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Minimal smoothness conditions
for bilinear Fourier multipliers

Akihiko Miyachi and Naohito Tomita

Abstract. The problem of finding the differentiability conditions for
bilinear Fourier multipliers that are as small as possible to ensure the
boundedness of the corresponding operators from products of Hardy spaces
HP' x HP2 to LP, 1/p1 + 1/p2 = 1/p, is considered. The minimal condi-
tions in terms of the product type Sobolev norms are given for the whole
range 0 < p1,p2 < oo.

1. Introduction

For m € L>°(R?"), the bilinear Fourier multiplier operator T}, is defined by

Tl 20 = e [ €710 m(e) i) Btee) des de

for f1, f2 € S(R™), where z € R™ and £ = (&1, &) € R™ x R™.

Coifman and Meyer (see [3], [4] and [15]) proved that if the multiplier m(¢)
satisfies the condition

(1) 02082 m(€1,€2)] < oy (JE0] + Jeal) ~ 1010,

then T, extends to a bounded operator LP* x LP2 — LP for py, ps and p satisfying
1 < p1,p2,p < oo and 1/p1 + 1/p2 = 1/p. They also proved the boundedness
LP x L*° — LP for 1 < p < oo. The boundedness of T, : L x L>* — BMO
is also implicitly given in [4], [15]. Kenig—Stein [14] proved weak type estimate
for the case p;1 = po = 2p = 1 and extended the results of Coifman—Meyer to the
range p < 1. Grafakos—Torres [10] gave a general theory for multilinear Calderén—
Zygmund operators and generalized the results of [3], [4], [15], and [14]. Grafakos—
Kalton [7] proved that the boundedness of Ty, : LP* x LP? — LP can be extended
to p1 <1 or po <1 if we replace LP* and LP? by the Hardy spaces HP* and HP?
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respectively. In fact, the above papers include several general results, not all of
which can be mentioned here.

To ensure the above mentioned boundedness of T,, it is not necessary to assume
the condition (1.1) for all derivatives, but it is sufficient to assume it for derivatives
up to certain order. In this paper we shall consider the problem of finding the
differentiability conditions of the type (1.1) that are “as small as possible” to
ensure the boundedness of T}, : HP* x HP? — LP.

Before we state our result in detail, we shall recall some previously known
results. Coifman—Meyer [4], [15] proved the boundedness of T, by reducing it
to linear Calderén-Zygmund operators. They considered the linear operator T,
defined by

Ty, (1)) = T 2)(&) = [ Ky (eam) fuln) .

They showed that the kernel Ky, (x,y1) of this operator is a Calderén-Zygmund
kernel and then used the T'1-theorem to deduce the boundedness of T},. In their
proof, to ensure the kernel Ky, (z,y1) be a Calderén—Zygmund kernel, they had
to assume the condition (1.1) up to order 2n + 1. (The number of derivatives
assumed on m in the statement of p.22 in [4] seems to be an error. At least,
the proof given in pp.22-23 of [4] requires (1.1) up to order 2n 4 1.) Grafakos—
Torres [10] gave a different proof by using the bilinear T'1-theorem. In this case, to
ensure that the kernel of T},, be a Calderéon—Zygmund kernel in the bilinear sense,
they had to assume (1.1) up to the same order 2n + 1. Coifman—Meyer [3] used
the paraproduct operator to deduce the boundedness of T,,,. In this method, they
had to assume (1.1) up to an order much higher than 2n + 1. The differentiability
conditions for m assumed in these papers seem to be too strong if we compare them
with the conditions occurring in the case of linear Fourier multiplier operators. In
more recent papers [20], [9], and [8], results under much weaker assumptions are
given, which we shall mention later.

Recall the case of linear Fourier multiplier operators. To distinguish it from the
bilinear operator T;,, we denote the linear operator by m(D): for m € L (R"),

_ 1 eixfm 7 n
(D) (@) = sz [ e Em) Feds. e S@)

It is well known that m(D) can be extended to a bounded operator in H? if m(&)
satisfies

0gm(&)| < Ca lé|71.

Hormander (Theorem 2.5 in [12]) essentially proved the following: m(D) can be
extended to a bounded operator in LP(R™), 1 < p < oo, if the multiplier m(&)
satisfies

(1.2) sup [|m(27-) || yys @ny < 00
JEZ

with an s > n/2, where U is a function in S(R™) satisfying

(13) supp¥c{ceR!:1/2< g <2}, Y w(E/2M) =1, £eR?\ {0},
kEZ
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with d = n and where || - [|ys(m») denotes the usual Sobolev norm,
25| 77 )2 /2
(14) e U MGG

where (¢) = (1 + |¢|>)}/2. Calderén-Torchinsky (Theorem 4.6 of [2]) proved the
following: if 0 < p < 1 and s > n/p—n/2, and if the multiplier m(&) satisfies (1.2),
then m(D) can be extended to a bounded operator in the Hardy space HP(R").
It is known that the numbers n/2 and n/p — n/2 in these results are minimal,
that is, they cannot be replaced by smaller numbers (see Remark 1.3 below). The
purpose of the present paper is to find such minimal conditions for the case of
bilinear Fourier multipliers.

To explain our main results in detail, we introduce some notation. We shall
write

| T || 71 (R x EP2 (RP) = L2 (R7)

to denote the smallest constant C' that satisfies

T (f1, f2)llr @y < C, || f1ll mer (e
for all f1 € S(R™) N HP*(R™) and f, € S(R™) N HP2(R™). We define

| foll o2 (mm)

Tl Loo (R x Lo (R )~ BMO (R

in the same way by replacing the norms || - ||ge1, || - ||ge2 and || - ||ze by || - || Lo,
I - L and || - ||Bmo, respectively. We use the convention that HPi = LPi for
1 < p; < oo. For s1, s2 € Rand for F € S'(R*"), the product type Sobolev norm
HF||W(51152)(R2H) is defined by

~ /2
1Pl = ([ (602 €016 &)P drdea)

where & € R". We take a function ¥ € S(R?") that satisfies (1.3) with d = 2n
and, for m € L°°(R?") and j € Z, define

(1.5) m;(€) = m(2761,276) V(6. &), €= (£1,&) €ER™ xR™.

Now, for bilinear Fourier multiplier operators, Grafakos—Miyachi—Tomita [8]
have obtained some results with minimal conditions by using the product type
Sobolev norms. The results of [8] are as follows. First,

(1.6) s1>n/2, sg >n/2
- HTm||L2(R”)XLOO(R”)%LQ(R") S SugHmj“W(slvsa)(R?n)-
Jj€
Second, for 0 < p <1,
(1.7) sy >n/2, sa>n/p—mn/2

= HTWL”LOQ(R'IL)XHp(Rn)*)Lp(R’!L) < sug Hmj ||W(51,52)(R2n).
Jj€

In addition, the numbers n/2 and n/p —n/2 in (1.6) and (1.7) are minimal. (See
Theorems 1.1 and 1.2, and Propositions 7.1 and 7.2 in [8].)
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The purpose of the present paper is to extend these results of [8]. We use the
product type Sobolev norm for the multipliers and we shall find minimal conditions,
for the whole range 0 < p1, p2 < oo, for the boundedness of T, from HP*(R™) x
HP2(R™) to LP(R™). The fact (1.7) is one of the keys in the proofs of the results
of this paper. The fact (1.6) will also be a key tool in our arguments.

The main results of this paper are given in the following two theorems:

Theorem 1.1. Let 0 < p1, p2, p < o0 and 1/p1 + 1/ps = 1/p. If

nn o n non o on n n n
51 > max{—,———}, So >max{—,———}, and Ss1+83 > — 4+ ———,
2'pr 2 2'pp 2 p1 p2 2
then
(1.8) | Ton |l Eror Ry x EP2 (R 5 Lo (R) S sup [0l cor.02) (R2RY),
JjE

where HPY x HP2 — LP s replaced by L>° x L™= — BMO if p1 = ps = p = 0.

Theorem 1.2. Let 0 < p1,p2,p < o0 and 1/py + 1/p2 = 1/p. Then the
estimate (1.8), where HP* x HP2 — LP is replaced by L™ x L>*° — BMO if
p1 = p2 = p = o0, holds only if

nn n nn n n n o n
slzmax{—,———}, SQZmaX{—,———}, and $1+s2 > — 4+ ———.
2'p1 2 2 py 2 P p2 2
1/p2 A
I, 1, Is
I3
15
12 T T
P
|

>
T >

1/2 1

1/191

To visualize easily the various conditions of Theorem 1.1, we divide the region
of (1/p1,1/p2) into seven regions Iy, ..., Is as in the figure. The assumptions on s;
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and s9 of Theorem 1.1 are written as follows:

s1>n/2, sy >n/2 it (1/p1,1/p2) € Io;
s1>n/2, Ss3>n/py—n/2 it (1/p1,1/p2) € In;
s1>n/pr—n/2, sz >n/2 it (1/p1,1/p2) € I;

s1>n/2, so>n/2, .
{1 / ° / it (1/p1,1/p2) € I3;

51482 >n/p1+n/pr—n/2

>n/2, > —n/2, .
{81 n/ s2.>n/p2 =n/ if (1/p1,1/p2) € Iy;

s1+ 82 >n/p1+n/p2 —n/2

> - 27 > 2’ 1
{81 n/pr—n/2, s3>n/ if (1/p1,1/p2) € Is;

s1+ 82 >n/p1+n/p2 —n/2

if  (1/p1,1/p2) € Is.
51+ 82 >n/p1+n/ps —n/2 (1/p1,1/p2) € Is

{31 >n/pr—n/2, s2>n/ps—n/2,
Notice that the condition s; + s2 > n/p1 + n/p2 — n/2 is necessary only in the
regions I3, Iy, I5, and Ig.

