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Boundedness of maximal operators
of Schrödinger type with complex time

Andrew D. Bailey

Abstract. Results of P. Sjölin and F. Soria on the Schrödinger maxi-
mal operator with complex-valued time are improved by determining up
to the endpoint the sharp s � 0 for which boundedness from the Sobolev
space Hs(R) into L2(R) occurs. Bounds are established for not only the
Schrödinger maximal operator, but further for a general class of maximal
operators corresponding to solution operators for certain dispersive PDEs.
As a consequence of additional bounds on these maximal operators from
Hs(R) into L2([−1, 1]), sharp results on the pointwise almost everywhere
convergence of the solutions of these PDEs to their initial data are deter-
mined.

1. Introduction

For a > 1, time parameter t > 0 and spatial variable x ∈ R, define the following
operator acting on functions f in the Schwartz class, S(R):

St
af(x) :=

∫
R

f̂(ξ)eit|ξ|
a

eixξ dξ.

This operator gives the solution to the dispersive equation

i∂tu(t, x) + (−Δ)
a
2 u = 0

in one spatial dimension and one temporal dimension with initial data u(0, x) =
2πf(x). For a = 2, it corresponds to the solution operator for the Schrödinger
equation.

The boundedness of the maximal operator S∗
af := supt∈(0,1) |St

af | was con-
sidered in [2] by L. Carleson in the case of a = 2, motivated by the problem of
determining on what class of functions the operator St

2 can be defined such that
for all functions f in this class, limt→0 S

t
2f(x) = f(x) for almost every x ∈ R.
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Whilst Carleson considered the problem in the context of Hölder continuous func-
tions, an immediate consequence of his work is that when f is taken in the Sobolev
space H1/4(R), the following operator bound may be established:

‖S∗
2f‖L2([−1,1]) � ‖f‖H1/4(R).

Here and throughout this paper, the symbol � is used to signify that the left hand
side is bounded above by a constant multiple of the right hand side, with this
constant independent of f . In what follows, A ≈ B will be used to signify that A
is equal to a constant multiple of B, whilst A ∼ B will be used to signify that
A � B and B � A both hold.

In [3], B. Dahlberg and C. Kenig showed by exhibiting a counterexample that
Carleson’s result is sharp in the sense that for any positive s < 1/4, there exists
a function f ∈ Hs such that limt→0 |St

2f(x)| = ∞ for almost every x ∈ R. As a
consequence, H1/4 in Carleson’s maximal estimate cannot be replaced by Hs for
any s < 1/4.

The problem of the boundedness of the Schrödinger maximal operator was
considered in the context of global L2 norms by L. Vega in [13] where it was shown
that

‖S∗
2f‖L2(R) � ‖f‖Hs(R)

for any s > 1/2, and that this estimate fails for s < 1/2. The problem of the
boundedness for s = 1/2 remains open.

It is a simple observation that if the definition of the solution operator for
the Schrödinger equation is extended to allow complex-valued time with positive
imaginary part, then for t � 0, the operator Sit

2 is the solution operator for the
heat equation,

∂tu(t, x) = ∂2
xu(t, x).

By observing that the multiplier associated with Sit
2 is a Gaussian, it follows from

the boundedness of the Hardy–Littlewood maximal function that∥∥ sup
t∈(0,1)

|Sit
2 f |

∥∥
L2(R)

� ‖f‖L2(R).

Given this result and the result of Vega, it is natural to consider intermedi-
ate results by asking for which s > 0 and which maps g : [0, 1] → [0, 1] with
limt→0 g(t) = 0 it can be said that∥∥ sup

t∈(0,1)

|St+ig(t)
2 f |∥∥

L2(R)
� ‖f‖Hs(R).

This interesting question was posed and partially answered by P. Sjölin in [10].
For t, γ > 0, he considered the operator

P t
2,γf(x) := St+itγ

2 f(x) =

∫
R

f̂(ξ)eitξ
2

e−tγξ2eixξ dξ

with corresponding maximal operator P ∗
2,γf := supt∈(0,1) |P t

2,γf |. Denoting by
s2(γ) the infimum of the values of s > 0 such that the estimate ‖P ∗

2,γf‖L2(R) �
‖f‖Hs(R) holds, the following is established by Sjölin in [10] and in [11] together
with F. Soria:
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Theorem 1.1.

(i) For γ ∈ (0, 1], s2(γ) = 0;

(ii) For γ ∈ (1, 2), s2(γ) ∈ [0, 1
2 − 1

2γ ];

(iii) s2(2) =
1
4 ;

(iv) For γ ∈ (2, 4], s2(γ) ∈ [ 14 ,
1
2 − 1

2γ ];

(v) For γ ∈ (4,∞), s2(γ) ∈ [ 12 − 1
γ ,

1
2 − 1

2γ ].

Sjölin’s original work in [10] established cases (i) and (iii), as well as (v) with an
upper bound of 1/2 instead of 1/2−1/(2γ). Cases (ii) and (iv) and the improvement
of case (v) were established in [11] with Soria.

