipliers

Akihiko Miyachi and Naohito Tomita

Abstract. The problem of finding the differentiability conditions for
bilinear Fourier multipliers that are as small as possible to ensure the
boundedness of the corresponding operators from products of Hardy spaces
Hp1 ×Hp2 to Lp, 1/p1 + 1/p2 = 1/p, is considered. The minimal condi-
tions in terms of the product type Sobolev norms are given for the whole
range 0 < p1, p2 ≤ ∞.

1. Introduction

For m ∈ L∞(R2n), the bilinear Fourier multiplier operator Tm is defined by

Tm(f1, f2)(x) =
1

(2π)2n

∫
R2n

eix·(ξ1+ξ2)m(ξ) f̂1(ξ1) f̂2(ξ2) dξ1 dξ2

for f1, f2 ∈ S(Rn), where x ∈ R
n and ξ = (ξ1, ξ2) ∈ R

n × R
n.

Coifman and Meyer (see [3], [4] and [15]) proved that if the multiplier m(ξ)
satisfies the condition

(1.1)
∣∣∂α1

ξ1
∂α2

ξ2
m(ξ1, ξ2)

∣∣ ≤ Cα1,α2

(|ξ1|+ |ξ2|
)−(|α1|+|α2|)

,

then Tm extends to a bounded operator Lp1 ×Lp2 → Lp for p1, p2 and p satisfying
1 < p1, p2, p < ∞ and 1/p1 + 1/p2 = 1/p. They also proved the boundedness
Lp × L∞ → Lp for 1 < p < ∞. The boundedness of Tm : L∞ × L∞ → BMO
is also implicitly given in [4], [15]. Kenig–Stein [14] proved weak type estimate
for the case p1 = p2 = 2p = 1 and extended the results of Coifman–Meyer to the
range p ≤ 1. Grafakos–Torres [10] gave a general theory for multilinear Calderón–
Zygmund operators and generalized the results of [3], [4], [15], and [14]. Grafakos–
Kalton [7] proved that the boundedness of Tm : Lp1 × Lp2 → Lp can be extended
to p1 ≤ 1 or p2 ≤ 1 if we replace Lp1 and Lp2 by the Hardy spaces Hp1 and Hp2
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respectively. In fact, the above papers include several general results, not all of
which can be mentioned here.

To ensure the above mentioned boundedness of Tm, it is not necessary to assume
the condition (1.1) for all derivatives, but it is sufficient to assume it for derivatives
up to certain order. In this paper we shall consider the problem of finding the
differentiability conditions of the type (1.1) that are “as small as possible” to
ensure the boundedness of Tm : Hp1 ×Hp2 → Lp.

Before we state our result in detail, we shall recall some previously known
results. Coifman–Meyer [4], [15] proved the boundedness of Tm by reducing it
to linear Calderón–Zygmund operators. They considered the linear operator Tf2
defined by

Tf2(f1)(x) = Tm(f1, f2)(x) =

∫
Rn

Kf2(x, y1) f1(y1) dy1.

They showed that the kernel Kf2(x, y1) of this operator is a Calderón–Zygmund
kernel and then used the T 1-theorem to deduce the boundedness of Tm. In their
proof, to ensure the kernel Kf2(x, y1) be a Calderón–Zygmund kernel, they had
to assume the condition (1.1) up to order 2n + 1. (The number of derivatives
assumed on m in the statement of p. 22 in [4] seems to be an error. At least,
the proof given in pp. 22–23 of [4] requires (1.1) up to order 2n + 1.) Grafakos–
Torres [10] gave a different proof by using the bilinear T 1-theorem. In this case, to
ensure that the kernel of Tm be a Calderón–Zygmund kernel in the bilinear sense,
they had to assume (1.1) up to the same order 2n + 1. Coifman–Meyer [3] used
the paraproduct operator to deduce the boundedness of Tm. In this method, they
had to assume (1.1) up to an order much higher than 2n+1. The differentiability
conditions form assumed in these papers seem to be too strong if we compare them
with the conditions occurring in the case of linear Fourier multiplier operators. In
more recent papers [20], [9], and [8], results under much weaker assumptions are
given, which we shall mention later.

Recall the case of linear Fourier multiplier operators. To distinguish it from the
bilinear operator Tm, we denote the linear operator by m(D): for m ∈ L∞(Rn),

m(D)f(x) =
1

(2π)n

∫
Rn

eix·ξm(ξ) f̂(ξ) dξ, f ∈ S(Rn).

It is well known that m(D) can be extended to a bounded operator in Hp if m(ξ)
satisfies

|∂αξ m(ξ)| ≤ Cα |ξ|−|α|.

Hörmander (Theorem 2.5 in [12]) essentially proved the following: m(D) can be
extended to a bounded operator in Lp(Rn), 1 < p < ∞, if the multiplier m(ξ)
satisfies

(1.2) sup
j∈Z

‖m(2j·)Ψ‖W s(Rn) <∞

with an s > n/2, where Ψ is a function in S(Rn) satisfying

(1.3) suppΨ ⊂ {
ξ ∈ R

d : 1/2 ≤ |ξ| ≤ 2
}
,

∑
k∈Z

Ψ(ξ/2k) = 1, ξ ∈ R
d \ {0},
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with d = n and where ‖ · ‖W s(Rn) denotes the usual Sobolev norm,

(1.4) ‖f‖W s(Rn) =
(∫

Rn

〈ξ〉2s|f̂(ξ)|2 dξ
)1/2

,

where 〈ξ〉 = (1 + |ξ|2)1/2. Calderón–Torchinsky (Theorem 4.6 of [2]) proved the
following: if 0 < p ≤ 1 and s > n/p−n/2, and if the multiplier m(ξ) satisfies (1.2),
then m(D) can be extended to a bounded operator in the Hardy space Hp(Rn).
It is known that the numbers n/2 and n/p − n/2 in these results are minimal,
that is, they cannot be replaced by smaller numbers (see Remark 1.3 below). The
purpose of the present paper is to find such minimal conditions for the case of
bilinear Fourier multipliers.

To explain our main results in detail, we introduce some notation. We shall
write

‖Tm‖Hp1(Rn)×Hp2 (Rn)→Lp(Rn)

to denote the smallest constant C that satisfies

‖Tm(f1, f2)‖Lp(Rn) ≤ C, ‖f1‖Hp1(Rn) ‖f2‖Hp2 (Rn)

for all f1 ∈ S(Rn) ∩Hp1(Rn) and f2 ∈ S(Rn) ∩Hp2(Rn). We define

‖Tm‖L∞(Rn)×L∞(Rn)→BMO(Rn)

in the same way by replacing the norms ‖ · ‖Hp1 , ‖ · ‖Hp2 and ‖ · ‖Lp by ‖ · ‖L∞ ,
‖ · ‖L∞ and ‖ · ‖BMO, respectively. We use the convention that Hpi = Lpi for
1 < pi ≤ ∞. For s1, s2 ∈ R and for F ∈ S ′(R2n), the product type Sobolev norm
‖F‖W (s1,s2)(R2n) is defined by

‖F‖W (s1,s2) =
( ∫

R2n

〈ξ1〉2s1〈ξ2〉2s2 |F̂ (ξ1, ξ2)|2 dξ1dξ2
)1/2

,

where ξi ∈ Rn. We take a function Ψ ∈ S(R2n) that satisfies (1.3) with d = 2n
and, for m ∈ L∞(R2n) and j ∈ Z, define

(1.5) mj(ξ) = m(2jξ1, 2
jξ2)Ψ(ξ1, ξ2), ξ = (ξ1, ξ2) ∈ R

n × R
n.

Now, for bilinear Fourier multiplier operators, Grafakos–Miyachi–Tomita [8]
have obtained some results with minimal conditions by using the product type
Sobolev norms. The results of [8] are as follows. First,

(1.6) s1 > n/2, s2 > n/2

=⇒ ‖Tm‖L2(Rn)×L∞(Rn)→L2(Rn) � sup
j∈Z

‖mj‖W (s1,s2)(R2n).

Second, for 0 < p ≤ 1,

(1.7) s1 > n/2, s2 > n/p− n/2

=⇒ ‖Tm‖L∞(Rn)×Hp(Rn)→Lp(Rn) � sup
j∈Z

‖mj‖W (s1,s2)(R2n).

In addition, the numbers n/2 and n/p− n/2 in (1.6) and (1.7) are minimal. (See
Theorems 1.1 and 1.2, and Propositions 7.1 and 7.2 in [8].)
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The purpose of the present paper is to extend these results of [8]. We use the
product type Sobolev norm for the multipliers and we shall find minimal conditions,
for the whole range 0 < p1, p2 ≤ ∞, for the boundedness of Tm from Hp1(Rn) ×
Hp2(Rn) to Lp(Rn). The fact (1.7) is one of the keys in the proofs of the results
of this paper. The fact (1.6) will also be a key tool in our arguments.

The main results of this paper are given in the following two theorems:

Theorem 1.1. Let 0 < p1, p2, p ≤ ∞ and 1/p1 + 1/p2 = 1/p. If

s1 > max
{n
2
,
n

p1
− n

2

}
, s2 > max

{n
2
,
n

p2
− n

2

}
, and s1 + s2 >

n

p1
+
n

p2
− n

2
,

then

(1.8) ‖Tm‖Hp1 (Rn)×Hp2 (Rn)→Lp(Rn) � sup
j∈Z

‖mj‖W (s1,s2)(R2n),

where Hp1 ×Hp2 → Lp is replaced by L∞ × L∞ → BMO if p1 = p2 = p = ∞.

Theorem 1.2. Let 0 < p1, p2, p ≤ ∞ and 1/p1 + 1/p2 = 1/p. Then the
estimate (1.8), where Hp1 × Hp2 → Lp is replaced by L∞ × L∞ → BMO if
p1 = p2 = p = ∞, holds only if

s1 ≥ max
{n
2
,
n

p1
− n

2

}
, s2 ≥ max

{n
2
,
n

p2
− n

2

}
, and s1 + s2 ≥ n

p1
+
n

p2
− n

2
.

�

�

�
�
�
��

1/p1

1/p2

I0

I1

I2

I3

I4

I5

I6

0

1/2 1

1/2

1

To visualize easily the various conditions of Theorem 1.1, we divide the region
of (1/p1, 1/p2) into seven regions I0, . . . , I6 as in the figure. The assumptions on s1
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and s2 of Theorem 1.1 are written as follows:

s1 > n/2, s2 > n/2 if (1/p1, 1/p2) ∈ I0;

s1 > n/2, s2 > n/p2 − n/2 if (1/p1, 1/p2) ∈ I1;

s1 > n/p1 − n/2, s2 > n/2 if (1/p1, 1/p2) ∈ I2;{
s1 > n/2, s2 > n/2,

s1 + s2 > n/p1 + n/p2 − n/2
if (1/p1, 1/p2) ∈ I3;{

s1 > n/2, s2 > n/p2 − n/2,

s1 + s2 > n/p1 + n/p2 − n/2
if (1/p1, 1/p2) ∈ I4;{

s1 > n/p1 − n/2, s2 > n/2,

s1 + s2 > n/p1 + n/p2 − n/2
if (1/p1, 1/p2) ∈ I5;{

s1 > n/p1 − n/2, s2 > n/p2 − n/2,

s1 + s2 > n/p1 + n/p2 − n/2
if (1/p1, 1/p2) ∈ I6.

Notice that the condition s1 + s2 > n/p1 + n/p2 − n/2 is necessary only in the
regions I3, I4, I5, and I6.

Next, we observe some interesting features of the results of Theorems 1.1
and 1.2.

First, we see that simple interpolation of minimal conditions does not neces-
sarily give a minimal condition. Consider for example the bound for Hp(Rn) ×
Hp(Rn) → Lp/2(Rn) in the range p ≤ 1. By interpolating (1.7) and its variant
with f1 and f2 interchanged, we obtain

(1.9) s1 > n/p, s2 > n/p

=⇒ ‖Tm‖Hp(Rn)×Hp(Rn)→Lp/2(Rn) � sup
j∈Z

‖mj‖W (s1,s2)(R2n)

(cf. Theorem 6.1 of [8]). Although the assertion (1.7) gives a minimal condition, the
condition s1, s2 > n/p in (1.9) is not minimal. As given in Theorems 1.1 and 1.2,
we can obtain the conclusion of (1.9) under the assumptions s1, s2 > n/p− n/2,
s1 + s2 > 2n/p− n/2, and these are the minimal conditions.