Next, we observe some interesting features of the results of Theorems 1.1
and 1.2.

First, we see that simple interpolation of minimal conditions does not neces-
sarily give a minimal condition. Consider for example the bound for HP(R™) x
HP(R™) — LP/2(R™) in the range p < 1. By interpolating (1.7) and its variant
with f; and fy interchanged, we obtain

(1.9) sy >n/p, s2>n/p
<

= ”TmHHP(R")xHP(R")—>LP/2(R") ~ S}elg ||ijW(51v52)(R2")
J

(cf. Theorem 6.1 of [8]). Although the assertion (1.7) gives a minimal condition, the
condition s1, s > n/p in (1.9) is not minimal. As given in Theorems 1.1 and 1.2,
we can obtain the conclusion of (1.9) under the assumptions si, s2 > n/p —n/2,
s1 4 82 > 2n/p —n/2, and these are the minimal conditions.

Second, we observe that the situation is not so simple even in the range 1 <
p; < 0o. Consider for simplicity the estimate

HTm”LP(Rn)xLP(Rn)—>LP/2(Rn) N SUIZJ) [[m; ||W<51152>(R2n)7
JjE

in the range 1 < p < oo. As Theorems 1.1 and 1.2 assert, if p > 4/3 then
this estimate holds for s1, so > n/2, but if p < 4/3 then we have to assume the
additional condition s1 + so > 2n/p — n/2 or, to be precise, at least s1 + so >
2n/p —n/2.

The problem of the minimal condition for bilinear Fourier multipliers can also
be formulated in terms of the usual Sobolev norm, (1.2), with n replaced by 2n.
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In this direction, Tomita [20] proved that if 1 < p1, po < co and 1/p1+1/p2 =1/p
then

(110) s>n, p>1 = HTmHLm(Rn)xLz>2(Rw,)_>Lp(Rn) g S_UIZ)Hmj||W5(R2")'
Je

Grafakos—Si [9] generalized this result to the range p < 1 by using the L"-type
Sobolev norm, 1 < r < 2. In the present paper, we shall not consider the problem
with the usual Sobolev norm. Here, however, we only mention that we can relax
the restriction p > 1 of (1.10) to p > 2/3 by virtue of Theorem 1.1.

Bilinear and multilinear Fourier multiplier operators are widely investigated
and have many applications. For other results on these operators and related top-
ics, see Muscalu—Pipher—Tao—Thiele [17], Bernicot—Germain [1], and the references
therein.

The contents of this paper are as follows. In Section 2, we recall some prelim-
inary facts. We prove Theorem 1.1 in Sections 3-6. In Section 3, we treat the
case 0 < p1, p2 < 1. In Section 4, we treat the case 0 < p;1 < 1, po = 2. In
Section 5, we treat the case p1 = pa = p = co. In Section 6, we complete the proof
of Theorem 1.1 combining the results of Sections 3, 4 and 5, and the result (1.7)
by interpolation. Finally in Section 7, we prove Theorem 1.2.

We make a remark concerning the arguments of this paper. Since we are
interested in the estimate for operator norms, we give the proofs by assuming
that all the functions, including the multipliers, that appear in our argument are
of the Schwartz class and we omit the limiting arguments that are necessary for
rigorous proof. For example, in our argument we repeatedly write f; as a series
of HP1-atoms a; j,

(1.11) fr=Y Awars, > Pl S AN
k k

and we write

(1.12) T f1, f2) = Z/\l,k T (a1 k, f2)-
3

Some limiting argument is necessary to ensure the convergence of the series (1.12).
One way to make the argument precise is to use the fact that the first series
of (1.11) can be taken so that it converges in L? if f; € LN HP' and to use the L2
estimate of T,,, given in (1.6) to deduce the convergence of the series of (1.12).
Another way is to consider at first only those f; that can be written as (1.11) with
a finite sum and then use some limiting argument to treat general f;. We leave
such detailed arguments to the reader.

For two nonnegative quantities A and B, the notation A < B means that
A < OB for some unspecified constant C' > 0, and A ~ B means that A < B
and B < A.
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Remark 1.3. One way to see the minimality of the numbers n/2 and n/p —n/2
of the theorems of Hormander (Theorem 2.5 of [12]) and Calderén-Torchinsky
(Theorem 4.6 of [2]) mentioned above is to use the multiplier

map(€) = P(€) €] exp(il¢]*),

where @ > 0, a # 1, b > 0, and (&) is a smooth function which vanishes in a
neighborhood of &€ = 0 and is equal to 1 for |£| large. It is easy to see that mq
satisfies (1.2) for s = b/a. On the other hand, it is known that m(D) is bounded
in HP(R™), 0 < p < oo, only if b/a > |n/p —n/2| (see comments after Theorem 3¢
n [11], Part IT of [22], or Theorem 3 in [16]). Another way to see the minimality
will be given in Section 7 of the present paper.

2. Preliminaries

Let S(R™) and S’'(R™) be the Schwartz spaces of rapidly decreasing smooth func-
tions and tempered distributions, respectively. We define the Fourier transform F f
and the inverse Fourier transform F~1f of f € S(R") by

(Qi)n / () de.

The Hardy-Littlewood maximal operator M is defined by
1
Mf(x) = sup — |f(y)l dy,

n
r>0T |lz—y|<r

FIO =7 = [ e i@)dn, F ) -

where f is a locally integrable function on R™. We also use the notation M, f(z) =
M{(|f[7) (@)1,

We recall the definition and some properties of Hardy spaces on R™ (see Chap-
ter 3 of [18]). Let 0 < p < oo, and let ¢ € S(R™) be such that [, ¢(z)dx # 0.
Then the Hardy space HP(R™) consists of all f € §’(R™) such that

e = || sup ¢ f]|[, < o0,
0<t<o0o

where ¢(z) = t7"¢(x/t). It is known that HP(R™) does not depend on the
choice of the function ¢ (see Chapter 3, Theorem 1, in [18]). If 1 < p < oo, then
HP(R™) = LP(R™) (see Chapter 3, Section 1.2, in [18]). For 0 < p < 1, a function a
on R"™ is called an HP-atom if there exists a cube Q = @, such that

suppa € @, Jlall~ < Q7. / +*a(e)dz =0, |o| <N,

where |Q| is the Lebesgue measure of Q and N is any fixed integer satisfying
N > [n(1/p—1)] (see p.112 of [18]). It is known that every f € HP(R™) can be
written as

=Y Xa; inS'R"),

i=1
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where {a;} is a collection of HP-atoms and {)\;} is a sequence of complex numbers
with >, [Ai]? < oo. Moreover,

> 1/p
e~ imf (2 )
i=1

where the infimum is taken over all representations of f (see Theorem 2 in Chap-
ter 3 of [18]).

Let ¢y be a C*°-function on [0, 0o) satisfying
¢o(t) =1 on[0,1/8], supp¢o C [0,1/4].
We set ¢1(t) = 1 — ¢o(t), and define the functions ®(;, ;,) on R*™ \ {0}, (i1,i2) €
{0,132, by
(2.1) Di,i0) (€1, 82) = 0i, (161]/1€]) D2 (1€21/1€]),

where £ = (§1,&) € R x R™ and [{] = 1/|&1]? + [£2]2. We note that @ o) = 0.
Lemma 2.1 ([6], Lemma 3.1; [20], Section 5). 1) For (£{1,&2) € R" xR™ \ {(0,0)},

D1,1)(1,82) + P0,1)(&1, &) + R0y (61, 62) = 1.
2) Each ®;, ;,) satisfies

1081082 @3, 1) (€1, €2)] < CE12% (0] + [gaf) I H1D
for all multi-indices a1, as.
3) supp @11y C {|&]/8 < |&] < 8l&l}, suppPo1) C {[&1] < [&]/2} and
supp @(1,0) C {|&2| < |&1]/2}.
Lemma 2.2 (Lemma 3.2 in [6], Lemma 3.3 in [8]). Let s > n/2, max{l,n/s} <
q <2 andr > 0. Then there exists a constant C > 0 such that

|Tm(~/2j)(f1> f2)(l‘)| < CHmHW(SvS)qul(m)quQ(‘r)

for all j € Z, all m € W) (R?") with suppm C {(|&1]2 + [&|2)'/? < 7} and all
f1, fo € S(R™).