In a paper from 1994, [8], Sjölin also established that for any a > 1, the infimum
of the values of s > 0 for which

‖S∗
af‖L2(R) � ‖f‖Hs(R)

holds is a/4. As such, in addition to the problem of fully determining s2(γ) in
cases (ii), (iv) and (v), it is natural to consider whether the scope of Theorem 1.1
can be extended to a �= 2. To this end, for t, γ > 0 and a > 1, define in the natural
way,

P t
a,γf(x) := St+itγ

a f(x) =

∫
R

f̂(ξ)eit|ξ|
a

e−tγ |ξ|aeixξ dξ

with corresponding maximal operator P ∗
a,γf := supt∈(0,1) |P t

a,γf | and let sa(γ)
denote the infimum of the values of s > 0 such that the estimate ‖P ∗

a,γf‖L2(R) �
‖f‖Hs(R) holds. Letting x+ denote the maximum of 0 and x for each x ∈ R, in
this paper, the following is established:

Theorem 1.2. For γ ∈ (0,∞) and a > 1, sa(γ) =
1
4 a

(
1− 1

γ

)+
.

In the case of a = 2, this “completes” Theorem 1.1.
By standard arguments, pointwise almost everywhere convergence of P t

a,γf to f
as t → 0 can be deduced as a corollary of Theorem 1.2 for functions f ∈ Hs(R)
when a and γ are as in the statement of the theorem and s > sa(γ). In fact, the
following stronger result will also be established:

Theorem 1.3. For each γ ∈ (0,∞) and a > 1, the infimum of the values of s > 0
for which

lim
t→0

P t
a,γf(x) = f(x)

for almost every x ∈ R whenever f ∈ Hs(R) is min
(
1
4 a

(
1− 1

γ

)+
, 1
4

)
. Moreover, this

convergence also occurs for all f ∈ L2(R) when γ ∈ (0, 1] and for all f ∈ H
1
4 (R)

when γ ∈ [ a
a−1 ,∞).

Theorem 1.3 will be proved in Section 4 as a consequence of local bounds
for P ∗

a,γ deduced from Theorem 1.2 and some other previous work of Sjölin. To
prove Theorem 1.2, it will suffice to consider the case of γ > 1, owing to the
following generalisation of Sjölin’s Lemma 1 from [10]:
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Lemma 1.4. Let g and h be continuous functions mapping [0, 1] to [0, 1] such that
g(t) � h(t) for all t ∈ (0, 1). Then for any a > 1,∥∥∥ sup

t∈(0,1)

|St+ih(t)
a f |

∥∥∥
L2(R)

�
∥∥∥ sup

t∈(0,1)

|St+ig(t)
a f |

∥∥∥
L2(R)

for any f ∈ S(R).

In addition to reducing the proof of Theorem 1.2 to the case of γ > 1, this
lemma also suggests that in terms of understanding the convergence at the origin,
the P ∗

a,γ are natural operators to consider as they encapsulate the convergence

properties of any operator of the form S
t+ih(t)
a f when h(t) is of polynomial type

near t = 0. The proof is essentially the same as the proof of the analogous result
from [10] and will thus be given in an appendix.

The proof of Theorem 1.2 will be divided into two sections. In Section 2, it will
be shown that ‖P ∗

a,γf‖L2(R) � ‖f‖Hs(R) holds for all s above the critical index,
1
4 a

(
1− 1

γ

)
when γ > 1, whilst in Section 3, it will be shown that this boundedness

fails for all s below this index. Section 4 will contain some further remarks on the
implications of Theorem 1.2 and its proof, as well as a proof of Theorem 1.3.

The work contained in this paper formed part of the author’s doctoral thesis, [1].
The author would like to express his gratitude to his supervisor, Jonathan Bennett,
for all his support and assistance over the last few years. The author is also grateful
to Neal Bez and Keith Rogers for some valuable discussions about this work.

2. Proof of boundedness of the maximal operator for regu-
larity above the critical index

It is claimed that to show that ‖P ∗
a,γf‖L2(R) � ‖f‖Hs(R) for all s > 1

4 a
(
1− 1

γ

)
, it

will be sufficient to prove the following lemma:

Lemma 2.1. Suppose that a, γ > 1 and α > 1
2 a

(
1 − 1

γ

)
. If γ < a

a−1 , suppose

further that α < 1/2. Let μ ∈ S(R) be compactly supported, positive, even and real-
valued. Then there exists K ∈ L1(R) such that for any t1, t2 ∈ (0, 1) and N ∈ N,

∣∣∣ ∫
R

ei((t1−t2)|ξ|a−xξ)(1 + ξ2)−
α
2 e−(tγ1+tγ2 )|ξ|aμ

( ξ

N

)
dξ
∣∣∣ � K(x)

for all x ∈ R.

It is remarked that the assumption that α < 1/2 for γ < a
a−1 is purely for

technical reasons and since only minimal choices of α are of interest in proving
Theorem 1.2, it will have no impact on the usefulness of this lemma.
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The sufficiency of this lemma in establishing the desired boundedness can be
shown using the Kolmogorov–Seliverstov–Plessner method. Indeed, assuming this
lemma to be true, fix any positive, even η ∈ S(R) supported in [−1, 1] and equal
to 1 in [−1/2, 1/2]. Also, fix a measurable function t : R → (0, 1) and define for
each N ∈ N,

P
t(x)
a,γ,Nf(x) = η

( x

N

) ∫
R

f̂(ξ)eit(x)|ξ|
a

e−tγ(x)|ξ|aeixξη
( ξ

N

)
dξ.