Second, we observe that the situation is not so simple even in the range 1 <
pi <∞. Consider for simplicity the estimate

‖Tm‖Lp(Rn)×Lp(Rn)→Lp/2(Rn) � sup
j∈Z

‖mj‖W (s1,s2)(R2n),

in the range 1 < p < ∞. As Theorems 1.1 and 1.2 assert, if p ≥ 4/3 then
this estimate holds for s1, s2 > n/2, but if p < 4/3 then we have to assume the
additional condition s1 + s2 > 2n/p − n/2 or, to be precise, at least s1 + s2 ≥
2n/p− n/2.

The problem of the minimal condition for bilinear Fourier multipliers can also
be formulated in terms of the usual Sobolev norm, (1.2), with n replaced by 2n.
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In this direction, Tomita [20] proved that if 1 < p1, p2 <∞ and 1/p1+1/p2 = 1/p
then

(1.10) s > n, p > 1 =⇒ ‖Tm‖Lp1(Rn)×Lp2(Rn)→Lp(Rn) � sup
j∈Z

‖mj‖W s(R2n).

Grafakos–Si [9] generalized this result to the range p ≤ 1 by using the Lr-type
Sobolev norm, 1 < r ≤ 2. In the present paper, we shall not consider the problem
with the usual Sobolev norm. Here, however, we only mention that we can relax
the restriction p > 1 of (1.10) to p > 2/3 by virtue of Theorem 1.1.

Bilinear and multilinear Fourier multiplier operators are widely investigated
and have many applications. For other results on these operators and related top-
ics, see Muscalu–Pipher–Tao–Thiele [17], Bernicot–Germain [1], and the references
therein.

The contents of this paper are as follows. In Section 2, we recall some prelim-
inary facts. We prove Theorem 1.1 in Sections 3–6. In Section 3, we treat the
case 0 < p1, p2 ≤ 1. In Section 4, we treat the case 0 < p1 ≤ 1, p2 = 2. In
Section 5, we treat the case p1 = p2 = p = ∞. In Section 6, we complete the proof
of Theorem 1.1 combining the results of Sections 3, 4 and 5, and the result (1.7)
by interpolation. Finally in Section 7, we prove Theorem 1.2.

We make a remark concerning the arguments of this paper. Since we are
interested in the estimate for operator norms, we give the proofs by assuming
that all the functions, including the multipliers, that appear in our argument are
of the Schwartz class and we omit the limiting arguments that are necessary for
rigorous proof. For example, in our argument we repeatedly write f1 as a series
of Hp1-atoms a1,k,

(1.11) f1 =
∑
k

λ1,k a1,k,
∑
k

|λ1,k|p1 � ‖f1‖p1

Hp1 ,

and we write

(1.12) Tm(f1, f2) =
∑
k

λ1,k Tm(a1,k, f2).

Some limiting argument is necessary to ensure the convergence of the series (1.12).
One way to make the argument precise is to use the fact that the first series
of (1.11) can be taken so that it converges in L2 if f1 ∈ L2∩Hp1 and to use the L2

estimate of Tm given in (1.6) to deduce the convergence of the series of (1.12).
Another way is to consider at first only those f1 that can be written as (1.11) with
a finite sum and then use some limiting argument to treat general f1. We leave
such detailed arguments to the reader.

For two nonnegative quantities A and B, the notation A � B means that
A ≤ CB for some unspecified constant C > 0, and A ≈ B means that A � B
and B � A.
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Remark 1.3. One way to see the minimality of the numbers n/2 and n/p− n/2
of the theorems of Hörmander (Theorem 2.5 of [12]) and Calderón–Torchinsky
(Theorem 4.6 of [2]) mentioned above is to use the multiplier

ma,b(ξ) = ψ(ξ) |ξ|−b exp(i|ξ|a),
where a > 0, a �= 1, b > 0, and ψ(ξ) is a smooth function which vanishes in a
neighborhood of ξ = 0 and is equal to 1 for |ξ| large. It is easy to see that ma,b

satisfies (1.2) for s = b/a. On the other hand, it is known that m(D) is bounded
in Hp(Rn), 0 < p <∞, only if b/a ≥ |n/p− n/2| (see comments after Theorem 3c
in [11], Part II of [22], or Theorem 3 in [16]). Another way to see the minimality
will be given in Section 7 of the present paper.

2. Preliminaries

Let S(Rn) and S ′(Rn) be the Schwartz spaces of rapidly decreasing smooth func-
tions and tempered distributions, respectively. We define the Fourier transform Ff
and the inverse Fourier transform F−1f of f ∈ S(Rn) by

Ff(ξ) = f̂(ξ) =

∫
Rn

e−ix·ξf(x) dx, F−1f(x) =
1

(2π)n

∫
Rn

eix·ξf(ξ) dξ.

The Hardy–Littlewood maximal operator M is defined by

Mf(x) = sup
r>0

1

rn

∫
|x−y|<r

|f(y)| dy,

where f is a locally integrable function on Rn. We also use the notationMqf(x) =
M(|f |q)(x)1/q .

We recall the definition and some properties of Hardy spaces on Rn (see Chap-
ter 3 of [18]). Let 0 < p ≤ ∞, and let φ ∈ S(Rn) be such that

∫
Rn φ(x) dx �= 0.

Then the Hardy space Hp(Rn) consists of all f ∈ S ′(Rn) such that

‖f‖Hp =
∥∥ sup

0<t<∞
|φt ∗ f |

∥∥
Lp <∞,

where φt(x) = t−nφ(x/t). It is known that Hp(Rn) does not depend on the
choice of the function φ (see Chapter 3, Theorem 1, in [18]). If 1 < p ≤ ∞, then
Hp(Rn) = Lp(Rn) (see Chapter 3, Section 1.2, in [18]). For 0 < p ≤ 1, a function a
on Rn is called an Hp-atom if there exists a cube Q = Qa such that

supp a ⊂ Q, ‖a‖L∞ ≤ |Q|−1/p,

∫
Rn

xα a(x) dx = 0, |α| ≤ N,

where |Q| is the Lebesgue measure of Q and N is any fixed integer satisfying
N ≥ [n(1/p− 1)] (see p. 112 of [18]). It is known that every f ∈ Hp(Rn) can be
written as

f =

∞∑
i=1

λiai in S ′(Rn),
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where {ai} is a collection of Hp-atoms and {λi} is a sequence of complex numbers
with

∑∞
i=1 |λi|p <∞. Moreover,

‖f‖Hp ≈ inf
( ∞∑

i=1

|λi|p
)1/p

,

where the infimum is taken over all representations of f (see Theorem 2 in Chap-
ter 3 of [18]).

Let φ0 be a C∞-function on [0,∞) satisfying

φ0(t) = 1 on [0, 1/8], suppφ0 ⊂ [0, 1/4].

We set φ1(t) = 1 − φ0(t), and define the functions Φ(i1,i2) on R2n \ {0}, (i1, i2) ∈
{0, 1}2, by
(2.1) Φ(i1,i2)(ξ1, ξ2) = φi1 (|ξ1|/|ξ|)φi2(|ξ2|/|ξ|),
where ξ = (ξ1, ξ2) ∈ Rn × Rn and |ξ| = √|ξ1|2 + |ξ2|2. We note that Φ(0,0) = 0.

Lemma 2.1 ([6], Lemma 3.1; [20], Section 5). 1) For (ξ1, ξ2) ∈ Rn×Rn \{(0, 0)},
Φ(1,1)(ξ1, ξ2) + Φ(0,1)(ξ1, ξ2) + Φ(1,0)(ξ1, ξ2) = 1.

2) Each Φ(i1,i2) satisfies∣∣∂α1

ξ1
∂α2

ξ2
Φ(i1,i2)(ξ1, ξ2)

∣∣ ≤ Cα1,α2

(i1,i2)

(|ξ1|+ |ξ2|
)−(|α1|+|α2|)

for all multi-indices α1, α2.

3) suppΦ(1,1) ⊂ {|ξ1|/8 ≤ |ξ2| ≤ 8|ξ1|
}
, suppΦ(0,1) ⊂ {|ξ1| ≤ |ξ2|/2

}
and

suppΦ(1,0) ⊂
{|ξ2| ≤ |ξ1|/2

}
.

Lemma 2.2 (Lemma 3.2 in [6], Lemma 3.3 in [8]). Let s > n/2, max{1, n/s} <
q < 2 and r > 0. Then there exists a constant C > 0 such that∣∣Tm(·/2j)(f1, f2)(x)

∣∣ ≤ C‖m‖W (s,s)Mqf1(x)Mqf2(x)

for all j ∈ Z, all m ∈ W (s,s)(R2n) with suppm ⊂ {(|ξ1|2 + |ξ2|2)1/2 ≤ r} and all
f1, f2 ∈ S(Rn).

For a function F (x1, x2) on Rn×Rn, we denote by ‖F (x1, x2)‖Lp
xi

the Lp-norm

of F (x1, x2) with respect to the variable xi, i = 1, 2. The proof of the following
lemma can be reduced to Theorem 1.4.1 in [21], but we shall give a proof for the
reader’s convenience.

Lemma 2.3. Let 2 ≤ q ≤ ∞, r > 0 and s1, s2 ∈ R. Assume that suppm ⊂
{(|ξ1|2 + |ξ2|2)1/2 ≤ r}, and set K = F−1m. Then there exists a constant C > 0
such that

‖〈x1〉s1〈x2〉s2K(x1, x2)‖Lq
x2

≤ C ‖〈x1〉s1〈x2〉s2K(x1, x2)‖L2
x2

for all x1 ∈ R
n,

‖〈x1〉s1〈x2〉s2K(x1, x2)‖Lq
x1

≤ C ‖〈x1〉s1〈x2〉s2K(x1, x2)‖L2
x1

for all x2 ∈ R
n,

where C depends only on q, r, s1 and s2.
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Proof. We only consider the first estimate, since our argument works also for the
second one.

First, let us prove the case q = ∞. Using ϕ ∈ S(Rn) satisfying ϕ̂ = 1 on
{|ξ2| ≤ r}, we can write m(ξ1, ξ2) = m(ξ1, ξ2)ϕ̂(ξ2). Then, by Schwarz’s inequality,

〈x1〉s1〈x2〉s2 |K(x1, x2)| = 〈x1〉s1〈x2〉s2
∣∣∣ ∫

Rn

K(x1, x2 − y2)ϕ(y2) dy2

∣∣∣
�

∫
Rn

〈x1〉s1〈x2 − y2〉s2
∣∣K(x1, x2 − y2)

∣∣〈y2〉|s2||ϕ(y2)| dy2
≤

(∫
Rn

∣∣〈x1〉s1〈x2 − y2〉s2K(x1, x2 − y2)
∣∣2 dy2)1/2

×
(∫

Rn

∣∣〈y2〉|s2|ϕ(y2)∣∣2 dy2)1/2

≈ ‖〈x1〉s1 〈x2〉s2K(x1, x2)‖L2
x2
.

Hence,

‖〈x1〉s1〈x2〉s2K(x1, x2)‖L∞
x2

� ‖〈x1〉s1 〈x2〉s2K(x1, x2)‖L2
x2
.

The case q = 2 is obvious, and the case 2 < q <∞ follows from interpolation. �

Lemma 2.4 (Lemma 3.4 in [8]). Let s1, s2 ∈ R, and let Ψ′ ∈ S(R2n) be such that
suppΨ′ is a compact subset of R2n \{0}. Assume that Φ ∈ C∞(R2n \{0}) satisfies∣∣∂α1

ξ1
∂α2

ξ2
Φ(ξ1, ξ2)

∣∣ ≤ Cα1,α2

(|ξ1|+ |ξ2|
)−(|α1|+|α2|)

for all multi-indices α1, α2. Then there exists a constant C > 0 such that

sup
j∈Z

∥∥m(2j ·)Φ(2j ·)Ψ′∥∥
W (s1,s2) ≤ C sup

j∈Z

‖mj‖W (s1,s2)

for all m ∈ L∞(R2n) satisfying supj∈Z ‖mj‖W (s1,s2) < ∞, where mj is defined
by (1.5).