For a function F'(x1,z2) on R™ x R™, we denote by || (21, x2)|| > the LP-norm
of F(x1,x2) with respect to the variable z;, i = 1,2. The proof of the following

lemma can be reduced to Theorem 1.4.1 in [21], but we shall give a proof for the
reader’s convenience.

Lemma 2.3. Let 2 < g < oo, r > 0 and s1,s2 € R. Assume that suppm C
{(J&1? + |&]2)Y? < 7}, and set K = F~'m. Then there exists a constant C' > 0
such that

[{21)° (22)* K (21, 22) [ 12, < C[[{x1)™ (22)** K (21, 22) |22 for all 21 € R,
[{21)* (22)* K (21, )| 2, < C|[(1)" (w2)* K (21, 22)|[ 12, for all z; € R™,

where C' depends only on q, r, s1 and s3.
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Proof. We only consider the first estimate, since our argument works also for the
second one.

First, let us prove the case ¢ = co. Using ¢ € S(R™) satisfying ¢ = 1 on
{|&2| < r}, we can write m(&1,&2) = m(&1,&2)@(&2). Then, by Schwarz’s inequality,

(1) (22)*? | K (21, 22)| = (201)"* (32)"

K(z1,72 — y2)p(y2) dyz‘
R?L

N / (1) (o — y2)™ | K (21, 22 — y2) | (y2) "0 (y2) | dy2

<( /R ) (o — ) K (n,a — ) )

([ o) ot dus)

~ (1) (w2) " K (21, 22) | 22, -
Hence,
[{21)" (22)" K (21, 22) | L3y S [[{21)"" (22) " K (1, 72) || 22, -
The case ¢ = 2 is obvious, and the case 2 < ¢ < oo follows from interpolation. O

Lemma 2.4 (Lemma 3.4 in [8]). Let s1,s2 € R, and let ¥’ € S(R*™) be such that
supp ¥’ is a compact subset of R*™\ {0}. Assume that ® € C>(R**\ {0}) satisfies

020820 (€1, €2)] < Cop (JE0] + )~ 1710
for all multi-indices a1, aa. Then there exists a constant C > 0 such that
sup | m(27:) @27 ) W'|| oy en) S C sup (] .
Jor all m e L*(R*") satisfying supjcy, [|m;lly 1.2 < 00, where my; is defined
by (1.5).

The condition $1,s2 > n/2 was assumed in Lemma 3.4 of [8], but it is easy to
modify the argument there to cover all s1,s2 € R.

We end this section with the following remark which will be used in the sequel.
Remark 2.5. By Lemma 2.4, we have

[| (1) (w2)"2 aﬁfaﬁjKj(thfU2)||Lgl . S Sup 725l ceor o2
e

where 51, s2 € R, K; = F~'m; and m; is defined by (1.5). In fact, since
021072 K, wa) = il 1ol FoH [m(27) € €3 W] (a1, 22),

the estimate follows from Lemma 2.4 with ® =1 and ¥’ = £ £52 0.



504 A. MivacHl AND N. TOMITA

3. The boundedness from HP* X HP? to LP for 0 < p;,p2 < 1

In this section, we shall prove Theorem 1.1 with 0 < p;,p2 < 1. That is, in the
case 0 < p1,p2 <1 and 1/p; + 1/p2 = 1/p, under the assumptions

n o on n o n n n o on
(3.1) §1> —— =, S2>——=, S1+t82>—+——
P 2 P2 2 P12
we show that
(3.2) | Tl Ers x P2 e < sugl\mjl\w«wa»
JE

Let a;, i = 1,2, be HPi-atoms with vanishing moments up to order N; — 1 and
supp a; C @;, where the N; are large enough. We denote by ¢; the center of @Q;, by
0(Q;) the side length of @Q);, and by @QF the cube with the same center as @); but
expanded by a factor of 2¢/n. In order to obtain (3.2), we shall prove that there
exist a function b; depending only on a; and a function by depending only on as
such that

Tin (a1, a2) ()X (@13 () < Abi(2)b2(2),
o1llzee S 1, [Ib2|lee ST,

~

(3.3)

where A = sup;cz [|m;]l 100 -

Before proving (3.3), let us observe that this implies (3.2). To do this, we
write f; as a sum of HPi-atoms as f; = Zk ik Qi s, With Zk [Niks [P S fill s
for i = 1,2, and divide T,,(f1, f2) as follows:

Ton(fr f2) = D Moty A2ks T (@, 5 2.5,
k1,k2

= > A Az Tnlaa,0, a2,00) X5, Q5
k1,k2

+ > Mok A2k Ton(@1,5, 5 G2.1,) X(Q3 1, N30, )¢
k1,k2

The first term can be handled by the method of Grafakos—Kalton [7]. In fact, since
s1,82 >n/2, (1.6) gives

(3-4) HT'HL”LQXL"O*)LQ + ”TmHL‘X’xL?ﬁL2 5 A.

Then, by using the inequality

[X e, |2 o[ 1nwia)xe,

(which holds for all 0 < p < 1) and the L?-estimate (3.4), we can prove

Lp

S Allfllaen [ f2]l e

Lr

H > " Mk A2k Ton(a1,ky 5 02,k2) XQ7,., NQ5r,
k1,k2
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in the same way as in pp. 173-174 of [7] (here we do not need (3.3)). On the other
hand, for each a; k, and ag,, let us take by x, and bg i, satisfying (3.3). Then,

since
2
bi,k:i> )

’ Z )\1,k1 )‘2,162 Tm(al,klvaZkz) X(Q’l‘klﬁth)"‘ g A H (Z |)‘l,]€1
ki

ki ko i=1

we have, by Holder’s inequality,

2
H > Mok A2ks T2k, G2,k X(@1 1, "@51y)¢ |0 S ATl H > ik ik,
k1 ks =1

LPi

Pillp. pi 1P <A
Bi 1| 7 S Allfullae | 2 mre -

2

Hence, we obtain (3.2).
In order to obtain (3.3), we shall prove the following:

(3:5) [Tm(ar, a2)(@)| x(@p)en(@s)e (¥) S Au(@)o(z), ullern ST, vllze S 1,
(3.6) [Tm(a1,a2)(@)| X(@5)enQs () S AW/ ()" (2),  [u'llLes ST, [[0][Lee S 1,

Tm
(3.7) |Tim(a1, a2)(x)| XQsn(@y)e () S Au” ()" (x),  [u"llee ST, (0" [|lzre S 1,

where u, v’ and u” depend only on ai, and v, v and v” depend on only as.
Once (3.5)—(3.7) are proved, we can take v + v’ +u” and v +v' +v” as by and by
in (3.3).

Let U € S(R?*") be as in (1.3) with d = 2n, and write m;(§) = m(27¢)¥(¢) and
K; = F~'m; . Then T,,(a1,a2)(z) = > jez 9j(x) with

(= L[ e, ) G ()
vy MO L. (€ W(E/2) @1 (6) @a(E2) deade

= / 257 K (27(2 — 1), 27 (x — y2)) a1 (y1) a2(y2) dy1dyo.
R2n
Using the moment condition for a; and Taylor’s formula, we can write

(1 - 91)N171KJ(_011,0) (Qj‘rZi,yl’Qj (l‘ _ y2))

p@) =2 3 Ca [

0<6:<1
la1|=N1 Y1E€EQ1,Y2€Q2
(3.9) x (27(y1 — 1)) ™" a1(y1) az(y2) dbrdy1dys,
where
xziyl =xz—c —01(y1 —c1) and K;al’w)(xl,:@) = 071 0,2 Kj(x1, 22).

We note that the moment condition of ay gives the similar representation of g;
with the variables y; and ys interchanged.
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Proof of (3.5). Under the assumption (3.1), we can take ay and g such that

S1 > ain S9 > aan
a1 +ar =1 +1 —1/2.
{m > 1/p—1/2, {a2>1/p21/2, ther=1mtlim =1

We define 1 and B2 by $1/2 = 1/p1 — aq and B2/2 = 1/ps — as. Notice that
B£1/2=az—1/p2 +1/2 > 0, and similarly, 52/2 > 0 and 51 + B2 = 1.

In order to obtain u and v satisfying (3.5), we shall prove that for each j € Z
there exist a function u; depending only on a; and a function v; depending only
on as such that

(3.10) 9 (@)X (@; °n(@s) e (@) < Auj(@)v;(2),
n/p1+n+Nip1 if 27¢
B1) gl g {EUQITIRIIINA i 2@ <1,
(270(Qq))~/prtn=(simean) if 270(Qy) > 1,
if n/p2+n+Na B2 if 2d¢
(3.12) T (Qf (Q2))~ /P 1 Qf (@) <1,
(200(Qq))~/Petn—(s2=02n) if 230(Qy) > 1.