To establish that ‖P ∗
a,γf‖L2(R) � ‖f‖Hs(R) for all s > 1

4 a
(
1 − 1

γ

)
, it suffices to

prove that

‖P t(·)
a,γ,Nf‖L2(R) � ‖f‖Hs(R)

for any N ∈ N with constant independent of N and t. This is equivalent to showing
that for any g ∈ L2(R) with ‖g‖L2(R) = 1,∣∣∣ ∫

R

(P
t(x)
a,γ,Nf)(x)g(x) dx

∣∣∣ � ‖f‖Hs(R).

However, by Fubini’s Theorem and the Cauchy–Schwarz inequality,∣∣∣ ∫
R

(
P

t(x)
a,γ,Nf

)
(x)g(x) dx

∣∣∣
=

∣∣∣ ∫
R

f̂(ξ)(1 + ξ2)
s
2 (1 + ξ2)−

s
2 η

( ξ

N

)∫
R

eit(x)|ξ|
a

e−tγ(x)|ξ|aeixξg(x)η
( x

N

)
dx dξ

∣∣∣
�

∥∥f∥∥
Hs(R)

∣∣∣ ∫
R

(1 + ξ2)−sη2
( ξ

N

) ∫
R

∫
R

ei(t(x)−t(y))|ξ|ae−(tγ(x)+tγ(y))|ξ|aei(x−y)ξ

× g(x)g(y)η
( x

N

)
η
( y

N

)
dx dy dξ

∣∣∣
�

∥∥f∥∥
Hs(R)

∫
R

∫
R

g(x)g(y)
∣∣∣ ∫

R

ei((t(x)−t(y))|ξ|a−(y−x)ξ)(1 + ξ2)−s

× e−(tγ(x)+tγ(y))|ξ|aη2
( ξ

N

)
dξ

∣∣∣ dx dy.
By Lemma 2.1 (where α = 2s, μ = η2, t1 = t(x) and t2 = t(y)) and a further
application of the Cauchy–Schwarz inequality, this quantity can be bounded by
‖f‖Hs(R)‖|K| ∗ |g|‖L2(R)‖g‖L2(R), which, by Young’s convolution inequality and
the fact that ‖g‖L2(R) = 1, is bounded by ‖f‖Hs(R)‖K‖L1(R). This establishes the
desired boundedness of P ∗

a,γ .
Lemma 2.1 is based on Lemmata 2.1, 2.2, 2.3 and 2.4 from [11] and its proof

given here follows a similar strategy to the proofs of those lemmata. Note that
of these four lemmata, Lemma 2.1 was proved in [9] (originally proved implicitly
in [4] using a method from [7]) and Lemma 2.2 was proved in [10].

The remainder of this section will be devoted to the proof of Lemma 2.1.
To begin with, for each ε > 0, define the function hε(ξ) := e−ε|ξ|a . It is claimed

that for ξ �= 0,

|h′
ε(ξ)| �

1

|ξ| and |h′′
ε (ξ)| �

1

|ξ|2
with constant independent of ε.



536 A.D. Bailey

Indeed, note that h′
ε(ξ) = − sgn(ξ) ε a |ξ|a−1e−ε|ξ|a , so

|h′
ε(ξ)| �

a

|ξ|
(
max
y∈R+

ye−y
)
� 1

|ξ| .

Similarly,

|h′′
ε (ξ)| �

1

|ξ|2
(
max
y∈R+

ye−y
)
+

1

|ξ|2
(
max
y∈R+

y2e−y
)
� 1

|ξ|2 .

Now, assume without loss of generality that t2 < t1 and set t := t1 − t2 and
ε := tγ1 + tγ2 . Also, define F (ξ) = t|ξ|a − xξ and G(ξ) = (1+ ξ2)−α/2e−ε|ξ|aμ(ξ/N),
so that the integral in Lemma 2.1 can be rewritten as∫

R

eiF (ξ)G(ξ) dξ.

The letter ρ will be used to denote
( |x|
ta

)1/(a−1)
, a (possibly) stationary point of F .

Fixing a large constant C0 ∈ R
+, the cases |x| � C0 and |x| � C0 will be

considered separately.

2.1. The case |x| � C0

Split the integral as A+B, where

A :=

∫
|ξ|�|x|−1

ei(t|ξ|
a−xξ) (1 + ξ2)−α/2 e−ε|ξ|a μ

( ξ

N

)
dξ,

B :=

∫
|ξ|�|x|−1

ei(t|ξ|
a−xξ) (1 + ξ2)−α/2 e−ε|ξ|a μ

( ξ

N

)
dξ.

The first integral, A, can be bounded trivially by simply observing that

|A| �
∫
|ξ|�|x|−1

(
1 + ξ2

)−α/2
dξ � 1 + |x|α−1 � |x|min(0,α−1).

Since min(0, α− 1) > −1, the required estimate on A is established.

To estimate B, first assume that |x|a � t/2. This ensures that the phase of the
integrand (the function F ) is never stationary in the region of integration for B.