The condition s1, s2 > n/2 was assumed in Lemma 3.4 of [8], but it is easy to
modify the argument there to cover all s1, s2 ∈ R.

We end this section with the following remark which will be used in the sequel.

Remark 2.5. By Lemma 2.4, we have∥∥〈x1〉s1〈x2〉s2 ∂α1
x1
∂α2
x2
Kj(x1, x2)

∥∥
L2

x1,x2

� sup
j∈Z

‖mj‖W (s1,s2) ,

where s1, s2 ∈ R, Kj = F−1mj and mj is defined by (1.5). In fact, since

∂α1
x1
∂α2
x2
Kj(x1, x2) = i|α1|+|α2|F−1

[
m(2j·) ξα1

1 ξα2
2 Ψ

]
(x1, x2),

the estimate follows from Lemma 2.4 with Φ ≡ 1 and Ψ′ = ξα1

1 ξα2

2 Ψ.
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3. The boundedness from Hp1 ×Hp2 to Lp for 0 < p1, p2 ≤ 1

In this section, we shall prove Theorem 1.1 with 0 < p1, p2 ≤ 1. That is, in the
case 0 < p1, p2 ≤ 1 and 1/p1 + 1/p2 = 1/p, under the assumptions

(3.1) s1 >
n

p1
− n

2
, s2 >

n

p2
− n

2
, s1 + s2 >

n

p1
+
n

p2
− n

2
,

we show that

(3.2) ‖Tm‖Hp1×Hp2→Lp � sup
j∈Z

‖mj‖W (s1,s2) .

Let ai, i = 1, 2, be Hpi -atoms with vanishing moments up to order Ni − 1 and
supp ai ⊂ Qi, where the Ni are large enough. We denote by ci the center of Qi, by

(Qi) the side length of Qi, and by Q∗

i the cube with the same center as Qi but
expanded by a factor of 2

√
n. In order to obtain (3.2), we shall prove that there

exist a function b1 depending only on a1 and a function b2 depending only on a2
such that

|Tm(a1, a2)(x)|χ(Q∗
1∩Q∗

2)
c(x) � Ab1(x)b2(x),

‖b1‖Lp1 � 1, ‖b2‖Lp2 � 1,
(3.3)

where A = supj∈Z ‖mj‖W (s1,s2) .

Before proving (3.3), let us observe that this implies (3.2). To do this, we
write fi as a sum of Hpi -atoms as fi =

∑
ki
λi,kiai,ki with

∑
ki
|λi,ki |pi � ‖fi‖pi

Hpi

for i = 1, 2, and divide Tm(f1, f2) as follows:

Tm(f1, f2) =
∑
k1,k2

λ1,k1 λ2,k2 Tm(a1,k1 , a2,k2)

=
∑
k1,k2

λ1,k1 λ2,k2 Tm(a1,k1 , a2,k2)χQ∗
1,k1

∩Q∗
2,k2

+
∑
k1,k2

λ1,k1 λ2,k2 Tm(a1,k1 , a2,k2)χ(Q∗
1,k1

∩Q∗
2,k2

)c .

The first term can be handled by the method of Grafakos–Kalton [7]. In fact, since
s1, s2 > n/2, (1.6) gives

(3.4) ‖Tm‖L2×L∞→L2 + ‖Tm‖L∞×L2→L2 � A.

Then, by using the inequality∥∥∥∑
ν

|fν |χQν

∥∥∥
Lp

�
∥∥∥∑

ν

1

|Qν |
(∫

Qν

|fν(y)| dy
)
χQν

∥∥∥
Lp

(which holds for all 0 < p ≤ 1) and the L2-estimate (3.4), we can prove∥∥∥ ∑
k1,k2

λ1,k1 λ2,k2 Tm(a1,k1 , a2,k2)χQ∗
1,k1

∩Q∗
2,k2

∥∥∥
Lp

� A ‖f1‖Hp1 ‖f2‖Hp2
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in the same way as in pp. 173–174 of [7] (here we do not need (3.3)). On the other
hand, for each a1,k1 and a2,k2 , let us take b1,k1 and b2,k2 satisfying (3.3). Then,
since∣∣∣ ∑

k1,k2

λ1,k1λ2,k2 Tm(a1,k1 , a2,k2)χ(Q∗
1,k1

∩Q∗
2,k2

)c

∣∣∣ � A

2∏
i=1

(∑
ki

|λi,ki | bi,ki

)
,

we have, by Hölder’s inequality,

∥∥∥ ∑
k1,k2

λ1,k1 λ2,k2 Tm(a1,k1 , a2,k2)χ(Q∗
1,k1

∩Q∗
2,k2

)c

∥∥∥
Lp

� A
2∏

i=1

∥∥∥∑
ki

|λi,ki | bi,ki

∥∥∥
Lpi

≤ A

2∏
i=1

(∑
ki

|λi,ki |pi
∥∥bi,ki

∥∥pi

Lpi

)1/pi

� A ‖f1‖Hp1 ‖f2‖Hp2 .

Hence, we obtain (3.2).

In order to obtain (3.3), we shall prove the following:

|Tm(a1, a2)(x)|χ(Q∗
1)

c∩(Q∗
2)

c(x) � Au(x)v(x), ‖u‖Lp1 � 1, ‖v‖Lp2 � 1,(3.5)

|Tm(a1, a2)(x)|χ(Q∗
1)

c∩Q∗
2
(x) � Au′(x)v′(x), ‖u′‖Lp1 � 1, ‖v′‖Lp2 � 1,(3.6)

|Tm(a1, a2)(x)|χQ∗
1∩(Q∗

2)
c(x) � Au′′(x)v′′(x), ‖u′′‖Lp1 � 1, ‖v′′‖Lp2 � 1,(3.7)

where u, u′ and u′′ depend only on a1, and v, v′ and v′′ depend on only a2.
Once (3.5)–(3.7) are proved, we can take u+ u′ + u′′ and v + v′ + v′′ as b1 and b2
in (3.3).

Let Ψ ∈ S(R2n) be as in (1.3) with d = 2n, and write mj(ξ) = m(2jξ)Ψ(ξ) and
Kj = F−1mj . Then Tm(a1, a2)(x) =

∑
j∈Z

gj(x) with

gj(x) =
1

(2π)2n

∫
R2n

eix·(ξ1+ξ2)m(ξ)Ψ(ξ/2j) â1(ξ1) â2(ξ2) dξ1dξ2

=

∫
R2n

22jnKj

(
2j(x − y1), 2

j(x− y2)
)
a1(y1) a2(y2) dy1dy2.

(3.8)

Using the moment condition for a1 and Taylor’s formula, we can write

gj(x) = 22jn
∑

|α1|=N1

Cα1

∫
0<θ1<1

y1∈Q1,y2∈Q2

(1 − θ1)
N1−1K

(α1,0)
j

(
2jxθ1c1,y1

, 2j(x− y2)
)

× (
2j(y1 − c1)

)α1
a1(y1) a2(y2) dθ1dy1dy2,(3.9)

where

xθ1c1,y1
= x− c1 − θ1(y1 − c1) and K

(α1,α2)
j (x1, x2) = ∂α1

x1
∂α2
x2
Kj(x1, x2).

We note that the moment condition of a2 gives the similar representation of gj
with the variables y1 and y2 interchanged.
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Proof of (3.5). Under the assumption (3.1), we can take α1 and α2 such that{
s1 > α1n

α1 > 1/p1 − 1/2,

{
s2 > α2n

α2 > 1/p2 − 1/2,
α1 + α2 = 1/p1 + 1/p2 − 1/2.

We define β1 and β2 by β1/2 = 1/p1 − α1 and β2/2 = 1/p2 − α2. Notice that
β1/2 = α2 − 1/p2 + 1/2 > 0, and similarly, β2/2 > 0 and β1 + β2 = 1.

In order to obtain u and v satisfying (3.5), we shall prove that for each j ∈ Z

there exist a function uj depending only on a1 and a function vj depending only
on a2 such that

|gj(x)|χ(Q∗
1)

c∩(Q∗
2)

c(x) � Auj(x)vj(x),(3.10)

‖uj‖Lp1 �
{
(2j
(Q1))

−n/p1+n+N1β1 if 2j
(Q1) ≤ 1,

(2j
(Q1))
−n/p1+n−(s1−α1n) if 2j
(Q1) > 1,

(3.11)

‖vj‖Lp2 �
{
(2j
(Q2))

−n/p2+n+N2β2 if 2j
(Q2) ≤ 1,

(2j
(Q2))
−n/p2+n−(s2−α2n) if 2j
(Q2) > 1.

(3.12)

Before proving (3.10)–(3.12), let us observe that these imply (3.5). First, (3.10)
gives

|Tm(a1, a2)|χ(Q∗
1)

c∩(Q∗
2)

c ≤
∑
j∈Z

|gj|χ(Q∗
1)

c∩(Q∗
2)

c

� A
∑
j∈Z

ujvj ≤ A
(∑

j∈Z

uj

)(∑
j∈Z

vj

)
.

Second, if we set u =
∑

j∈Z
uj , then ‖u‖Lp1 � 1. In fact, since−n/p1+n+N1β1 > 0

and −n/p1 + n− (s1 −α1n) < 0, where we have used that N1 is large enough and
p1 ≤ 1, we have, by (3.11),

‖u‖p1

Lp1 ≤
∑
j∈Z

‖uj‖p1

Lp1 =

( ∑
2j�(Q1)≤1

+
∑

2j�(Q1)>1

)
‖uj‖p1

Lp1

�
∑

2j�(Q1)≤1

(2j
(Q1))
(−n/p1+n+N1β1)p1

+
∑

2j�(Q1)>1

(2j
(Q1))
(−n/p1+n−(s1−α1n))p1 � 1.

Similarly, if we set v =
∑

j∈Z
vj , then ‖v‖Lp2 � 1. Hence, we obtain u and v

satisfying (3.5).

Let us prove (3.10)–(3.12). We assume x ∈ (Q∗
1)

c ∩ (Q∗
2)

c. Note that

|x− c1| ≈ |x− y1| and |x− c2| ≈ |x− y2| for y1 ∈ Q1 and y2 ∈ Q2.
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Then, it follows from (3.8) and Lemma 2.3 that

〈2j(x− c1)〉s1〈2j(x− c2)〉s2 |gj(x)|
� 22jn

∫
y1∈Q1

y2∈Q2

〈2j(x− y1)〉s1 〈2j(x− y2)〉s2 |Kj(2
j(x− y1), 2

j(x − y2))|

× 
(Q1)
−n/p1
(Q2)

−n/p2 dy1dy2

≤ 22jn
(Q1)
−n/p1+n
(Q2)

−n/p2+n

×
(∫

y1∈Q1

sup
z2∈Rn

(〈2j(x− y1)〉s1 〈z2〉s2 |Kj(2
j(x − y1), z2)|

)

(Q1)

−n dy1

)
� 22jn
(Q1)

−n/p1+n
(Q2)
−n/p2+n

×
(∫

y1∈Q1

∥∥〈2j(x− y1)〉s1 〈z2〉s2Kj(2
j(x− y1), z2)

∥∥
L2

z2


(Q1)
−n dy1

)
= 22jn
(Q1)

−n/p1+n
(Q2)
−n/p2+nh

(Q1,0,0)
j (x),

where

(3.13) h
(Q1,0,0)
j (x) =

∫
y1∈Q1

∥∥〈2j(x− y1)〉s1 〈z2〉s2Kj(2
j(x− y1), z2)

∥∥
L2

z2


(Q1)
−n dy1.

Thus,

(3.14) |gj(x)| � 22jn
(Q1)
−n/p1+n
(Q2)

−n/p2+n

× 〈2j(x − c1)〉−s1〈2j(x− c2)〉−s2h
(Q1,0,0)
j (x).