Before proving (3.10)—(3.12), let us observe that these imply (3.5). First, (3.10)
gives

T (a1, a2)|x(Qr)en@s)e < Z 951X (Q@5)en(@y)e

JEZ
< AZujvj < A(Zuj) (Zvj>.
JET JEL JEL

Second, if weset u = 3, uj, then [[ul|Lr, < 1. In fact, since —n/p1+n+N181 > 0
and —n/p; +n — (s1 —aan) < 0, where we have used that N; is large enough and
p1 < 1, we have, by (3.11),

iz, < 3 2, ( DY )nujnm

JEL 270(Q1)<1 274(Q1)>1

Z (QJ[(QI))(*"/lernJerﬁl)Pl
296(Q1)<1

+ Z 21@ Ql ( n/prtn—(si—a1n))pr < 1
274(Q1)>1

A

Similarly, if we set v = > .7 vj, then [v[[zr. < 1. Hence, we obtain u and v
satisfying (3.5).

Let us prove (3.10)—(3.12). We assume z € (Q7)° N (Q%)°. Note that

|z — 1] = |z —y1] and |x —co| & |z —y2| for y1 € Q1 and Yy € Qa.
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Then, it follows from (3.8) and Lemma 2.3 that
(27 (2 = 1)) (2 (2 = c2))* |g; ()|

<2 Aégxm — ) (2 (@ — )2 K (2 (= ), 20— )|

X L(Q1) " PH(Qa) P2 dyy dys
< 22jng(Q1)7n/p1+n£(Q2)fn/pz+n

([ s (@) )@ - ), 22)]) £Q1) " din)
y1€Q1 22€R™
< 22jng(Q1)7n/p1+n£(Q2)fn/pz+n
X (/ylte (27 (z — 1))** (22) 2 K;(2 (z — ), ||L2 (Q1)” ”dy1>

_ 22j7L£(Q1)_”/pl"'”g(QQ)_"/p2+”h§,Q1*O’O) (m))
where
(3.13) B9 (z) = / 1427 (& = ) ** (22) " K (27 (= ) 20) | 1 £(Q1) ™"y

y1€Q1

Thus,

(314) [gy(a)| S 2UQu) /(@)
X <2j (x —c1)) ™% <2j (2 — c)) "2 h§Q170,0)(x)'

By Minkowski’s inequality for integrals,

thQl’O’O)HLZ < / H || 2J xfy1)>81 <22>82K (QJ(mfyl 29 HL2 2£(Q1)*ndy1
Yy1€Q1 L3
= 272 ()" (22} K, 20)
(3.15) =272 lmj gy ey < A2,
On the other hand, since

lz— 1|~z —c1 — 0i(yr — )| = |22, |

for 0 < 6; <1 and y; € Q1,

replacing (3.8) by (3.9) in the argument above, we obtain
(316) lgy(@)| S 2m0(Qu) /P He(Qo) Pt

X (2(z — 1)) 752 (x — 62»—52flgch,Nl,o)(ac)7
where

(Q1,N1,0) _
hj () = Z 0<0: <1
la1|=N1 "7 y1€Q1

(3.17) X (270(Q1)N0(Q1) ™™ dbrdyr,

(2722 )% o) K (2 22)

C1,Y1 61 Y1’




508 A. MrvyacHI AND N. ToMmITA
and we also have, by Remark 2.5,

(3.18) RSO e < A2 (20 0(Qq)) M.

Tt follows from (3.14) and (3.16) that

|9 ()] < 227 0(Qu) TMPH(Qa) TP (2 (1 — 1)) (Y (2 — ) T
(3.19) x min { A9V (), IOV (1)}

By interchanging the roles of y; and gy in the argument above, we can also
prove, for x € (Q7)° N (Q3%)°,

|9 ()] S 227 0(Qu)TMPHM(Qa) TP (2 (1 — 1)) T (Y (w — ) T
(3.20) x min {9200 (z), p{9 0N (1)},

where
KO = [ et @6 i) P ), Q) e
Y2€Q2 z1

(Q2,0,N2) _
h; () = Z 0<B2<1 H
laz[=N2" y2€Q2

X (Qje(Q2))N2€(Q2)_” dfadys

j .0 0, j .0
(o) (@l ) KGO (o, 2 ) o

and xﬁ;m =2 —co — O2(y2 — c2).

By (3.19) and (3.20), we see that
19 (@) X (@)en(@p)e () = A x A7 g5 ()| x(@pye (x) X A7721g;(2)|™ x (@3« ()
<Ax A™Prgim E(Ql)fn/ler”X(Q;)c(fﬂ)(?j(ﬂf —cp))”
X (min{thl’O’O)(x),thl’Nl’O) (Lflc)})ﬁ1
x A~P29in E(QQ)fn/szrnX(Q;)c($)<2j(55 —c2))” %
x (min {thQ’O’O) (2), thQ’O’NQ) (x) })ﬁ2
=A x uj(z) x vj(z).

It should be emphasized that u; depends only on @1 (namely, aq) and v; depends
only on ()2 (namely, az), and we obtain (3.10). Let us check that u; satisfies (3.11).
By Holder’s inequality with 1/p; = a1 + £1/2,

gl o < AT 27" 0(Qu) TP (2 (- = €)™ | ey

X H ( min {hg,Ql’OvO), h;Q17N170) })ﬂl

(@)

2o
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Since s1/a1 > n,

127 (- = er)) || L J2rme it 270(@Q1) <1,
1 LY@ ™ | 27dnen (204(Qq)) ot i 294(Qy) > 1,
9—jn(1/p1—P1/2) if 2][(@1) <1,
= 2_jn(1/pl_ﬁ1/2)(2j€(Q1))—31+0417L if 27[(@1) > 1.

By (3.15) and (3.18), we also have

[ (min {R§2 00 BNy < i {[|RSPOOY T, RGO 7L

_ (Ao it Q) < 1,
~ | (A2minzy it 200(Q1) > 1..

Therefore, u; satisfies (3.11). In the same way, we can check that v; satisfies (3.12).
O

Proof of (3.6). In order to obtain v’ and v’ satisfying (3.6), we shall prove that
for each j € Z there exist a function u; depending only on a; and a function v’
depending only on as such that

(3.21) 19; () IX(Qr)enqs (T) S Au;(x)v’(m),
27 —n/pi+n+Ni  if 9j <1
(3.22) (AT ( AE(Ql))f ; 1 Aé(Ql) <
(276(Qq))~"+/ if 270(Q1) > 1,
(3.23) [v'[Lr2 S 1.

Once these are proved, we can take >, u’ and v’ as v’ and v’ in (3.6).

Let us prove (3.21)—(3.23). We assume = € (Q7)°NQ35. Since |z — 1| = |z —y1]
for y1 € Q1 and s > n/2, we use (3.8) and Schwarz’s inequality to obtain

(2 (z = c1))™ g ()]

S 22%6@;1@1@ — 1)) K (2 (@ = 1), 2 (2~ y2))|
y2ER™

% g(Ql)—n/plg(QQ)—n/pg dyr dys
_ 2jn€(Q1)—n/pl—&-ng(Qz)—n/pg

%) @ = 50 G (2 = ), 20 Q) " dind
22€Rn

5 2jn€(Q1)—n/pl—&-ng(QQ)—n/pg
X/ 0 (27 (z — 1))** (22) 2 K (27 (z — 1), 22) || ., £(Q1) " dan
Yy1€Q1 2
= 27(Qu) Q) TPy O a),

where h;(@1:00 is defined by (3.13).
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Thus,
(324)  gj(@)] S 2M0(Q1)TMPHMU(Qe) TP (Y (= 1)) Ry (9000 (a),

On the other hand, since |z — ¢1| ~ |z — ¢ — 01 (y1 —c1)| = |29, |for 0 < 6, < 1

C1,Y1

and y; € @1, replacing (3.8) by (3.9) in the argument above, we obtain
(8:25)  lg;(@)] S 2@ T UQa) (2 (@ — 1)) RSN O (),

where h§Q1’N1’O) is defined by (3.17).
Now, (3.24) and (3.25) imply (3.21) with
i (z) = AT12M0(Q1) TP X (i ()
x (2 (2 — e))~* min {000 (@), B0 (@)},
v'(2) = £(Q2) " xg; ().

It is clear that v’ satisfies (3.23). Let us check that u] satisfies (3.22). By Hélder’s
inequality with 1/p; = 1/q1 + 1/2,
[l o S ATTRIME(Qr) TP

« H<2j(. —q h;Q1,0,0)7thl,Nl,o)}HLT

D7 o gy I min {

Since s1q1 > n,

127 = )™ | s oy

9—in(1/p1—1/2) if 270(Q1) <1
T 27 W/p=1/2) (9 p(Q )~ (U/p=1/2)if 200(Q) > 1.

By (3.15) and (3.18),

(@000 p@uNoy < JAZTTERIQU)M i 20(Q1) <1
|| min {A; 1 Hipe S —jn/2 e oj
A2 it 270(Q1) > 1.