By symmetry, it will suffice to bound B with the range of integration restricted
to positive values of ξ. By direct calculation, for such ξ, F ′(ξ) = atξa−1 − x, so it
can be seen that F ′ is monotonic. Further, given that |ξ| � 1/|x| and t

|x|a−1 � 2|x|,

|F ′(ξ)| � |x|(2a− 1) > |x|,
so by Van der Corput’s Lemma, it follows that∣∣∣ ∫

ξ>|x|−1

eiF (ξ)G(ξ) dξ
∣∣∣ � 1

|x|
(

sup
ξ>|x|−1

|G(ξ)|+
∫
ξ>|x|−1

|G′(ξ)| dξ
)
.
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Trivially, |G(ξ)| � (1 + ξ2)−α/2 � |x|α for ξ > |x|−1. Recalling that hε(ξ) :=
e−ε|ξ|a ,

G′(ξ) = 2ξ
(
− α

2

)
(1 + ξ2)−α/2−1 hε(ξ)μ

( ξ

N

)
+ (1 + ξ2)−α/2 h′

ε(ξ)μ
( ξ

N

)
+ (1 + ξ2)−α/2 hε(ξ)

1

N
μ′
( ξ

N

)
,

so since |h′
ε(ξ)| � 1/|ξ| with constant independent of ε,

|G′(ξ)| � αξ(1 + ξ2)−α/2−1 hε(ξ)μ
( ξ

N

)
+ (1 + ξ2)−α/2 |h′

ε(ξ)|μ
( ξ

N

)
+ (1 + ξ2)−α/2 hε(ξ)

1

N

∣∣∣μ′
( ξ

N

)∣∣∣
� ξ−α−1 +

ξ−α

N

∣∣∣μ′
( ξ

N

)∣∣∣
� ξ−α−1.

It follows that ∫
ξ>|x|−1

|G′(ξ)| dξ �
∫ ∞

|x|−1

ξ−α−1 dξ � |x|α,

and hence B � |x|α−1. Again, given that α − 1 > −1, the desired estimate for B
holds in the case of |x|a � t/2.

To complete the proof of the lemma in the case |x| � C0, it remains to bound B
in the case that |x|a � t/2. As before, it suffices to consider only positive ξ. To
proceed, fix a small constant, δ, and a large constant, K. The range of integration
will be split into the following regions:

I1 :=
{
ξ � |x|−1 : ξ � δρ

}
,

I2 :=
{
ξ � |x|−1 : ξ ∈ [δρ,Kρ]

}
,

I3 :=
{
ξ � |x|−1 : ξ � Kρ

}
,

recalling that ρ =
( |x|
ta

)1/(a−1)
. For each j ∈ {1, 2, 3}, the integral in B restricted

to the region Ij will be denoted by Jj .
This splitting isolates a neighbourhood around the point of (possible) stationary

phase of the integrand (I2) from the remaining range of integration either side
(I1 and I3). These latter regions will be bounded using a lower bound on F ′ and
an application of Van der Corput’s Lemma, as before. Indeed, for ξ ∈ I1, it can be
seen that atξa−1 � δa−1|x| � |x|/2, hence |F ′(ξ)| = |atξa−1−x| � |x|/2. Similarly,
for ξ ∈ I3, it can be seen that atξa−1 � Ka−1|x| � 2|x|, so |F ′(ξ)| � |x|/2. From
before,

sup
ξ>|x|−1

|G(ξ)| +
∫
ξ>|x|−1

|G′(ξ)| dξ � |x|α,

so by Van der Corput’s Lemma,

|J1|, |J3| � |x|−1|x|α = |x|α−1.
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Unsurprisingly, the estimate on J2 is more delicate, although it is still attained
using Van der Corput’s Lemma, this time with the second derivative of F bounded
below. To begin with, assume that γ � a

a−1 . For any ξ in I2, it is the case that

ξ ∼ ρ. Given that F ′′(ξ) = a(a − 1)tξa−2, it follows that |F ′′(ξ)| � t
1

a−1 |x| a−2
a−1 .

Following the same method as before, but now using that ξ � ρ instead of simply
that ξ � 1/|x|, it is also the case that

sup
ξ∈I2

|G(ξ)| � ρ−α and

∫
I2

|G′(ξ)| dξ � ρ−α.

Consequently, by Van der Corput’s Lemma,

|J2| � t−
1

2(a−1) |x|− (a−2)
2(a−1) ρ−α ≈ t

1
a−1 (α− 1

2 ) |x| 1
a−1 (1− 1

2a−α).

Since γ � a
a−1 , it is necessarily the case that α − 1/2 > 0. Using further the

assumption that |x|a � t/2, it follows that

t
1

a−1 (α− 1
2 ) � |x| a

a−1 (α− 1
2 ),

so
|J2| � |x| a

a−1 (α− 1
2 ) |x| 1

a−1 (1− 1
2a−α) = |x|α−1,

which completes the desired estimate.

It remains only to consider the case of γ < a
a−1 . The lower bound, |F ′′(ξ)| �

t
1

a−1 |x| a−2
a−1 will be used again in another application of Van der Corput’s Lemma,

but instead of the fact that |x|a � t/2, improved estimates on G will be required.
Indeed, note first that

sup
ξ∈I2

|G(ξ)| � ρ−α e−δaερa

.