By Minkowski’s inequality for integrals,

‖h(Q1,0,0)
j ‖L2 ≤

∫
y1∈Q1

∥∥∥ ∥∥〈2j(x− y1)〉s1〈z2〉s2Kj(2
j(x− y1), z2)

∥∥
L2

z2

∥∥∥
L2

x


(Q1)
−ndy1

= 2−jn/2 ‖〈z1〉s1〈z2〉s2Kj(z1, z2)‖L2
z1,z2

= 2−jn/2 ‖mj‖W (s1,s2) ≤ A2−jn/2.(3.15)

On the other hand, since

|x− c1| ≈ |x− c1 − θ1(y1 − c1)| = |xθ1c1,y1
| for 0 < θ1 < 1 and y1 ∈ Q1,

replacing (3.8) by (3.9) in the argument above, we obtain

(3.16) |gj(x)| � 22jn
(Q1)
−n/p1+n
(Q2)

−n/p2+n

× 〈2j(x− c1)〉−s1〈2j(x− c2)〉−s2h
(Q1,N1,0)
j (x),

where

h
(Q1,N1,0)
j (x) =

∑
|α1|=N1

∫
0<θ1<1
y1∈Q1

∥∥〈2jxθ1c1,y1
〉s1〈z2〉s2K(α1,0)

j (2jxθ1c1,y1
, z2)

∥∥
L2

z2

× (2j
(Q1))
N1
(Q1)

−n dθ1dy1,(3.17)
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and we also have, by Remark 2.5,

(3.18) ‖h(Q1,N1,0)
j ‖L2 � A2−jn/2(2j
(Q1))

N1 .

It follows from (3.14) and (3.16) that

|gj(x)| � 22jn
(Q1)
−n/p1+n
(Q2)

−n/p2+n〈2j(x − c1)〉−s1〈2j(x− c2)〉−s2

×min
{
h
(Q1,0,0)
j (x), h

(Q1,N1,0)
j (x)

}
.(3.19)

By interchanging the roles of y1 and y2 in the argument above, we can also
prove, for x ∈ (Q∗

1)
c ∩ (Q∗

2)
c,

|gj(x)| � 22jn
(Q1)
−n/p1+n
(Q2)

−n/p2+n〈2j(x − c1)〉−s1〈2j(x− c2)〉−s2

×min
{
h
(Q2,0,0)
j (x), h

(Q2,0,N2)
j (x)

}
,(3.20)

where

h
(Q2,0,0)
j (x) =

∫
y2∈Q2

∥∥〈z1〉s1〈2j(x− y2)〉s2Kj(z1, 2
j(x− y2))

∥∥
L2

z1


(Q2)
−n dy2,

h
(Q2,0,N2)
j (x) =

∑
|α2|=N2

∫
0<θ2<1
y2∈Q2

∥∥〈z1〉s1〈2jxθ2c2,y2
〉s2K(0,α2)

j (z1, 2
jxθ2c2,y2

)
∥∥
L2

z1

× (2j
(Q2))
N2
(Q2)

−n dθ2dy2

and xθ2c2,y2
= x− c2 − θ2(y2 − c2).

By (3.19) and (3.20), we see that

|gj(x)|χ(Q∗
1)

c∩(Q∗
2)

c(x) =A×A−β1 |gj(x)|β1χ(Q∗
1)

c(x)×A−β2 |gj(x)|β2χ(Q∗
2)

c(x)

�A×A−β1 2jn 
(Q1)
−n/p1+nχ(Q∗

1)
c(x)〈2j(x− c1)〉−s1

× (
min

{
h
(Q1,0,0)
j (x), h

(Q1,N1,0)
j (x)

})β1

×A−β2 2jn 
(Q2)
−n/p2+nχ(Q∗

2)
c(x)〈2j(x − c2)〉−s2

× (
min

{
h
(Q2,0,0)
j (x), h

(Q2,0,N2)
j (x)

})β2

=A× uj(x)× vj(x).

It should be emphasized that uj depends only on Q1 (namely, a1) and vj depends
only on Q2 (namely, a2), and we obtain (3.10). Let us check that uj satisfies (3.11).
By Hölder’s inequality with 1/p1 = α1 + β1/2,

‖uj‖Lp1 ≤ A−β1 2jn 
(Q1)
−n/p1+n

∥∥〈2j(· − c1)〉−s1
∥∥
L1/α1((Q∗

1)
c)

× ∥∥(min
{
h
(Q1,0,0)
j , h

(Q1,N1,0)
j

})β1
∥∥
L2/β1

.
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Since s1/α1 > n,

∥∥〈2j(· − c1)〉−s1
∥∥
L1/α1((Q∗

1)
c)

≈
{
2−jnα1 if 2j
(Q1) ≤ 1,

2−jnα1(2j
(Q1))
−s1+α1n if 2j
(Q1) > 1,

=

{
2−jn(1/p1−β1/2) if 2j
(Q1) ≤ 1,

2−jn(1/p1−β1/2)(2j
(Q1))
−s1+α1n if 2j
(Q1) > 1.

By (3.15) and (3.18), we also have∥∥(min
{
h
(Q1,0,0)
j , h

(Q1,N1,0)
j

})β1
∥∥
L2/β1

≤ min
{∥∥h(Q1,0,0)

j

∥∥β1

L2 ,
∥∥h(Q1,N1,0)

j

∥∥β1

L2

}
�

{(
A 2−jn/2(2j
(Q1))

N1
)β1

if 2j
(Q1) ≤ 1,(
A 2−jn/2

)β1
if 2j
(Q1) > 1..

Therefore, uj satisfies (3.11). In the same way, we can check that vj satisfies (3.12).
�

Proof of (3.6). In order to obtain u′ and v′ satisfying (3.6), we shall prove that
for each j ∈ Z there exist a function u′j depending only on a1 and a function v′

depending only on a2 such that

|gj(x)|χ(Q∗
1)

c∩Q∗
2
(x) � Au′j(x)v

′(x),(3.21)

‖u′j‖Lp1 �
{
(2j
(Q1))

−n/p1+n+N1 if 2j
(Q1) ≤ 1

(2j
(Q1))
−s1+n/2 if 2j
(Q1) > 1,

(3.22)

‖v′‖Lp2 � 1.(3.23)

Once these are proved, we can take
∑

j∈Z
u′j and v′ as u′ and v′ in (3.6).

Let us prove (3.21)–(3.23). We assume x ∈ (Q∗
1)

c∩Q∗
2. Since |x− c1| ≈ |x−y1|

for y1 ∈ Q1 and s2 > n/2, we use (3.8) and Schwarz’s inequality to obtain

〈2j(x − c1)〉s1 |gj(x)|
� 22jn

∫
y1∈Q1

y2∈R
n

〈2j(x− y1)〉s1 |Kj(2
j(x − y1), 2

j(x− y2))|

× 
(Q1)
−n/p1
(Q2)

−n/p2 dy1dy2

= 2jn
(Q1)
−n/p1+n
(Q2)

−n/p2

×
∫
y1∈Q1

z2∈R
n

〈2j(x− y1)〉s1 |Kj(2
j(x − y1), z2)|
(Q1)

−n dy1dz2

� 2jn
(Q1)
−n/p1+n
(Q2)

−n/p2

×
∫
y1∈Q1

∥∥〈2j(x− y1)〉s1〈z2〉s2Kj(2
j(x− y1), z2)

∥∥
L2

z2


(Q1)
−n dy1

= 2jn
(Q1)
−n/p1+n
(Q2)

−n/p2hj
(Q1,0,0)(x),

where hj
(Q1,0,0) is defined by (3.13).
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Thus,

(3.24) |gj(x)| � 2jn
(Q1)
−n/p1+n
(Q2)

−n/p2〈2j(x− c1)〉−s1hj
(Q1,0,0)(x).

On the other hand, since |x− c1| ≈ |x− c1 − θ1(y1 − c1)| = |xθ1c1,y1
| for 0 < θ1 < 1

and y1 ∈ Q1, replacing (3.8) by (3.9) in the argument above, we obtain

(3.25) |gj(x)| � 2jn
(Q1)
−n/p1+n
(Q2)

−n/p2〈2j(x− c1)〉−s1h
(Q1,N1,0)
j (x),

where h
(Q1,N1,0)
j is defined by (3.17).

Now, (3.24) and (3.25) imply (3.21) with

u′j(x) = A−12jn
(Q1)
−n/p1+nχ(Q∗

1)
c(x)

× 〈2j(x− c1)〉−s1 min
{
h
(Q1,0,0)
j (x), h

(Q1,N1,0)
j (x)

}
,

v′(x) = 
(Q2)
−n/p2χQ∗

2
(x).

It is clear that v′ satisfies (3.23). Let us check that u′j satisfies (3.22). By Hölder’s
inequality with 1/p1 = 1/q1 + 1/2,

‖u′j‖Lp1 � A−12jn
(Q1)
−n/p1+n

× ∥∥〈2j(· − c1)〉−s1
∥∥
Lq1((Q∗

1)
c)

∥∥min
{
h
(Q1,0,0)
j , h

(Q1,N1,0)
j

}∥∥
L2 .

Since s1q1 > n,∥∥〈2j(· − c1)〉−s1
∥∥
Lq1((Q∗

1)
c)

≈
{
2−jn(1/p1−1/2) if 2j
(Q1) ≤ 1

2−jn(1/p1−1/2)(2j
(Q1))
−s1+n(1/p1−1/2) if 2j
(Q1) > 1.

By (3.15) and (3.18),

∥∥min
{
h
(Q1,0,0)
j , h

(Q1,N1,0)
j

}∥∥
L2 �

{
A2−jn/2(2j
(Q1))

N1 if 2j
(Q1) ≤ 1

A2−jn/2 if 2j
(Q1) > 1.

Therefore, u′j satisfies (3.22). �

Proof of (3.7). This can be proved in the same way as in the proof of (3.6) only
by interchanging the roles of y1 and y2. This completes the proof of (3.3) and
thus (3.1)–(3.2) is proved. �

Remark 3.1. Notice that the proof of (3.6) works under the weaker assumption
that s1 > n/p1 − n/2 and s2 > n/2. Similarly we can prove (3.7) under the
assumption that s1 > n/2 and s2 > n/p2 − n/2.
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4. The boundedness from Hp1 × L2 to Lp for 0 < p1 ≤ 1

In this section, we shall prove Theorem 1.1 with 0 < p1 ≤ 1 and p2 = 2. That is,
in the case 0 < p1 ≤ 1 and 1/p1 + 1/2 = 1/p, we show that

(4.1) s1 > n/p1 − n/2, s2 > n/2 =⇒ ‖Tm‖Hp1×L2→Lp � sup
j∈Z

‖mj‖W (s1,s2) .

It should be pointed out that by interchanging the roles of p1 and p2 in the proof
of (4.1) we can also prove, for 0 < p2 ≤ 1, 1/2 + 1/p2 = 1/p,

(4.2) s1 > n/2, s2 > n/p2 − n/2 =⇒ ‖Tm‖L2×Hp2→Lp � sup
j∈Z

‖mj‖W (s1,s2) .

By Lemma 2.1, we can decompose m as follows:

m = mΦ(1,1) +mΦ(0,1) +mΦ(1,0) = m(1) +m(2) +m(3).

Then

suppm(1) ⊂ {(ξ1, ξ2) ∈ R
n × R

n : |ξ1|/8 ≤ |ξ2| ≤ 8|ξ1|},
suppm(2) ⊂ {(ξ1, ξ2) ∈ R

n × R
n : |ξ1| ≤ |ξ2|/2},

suppm(3) ⊂ {(ξ1, ξ2) ∈ R
n × R

n : |ξ2| ≤ |ξ1|/2}.

We use the following notation: A0 denotes the set of ϕ ∈ S(Rn) for which suppϕ
is compact and ϕ = 1 on some neighborhood of the origin; A1 denotes the set of
ψ′ ∈ S(Rn) for which suppψ′ is a compact subset of Rn \ {0}.

In the rest of this section, we assume 0 < p1 ≤ 1, 1/p1 + 1/2 = 1/p, s1 >
n/p1 − n/2, and s2 > n/2. We shall prove

‖Tm(i)‖Hp1×L2→Lp � sup
j∈Z

‖m(i)
j ‖W (s1,s2)

for i = 1, 2, 3, where the m
(i)
j are defined by (1.5) with m replaced by m(i). Once

these are proved, (4.1) follows from 2) of Lemma 2.1 and Lemma 2.4. Let s =
min{s1, s2}. Then, since n/s < 2, we can take q satisfying max{1, n/s} < q < 2.
We consider first m(1).