Therefore, u} satisfies (3.22). O

Proof of (3.7). This can be proved in the same way as in the proof of (3.6) only
by interchanging the roles of y; and y2. This completes the proof of (3.3) and
thus (3.1)—(3.2) is proved. O

Remark 3.1. Notice that the proof of (3.6) works under the weaker assumption
that s; > n/p1 —n/2 and sy > n/2. Similarly we can prove (3.7) under the
assumption that s; > n/2 and sy > n/p2 — n/2.
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4. The boundedness from HP* x L? to LP for 0 < p; <1

In this section, we shall prove Theorem 1.1 with 0 < p; < 1 and py = 2. That is,
in the case 0 < p; <1 and 1/p; +1/2 = 1/p, we show that

(4.1) sy >n/pr—n/2, s2>n/2 = |Tmllgrixrzorr S sug|\mj|\w<sl,52>.
JjE€

It should be pointed out that by interchanging the roles of p; and ps in the proof
of (4.1) we can also prove, for 0 < ps <1, 1/2+4+ 1/ps =1/p,

(4.2)  s1>n/2, s2>n/pa—n/2 = |[|Tnl|lrexpresrr S Sugl\mjl\wm,sz»
je

By Lemma 2.1, we can decompose m as follows:
m=m®q 1 +mPp ) +mPy g = m® 4+ m® 4 m®,
Then

suppm ™ C {(€1,&) €R" xR" : [&1]/8 < |&af < 8},
suppm® C {(&1,62) € R x R™ : |&] < [&]/2},
suppm® C {(&1,62) €R" x R" : |&] < [€]/2}-
We use the following notation: Ay denotes the set of ¢ € S(R™) for which supp ¢

is compact and ¢ = 1 on some neighborhood of the origin; A; denotes the set of
" € S(R™) for which supp )’ is a compact subset of R™ \ {0}.

In the rest of this section, we assume 0 < p; < 1, 1/p1 +1/2 = 1/p, s1 >
n/p1 —n/2, and s3 > n/2. We shall prove

1T,

nxrzsre S sup [l e
JEL

for i =1, 2,3, where the my) are defined by (1.5) with m replaced by m(?. Once
these are proved, (4.1) follows from 2) of Lemma 2.1 and Lemma 2.4. Let s =
min{si, so}. Then, since n/s < 2, we can take ¢ satisfying max{1l,n/s} < ¢ < 2.
We consider first m®).

Estimate for m(Y). We write simply m instead of m(!). In order to obtain the
boundedness of T}, we shall prove that for an HP'-atom a; and an L-function f»
there exist a function b; depending only on a; and a function by depending only
on fo such that

(4.3) Tin (a1, f2)(@)] S Abr(2)b2(2),  [ballees ST, [|b2llz2 < [f2llz2,

where
A= sug 1772y (1020 -

JE
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Let us observe that (4.3) implies the boundedness of T,,,. To see this, we decompose
f1 € HP*(R™) as
fi= Z AL KA1 s
k

with HP'-atoms a;  and with

D Pl S Il

k

Then by taking the functions by i and by satisfying (4.3) for a; = a; x, we have

| T (f1, f2)l|Lr = H Z)\l,kTm(al,kan)HLp N AH (Z |/\1,k|b1,k)b2HLp
% %

1/p1
<A X Pwebue|, I0alee £ A Pas) 2l
k k
S Allfullaen | 2l z2-
To obtain (4.3), we shall prove

(4.4) | Tn(ar, f2)(@)Ix@p)e (@) S Au(@)o(@), |lullze ST, [lollez S 1f2llz2,
(4.5)  |Tm(ar, f2)(7)Ixq; (2) S Au'(2)0'(2),  [[W/fles ST, [[V'llz2 S I f2llz2,

where u and u’ depend only on a1, and v and v' depend only on fy. Once (4.4)
and (4.5) are proved, we can take u+u' and v + v’ as by and b2 in (4.3). In order
to prove (4.4) and (4.5), we decompose Ty, (a1, f2)(z) as

11 al,jb }E:gj

JEL

where g;(x) is defined by (3.8) with ag replaced by fa.

Proof of (4.4). We shall prove that for each j € Z there exists a function u;
depending only on a; such that

(46) 9@ (@) (@) § Au; (@) Mo fo(e),
| (2(Qu) /P i 2H(Qy) < 1
(4.7) ujllze < {(ng(Ql))—sﬁnﬂ it 270(Q1) > 1.

Once these are proved, we can take ZjEZ uj and M, fs as v and v in (4.4). Here,
notice that M, is bounded on L?(R") since q < 2.
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We assume that = € (Q7)°. Since |z — ¢1] = |z — y1| for y1 € Q1, s2¢ > n and
q' > 2, we have by (3.8), Holder’s inequality and Lemma 2.3,

(2 (2 = c1))™ |g; ()]

g2 [ 20— ) = ), 2o~ ) @) alue)

y2€Rn
= 2nQ i [ @) e - )
y2ER™

UG = ). 2o~ i) Q) 75 P

in —n/p1+n 9jin |f2(y2)|q a
S 27me(Qu) /(2 /R Bl dy2)

S ) e K@ e )2, 4@
S 2MU(Qu) M, fo()
) e K@ e =), 2l 4@
= 2m0(Q) TP 0 (@) M, fo(w),
where h§Q1’0’0) is defined by (3.13). Thus
(48)  lgi(@)] 2 UQu) TP (2w — )T AT (@) My fo(w).

On the other hand, since |z — ¢1| ~ |x —¢1 — 01(y1 —c1)| = |29, | for 0 < 0; < 1

C1,Y1

and y; € Q1, replacing (3.8) by (3.9) in the argument above, we obtain
(49)  lgi(@)] S 2" UQ) T (2 (e — e)) 7 T (@) My fo(w),

where thhNhO) is defined by (3.17).
Now, (4.8) and (4.9) imply (4.6) with

uj(z) = A7 0(Q1) TP x (e (a)
X <2j(x — 1)) min {h;Ql’O’O)(J:), h;Ql’Nl’O) (m)}

This u; is the same as the u in the proof of (3.6). Thus we have already checked
that u; satisfies (4.7) in the proof of (3.6) (cf. also Remark 3.1). O

Proof of (4.5). We shall prove that

(4.10)  |gj(@)lxqs () S AMy((D/27)ar)(x) xq; (2) Mg(¥'(D/27) fo) (),
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where 1,9 € A;. Once this is proved, we obtain (4.5). In fact, (4.10) implies the
first inequality of (4.5) with

) = (M (w0720 @?) xa; (@),
JEZL

)= (S w2 pe2)
JEZ

Since ¢ < 2, we have, by the vector-valued maximal inequality of Fefferman—Stein
and the Littlewood—Paley inequality,

1/2
s = || (2 Ma((D/2)ar)?) e L
JEZL
1/2
= (ZM (D/27)as) ) 'L2 Q3| /P12
JEZL
; q/2
= (ZM(|?/}(D/23)(11|Q)2/11> ‘Lg/q|Q |1/p1 1/2
JEZL
< (Z|¢(D/2j)a1|2)1/2’ |Q*|1/P171/2 < HalH 2|Q*|1/p1*1/2 <1
~ L2 1 ~ L 1 <1,
JEZL

and similarly ||v'||z2 < || f2llz2-

Let us prove (4.10). Since supp W(-/27) C {2071 < (|& | + |&]?)V/? < 20F1})
and suppm C {|&2]/8 < |&1] < 8|&|}, where U is as in (1.3) with d = 2n, if
(€1,&) € suppm(-)¥(-/27), then |&1] ~ |&2| =~ 27. Hence, we can find ¢, € A;
independent of j such that

() = et (E1+€2) ) 1/27 . €5/27

() = o [ 60/, /)
X Y(€1/27) @1 (&) ¥ (&2/27) fa(E2) dE1dés

:ij(~/2j)(w(D/Qj)alaw/(D/zj)fQ)(m)a

where 4 4
m;(&1,&2) = m(2761,2762) U(&1, &a).

Since supp m; is included in a compact subset independent of j, (4.10) follows from
Lemma 2.2. This completes the proof of (4.5). O

We next consider m .