Also, similarly to before,

|G′(ξ)| � ρ−α |h′
ε(ξ)|+ ρ−α−1 hε(δρ),

so ∫
I2

|G′(ξ)| dξ � ρ−α

∫ Kρ

δρ

|h′
ε(ξ)| dξ +

∫ Kρ

δρ

ρ−α−1hε(δρ) dξ

= −ρ−α

∫ Kρ

δρ

h′
ε(ξ) dξ +

∫ Kρ

δρ

ρ−α−1hε(δρ) dξ

≈ ρ−αe−δaερa

by the Fundamental Theorem of Calculus.
As such, by Van der Corput’s Lemma,

|J2| � t−
1

2(a−1) |x|− a−2
2(a−1) ρ−α e−δaερa

≈ t
1

a−1 (α− 1
2 ) |x| 1

a−1 (−α− 1
2 (a−2)) e−δa(tγ1+tγ2 ) |x|

a
a−1 t

− a
a−1

.
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Further, observing that tγ1 + tγ2 � (t1 + t2)
γ � tγ , it can be seen that there exists

a small constant c0 > 0 such that

|J2| � t
1

a−1 (α− 1
2 ) |x| 1

a−1 (−α− 1
2 (a−2)) e−δac0t

γ− a
a−1 |x|

a
a−1

.

Noting that for any y, β > 0, the inequality

e−y �β y−β

holds, it follows that for any β > 0,

|J2| � t
1

a−1 (α− 1
2 ) |x| 1

a−1 (−α− 1
2 (a−2)) t−β(γ− a

a−1 ) |x|− βa
a−1

=
t

1
a−1 (α− 1

2 )

tβ(γ−
a

a−1 )

1

|x| 1
a−1 (α+

1
2 (a−2)+βa)

.

Choose β such that 1
a−1 (α− 1

2 ) = β(γ − a
a−1 ), that is β =

α− 1
2

(a−1)γ−a , noting that β

is genuinely positive as γ < a
a−1 and α < 1/2. It follows that |J2| � |x|−k, where

k = 1
a−1

(
α+ 1

2 (a−2)+
a(α− 1

2 )

(a−1)γ−a

)
, so it remains only to show that k < 1. However,

k =
1

a− 1

(
α
( (a− 1)γ

(a− 1)γ − a

)
+

1

2
(a− 2)− a/2

(a− 1)γ − a

)
,

but γ < a
a−1 , so

(a−1)γ
(a−1)γ−a < 0. The fact that α > 1

2a(1− 1
γ ) hence implies that

k <
1

a− 1

(1
2
a
(
1− 1

γ

)( (a− 1)γ

(a− 1)γ − a

)
+

1

2
(a− 2)− a/2

(a− 1)γ − a

)
= 1.

The estimate for |x| < C0 is thus established.

2.2. The case |x| � C0

Here again the integral will be split into four regions, this time smoothly par-
titioned. To this end, define φ0 ∈ S(R) to be supported in [−1, 1] and equal
to 1 in [−1/2, 1/2] and φ2 ∈ S(R) to be supported in [δρ,Kρ] and equal to 1
in [2δρ, 12Kρ], where, as before, δ is a small constant, K is a large constant and

ρ =
( |x|
ta

)1/(a−1)
. For the sake of simplicity, it is assumed that C0 and δ have been

chosen so that δ
( |x|

a

)1/(a−1)
> 1 (and hence δρ > 1). Define φ3 := (1−φ2)χ[ 12Kρ,∞)

and φ1 := (1−φ2 −φ0)χ[ 12 ,2δρ]
. Further, define Gj = Gφj and let Ij represent the

support of Gj for each j ∈ {0, 1, 2, 3}, so that

I0 := [−1, 1], I1 := [ 12 , 2δρ], I2 := [δρ,Kρ], I3 := [ 12Kρ,∞).

As before, this splitting isolates a region, I2, around a point of possible stationary
phase of the integrand from the regions on either side, I1 and I3. The region I0
has a similar role to integral A from the previous section.
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By symmetry it suffices to estimate

Jj :=

∫
eiFGj

for each j ∈ {0, 1, 2, 3}.
In the case of J0, writing eiFG as (e−ixξ)(eit|ξ|

a

G0(ξ)) and integrating by parts
twice yields that

|J0| � 1

x2

∫ 1

−1

∣∣∣ d2
dξ2

(
eit|ξ|

a

G0(ξ)
)∣∣∣ dξ.

By direct calculation and the triangle inequality,

∣∣∣ d2
dξ2

(
eit|ξ|

a

G0(ξ)
)∣∣∣ � |ξ|a−2 |G0(ξ)|+ |ξ|2a−2|G0(ξ)|+ |ξ|a−1|G′

0(ξ)|+ |G′′
0 (ξ)|.

Now, G0(ξ) = (1 + ξ2)−α/2e−ε|ξ|aμ
(

ξ
N

)
φ0(ξ), so for ξ ∈ [−1, 1], it is clear that

|G0(ξ)| � 1. Further, the first derivatives of all terms in the product defining G0

are bounded for ξ ∈ [−1, 1], so |G′
0(ξ)| � 1 also. Finally, the second derivatives

of all terms in the product defining G0 are also bounded for ξ ∈ [−1, 1] with the

exception of d2

dξ2 e
−ε|ξ|a . However, by the triangle inequality,

∣∣∣ d2
dξ2

e−ε|ξ|a
∣∣∣ � εa(a− 1)|ξ|a−2e−ε|ξ|a + (aε|ξ|a−1)2e−ε|ξ|a � |ξ|a−2 + 1.