Estimate for m(1). We write simply m instead of m(1). In order to obtain the
boundedness of Tm, we shall prove that for an Hp1-atom a1 and an L2-function f2
there exist a function b1 depending only on a1 and a function b2 depending only
on f2 such that

(4.3) |Tm(a1, f2)(x)| � Ab1(x)b2(x), ‖b1‖Lp1 � 1, ‖b2‖L2 � ‖f2‖L2 ,

where

A = sup
j∈Z

‖mj‖W (s1,s2) .
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Let us observe that (4.3) implies the boundedness of Tm. To see this, we decompose
f1 ∈ Hp1(Rn) as

f1 =
∑
k

λ1,ka1,k,

with Hp1 -atoms a1,k and with∑
k

|λ1,k|p1 � ‖f1‖p1

Hp1 .

Then by taking the functions b1,k and b2 satisfying (4.3) for a1 = a1,k, we have

‖Tm(f1, f2)‖Lp =
∥∥∥∑

k

λ1,kTm(a1,k, f2)
∥∥∥
Lp

� A
∥∥∥(∑

k

|λ1,k|b1,k
)
b2

∥∥∥
Lp

≤ A
∥∥∥∑

k

|λ1,k|b1,k
∥∥∥
Lp1

‖b2‖L2 � A
(∑

k

|λ1,k|p1

)1/p1‖f2‖L2

� A‖f1‖Hp1 ‖f2‖L2 .

To obtain (4.3), we shall prove

|Tm(a1, f2)(x)|χ(Q∗
1 )

c(x) � Au(x)v(x), ‖u‖Lp1 � 1, ‖v‖L2 � ‖f2‖L2 ,(4.4)

|Tm(a1, f2)(x)|χQ∗
1
(x) � Au′(x)v′(x), ‖u′‖Lp1 � 1, ‖v′‖L2 � ‖f2‖L2,(4.5)

where u and u′ depend only on a1, and v and v′ depend only on f2. Once (4.4)
and (4.5) are proved, we can take u+ u′ and v + v′ as b1 and b2 in (4.3). In order
to prove (4.4) and (4.5), we decompose Tm(a1, f2)(x) as

Tm(a1, f2)(x) =
∑
j∈Z

gj(x),

where gj(x) is defined by (3.8) with a2 replaced by f2.

Proof of (4.4). We shall prove that for each j ∈ Z there exists a function uj
depending only on a1 such that

|gj(x)|χ(Q∗
1)

c(x) � Auj(x)Mqf2(x),(4.6)

‖uj‖Lp1 �
{
(2j
(Q1))

−n/p1+n+N1 if 2j
(Q1) ≤ 1

(2j
(Q1))
−s1+n/2 if 2j
(Q1) > 1.

(4.7)

Once these are proved, we can take
∑

j∈Z
uj and Mqf2 as u and v in (4.4). Here,

notice that Mq is bounded on L2(Rn) since q < 2.
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We assume that x ∈ (Q∗
1)

c. Since |x − c1| ≈ |x − y1| for y1 ∈ Q1, s2q > n and
q′ > 2, we have by (3.8), Hölder’s inequality and Lemma 2.3,

〈 2j(x− c1)〉s1 |gj(x)|
� 22jn

∫
y1∈Q1

y2∈R
n

〈2j(x− y1)〉s1 |Kj(2
j(x− y1), 2

j(x− y2))|
(Q1)
−n/p1 |f2(y2)| dy1dy2

= 22jn
(Q1)
−n/p1+n

∫
y1∈Q1

y2∈R
n

〈2j(x− y1)〉s1〈2j(x− y2)〉s2

× |Kj(2
j(x− y1), 2

j(x− y2))|
(Q1)
−n |f2(y2)|

〈2j(x− y2)〉s2 dy1dy2

� 2jn
(Q1)
−n/p1+n

(
2jn

∫
Rn

|f2(y2)|q
〈2j(x− y2)〉s2q dy2

)1/q

×
∫
y1∈Q1

∥∥〈2j(x − y1)〉s1〈z2〉s2Kj(2
j(x− y1), z2)

∥∥
Lq′

z2


(Q1)
−n dy1

� 2jn
(Q1)
−n/p1+nMqf2(x)

×
∫
y1∈Q1

∥∥〈2j(x − y1)〉s1〈z2〉s2Kj(2
j(x− y1), z2)

∥∥
L2

z2


(Q1)
−n dy1

= 2jn
(Q1)
−n/p1+nh

(Q1,0,0)
j (x)Mqf2(x),

where h
(Q1,0,0)
j is defined by (3.13). Thus

(4.8) |gj(x)| � 2jn 
(Q1)
−n/p1+n 〈2j(x− c1)〉−s1 h

(Q1,0,0)
j (x)Mqf2(x).

On the other hand, since |x− c1| ≈ |x− c1 − θ1(y1 − c1)| = |xθ1c1,y1
| for 0 < θ1 < 1

and y1 ∈ Q1, replacing (3.8) by (3.9) in the argument above, we obtain

(4.9) |gj(x)| � 2jn 
(Q1)
−n/p1+n 〈2j(x− c1)〉−s1 h

(Q1,N1,0)
j (x)Mqf2(x),

where h
(Q1,N1,0)
j is defined by (3.17).

Now, (4.8) and (4.9) imply (4.6) with

uj(x) =A−1 2jn 
(Q1)
−n/p1+n χ(Q∗

1)
c(x)

× 〈2j(x − c1)〉−s1 min
{
h
(Q1,0,0)
j (x), h

(Q1,N1,0)
j (x)

}
.

This uj is the same as the u′j in the proof of (3.6). Thus we have already checked
that uj satisfies (4.7) in the proof of (3.6) (cf. also Remark 3.1). �

Proof of (4.5). We shall prove that

(4.10) |gj(x)|χQ∗
1
(x) � AMq(ψ(D/2

j)a1)(x)χQ∗
1
(x)Mq(ψ

′(D/2j)f2)(x),
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where ψ, ψ′ ∈ A1. Once this is proved, we obtain (4.5). In fact, (4.10) implies the
first inequality of (4.5) with

u′(x) =
(∑

j∈Z

Mq(ψ(D/2
j)a1)(x)

2
)1/2

χQ∗
1
(x),

v′(x) =
(∑

j∈Z

Mq(ψ
′(D/2j)f2)(x)2

)1/2

.

Since q < 2, we have, by the vector-valued maximal inequality of Fefferman–Stein
and the Littlewood–Paley inequality,

‖u′‖Lp1 =
∥∥∥(∑

j∈Z

Mq(ψ(D/2
j)a1)

2
)1/2

χQ∗
1

∥∥∥
Lp1

≤
∥∥∥(∑

j∈Z

Mq(ψ(D/2
j)a1)

2
)1/2∥∥∥

L2
|Q∗

1|1/p1−1/2

=
∥∥∥(∑

j∈Z

M(|ψ(D/2j)a1|q)2/q
)q/2∥∥∥1/q

L2/q
|Q∗

1|1/p1−1/2

�
∥∥∥(∑

j∈Z

|ψ(D/2j)a1|2
)1/2∥∥∥

L2
|Q∗

1|1/p1−1/2 � ‖a1‖L2 |Q∗
1|1/p1−1/2 � 1,

and similarly ‖v′‖L2 � ‖f2‖L2 .

Let us prove (4.10). Since suppΨ(·/2j) ⊂ {2j−1 ≤ (|ξ1|2 + |ξ2|2)1/2 ≤ 2j+1}
and suppm ⊂ {|ξ2|/8 ≤ |ξ1| ≤ 8|ξ2|}, where Ψ is as in (1.3) with d = 2n, if
(ξ1, ξ2) ∈ suppm(·)Ψ(·/2j), then |ξ1| ≈ |ξ2| ≈ 2j. Hence, we can find ψ, ψ′ ∈ A1

independent of j such that

gj(x) =
1

(2π)2n

∫
R2n

eix·(ξ1+ξ2)mj(ξ1/2
j, ξ2/2

j)

× ψ(ξ1/2
j) â1(ξ1)ψ

′(ξ2/2j) f̂2(ξ2) dξ1dξ2

= Tmj(·/2j)
(
ψ(D/2j)a1, ψ

′(D/2j)f2
)
(x),

where
mj(ξ1, ξ2) = m(2jξ1, 2

jξ2)Ψ(ξ1, ξ2).

Since suppmj is included in a compact subset independent of j, (4.10) follows from
Lemma 2.2. This completes the proof of (4.5). �

We next consider m(2).

Estimate for m(2). We write simply m instead of m(2). In order to obtain the
boundedness of Tm, we shall use the Littlewood–Paley function

G(F )(x) =
(∑

j∈Z

|ψ(D/2j)F (x)|2
)1/2

,
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where ψ is as in (1.3) with d = n. Since ‖F‖Lp � ‖F‖Hp ≈ ‖G(F )‖Lp , the
boundedness of Tm will follow if we prove the estimate

(4.11) ‖G(Tm(f1, f2))‖Lp � A ‖f1‖Hp1 ‖f2‖L2 ,

where A = supj∈Z ‖mj‖W (s1,s2) .

To prove (4.11), we shall prove that for an Hp1-atom a1 and for an L2-func-
tion f2 there exist a function b1 depending only on a1 and a function b2 depending
only on f2 such that

(4.12) G(Tm(a1, f2))(x) � Ab1(x)b2(x), ‖b1‖Lp1 � 1, ‖b2‖L2 � ‖f2‖L2.

Let us observe that (4.12) implies (4.11). To see this, we decompose f1 as

f1 =
∑
k

λ1,k a1,k,

withHp1 -atoms a1,k and with
∑

k |λ1,k|p1 � ‖f1‖p1

Hp1 . Then by taking the functions
b1,k and b2 satisfying (4.12) for a1 = a1,k, we have

G(Tm(f1, f2))(x) = G
(∑

k

λ1,k Tm(a1,k, f2)
)
(x)

≤
∑
k

|λ1,k|G(Tm(a1,k, f2))(x) � A
∑
k

|λ1,k| b1,k(x) b2(x).

Hence, by Hölder’s inequality,

‖G(Tm(f1, f2))‖Lp � A
∥∥∥∑

k

|λ1,k |b1,k
∥∥∥
Lp1

‖b2‖L2

≤ A
(∑

k

|λ1,k|p1 ‖b1,k‖p1

Lp1

)1/p1‖b2‖L2

� A
(∑

k

|λ1,k|p1

)1/p1‖b2‖L2 � A ‖f1‖Hp1 ‖f2‖L2,

which is the estimate (4.11).
To prove (4.12), we prove that for each j ∈ Z there exists a function uj de-

pending only on a1 such that

|ψ(D/2j)Tm(a1, f2)(x)|χ(Q∗
1)

c(x) � Auj(x)Mqf2(x),(4.13) ∥∥∥(∑
j∈Z

u2j

)1/2∥∥∥
Lp1

� 1(4.14)

and also prove that there exists a ψ′ ∈ A1 such that

(4.15) |ψ(D/2j)Tm(a1, f2)(x)|χQ∗
1
(x) � AMqa1(x)Mq(ψ

′(D/2j)f2)(x).
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We shall see that these estimates imply (4.12). In fact, (4.13) and (4.15) imply

G(Tm(a1, f2))(x) =
(∑

j∈Z

|ψ(D/2j)Tm(a1, f2)(x)|2χ(Q∗
1)

c(x)
)1/2

+
(∑

j∈Z

|ψ(D/2j)Tm(a1, f2)(x)|2χQ∗
1
(x)

)1/2

� A
(∑

j∈Z

uj(x)
2
)1/2

Mqf2(x) +AMqa1(x)χQ∗
1
(x)

(∑
j∈Z

Mq(ψ
′(D/2j)f2)(x)2

)1/2

= A(u(x)v(x) + u′(x)v′(x)),

where

u(x) =
(∑

j∈Z

uj(x)
2
)1/2

, v(x) =Mqf2(x),

u′(x) =Mqa1(x)χQ∗
1
(x), v′(x) =

(∑
j∈Z

Mq(ψ
′(D/2j)f2)(x)2

)1/2

.