Estimate for m®). We write simply m instead of m(®. In order to obtain the
boundedness of T,,,, we shall use the Littlewood—Paley function

)@ = (L w2 @),

JEZ
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where ¢ is as in (1.3) with d = n. Since ||F|lze S |F|ge = ||G(F)| e, the
boundedness of T, will follow if we prove the estimate

(4.11) 1G(Ton(f1s f2))llze S Allfill e ([ f2ll 2,

where A = sup;cz [|m;] 100 -

To prove (4.11), we shall prove that for an HP'-atom a; and for an L2-func-
tion fo there exist a function b; depending only on a; and a function by depending
only on f5 such that

(4.12)  G(Tm(ar, f2))(x) S Abi(2)b2(2),  |[ballLes S 1, [b2llz2 S [ f2]lz2-

Let us observe that (4.12) implies (4.11). To see this, we decompose f; as
fi= Z ALK @1k,
k

with HPt-atoms aq i and with >°, [A1,x|P* < || f1|%e: - Then by taking the functions
b1, and by satisfying (4.12) for a1 = ay 1, we have

(T (fr, f))@) = G( D M Tonlars, fo)) ()
k
<Y Mkl G(Tnark, £2)) (@) S A [kl brg() bo(2).

k k

Hence, by Hélder’s inequality,

IG(Tnlfrs )l S A Do |, Ioele
p p1 1/p1
< A(DS Dl bl )l 2
k
1/p1
< AT ual) " leallze £ Allfalles 1 ollze,
k

which is the estimate (4.11).
To prove (4.12), we prove that for each j € Z there exists a function u; de-
pending only on aq such that

(4.13) (D /27) Trn (a1, f2) ()| X(@1)e (2) S Auy(x) My fa(x),

(4.14) H(%u?)l/z‘

<1
Ler ™

and also prove that there exists a ¢’ € A; such that

(4.15) [W(D/27) T (ar, f2)(x)| xq; (2) S A Mgar(z) Mo (¥ (D/27) f2) ().
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We shall see that these estimates imply (4.12). In fact, (4.13) and (4.15) imply

/
G(Tm (a1, f2)) (ZWJ D/2) T (ay, f2)(x )|2X(QI)C(x)>1 i
JEL
1/2

+ (X 10(D/2) T(ar, f2)(@) P xs ()

JEZ

NA(Zuj(x)Q)l/Qquz( ) + AMyar (@)xq; (2)( 32 My(4/(D/2)) f2) (x) )1/2

JEZ JEZ
= A(u(z)o(z) + v/ (2 (2)),
where
N\ 1/2
u(@) = (Y ui@?) o) = Myfa(a),
JEZ
I 1/2
W'(@) = My (@)xo; (@), (@) = (D M,/ (D/2) ) (@)) .
JET
We have |[ul|Lrr <1 as in (4.14) and, since M, (a1)(z) < |lay||n=~ < |Q1|7/P1,
'z < 1QuI™YP Ixos o S 1.

Since ¢ < 2, we have ||v||rz < || f2llL2 and, by the vector-valued maximal inequality
of Fefferman—Stein, we also have

e 5 | (S w02 pk)
JEL

< .
Lo S I fellze.

Thus we obtain (4.12) with by = u + «' and by = v + v’. We shall now
prove (4.13)—(4.14) and (4.15).

Proof of (4.13)-(4.14). Since suppm C {|&] < [€2]/2}, if (&1,&2) € suppm, then
|€&1 4+ &2] ~ |&2|. Hence, we can find ¢ € Ag and ¢’ € A; independent of j such
that

m(&1, &) P((& + £)/27) = m(&1, &) ¥((& + £)/27) e(61/27) ¥ (€2/27).

Then, we can write
»(D/27) Tin(ax, f2)(x)
e [, mlen )06 +60/2) @) (&) derde
1
2m)2n

( on
( / T g (62, 6/2) @ (&) (&) dides

= Tn, (- 20) (a1, f2)(2),

=

where

(4.16) m (&1, &) =m(27&1,276) Y(& + &) o(&) ' (&).
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This representation says that 1(D/27)T,, (a1, f2) is essentially the same as the g,
appearing in the proof of (4.4). Therefore, we can prove (4.13) and (4.14) in the
same way as we proved (4.6) and (4.7). Notice that the inequality

sup [[m) lw i S sup [mjlly e = A
JEL JEZ

follows from Lemma 2.4, where the m; are defined by (1.5), and (4.14) follows
from (4.7) since

[ < ()™
JEZ JEZ

Proof of (4.15). It follows from the argument in the proof of (4.13)-(4.14) that
there exists a 1)’ € Ay such that

m(&1, &) (& + &)/27) = m;)(&/27,&/27) ¢ (€2/27),
where m,;) is defined by (4.16). Hence,

(D/QJ) m(a1, f2)(x)

= (27%)2 /R O G (62, 6/2) G(6) V' (6/2) F(&) drde

= Ty, (7207 (a1, 9" (D/27) fo) (),

Since suppm;) is included in a compact subset independent of j, (4.15) follows
from Lemma 2.2. O

= (i)™ o

JEZL

We finally consider m(®).

Estimate for m®) . By the same argument as in the case of m(?, it is sufficient
to prove that for an HP'-atom a; and an L2-function f, there exist a function by
depending only on a; and a function by depending only on fo satisfying (4.12).
To prove this, we consider (D /27)(T}, (a1, f2)). By interchanging the roles of &
and & in the argument for m(®), we obtain the same estimates (4.13)—(4.14) for
the part on (Q7)¢ and, for the part on @7, we obtain

(417)  [@(D/2)Tn(ar, f2)(x) xqp (2) S AMo(¢'(D/27)ar)(x) My(f2) ().
As in the case of m(?, these estimates imply
G(Tin(as, f2))(2) S A(u(z) v(@) +u'(z) v(2)),
with
1/2
D)= (Y w@?) " vl@) = Myfao),
JEZ

)= (S M, (D2 xor o)

JEZ
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We have ||u|rr1 < 1and ||v]|r2 < || f2]| 2 for the same reason as in the case of m(2).

As for v/, we use Holder’s inequality and the vector-valued maximal inequality of
Fefferman—Stein to obtain

/] 1o < H(ZM "(D/27)ay) ) /Q’Lz
<|(Zwwenmer)”|
JEL

S llaxlze QY72 S 1

LTSS

| @yt

Thus we obtain (4.12) with by = u+«' and ba = v. The proof of (4.1) is complete.

5. The boundedness from L x L*° to BMO

In this section, we shall prove Theorem 1.1 with p; = po = oco. That is, we show
that

(5.1) S1 > ’I’L/2, So > n/2 — ||TmHLoo><Loo_>BMO 5 sug ||ijW(51,s2).
NS

To do this, we need the following lemma:

Lemma 5.1. Let s1,s2 > n/2. Then

/y1|>2\x\ K (z+y1,2 +y2) — K(y1, y2) | dyrdyz < Sup (5 ([ o020
lv21>2le] ’

for all x € R™, where K = F~'m and m; is defined by (1.5).

Proof. We have

al>2s] |K(z + y1,2 + y2) — K(y1,y2)|dy1dys

ly2[>2||

< /y1|>2\x\ K (2 + 1,2+ y2) = K(yn, @ + yo) | dyndyo
[v2[>2]]

+ /y1|>2\x\ |K (y1, @+ y2) — K (y1,y2)|dyrdy:
ly2]>2]z|

< /y1|>2n$ |K(z 4 y1,y2) — K(y1,y2) |dyrdyz

y2 ER

e | K (y1, @ + y2) — K (y1,y2) |dy1dys.

ly2|>2|z|

We only consider the first term; the argument works for the second term as well.
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Since
§ : 2jn j j
K(xl,mg): 247 Kj(QJCL'l,QJIL'Q),
JEL

where K; = F~'m;, we have

/y1|>2’\x\ |K(‘T T y1,42) - K(yl,y2)|dy1dy2
2€R™
2jn ; . . .
< ZQ J /y1|>2\$\ |Kj(23(x+y1),2jy2) — Kj(2jy172jy2)|dy1dy2
€L Y2 ER™

=y 2" /y1\>2|z| |K5(27 (@ + 1), y2) — K5(27y1, y2) | dyrdys.
JEL y2 €ER™

Using s1, s2 > n/2, we see that

27 /y1|>2\x\ K527 (@ + 1), ) — K5 (27y1, y2)| dyrdys
y2ER™

<2.92in K, (27 dyrdys = 2 K (y1,y2)| dyid
= /y1|>|$|| J( yl,y2)| Yy1ay2 /y1|>21m| J(yl Yy2)| dy1dys
2ER™ y2€ER™

1/2
<o [ ) ) ) ) ) Kl

y2€R

S (sup lmillweer o ) (27fa]) 747/2,
keZ
On the other hand, it follows from Taylor’s formula and Remark 2.5 that

27m /y1\>2|a:| |K5(2 (@ + 1), y2) — Kj(27y1, y2) | dyrdys
y2ER™
2 | ) ) |
) (QJJJ)QI/ K™ )(2j(91$+y1),y2)d91‘dy1dy2
0

— 9in
ly1]>2||
y2€ER™  |ou|=1

< 2|z Z/ |K§a1’0)(y1’y2)|dy1dy2
R

2
g |=1 78"

< 2fal|2) ™ (w2) 2 KL (91, 0)|

) 5 (sup||mk|\w<51,sz>)2j|$|-
Y1v2 keZ

Combining these estimates, we have
S o / | K (27 (x + y1), y2) — K;(27y1, y2) | dyrdyz < sup [[mg|yycer oo -
: ly1|>2|x| kEZ
JEL y2E€R"
This completes the proof. O

We are now ready to prove (5.1).
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Proof of (5.1). We assume s; > n/2 and sg > n/2. Since
. 1
[T 1, fo)loio ~sup inf oo [ [Tl f2)@) — al
Q acC |Q| Q

it is sufficient to prove that for each cube () there exists a constant ag € C such
that

1
—/ T (f1, f2)(x) — agl dz S sup [mllycreo [ fillLe ([ f2] Lo
QI Jq jez
Given a cube @, we denote by c its center, and set

aQ = AIE(Q*)C K(c—y1,c=y2) f1(y1) fa(y2) dyrdyz,
2E(Q)°

f(o) fixg+- and f( _sz(Q e, 1=1,2.