Given that a > 1, this expression is integrable on [−1, 1], and it hence follows that

∫ 1

−1

∣∣∣ d2
dξ2

(
eit|ξ|

a

G0(ξ)
)∣∣∣ dξ � 1,

so |J0| � x−2, completing the required estimate on J0.

For j ∈ {1, 3}, integrating by parts twice yields that

|Jj | =
∣∣∣∣
∫
Ij

eiF (ξ)
(
− Gj

′′(ξ)
(F ′(ξ))2

+
3Gj

′(ξ)F ′′(ξ)
(F ′(ξ))3

+
Gj(ξ)F

′′′(ξ)
(F ′(ξ))3

− 3Gj(ξ)(F
′′(ξ))2

(F ′(ξ))4
)
dξ

∣∣∣∣
�

∫
Ij

1

(F ′(ξ))2
(
|Gj

′′(ξ)|+ |F ′′(ξ)|
|F ′(ξ)| |Gj

′(ξ)|+ |F ′′′(ξ)|
|F ′(ξ)| |Gj(ξ)|+ |F ′′(ξ)|2

|F ′(ξ)|2 |Gj(ξ)|
)
dξ.

Given that ξ > 0, direct calculation yields that

F (ξ) = t ξa − xξ, F ′(ξ) = a t ξa−1 − x,
F ′′(ξ) = a(a− 1) t ξa−2, F ′′′(ξ) = a(a− 1)(a− 2) t ξa−3.

For ξ ∈ I1,
a t ξa−1 � a t 2a−1 δa−1 ρa−1 = 2a−1 δa−1 |x|.
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It follows that |F ′(ξ)| � |x| and hence also that |F ′(ξ)| � atξa−1. Similarly, for
ξ ∈ I3,

a t ξa−1 � a t 21−aKa−1ρa−1 = 21−aKa−1|x|,
hence |F ′(ξ)| � |x| and |F ′(ξ)| � at ξa−1 as well. It follows in both cases that

|F ′′(ξ)|
|F ′(ξ)| � ξ−1 and

|F ′′′(ξ)|
|F ′(ξ)| � ξ−2.

Recalling that hε(ξ) := e−ε|ξ|a satisfies the estimates |h′
ε(ξ)| � 1/|ξ| and |h′′

ε (ξ)| �
1/|ξ|2, with constants independent of ε, it is easily seen that for any j ∈ {1, 2, 3},

|Gj(ξ)| � 1

|ξ|α , |Gj
′(ξ)| � 1

|ξ|α+1
, |Gj

′′(ξ)| � 1

|ξ|α+2
.

Consequently, for j ∈ {1, 3},

|Jj | � 1

|x|2
∫
Ij

1

|ξ|α+2
dξ � 1

|x|2 ,

which completes the required estimates on J1 and J3.
To bound J2, following the same steps as in the bound for J2 when |x| � C0,

it can be seen that for any ξ ∈ I2,

|F ′′(ξ)| � t
1

a−1 |x| a−2
a−1 ,

and that

sup
ξ∈I2

|G2(ξ)|+
∫
I2

|G2
′(ξ)| dξ � ρ−αe−δaερa

,

so by Van der Corput’s Lemma,

|J2| � t
1

a−1 (α− 1
2 ) |x| 1

a−1 (−α− 1
2 (a−2)) e−δac0t

γ− a
a−1 |x|

a
a−1

for some small constant c0 > 0. If γ = a
a−1 , then noting that α > 1/2 and that

α+ (a− 2)/2 > 0, it follows that |J2| � e−δac0|x|
a

a−1
and the estimate is complete.

Otherwise, proceeding as before, for any β > 0,

|J2| � t
1

a−1 (α− 1
2 )

tβ(γ−
a

a−1 )

1

|x| 1
a−1 (α+

1
2 (a−2)+βa)

.

If γ < a
a−1 , rewrite this as

|J2| � tβ(
a

a−1−γ)

t
1

a−1 (
1
2−α)

1

|x| 1
a−1 (α+

1
2 (a−2)+βa)

,

and note that β can be chosen as large as is desired to conclude a suitable estimate.
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If γ > a
a−1 , choose β =

α− 1
2

(a−1)γ−a as in the case of |x| � C0, noting that it is

still the case that this choice of β is positive, as α > 1/2 and γ > a
a−1 . As before,

it can thus be concluded that |J2| � 1/|x|k, where

k =
1

a− 1

(
α
( (a− 1)γ

(a− 1)γ − a

)
+

1

2
(a− 2)− a/2

(a− 1)γ − a

)
,

and it remains to show that k > 1 in this case. However, since γ > a
a−1 , it is

necessarily the case that (a−1)γ
(a−1)γ−a > 0, hence the fact that α > 1

2 a
(
1− 1

γ

)
implies

that

k >
1

a− 1

( 1

2
a
(
1− 1

γ

)( (a− 1)γ

(a− 1)γ − a

)
+

1

2
(a− 2)− a/2

(a− 1)γ − a

)
= 1,

which completes the estimate on J2 and the proof of Lemma 2.1.