We have ‖u‖Lp1 � 1 as in (4.14) and, since Mq(a1)(x) ≤ ‖a1‖L∞ ≤ |Q1|−1/p1 ,

‖u′‖Lp1 ≤ |Q1|−1/p1‖χQ∗
1
‖Lp1 � 1.

Since q < 2, we have ‖v‖L2 � ‖f2‖L2 and, by the vector-valued maximal inequality
of Fefferman–Stein, we also have

‖v′‖L2 �
∥∥∥(∑

j∈Z

|ψ′(D/2j)f2|2
)1/2∥∥∥

L2
� ‖f2‖L2 .

Thus we obtain (4.12) with b1 = u + u′ and b2 = v + v′. We shall now
prove (4.13)–(4.14) and (4.15).

Proof of (4.13)–(4.14). Since suppm ⊂ {|ξ1| ≤ |ξ2|/2}, if (ξ1, ξ2) ∈ suppm, then
|ξ1 + ξ2| ≈ |ξ2|. Hence, we can find ϕ ∈ A0 and ψ′ ∈ A1 independent of j such
that

m(ξ1, ξ2)ψ((ξ1 + ξ2)/2
j) = m(ξ1, ξ2)ψ((ξ1 + ξ2)/2

j)ϕ(ξ1/2
j)ψ′(ξ2/2j).

Then, we can write

ψ(D/2j)Tm(a1, f2)(x)

=
1

(2π)2n

∫
R2n

eix·(ξ1+ξ2)m(ξ1, ξ2)ψ((ξ1 + ξ2)/2
j) â1(ξ1) f̂2(ξ2) dξ1dξ2

=
1

(2π)2n

∫
R2n

eix·(ξ1+ξ2)m(j)(ξ1/2
j, ξ2/2

j) â1(ξ1) f̂2(ξ2) dξ1dξ2

= Tm(j)(·/2j)(a1, f2)(x),

where

(4.16) m(j)(ξ1, ξ2) = m(2jξ1, 2
jξ2)ψ(ξ1 + ξ2)ϕ(ξ1)ψ

′(ξ2).
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This representation says that ψ(D/2j)Tm(a1, f2) is essentially the same as the gj
appearing in the proof of (4.4). Therefore, we can prove (4.13) and (4.14) in the
same way as we proved (4.6) and (4.7). Notice that the inequality

sup
j∈Z

‖m(j)‖W (s1,s2) � sup
j∈Z

‖mj‖W (s1,s2) = A

follows from Lemma 2.4, where the mj are defined by (1.5), and (4.14) follows
from (4.7) since∥∥∥(∑

j∈Z

u2j

)1/2∥∥∥
Lp1

≤
∥∥∥(∑

j∈Z

up1

j

)1/p1
∥∥∥
Lp1

=
(∑

j∈Z

‖uj‖p1

Lp1

)1/p1

. �

Proof of (4.15). It follows from the argument in the proof of (4.13)–(4.14) that
there exists a ψ′ ∈ A1 such that

m(ξ1, ξ2)ψ((ξ1 + ξ2)/2
j) = m(j)(ξ1/2

j, ξ2/2
j)ψ′(ξ2/2j),

where m(j) is defined by (4.16). Hence,

ψ(D/2j)Tm(a1, f2)(x)

=
1

(2π)2n

∫
R2n

eix·(ξ1+ξ2)m(j)(ξ1/2
j, ξ2/2

j) â1(ξ1)ψ
′(ξ2/2j) f̂2(ξ2) dξ1dξ2

= Tm(j)(·/2j)(a1, ψ
′(D/2j)f2)(x),

Since suppm(j) is included in a compact subset independent of j, (4.15) follows
from Lemma 2.2. �

We finally consider m(3).

Estimate for m(3). By the same argument as in the case of m(2), it is sufficient
to prove that for an Hp1 -atom a1 and an L2-function f2 there exist a function b1
depending only on a1 and a function b2 depending only on f2 satisfying (4.12).
To prove this, we consider ψ(D/2j)(Tm(a1, f2)). By interchanging the roles of ξ1
and ξ2 in the argument for m(2), we obtain the same estimates (4.13)–(4.14) for
the part on (Q∗

1)
c and, for the part on Q∗

1, we obtain

(4.17) |ψ(D/2j)Tm(a1, f2)(x)|χQ∗
1
(x) � AMq(ψ

′(D/2j)a1)(x)Mq(f2)(x).

As in the case of m(2), these estimates imply

G(Tm(a1, f2))(x) � A
(
u(x) v(x) + u′(x) v(x)

)
,

with

u(x) =
(∑

j∈Z

uj(x)
2
)1/2

, v(x) =Mqf2(x),

u′(x) =
(∑

j∈Z

Mq(ψ
′(D/2j)a1)(x)2

)1/2

χQ∗
1
(x).
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We have ‖u‖Lp1 � 1 and ‖v‖L2 � ‖f2‖L2 for the same reason as in the case ofm(2).
As for u′, we use Hölder’s inequality and the vector-valued maximal inequality of
Fefferman–Stein to obtain

‖u′‖Lp1 ≤
∥∥∥(∑

j∈Z

Mq(ψ
′(D/2j)a1)2

)1/2∥∥∥
L2
|Q∗

1|1/p1−1/2

�
∥∥∥(∑

j∈Z

|ψ′(D/2j)a1(x)|2
)1/2∥∥∥

L2
|Q∗

1|1/p1−1/2

� ‖a1‖L2 |Q∗
1|1/p1−1/2 � 1.

Thus we obtain (4.12) with b1 = u+u′ and b2 = v. The proof of (4.1) is complete.

5. The boundedness from L∞ × L∞ to BMO

In this section, we shall prove Theorem 1.1 with p1 = p2 = ∞. That is, we show
that

(5.1) s1 > n/2, s2 > n/2 =⇒ ‖Tm‖L∞×L∞→BMO � sup
j∈Z

‖mj‖W (s1,s2) .

To do this, we need the following lemma:

Lemma 5.1. Let s1, s2 > n/2. Then∫
|y1|>2|x|
|y2|>2|x|

|K(x+ y1, x+ y2)−K(y1, y2)| dy1dy2 � sup
j∈Z

‖mj‖W (s1,s2)

for all x ∈ Rn, where K = F−1m and mj is defined by (1.5).

Proof. We have∫
|y1|>2|x|
|y2|>2|x|

∣∣K(x+ y1,x+ y2)−K(y1, y2)
∣∣dy1dy2

≤
∫
|y1|>2|x|
|y2|>2|x|

∣∣K(x+ y1, x+ y2)−K(y1, x+ y2)
∣∣dy1dy2

+

∫
|y1|>2|x|
|y2|>2|x|

∣∣K(y1, x+ y2)−K(y1, y2)
∣∣dy1dy2

≤
∫
|y1|>2|x|
y2∈R

n

∣∣K(x+ y1, y2)−K(y1, y2)
∣∣dy1dy2

+

∫
y1∈R

n

|y2|>2|x|

∣∣K(y1, x+ y2)−K(y1, y2)
∣∣dy1dy2.

We only consider the first term; the argument works for the second term as well.



Smoothness conditions for bilinear Fourier multipliers 519

Since
K(x1, x2) =

∑
j∈Z

22jnKj(2
jx1, 2

jx2),

where Kj = F−1mj , we have∫
|y1|>2|x|
y2∈R

n

∣∣K(x + y1, y2)−K(y1, y2)
∣∣dy1dy2

≤
∑
j∈Z

22jn
∫
|y1|>2|x|
y2∈R

n

∣∣Kj(2
j(x+ y1), 2

jy2)−Kj(2
jy1, 2

jy2)
∣∣dy1dy2

=
∑
j∈Z

2jn
∫
|y1|>2|x|
y2∈R

n

∣∣Kj(2
j(x+ y1), y2)−Kj(2

jy1, y2)
∣∣dy1dy2.

Using s1, s2 > n/2, we see that

2jn
∫
|y1|>2|x|
y2∈R

n

∣∣Kj(2
j(x+ y1), y2)−Kj(2

jy1, y2)
∣∣ dy1dy2

≤ 2 · 2jn
∫
|y1|>|x|
y2∈R

n

∣∣Kj(2
jy1, y2)

∣∣ dy1dy2 = 2

∫
|y1|>2j|x|
y2∈R

n

|Kj(y1, y2)| dy1dy2

≤ 2
(∫

|y1|>2j |x|
y2∈R

n

〈y1〉−2s1 〈y2〉−2s2 dy1dy2

)1/2

‖〈y1〉s1〈y2〉s2Kj(y1, y2)‖L2
y1,y2

�
(
sup
k∈Z

‖mk‖W (s1,s2)

)
(2j |x|)−s1+n/2.

On the other hand, it follows from Taylor’s formula and Remark 2.5 that

2jn
∫
|y1|>2|x|
y2∈R

n

∣∣Kj(2
j(x+ y1), y2)−Kj(2

jy1, y2)
∣∣dy1dy2

= 2jn
∫
|y1|>2|x|
y2∈R

n

∣∣∣ ∑
|α1|=1

(2jx)α1

∫ 1

0

K
(α1,0)
j (2j(θ1x+ y1), y2)dθ1

∣∣∣dy1dy2
≤ 2j |x|

∑
|α1|=1

∫
R2n

∣∣K(α1,0)
j (y1, y2)

∣∣dy1dy2
� 2j |x|

∥∥∥〈y1〉s1 〈y2〉s2K(α1,0)
j (y1, y2)

∥∥∥
L2

y1,y2

�
(
sup
k∈Z

‖mk‖W (s1,s2)

)
2j |x|.

Combining these estimates, we have∑
j∈Z

2jn
∫
|y1|>2|x|
y2∈R

n

∣∣Kj(2
j(x+ y1), y2)−Kj(2

jy1, y2)
∣∣ dy1dy2 � sup

k∈Z

‖mk‖W (s1,s2) .

This completes the proof. �

We are now ready to prove (5.1).
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Proof of (5.1). We assume s1 > n/2 and s2 > n/2. Since

‖Tm(f1, f2)‖BMO ≈ sup
Q

inf
a∈C

1

|Q|
∫
Q

|Tm(f1, f2)(x) − a| dx,

it is sufficient to prove that for each cube Q there exists a constant aQ ∈ C such
that

1

|Q|
∫
Q

|Tm(f1, f2)(x) − aQ| dx � sup
j∈Z

‖mj‖W (s1,s2) ‖f1‖L∞ ‖f2‖L∞.

Given a cube Q, we denote by c its center, and set

aQ =

∫
y1∈(Q∗)c

y2∈(Q∗)c
K(c− y1, c− y2) f1(y1) f2(y2) dy1dy2,

f
(0)
i = fi χQ∗ and f

(1)
i = fi χ(Q∗)c , i = 1, 2.

Then

1

|Q|
∫
Q

|Tm(f1, f2)(x)− aQ| dx

≤ 1

|Q|
∫
Q

|Tm(f
(0)
1 , f

(0)
2 )(x)| dx +

1

|Q|
∫
Q

|Tm(f
(1)
1 , f

(0)
2 )(x)| dx(5.2)

+
1

|Q|
∫
Q

|Tm(f
(0)
1 , f

(1)
2 )(x)| dx +

1

|Q|
∫
Q

|Tm(f
(1)
1 , f

(1)
2 )(x) − aQ| dx.

Since s1, s2 > n/2, we have by (1.6)

‖Tm‖L2×L∞→L2 + ‖Tm‖L∞×L2→L2 � sup
j∈Z

‖mj‖W (s1,s2) .

Using this L2-estimate of Tm, we can estimate the first three terms in (5.2). In
fact, the third term can be estimated as

1

|Q|
∫
Q

|Tm(f
(0)
1 , f

(1)
2 )(x)| dx ≤ |Q|−1/2 ‖Tm(f

(0)
1 , f

(1)
2 )‖L2

≤ |Q|−1/2 ‖Tm‖L2×L∞→L2 ‖f (0)
1 ‖L2 ‖f (1)

2 ‖L∞

�
(
sup
j∈Z

‖mj‖W (s1,s2)

) ‖f1‖L∞ ‖f2‖L∞ ,

and the first and the second terms can be estimated in the same way.