Then

1
@ / T (1. f2) () — ag] da

(5.2 |Q|/ T (£, 1) () do +|Q|/ T (FY, 1) () do
0 p0y( R0 ol da.
|Q|/|T ) 9)(@)] de +|Q|/|T )(z) — agld

Since s1, $2 > n/2, we have by (1.6)

[TmllLexrossrz + [ Tmllpeoxrzsre S sup 725l o2 -
JjE

Using this L?-estimate of T, we can estimate the first three terms in (5.2). In
fact, the third term can be estimated as

1 _
@/QW O ) @) de < 1QI V2 | T (£, f5)]I 12

_ 0 1
<1QI Y2 1Tl 2o 2 12 115 e

< (sup [myllyweren) Lfillzoe | f2llzee,
JEZ

and the first and the second terms can be estimated in the same way.
Let us consider the last term in (5.2). Since |y; — ¢| > 2|z —¢| if 2 € Q
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and y; € (Q*)¢, it follows from Lemma 5.1 that

|Q|/|Tm M D) (@) - ag|de

521

=T Q") (K (z—y1, 2—y2)— K (c—y1,c—y2)) fr(y1) fo(y2) dyr dys|dz
ol by |

IN

[ f1llzoe [l f2]l oo
%/Q (/y1*c|>2\xfc‘ !K(:c — Y1, T — Y2)

ly2—c|>2]z—c|

—K(c—y1,c— yz)( dyrdy2)dx

_ Al foll ze
- T Q ( ly1|>2|z—c| |K($ —ctyLT—c+y2)

ly2|>2]z—c|

— K(y1,12)| dyldyz)dfﬂ

< (sup [[mllyycer o ) | f1ll oo [ f2l oo -
JEZ

The proof of (5.1) is complete.

6. Completion of the proof of Theorem 1.1

In Sections 3-5, we have proved the following:

1)-(3.2) for 1/p1 > 1, 1/ps > 1;
d) for 1/py > 1, 1/ps = 1/2;
2) for 1/p1 =1/2, 1/ps > 1;
1) for 1/p; =1/ps = 0.

Recall that Theorem 1.2 of [8] gives the following: for 0 < p < 1,

(6.1) s1>n/p—n/2, so>n/2 = [[Tnllarxremrr S sup|[mjllyeo,

JEZ

(6.2)  s1>n/2, so>n/p—n/2 = || Tnllrexmr—re S sup ||m;llyyere -
jez

Notice that these are exactly the assertions of Theorem 1.1 for (1/p1,1/p2) in the

respective ranges.

The assertions of Theorem 1.1 for I, I1, and I3 are derived from (4.1), (4.2),
(5.1), (6.1), and (6.2) by means of interpolation. For this, it is sufficient to use the
usual real or complex interpolation for bilinear operators in H? and LP spaces. In
fact, the interpolation theorem for bilinear operator is necessary only to obtain the
results for (1/p1,1/p2) on the line segment joining (1/2,1) and (1,1/2). In other
parts of Iy, I, and I, it is sufficient to apply interpolation for linear operators to

the linear operators obtained from T, (f1, f2) by freezing f; or fo.
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The assertion for I is nothing but (3.1)—(3.2).
There remain the assertions for I3, I4, and I5. To prove these assertions, we
use the following lemma:

Lemma 6.1. The set of points (1/p1,1/pa,s1,52) € (0,00)* for which the esti-
mate (1.8) holds is convex.

This lemma can be proved by the use of the interpolation theorem for analytic
families of operators (Stein-Weiss [19]) and the results for complex interpolation
spaces between H? and LP spaces (see Janson—Jones [13]). For details, see Section 6
of [8].

By using Lemma 6.1, we can deduce the assertions of Theorem 1.1 for I3, Iy,
and I5 from (3.1)—(3.2), (4.1), and (4.2). To prove the assertion for I3, for example,
consider the sets:

E=1{(1/p1,1/p2, s1,82) € (0,00)" | (1/p1,1/p2) € I3,
s1>n/2, $9>n/2, s14 82 >n/p1+n/ps — n/2},
Eo={(1/p1,1/p2,s1,52) € E | (1/p1,1/p2) = (1,1) or (1,1/2) or (1/2,1)}.
The assertions (3.1)—(3.2), (4.1), and (4.2) imply that the estimate (1.8) holds for
(1/p1,1/pa, s1,82) € &. It is easy to check that & is the convex hull of &. Hence
by Lemma 6.1, (1.8) holds for all (1/p1,1/p2,s1,s2) € &, which is the assertion

of Theorem 1.1 for (1/p1,1/p2) € Is. The proofs for I, and I are similar. This
completes the proof of Theorem 1.1.

7. Sharpness of the conditions of Theorem 1.1

In this section, we shall prove Theorem 1.2. We assume that 0 < p1,p2,p < 00,
1/p1+1/pa =1/p, 51,82 > 0, and the estimate

(7.1) | T (f1, f2)llze S sup 2l csas0) 11l mzen || fol| 2ree
je

holds, where LP should be replaced by BMO in the case p = co, and we shall prove

(7.2) sizmax {2, - DL s > max{ D, - 2
2 p; 2 2" po 2
and
n n n
7.3 S1+ s Z_+_7_.
(7.3) ks 2 -

Before proving (7.2), we make the following remark:

Remark 7.1. If f € S(R") is a function with supp f C {2790 < [¢] < 2/}, then
CUfllee < I fllae < C|lf|lLe, where C > 0 depends only on jo and p. A proof
goes as follows. In the case p > 1, this equivalence is obvious since H? (R™)=L?(R").
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Suppose p < 1. It is sufficient to prove ||G(f)||lzr < C||f|lze (see Section 4 for the
definition of G(f)). By the condition on the support of f,

e =( Y o) )"

Jj=—Jjo

On the other hand, it is known that there exists a constant C' = Cj, , > 0 such
that
lg*Plle < CligliLe |2 Lo

for all g, h € LP(R™) with supp g, supph C {|¢| < 2/0+1} (Proposition 1.5.3 of [21]).
These imply that |G(f)||r < C|fllzr-

We first prove the necessity of the condition (7.2).

Proof of (7.2). Our proof is based on the idea given in Section 7 of [8]. From the
inequality (7.1), we shall deduce s; > max{n/2,n/p; —n/2}. Interchanging the
roles of & and & in our argument below, we can also prove so > max{n/2,n/ps —
n/2}. First, we additionally assume that p < co.

Let ¢,9 € S(R™) \ {0} be such that

suppp C { € R™ : [¢] <1},
suppth C {£ € R™: 9/10 < |¢| < 11/10},
D€ =1 if19/20 < |¢] < 21/20.

Take a point ¢° in R™ satisfying |(°| = 1/10, and set, for sufficiently small € > 0,
m( (&1, &) = B((&1 — ¢°)/€) D(&a).
For this m(©), we have
oo (f1 f2) (@) = FHB(( = ¢) /) i) () F7H [ fo] (a0,

where F~! denotes the inverse Fourier transform on R™. Thus the inequality (7.1)
implies

(74) | F B~/ A P BR o S s9p I lwcoen Ialln 1felins
J

where mg-e) is defined by (1.5) with m replaced by m(€).

To estimate the norm ng-e) lw(e1.22) , We choose the function ¥ € S(R?"), which
appeared in the definition of m;, so that we have

supp ¥ C {¢ € R .97 1/2- < €] < 21/2+“},
W(E) =1 if 271 < g <212
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where @ > 0 is a sufficiently small number. If € > 0 is sufficiently small, then
suppm(9 C {(&1,6) e R*™ 1 |& — (°| <, 9/10 < |&] < 11/10}
C {(&1, &) e R*: 2712 < (g, &) < 2V/27).
This implies

j m(©) if j =
m;s) (&) = m(S)(ng) (&) = { (&) ifj=0,

0 if § £ 0,

and consequently

Sup 1m0 o102 = 1M o100 = 1B — €°)/€) DE) lyprior,en
J

= 13((- = ¢)/e)llwes [[Dllwee.
Let N > 0 be large enough. Then
[2((=¢°)/)llwer = [l€"p(ex) ()™ || >
1/2

S ([ fal) (14 efol) 2 da)

1/2
mn(/ dm—i—/ 25 dac—i—/ 22" (elal) > d)
|z|<1 1<|z|<1/e 1/e<|z|<o0

A etn/2,
Hence, by (7.4),
(75)  FBC =) )R FT ] e S e T2 il | follave
To obtain s; > n/2, we test (7.5) for
&) =6 = ¢°)fe) and  fo(&) = P B((& — e1)/e),

where e; = (1,0,...,0) € R™. Since supp ]?1 and Suppfg are included in compact
subsets of R™ \ {0} which are independent of ¢, it follows from Remark 7.1 that

(the right-hand side of (7.5)) ~ ¢~ ™™/ 2| f1|| o1 || fo] Lr2 = C e /2.
On the other hand, since

FR( = ¢)/e) 1) (@) F [0 o] () = F P B((- = ¢°) /)] () F [ o] (=)

= VP17 o x p(ex) €172 (),
we have
(the left-hand side of (7.5)) = €/PrT7/P2 || % p(e-) p(e-)|| r = C.