3. Proof of failure of boundedness of the maximal operator
for regularity below the critical index

To complete the proof of Theorem 1.2, it remains to show that for γ > 1, the
estimate ‖P ∗

a,γf‖L2(R) � ‖f‖Hs(R) cannot hold for s < 1
4 a

(
1 − 1

γ

)
. In [10], Sjölin

proved this for a = γ = 2, generalising the aforementioned counterexample of
Dahlberg and Kenig from [3]. The proof given here is a further generalisation of
this counterexample.

Fix γ > 1 and s < 1
4 a

(
1 − 1

γ

)
. For each v ∈ (0, 1), choose gv ∈ S(R) to

be a positive, even, real-valued function, supported in [−v(a−1)− a
γ , v(a−1)− a

γ ] and

equal to 1 on [− 1
2v

(a−1)− a
γ , 1

2v
(a−1)− a

γ ]. Define the function fv such that f̂v(ξ) =
vgv(vξ +

1
v ) and note that

‖fv‖2Ḣs(R)
= v2

∫
R

∣∣∣ gv(vξ + 1

v

)∣∣∣2|ξ|2s dξ =
v2

v1+2s

∫
R

∣∣∣ gv(ξ + 1

v

)∣∣∣2|ξ|2s dξ.
For the integrand above to be non zero, given the support of gv, it is necessarily

the case that ξ + 1
v ∈ [−v(a−1)− a

γ , v(a−1)− a
γ ], hence |ξ| � v(a−1)− a

γ + 1/v. Since
v ∈ (0, 1) and (a− 1)− a/γ > −1, given that γ > 1, it follows that |ξ| � 1/v, so

‖fv‖2Ḣs(R)
� v1−2sv(a−1)− a

γ v−2s = va−4s− a
γ .

Since s < 1
4a(1 − 1

γ ) and ‖fv‖Hs(R) ∼ ‖fv‖Ḣs(R), it can be concluded that

‖fv‖Hs(R) → 0 as v → 0. It thus now suffices to show that there exists a choice
of t, depending on x and v, such that the L2(R) norm in x of (P t

a,γfv)(x) is bounded
below, uniformly in v.

Note first that

(
P t
a,γfv

)
(x) =

∫
R

ei(xξ+t|ξ|a) e−tγ |ξ|a v gv
(
vξ +

1

v

)
dξ.
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Substituting η = vξ+1/v and removing unimodular terms that do not depend
on η from the integrand,

|(P t
a,γfv)(x)| =

∣∣∣ ∫
R

ei(x
η
v+t| ηv− 1

v2
|a) e−tγ | ηv− 1

v2
|agv(η) dη

∣∣∣.
Define

Fx,t,v(η) = x
η

v
+ t

∣∣∣η
v
− 1

v2

∣∣∣a − t

v2a
,

Gt,v(η) = tγ
∣∣∣η
v
− 1

v2

∣∣∣a.
Then it is clear, given the support of gv, that

|(P t
a,γfv)(x)| �

∣∣∣ ∫ v
(a−1)− a

γ

−v
(a−1)− a

γ

cos(Fx,t,v(η)) e
−Gt,v(η) gv(η) dη

∣∣∣.
By binomial expansion, for |η| � v(a−1)− a

γ ,

∣∣∣η
v
− 1

v2

∣∣∣a =
( 1

v2
− η

v

)a

=
1

v2a
− aη

v2(a−1)+1
+O

( η2

v2(a−2)+2

)
,

since (a− 1)− a/γ > −1. It follows that

Fx,t,v(η) = x
η

v
− ta

η

v2a−1
+O

( tη2

v2(a−1)

)
.

Choose x ∈ [0, v
2a
γ −2(a−1)] and fix t = xv2(a−1)/a (which is contained in (0, 1),

given the restriction on x). Then

Fx,t,v(η) = O(xη2)

and hence
Fx,t,v(η) � v

2a
γ −2(a−1)+2((a−1)− a

γ ) = 1.

Similarly,

Gt,v(η) = xγv2γ(a−1)a−γ O
( 1

v2a

)
= O(xγv2aγ−2γ−2a),

hence
Gt,v(η) � v2a−2γ(a−1)+2aγ−2γ−2a = 1.

Given these estimates, it is clear that the terms cos(Fx,t,v(η)) and e−Gt,v(η)

can be bounded below by constants for |η| � v(a−1)− a
γ and hence |(P t

a,γfv)(x)| �
v(a−1)− a

γ for x ∈ [0, v
2a
γ −2(a−1)], so

‖P t
a,γfv‖2L2(R) � v

2a
γ −2(a−1)(v(a−1)− a

γ )2 = 1

which completes the proof of the negative result.
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4. Further remarks and the proof of Theorem 1.3

It is observed that for determining the sharp exponent s for which the estimate
‖P ∗

a,γf‖L2(R) � ‖f‖Hs(R) holds, the question of whether boundedness holds at the

critical exponent, s = 1
4 a

(
1 − 1

γ

)
, for a, γ > 1, remains open.1 In the case of the

maximal operators with real-valued time, S∗
a , the problem of boundedness at the

critical exponent, s = a/4 is also still open, even in the case of a = 2. Nonetheless,
it is remarked that the proof of boundedness of P ∗

a,γ given in Section 2 adapts

without difficulty in the case of γ = a
a−1 to s = 1

4 a
(
1− 1

γ

)
= 1

4 .