Let us consider the last term in (5.2). Since |yi − c| > 2|x − c| if x ∈ Q
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and yi ∈ (Q∗)c, it follows from Lemma 5.1 that

1

|Q|
∫
Q

|Tm(f
(1)
1 , f

(1)
2 )(x) − aQ| dx

=
1

|Q|
∫
Q

∣∣∣ ∫
y1∈(Q∗)c

y2∈(Q∗)c

(
K(x−y1, x−y2)−K(c−y1, c−y2)

)
f1(y1)f2(y2) dy1dy2

∣∣∣dx
≤ ‖f1‖L∞‖f2‖L∞

|Q|
∫
Q

(∫
|y1−c|>2|x−c|
|y2−c|>2|x−c|

∣∣K(x− y1, x− y2)

−K(c− y1, c− y2)
∣∣∣ dy1dy2)dx

=
‖f1‖L∞‖f2‖L∞

|Q|
∫
Q

(∫
|y1|>2|x−c|
|y2|>2|x−c|

∣∣K(x− c+ y1, x− c+ y2)

−K(y1, y2)
∣∣ dy1dy2)dx

�
(
sup
j∈Z

‖mj‖W (s1,s2)

)‖f1‖L∞‖f2‖L∞ .

The proof of (5.1) is complete. �

6. Completion of the proof of Theorem 1.1

In Sections 3–5, we have proved the following:

(3.1)–(3.2) for 1/p1 ≥ 1, 1/p2 ≥ 1;

(4.1) for 1/p1 ≥ 1, 1/p2 = 1/2;

(4.2) for 1/p1 = 1/2, 1/p2 ≥ 1;

(5.1) for 1/p1 = 1/p2 = 0.

Recall that Theorem 1.2 of [8] gives the following: for 0 < p ≤ 1,

s1 > n/p− n/2, s2 > n/2 =⇒ ‖Tm‖Hp×L∞→Lp � sup
j∈Z

‖mj‖W (s1,s2) ,(6.1)

s1 > n/2, s2 > n/p− n/2 =⇒ ‖Tm‖L∞×Hp→Lp � sup
j∈Z

‖mj‖W (s1,s2) .(6.2)

Notice that these are exactly the assertions of Theorem 1.1 for (1/p1, 1/p2) in the
respective ranges.

The assertions of Theorem 1.1 for I0, I1, and I2 are derived from (4.1), (4.2),
(5.1), (6.1), and (6.2) by means of interpolation. For this, it is sufficient to use the
usual real or complex interpolation for bilinear operators in Hp and Lp spaces. In
fact, the interpolation theorem for bilinear operator is necessary only to obtain the
results for (1/p1, 1/p2) on the line segment joining (1/2, 1) and (1, 1/2). In other
parts of I0, I1, and I2, it is sufficient to apply interpolation for linear operators to
the linear operators obtained from Tm(f1, f2) by freezing f1 or f2.
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The assertion for I6 is nothing but (3.1)–(3.2).
There remain the assertions for I3, I4, and I5. To prove these assertions, we

use the following lemma:

Lemma 6.1. The set of points (1/p1, 1/p2, s1, s2) ∈ (0,∞)4 for which the esti-
mate (1.8) holds is convex.

This lemma can be proved by the use of the interpolation theorem for analytic
families of operators (Stein–Weiss [19]) and the results for complex interpolation
spaces betweenHp and Lp spaces (see Janson–Jones [13]). For details, see Section 6
of [8].

By using Lemma 6.1, we can deduce the assertions of Theorem 1.1 for I3, I4,
and I5 from (3.1)–(3.2), (4.1), and (4.2). To prove the assertion for I3, for example,
consider the sets:

E =
{
(1/p1, 1/p2, s1, s2) ∈ (0,∞)4 | (1/p1, 1/p2) ∈ I3,

s1 > n/2, s2 > n/2, s1 + s2 > n/p1 + n/p2 − n/2
}
,

E0 =
{
(1/p1, 1/p2, s1, s2) ∈ E | (1/p1, 1/p2) = (1, 1) or (1, 1/2) or (1/2, 1)

}
.

The assertions (3.1)–(3.2), (4.1), and (4.2) imply that the estimate (1.8) holds for
(1/p1, 1/p2, s1, s2) ∈ E0. It is easy to check that E is the convex hull of E0. Hence
by Lemma 6.1, (1.8) holds for all (1/p1, 1/p2, s1, s2) ∈ E , which is the assertion
of Theorem 1.1 for (1/p1, 1/p2) ∈ I3. The proofs for I4 and I5 are similar. This
completes the proof of Theorem 1.1.

7. Sharpness of the conditions of Theorem 1.1

In this section, we shall prove Theorem 1.2. We assume that 0 < p1, p2, p ≤ ∞,
1/p1 + 1/p2 = 1/p, s1, s2 > 0, and the estimate

(7.1) ‖Tm(f1, f2)‖Lp � sup
j∈Z

‖mj‖W (s1,s2) ‖f1‖Hp1 ‖f2‖Hp2

holds, where Lp should be replaced by BMO in the case p = ∞, and we shall prove

(7.2) s1 ≥ max
{n
2
,
n

p1
− n

2

}
, s2 ≥ max

{n
2
,
n

p2
− n

2

}
and

(7.3) s1 + s2 ≥ n

p1
+
n

p2
− n

2
.

Before proving (7.2), we make the following remark:

Remark 7.1. If f ∈ S(Rn) is a function with supp f̂ ⊂ {2−j0 ≤ |ξ| ≤ 2j0}, then
C−1‖f‖Lp ≤ ‖f‖Hp ≤ C‖f‖Lp , where C > 0 depends only on j0 and p. A proof
goes as follows. In the case p >1, this equivalence is obvious sinceHp(Rn)=Lp(Rn).
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Suppose p ≤ 1. It is sufficient to prove ‖G(f)‖Lp ≤ C‖f‖Lp (see Section 4 for the

definition of G(f)). By the condition on the support of f̂ ,

G(f)(x) =
( j0∑

j=−j0

|ψ(D/2j) f(x)|2
)1/2

.

On the other hand, it is known that there exists a constant C = Cj0,p > 0 such
that

‖g ∗ h‖Lp ≤ C ‖g‖Lp ‖h‖Lp

for all g, h ∈ Lp(Rn) with supp ĝ, supp ĥ ⊂ {|ξ| ≤ 2j0+1} (Proposition 1.5.3 of [21]).
These imply that ‖G(f)‖Lp ≤ C‖f‖Lp.

We first prove the necessity of the condition (7.2).

Proof of (7.2). Our proof is based on the idea given in Section 7 of [8]. From the
inequality (7.1), we shall deduce s1 ≥ max{n/2, n/p1 − n/2}. Interchanging the
roles of ξ1 and ξ2 in our argument below, we can also prove s2 ≥ max{n/2, n/p2−
n/2}. First, we additionally assume that p <∞.

Let ϕ, ψ ∈ S(Rn) \ {0} be such that

supp ϕ̂ ⊂ {ξ ∈ R
n : |ξ| ≤ 1},

supp ψ̂ ⊂ {ξ ∈ R
n : 9/10 ≤ |ξ| ≤ 11/10},

ψ̂(ξ) = 1 if 19/20 ≤ |ξ| ≤ 21/20.

Take a point ζ◦ in R
n satisfying |ζ◦| = 1/10, and set, for sufficiently small ε > 0,

m(ε)(ξ1, ξ2) = ϕ̂((ξ1 − ζ◦)/ε) ψ̂(ξ2).

For this m(ε), we have

Tm(ε)(f1, f2)(x) = F−1
[
ϕ̂((· − ζ◦)/ε)f̂1

]
(x)F−1

[
ψ̂ f̂2

]
(x),

where F−1 denotes the inverse Fourier transform on Rn. Thus the inequality (7.1)
implies

(7.4)
∥∥F−1

[
ϕ̂((·−ζ◦)/ε) f̂1

]F−1
[
ψ̂f̂2

] ∥∥
Lp � sup

j∈Z

‖m(ε)
j ‖W (s1,s2) ‖f1‖Hp1 ‖f2‖Hp2 ,

where m
(ε)
j is defined by (1.5) with m replaced by m(ε).

To estimate the norm ‖m(ε)
j ‖W (s1,s2) , we choose the function Ψ ∈ S(R2n), which

appeared in the definition of mj , so that we have

suppΨ ⊂ {ξ ∈ R
2n : 2−1/2−α ≤ |ξ| ≤ 21/2+α},

Ψ(ξ) = 1 if 2−1/2+α ≤ |ξ| ≤ 21/2−α,
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where α > 0 is a sufficiently small number. If ε > 0 is sufficiently small, then

suppm(ε) ⊂ {
(ξ1, ξ2) ∈ R

2n : |ξ1 − ζ◦| ≤ ε, 9/10 ≤ |ξ2| ≤ 11/10
}

⊂ {
(ξ1, ξ2) ∈ R

2n : 2−1/2+α ≤ |(ξ1, ξ2)| ≤ 21/2−α
}
.

This implies

m
(ε)
j (ξ) = m(ε)(2jξ)Ψ(ξ) =

{
m(ε)(ξ) if j = 0,

0 if j �= 0,

and consequently

sup
j∈Z

‖m(ε)
j ‖W (s1,s2) = ‖m(ε)‖W (s1,s2) = ‖ϕ̂((ξ1 − ζ◦)/ε) ψ̂(ξ2)‖W (s1,s2)

= ‖ϕ̂((· − ζ◦)/ε)‖W s1 ‖ψ̂‖W s2 .

Let N > 0 be large enough. Then

‖ϕ̂((·−ζ◦)/ε)‖W s1 = ‖εnϕ(εx)〈x〉s1‖L2

� εn
(∫

Rn

(1 + |x|)2s1(1 + ε|x|)−2N dx
)1/2

≈ εn
(∫

|x|≤1

dx +

∫
1<|x|≤1/ε

|x|2s1 dx+

∫
1/ε<|x|<∞

|x|2s1(ε|x|)−2N dx
)1/2

≈ ε−s1+n/2.

Hence, by (7.4),

(7.5)
∥∥F−1

[
ϕ̂((· − ζ◦)/ε) f̂1

]F−1
[
ψ̂ f̂2

] ∥∥
Lp � ε−s1+n/2 ‖f1‖Hp1 ‖f2‖Hp2 .

To obtain s1 ≥ n/2, we test (7.5) for

f̂1(ξ1) = εn/p1−n ϕ̂((ξ1 − ζ◦)/ε) and f̂2(ξ2) = εn/p2−n ϕ̂((ξ2 − e1)/ε),

where e1 = (1, 0, . . . , 0) ∈ Rn. Since supp f̂1 and supp f̂2 are included in compact
subsets of Rn \ {0} which are independent of ε, it follows from Remark 7.1 that

(the right-hand side of (7.5)) ≈ ε−s1+n/2 ‖f1‖Lp1 ‖f2‖Lp2 = C ε−s1+n/2.

On the other hand, since

F−1
[
ϕ̂((· − ζ◦)/ε) f̂1

]
(x)F−1

[
ψ̂ f̂2

]
(x)= F−1

[
εn/p1−n ϕ̂((· − ζ◦)/ε)2

]
(x)F−1

[
f̂2
]
(x)

= εn/p1 eiζ
◦·x ϕ ∗ ϕ(εx) εn/p2eie1·x ϕ(εx),

we have

(the left-hand side of (7.5)) = εn/p1+n/p2 ‖ϕ ∗ ϕ(ε·)ϕ(ε·)‖Lp = C.

Hence, 1 � ε−s1+n/2 and s1 ≥ n/2.
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To obtain s1 ≥ n/p1 − n/2, we test (7.5) for

f̂1(ξ1) = ψ̂′(ξ1) and f̂2(ξ2) = εn/p2−n ϕ̂((ξ2 − e1)/ε),

where ψ′ ∈ S(Rn) is chosen so that supp ψ̂′ is a compact subset of Rn \ {0} and

ψ̂′ = 1 in a neighborhood of ζ◦. It follows from Remark 7.1 that

(the right-hand side of (7.5)) ≈ ε−s1+n/2 ‖f1‖Lp1 ‖f2‖Lp2 = C ε−s1+n/2.