Hence, 1 < e *17"/2 and s > n/2.



SMOOTHNESS CONDITIONS FOR BILINEAR FOURIER MULTIPLIERS 525
To obtain s > n/p1 —n/2, we test (7.5) for

) =€) and  fo(&) = VP G((& — e) /o),

where )/ € S(R™) is chosen so that supp )’ is a compact subset of R" \ {0} and
1’ =1 in a neighborhood of (°. It follows from Remark 7.1 that

(the right-hand side of (7.5)) &~ ¢ ** T2 || f1||zo1 || fal| prz = C e~ 5177/2,

On the other hand, since

FUB(C —¢)/e) A)(@) F 7Y fo] ()

FB( = ¢)/0) (@) F 7 [f] (@)
— " () €/ ¢ (),
we have

(the left-hand side of (7.5)) = €""/P2 ||p(e-)?||L» = C /P2,

Therefore, €*~"/P1 < e=*1%7/2 and 51 > n/p; —n/2.

Since [|[lllssio S IIfllesto and [|f(e)zmo = || fllsyo, our argument above
works for the case p = oo as well. O

Remark 7.2. For the multiplier m(¢) of the above proof, we actually have

Hm(E)HW(SleQ)(RQn) ~ e S1TN/2

The estimate |\m(5)|\w<s1,52)(Rzn) < e7*1t"/2 has been proved above. To see the
converse estimate, take a point zop € R™ \ {0} and a number ¢ such that 0 < § <
|zo]/2 and |p(z)| > ¢ for |x — x| < d. Then, for sufficiently small ¢ > 0,

{€"8|z|* }de %/IIO/EK(S/E{J(;(@) s1 }de

—5112 — _
Z{en 61} e = 251

e ) e > [

R lex—xo|<S

and consequently

1M [y or.0 (o) = B =€)/ €)llwer @ny = € plex) (@)* |2 2 e /2,
We next prove the necessity of the condition (7.3).
Proof of (7.3). Let ¢ € S(R™) be such that

¢(0) #0, suppp C {[{] <1/10},  @(§) =1 if [ < 1/20.

Take a point ¢° in R™ satisfying |¢°| = v/2, and set, for sufficiently small € > 0,

ml9 (&, &) = @(M%CO) (&1 — &2)-
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Note that
1
suppm() {|£1+§2—< < 10 3 —£2| <3
€ 1
Ala-Sleg+5 le-5l= 5+ %)
€ 1 1
- <1 —
C{ 10 < (& &)l +10+10}
and

FY(m!e ))(1'1,1'2
o [ (2 E) b6 - ) expliton -0 4 2 )} derds

=N 7 —(C°\ . + n —
:C//SD n 64 w(nz) exp{z<x1~n12n2+x2~ ;12 )2>}d7)1d7)2

o X1 T2\, r1 + X2 T1 — X2
=cexp(@<- ) el ) (B )

Since suppm() C {2712+ < |(&,&)| < 21/27°} for sufficiently small € > 0, it
follows from the argument used in the proof of (7.2) that

(7.6) SHPHm o = 1M |[yperem,
JEZ

where mj ) is defined by (1.5) with m replaced by m(¢). In order to obtain s; +s5 >
n/p1 +n/p2 —n/2, we shall prove that

€”<,0(6$1 ‘;-1'2)()0(-1'1 g$2)<xl>sl (12)*?

< 6%_81 S2
L2 "™

(7.7) IOy =

for s1,s9 > 0.
Before proving (7.7), let us observe that this implies the desired result. Take a
function f € S(R™) satisfying

<2V fo=1 -5

supp f C {’5* %

Since f(§1) f(§2) =1 on suppm 9 (&1, &), we have

T (f, ) (@) = FHm ) (@, 2) = ¢ exp(i€® - x) " p(ex) 0(0),
and hence
(7.8) [T (f, Pl 2e = clle™ p(ex) 9(0) | o = C ™ /7.

On the other hand, since Suppfc R™ \ {0}, we see that f; € HP{(R™), i = 1,2.
Hence, it follows from (7.1) with m = m(9) and f; = fo = f and from (7.6), (7.7)
and (7.8) that

< 6%_81_82
~Y

n\:

€"

)

and consequently s; + so > n/p—n/2=n/p1 +n/ps —n/2.
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We shall prove (7.7), that is,

(7.9) // ‘€n<p(€x1 JQr:Ez) @(xl ;x2> (1)t ()2

Let N > 0 be large enough. Then the left-hand side of (7.9) is majorized by

2
dridrs S 6"72817282 .

// {8+ ey + )TN (Ut oy — 22)) N (20)* (22) ) day darsy

n — — s s 12
z/ {e" (1 + elgn )N (@ + Jy2) "N {ys + y2)* (y1 — y2)*2 } dyrdys

~ ii {e"(1+27e)~N (2k)~N)?

=0 k=0

x //Myl‘dm (yr +y2)*" (y1 — y2)>** dyrdy:

2k <|yo|< 2R FT

0o 0
= Zzlj,ka

§=0 k=0
where we replace f21‘<\y1|<21‘+1 (respectively, f2k<‘y2|<2,€+1) by fly1|<2 (respectively,
f\yQ\<2) if j = 0 (respectively, k = 0). We assume ¢ is sufficiently small, say 4e < 1.
To estimate I; 1, we divide (j, k) into six classes.
For (j, k) satisfying j > k + 2 and 27¢ > 1, we have
Ly~ {€"(27e) N (2F) 7NV} 2721 97252 9in gkn
— (2n—2N 9j(—2N+n+2s142s2) gk(~2N+n)

Hence
oo oo (o]
Z ZX{j > k42, 2e> 1} ~ Z X{2e > 1}~ 2N i (=2N +nt26142s2)
3=0 k=0 3=0

2n—2N6—(—2N+n+2sl+232) — 6n—2sl—232

~e
For (j, k) satisfying j < k — 2 and 27¢ > 1, we have

Ij,k ~ {6"(2j€)_N (2k)—N}2 2k~2sl 2k~232 2jn an

_ 62n72N 2j(72N+n) 2]6(72N+n+281+282)

o0
Zx{j <k—2, 2e> 1}, ~ ZX{Qje > 1}e2n—2Ni(—4N+2n+2s142s2)
k=0 7=0

s 62n_2N6_(_4N+2n+2sl+282)

— 62N72517252 < 677,72817282-
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For (j, k) satisfying k —2 < j <k +2 and 2¢ > 1, we have

Ij,k: I~ {En(2j€)*N (2])*]\7}2 2j~281 2j~282 2]277, _ 627’7,72]\/' 2j(74N+2n+281+252)'

Hence
[oe] o0 A
ZZ x{k—2<j <k+22e>1}
j=0 k=0
o0
~ ZX{ZJG > 1} 62n_2N 2j(_4N+2n+231+282)
j=0

s 627L—2N E—(—4N+2n+2$1+232)

— 62N—231—232 < 6n—2sl—232_
For (j, k) satisfying j > k + 2 and 27¢ < 1, we have
Ij,k ~ {en(2k)—N}2 2j~231 2j~232 2jn 2kn _ €2n 2]’(n+2s1+232) 2k(—2N+n).

Hence

> oo
ZX{] >k+2, 27 <1}~ ZX{J >2 2e<1}e 9J (n+2s1+2s2)
-0 iz

ro 27 ¢ (nH2514252) _ n—2s1—2s5

hE

<
Il
o

For (j, k) satisfying j < k — 2 and 27¢ < 1, we have

Ij S {en(2k)—N}2 2k~2sl 2k~232 2jn an — €2n 2jn 2k(—2N+n+231+2s2)-

o0 oo o0
sz{j <k-—2 2e<1}~ ZX{2jE < 1) €20 I (2N +2n-+2s1425)
7=0 k=0 j=0

~ 62n < 677,72817282'

Finally, for (j,k) satisfying k — 2 < j < k + 2 and 27¢ < 1, we have

Ij S {En(Qj)—N}2 2j~231 2j~232 2j~2n _ €2n 2j(—2N+2n+231+232).
Hence

0o oo oo
SN ok -2<i<k+2 Ye< 1 n Y x{2e<1) e (2N 22t
7=0 k=0 =0

~ 62n < 677,72817282.

This completes the proof of Theorem 1.2. O
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Remark 7.3. In the estimate (7.9), < can be replaced by ~. In fact, taking 6 > 0
such that |p(x)] > |¢(0)|/2 > 0 if || < J, we have

_ 2
6n§0<6m1 42’1'2>SD<£L'1 _ 1’2><m1>31 <x2>82 dxydxs

> // {enx{dml + o] < 81 {|1 — aa] < 8} a1)™ <x2>82}2dm1dm2
~ // {e"x{6|y1| < orx{lyel < 0}y +y2)* (y1 — yz)”}zdmdyz
2 [ {ertore <l < opeliual <0} (2)" (5) 7} e

sy — 2 _ 951 —
z{cn s1 sz} P 251 252.

Il
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