A natural extension of Theorem 1.2 is to consider the values of s for which a
local norm bound on the maximal operator holds, that is to say

‖P ∗
a,γf‖L2([−1,1]) � ‖f‖Hs(R).

Denoting by sloca (γ) the infimum of the values of s > 0 for which this estimate
holds, the following analogue of Theorem 1.2 can be established:

Theorem 4.1. For γ ∈ (0,∞) and a > 1, sloca (γ) = min
(
1
4 a

(
1− 1

γ

)+
, 1
4

)
.

Proof. Observe that the global bounds from Theorem 1.2 automatically imply local
bounds, so it is necessarily the case that sloca (γ) � sa(γ) = 1

4 a(1 − 1
γ )

+. Addi-
tionally, note that the counterexample given in Section 3 is also a counterexam-
ple for the local estimate whenever the choices of x are contained within [−1, 1].

Since x is chosen to be in [0, v
2a
γ −2(a−1)] for some small parameter v, this hap-

pens precisely when 2a/γ − 2(a − 1) � 0, that is when γ � a
a−1 . It follows that

sloca (γ) = 1
4 a(1− 1

γ )
+ for γ ∈ (0, a

a−1 ].

In 1987, Sjölin proved in [7] that for all a > 1,

‖S∗
af‖L2([−1,1]) � ‖f‖Hs(R)

if and only if s � 1/4. Consequently, using Lemma 1.4 (mildly adapted to the
setting of local norms), it must be the case that sloca (γ) � 1/4. Since this lemma
also implies that sloca (γ) is a non-decreasing function, the theorem follows. �

In the case of this local problem, it can further be seen that ‖P ∗
a,γf‖L2([−1,1]) �

‖f‖H1/4(R) holds for any γ � a
a−1 and ‖P ∗

a,γf‖L2([−1,1]) � ‖f‖L2(R) holds for any
γ ∈ (0, 1] (that is boundedness holds at the critical index in these cases). Given
Theorem 4.1 together with this remark, the positive statements of Theorem 1.3
follow from standard arguments deducing pointwise convergence from boundedness
of maximal functions. The negative statements are a consequence of the Nikishin–
Stein maximal principle2, as given in [6] and as applied by Dahlberg and Kenig
in [3], and the fact that the counterexample in Section 3 can also be used to show
failure of boundedness from Hs(R) into L2,∞([−1, 1]).

1For a > 1, γ ∈ (0, 1], boundedness of P ∗
a,γ from L2(R) into L2(R) can be shown to hold by

using similar methods to those given in the appendix to reduce the problem to boundedness of
the Hardy–Littlewood maximal function in the case of γ = 1 and then applying Lemma 1.4 to
conclude the same result for γ ∈ (0, 1).

2This principle establishes that for appropriate operators, pointwise convergence results are
in fact equivalent to weak bounds on maximal operators. See also [12] and [5].
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Appendix: Proof of Lemma 1.4

Observe that

St+ih(t)
a f(x) =

∫
R

f̂(ξ)eit|ξ|
a

e−h(t)|ξ|aeixξ dξ

=

∫
R

f̂(ξ)eit|ξ|
a

e−g(t)|ξ|ae−(h(t)−g(t))|ξ|aeixξ dξ.

Let K : R → R be such that K̂(ξ) = e−|ξ|a , and for each t ∈ [0, 1], define Kt :=

t−1K(t−1·), so that K̂t = K̂(t·). Then

St+ih(t)
a f(x) =

∫
R

f̂(ξ)eit|ξ|
a

e−g(t)|ξ|a
(∫

R

K
(h(t)−g(t))

1
a
(y)e−iyξ dy

)
eixξ dξ

=

∫
R

( ∫
R

f̂(ξ)eit|ξ|
a

e−g(t)|ξ|aei(x−y)ξ dξ
)
K

(h(t)−g(t))
1
a
(y) dy

= (St+ig(t)
a f) ∗K

(h(t)−g(t))
1
a
(x),

so

sup
t∈(0,1)

∣∣∣St+ih(t)
a f(x)

∣∣∣ = sup
t∈(0,1)

∣∣∣(St+ig(t)
a f) ∗K

(h(t)−g(t))
1
a
(x)

∣∣∣
� sup

u∈(0,1)

∣∣∣( sup
t∈(0,1)

|St+ig(t)
a f |) ∗Ku(x)

∣∣∣.
Now,

K(x) =
1

2π

∫
R

e−|ξ|aeixξ dξ =
1

π

∫ ∞

0

e−ξa cos(xξ) dξ.

Since
∫∞
0

e−ξa dξ = Γ ( 1a+1) < ∞, it is clear thatK ∈ L∞(R). Further, integrating

by parts twice and using that for any c > −1 it is also true that
∫∞
0

ξce−ξa dξ =
1
aΓ ( c+1

a ) < ∞, it follows for any x �= 0 that |K(x)| � |x|−2. It is thus the case
that

sup
u∈(0,1)

∣∣( sup
t∈(0,1)

|St+ig(t)
a f |) ∗Ku(x)

∣∣ � M( sup
t∈(0,1)

|St+ig(t)
a f |),

where M is the Hardy–Littlewood maximal function. By the boundedness of M
on L2(R), the lemma follows.
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[7] Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J. 55
(1987), no. 3, 699–715.
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