On the other hand, since

F−1
[
ϕ̂((· − ζ◦)/ε) f̂1

]
(x)F−1

[
ψ̂ f̂2

]
(x) = F−1

[
ϕ̂((· − ζ◦)/ε)

]
(x)F−1

[
f̂2
]
(x)

= εn eiζ
◦·x ϕ(εx) εn/p2 eie1·xϕ(εx),

we have

(the left-hand side of (7.5)) = εn+n/p2 ‖ϕ(ε·)2‖Lp = C εn−n/p1 .

Therefore, εn−n/p1 � ε−s1+n/2 and s1 ≥ n/p1 − n/2.

Since ‖|f |‖BMO � ‖f‖BMO and ‖f(ε·)‖BMO = ‖f‖BMO, our argument above
works for the case p = ∞ as well. �

Remark 7.2. For the multiplier m(ε) of the above proof, we actually have

‖m(ε)‖W (s1,s2)(R2n) ≈ ε−s1+n/2.

The estimate ‖m(ε)‖W (s1,s2)(R2n) � ε−s1+n/2 has been proved above. To see the
converse estimate, take a point x0 ∈ Rn \ {0} and a number δ such that 0 < δ <
|x0|/2 and |ϕ(x)| > δ for |x− x0| < δ. Then, for sufficiently small ε > 0,∫
Rn

∣∣εnϕ(εx)〈x〉s1 ∣∣2dx ≥
∫
|εx−x0|≤δ

{
εnδ|x|s1}2

dx ≈
∫
|x−x0/ε|≤δ/ε

{
εnδ

( |x0|
ε

)s1}2

dx

≈ {
εn−s1

}2
ε−n = εn−2s1

and consequently

‖m(ε)‖W (s1,s2)(R2n) ≈ ‖ϕ̂((· − ζ◦)/ε)‖W s1(Rn) = ‖εn ϕ(εx) 〈x〉s1‖L2 � ε−s1+n/2.

We next prove the necessity of the condition (7.3).

Proof of (7.3). Let ϕ ∈ S(Rn) be such that

ϕ(0) �= 0, supp ϕ̂ ⊂ {|ξ| ≤ 1/10}, ϕ̂(ξ) = 1 if |ξ| ≤ 1/20.

Take a point ζ◦ in Rn satisfying |ζ◦| = √
2, and set, for sufficiently small ε > 0,

m(ε)(ξ1, ξ2) = ϕ̂
(ξ1 + ξ2 − ζ◦

ε

)
ϕ̂(ξ1 − ξ2).
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Note that

suppm(ε) ⊂
{
|ξ1 + ξ2 − ζ◦| ≤ ε

10
, |ξ1 − ξ2| ≤ 1

10

}
⊂

{∣∣∣ξ1 − ζ◦

2

∣∣∣ ≤ ε

20
+

1

20
,
∣∣∣ξ2 − ζ◦

2

∣∣∣ ≤ ε

20
+

1

20

}
⊂

{
1− ε

10
− 1

10
≤ |(ξ1, ξ2)| ≤ 1 +

ε

10
+

1

10

}
and

F−1(m(ε))(x1, x2)

=
1

(2π)2n

∫∫
ϕ̂
(ξ1 + ξ2 − ζ◦

ε

)
ϕ̂(ξ1 − ξ2) exp{i(x1 · ξ1 + x2 · ξ2)} dξ1dξ2

= c

∫∫
ϕ̂
(η1 − ζ◦

ε

)
ϕ̂(η2) exp

{
i
(
x1 · η1 + η2

2
+ x2 · η1 − η2

2

)}
dη1dη2

= c exp
(
iζ◦ · x1 + x2

2

)
εn ϕ

(
ε
x1 + x2

2

)
ϕ
(x1 − x2

2

)
.

Since suppm(ε) ⊂ {2−1/2+α < |(ξ1, ξ2)| < 21/2−α} for sufficiently small ε > 0, it
follows from the argument used in the proof of (7.2) that

(7.6) sup
j∈Z

‖m(ε)
j ‖W (s1,s2) = ‖m(ε)‖W (s1,s2) ,

wherem
(ε)
j is defined by (1.5) withm replaced bym(ε). In order to obtain s1+s2 ≥

n/p1 + n/p2 − n/2, we shall prove that

(7.7) ‖m(ε)‖W (s1,s2) = c
∥∥∥εnϕ(εx1 + x2

2

)
ϕ
(x1 − x2

2

)
〈x1〉s1 〈x2〉s2

∥∥∥
L2

� ε
n
2 −s1−s2

for s1, s2 > 0.
Before proving (7.7), let us observe that this implies the desired result. Take a

function f ∈ S(Rn) satisfying

supp f̂ ⊂
{∣∣∣ξ − ζ◦

2

∣∣∣ ≤ 2

10

}
, f̂(ξ) = 1 if

∣∣∣ξ − ζ◦

2

∣∣∣ ≤ 1

10
.

Since f̂(ξ1) f̂(ξ2) = 1 on suppm(ε)(ξ1, ξ2), we have

Tm(ε)(f, f)(x) = F−1(m(ε))(x, x) = c exp(iζ◦ · x) εn ϕ(εx)ϕ(0),
and hence

(7.8) ‖Tm(ε)(f, f)‖Lp = c ‖εn ϕ(εx)ϕ(0)‖Lp = C εn−n/p.

On the other hand, since supp f̂ ⊂ Rn \ {0}, we see that fi ∈ Hpi(Rn), i = 1, 2.
Hence, it follows from (7.1) with m = m(ε) and f1 = f2 = f and from (7.6), (7.7)
and (7.8) that

εn−
n
p � ε

n
2 −s1−s2 ,

and consequently s1 + s2 ≥ n/p− n/2 = n/p1 + n/p2 − n/2.
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We shall prove (7.7), that is,

(7.9)

∫∫ ∣∣∣εn ϕ(εx1 + x2
2

)
ϕ
(x1 − x2

2

)
〈x1〉s1 〈x2〉s2

∣∣∣2dx1dx2 � εn−2s1−2s2 .

Let N > 0 be large enough. Then the left-hand side of (7.9) is majorized by∫∫ {
εn(1 + ε|x1 + x2|)−N (1 + |x1 − x2|)−N 〈x1〉s1〈x2〉s2

}2
dx1dx2

≈
∫∫ {

εn(1 + ε|y1|)−N (1 + |y2|)−N 〈y1 + y2〉s1〈y1 − y2〉s2
}2
dy1dy2

≈
∞∑
j=0

∞∑
k=0

{
εn(1 + 2jε)−N (2k)−N

}2

×
∫∫

2j<|y1|<2j+1,

2k<|y2|<2k+1

〈y1 + y2〉2s1 〈y1 − y2〉2s2 dy1dy2

=

∞∑
j=0

∞∑
k=0

Ij,k,

where we replace
∫
2j<|y1|<2j+1 (respectively,

∫
2k<|y2|<2k+1) by

∫
|y1|<2 (respectively,∫

|y2|<2
) if j = 0 (respectively, k = 0). We assume ε is sufficiently small, say 4ε < 1.

To estimate Ij,k, we divide (j, k) into six classes.

For (j, k) satisfying j ≥ k + 2 and 2jε > 1, we have

Ij,k ≈ {εn(2jε)−N (2k)−N}2 2j·2s1 2j·2s2 2jn 2kn

= ε2n−2N 2j(−2N+n+2s1+2s2) 2k(−2N+n).

Hence

∞∑
j=0

∞∑
k=0

χ{j ≥ k + 2, 2jε > 1}Ij,k ≈
∞∑
j=0

χ{2jε > 1}ε2n−2N2j(−2N+n+2s1+2s2)

≈ ε2n−2N ε−(−2N+n+2s1+2s2) = εn−2s1−2s2 .

For (j, k) satisfying j ≤ k − 2 and 2jε > 1, we have

Ij,k ≈ {εn(2jε)−N (2k)−N}2 2k·2s1 2k·2s2 2jn 2kn
= ε2n−2N 2j(−2N+n) 2k(−2N+n+2s1+2s2).

Hence

∞∑
j=0

∞∑
k=0

χ{j ≤ k − 2, 2jε > 1}Ij,k ≈
∞∑
j=0

χ{2jε > 1}ε2n−2N2j(−4N+2n+2s1+2s2)

≈ ε2n−2Nε−(−4N+2n+2s1+2s2)

= ε2N−2s1−2s2 < εn−2s1−2s2 .
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For (j, k) satisfying k − 2 < j < k + 2 and 2jε > 1, we have

Ij,k ≈ {εn(2jε)−N (2j)−N}2 2j·2s1 2j·2s2 2j·2n = ε2n−2N 2j(−4N+2n+2s1+2s2).

Hence

∞∑
j=0

∞∑
k=0

χ{k − 2 < j < k + 2, 2jε > 1}Ij,k

≈
∞∑
j=0

χ{2jε > 1} ε2n−2N 2j(−4N+2n+2s1+2s2)

≈ ε2n−2N ε−(−4N+2n+2s1+2s2)

= ε2N−2s1−2s2 < εn−2s1−2s2 .

For (j, k) satisfying j ≥ k + 2 and 2jε ≤ 1, we have

Ij,k ≈ {εn(2k)−N}2 2j·2s1 2j·2s2 2jn 2kn = ε2n 2j(n+2s1+2s2) 2k(−2N+n).

Hence

∞∑
j=0

∞∑
k=0

χ{j ≥ k + 2, 2jε ≤ 1}Ij,k ≈
∞∑
j=0

χ{j ≥ 2, 2jε ≤ 1} ε2n 2j(n+2s1+2s2)

≈ ε2n ε−(n+2s1+2s2) = εn−2s1−2s2 .

For (j, k) satisfying j ≤ k − 2 and 2jε ≤ 1, we have

Ij,k ≈ {εn(2k)−N}2 2k·2s1 2k·2s2 2jn 2kn = ε2n 2jn 2k(−2N+n+2s1+2s2).

Hence

∞∑
j=0

∞∑
k=0

χ{j ≤ k − 2, 2jε ≤ 1}Ij,k ≈
∞∑
j=0

χ{2jε ≤ 1} ε2n 2j(−2N+2n+2s1+2s2)

≈ ε2n < εn−2s1−2s2 .

Finally, for (j, k) satisfying k − 2 < j < k + 2 and 2jε ≤ 1, we have

Ij,k ≈ {εn(2j)−N}2 2j·2s1 2j·2s2 2j·2n = ε2n 2j(−2N+2n+2s1+2s2).

Hence

∞∑
j=0

∞∑
k=0

χ{k − 2 < j < k + 2, 2jε ≤ 1}Ij,k ≈
∞∑
j=0

χ{2jε≤1} ε2n 2j(−2N+2n+2s1+2s2)

≈ ε2n < εn−2s1−2s2 .

This completes the proof of Theorem 1.2. �
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Remark 7.3. In the estimate (7.9), � can be replaced by ≈. In fact, taking δ > 0
such that |ϕ(x)| ≥ |ϕ(0)|/2 > 0 if |x| ≤ δ, we have∫∫ ∣∣∣εnϕ(εx1 + x2

2

)
ϕ
(x1 − x2

2

)
〈x1〉s1〈x2〉s2

∣∣∣2dx1dx2
�

∫∫ {
εnχ{ε|x1 + x2| ≤ δ}χ{|x1 − x2| ≤ δ}〈x1〉s1 〈x2〉s2

}2

dx1dx2

≈
∫∫ {

εnχ{ε|y1| ≤ δ}χ{|y2| ≤ δ}〈y1 + y2〉s1〈y1 − y2〉s2
}2

dy1dy2

�
∫∫ {

εnχ{δ/2 ≤ ε|y1| ≤ δ}χ{|y2| ≤ δ}
(δ
ε

)s1(δ
ε

)s2}2

dy1dy2

≈ {
εn−s1−s2

}2
ε−n = εn−2s1−2s2 .
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