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Localization of Atiyah classes

Marco Abate, Filippo Bracci, Tatsuo Suwa and Francesca Tovena

Abstract. We construct the Atiyah classes of holomorphic vector bundles
using (1, 0)-connections and developing a Chern–Weil type theory, allowing
us to effectively compare Chern and Atiyah forms. Combining this point of
view with the Čech–Dolbeault cohomology, we prove several results about
vanishing and localization of Atiyah classes, and give some applications.
In particular, we prove a Bott type vanishing theorem for (not necessarily
involutive) holomorphic distributions. As an example we also present an
explicit computation of the residue of a singular distribution on the normal
bundle of an invariant submanifold that arises from the Camacho–Sad type
localization.

0. Introduction

Characteristic classes are invariants of manifolds providing obstructions to the
existence of certain geometric objects. For instance, it is well known that the exis-
tence of a nonsingular vector field on a manifold M implies the vanishing of the top
Chern class of M . Roughly speaking, characteristic classes detect the necessary
existence of singularities (e.g., zeros of a vector field) of the given geometric object;
and thus it is only natural to expect that, in a suitable sense, characteristic classes
might be localized near those singularities. Residue (or index) theory systemati-
cally deals with such a localization procedure, and the results yield interesting and
deep information both on the manifold and on the geometric object.

This approach has been developed with considerable success for Chern classes
and singular holomorphic foliations, starting with the seminal work of P. Baum
and R. Bott [6], up to very recent applications. It is based on the Bott vanish-
ing theorem, which says that the characteristic forms associated to certain Chern
polynomials vanish in the presence of actions of (or of partial connections along)
nonsingular holomorphic foliations, i.e., involutive subbundles of the holomorphic
tangent bundle. This suggests that in general the corresponding characteristic
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classes should localize at the singular sets of holomorphic foliations, and thus it
should be possible to express them using (suitably defined) residues.

In this way important index theorems have been proved; for the normal sheaf
of a foliation (using Baum–Bott residues; see, e.g., [5], [6], and [13]), for the normal
sheaf of invariant subvarieties (using Camacho–Sad residues; see, e.g., [12], [17],
and [18]), and for the normal sheaf of the foliation along an invariant subvariety
(using the so-called variation residues; see, e.g., [23]). In turn, these index theorems
had important applications to dynamics. Just to give a few of examples, the
Camacho–Sad index theorem is crucial in the proof by C. Camacho and P. Sad
of the existence of separatrices for germs of singular holomorphic vector fields
in C2 (see [12]); or, very recently, it has been effectively used by D. Maŕın and
J.-F. Mattei in their topological classification of generic holomorphic foliations
in C2 nearby a singular point (see [19]). We also cite [10] as a work giving diverse
applications of these residue theorems.

Localization of Chern classes has proved to be useful in discrete dynamics
too. For instance, in [1] (see also [8]) an analogue for holomorphic self-maps
of the Camacho–Sad theorem is proved and applied to show the existence of
parabolic curves for germs of holomorphic self-maps tangent to the identity in C2;
and analogues for holomorphic self-maps, valid in any dimension, of Baum–Bott,
Camacho–Sad, and variation residue theorems, with further applications to dis-
crete dynamics, have been given in [2]. Furthermore, in [3] it is shown how these
results, both for foliations and for self-maps, fit into a unified theory which can be
described in the framework of the residue theory of partial holomorphic connec-
tions.

It should also be mentioned that localization techniques can also be applied
to the study of characteristic classes of singular varieties, as summarized in [9].
The residue theory in this framework leads to an analytic intersection theory on
singular varieties [24]. See also [22] for another development in this direction.

The present paper studies the localization of Atiyah classes of holomorphic vec-
tor bundles. Such classes have been introduced by M. Atiyah in [4] as Dolbeault
cohomology classes providing obstructions to the existence of holomorphic connec-
tions on a given holomorphic vector bundle. Since then, Atiyah classes have been
interpreted and used extensively in different contexts, for instance, in studying
Kähler and hyper-Kähler manifolds and Hochschild cohomology (see, e.g., [15],
[20], and [11]).

Our main result (see Theorem 6.10 for the complete statement) is a vanishing
theorem (analogous to the Bott vanishing theorem) for Atiyah forms in the presence
of not necessarily involutive holomorphic distributions:

Theorem 0.1. Let M be a complex manifold of dimension n and F a holomorphic
subbundle of rank r of TM . Let E be a holomorphic vector bundle over M and
(F, δ) a holomorphic partial connection for E. If ∇ is a connection on E exten-
ding δ, then

ad(∇) ≡ 0

for all d > n− r, where ad(∇) denotes the Atiyah form of bidegree (d, d).
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This result provides the foundation for the residue theory of singular (and not
necessarily involutive) distributions that we shall describe in Section 8. As an
application, we present a Camacho–Sad type result (Theorem 7.1); and we shall
also work out an explicit example (Section 9).

To obtain these results, we exploit a presentation of Atiyah forms and classes
based on a Chern–Weil type construction via C∞ connections of type (1, 0) and
expressed by using Čech–Dolbeault cohomology. This viewpoint is particularly
suited for developing the localization theory of characteristic classes; furthermore
it allows us to understand and formulate clearly the relations between Chern and
Atiyah classes, because (see Section 1.3) we may compare directly the differential
forms representing Atiyah classes with those representing Chern classes, whereas
this would not be possible in general at the level of classes because Chern classes
and Atiyah classes live in different cohomologies.

The use of (1, 0)-connections in this setting was already present in [4] in the
framework of principal bundles; and the idea of incorporating this into the Chern–
Weil theory had been noted in [5]. We bring these ideas to fruition by combining
them with the Čech–Dolbeault cohomology in order to suitably localize Atiyah
classes. We note that here the difference forms play a key role. These tactics are
analogues of those for Chern classes where the Chern–Weil theory is combined with
the Čech–de Rham cohomology (originally due to D. Lehmann [16], see also [23]).

The plan of the paper is the following. In Section 1 we describe Atiyah classes
using connections of type (1, 0), as said above; the comparison with the original def-
inition is carried out in Section 2. In Section 3 we summarize the Čech–Dolbeault
cohomology theory, so that in Section 4 we can express Atiyah classes in the Čech–
Dolbeault cohomology and explain the basic principle of localization; a vanishing
theorem always yields a corresponding localization theorem with the associated
residues. In Section 5 we briefly discuss the localization by sections, or more gen-
erally, by frames. In Section 6 we prove our main theorem, a Bott type vanishing
theorem for nonsingular distributions, the starting point for the residue theory of
singular distributions that we shall discuss in Section 8. As an important example,
we give the vanishing theorem coming from the Camacho–Sad action in Section 7.
Finally, in Section 9 we compute the Atiyah residues for an example of a singular
distribution.

1. Atiyah classes

For details of the Chern–Weil theory of characteristic classes of complex vector
bundles, we refer to [6], [7], [21], and [23]. Here we use the notation in [23] (with
connection and curvature matrices transposed and r and � interchanged).

1.1. Atiyah forms

Let M be a complex manifold and E a holomorphic vector bundle over M of
rank �. For an open set U in M , we denote by Ap(U) the complex vector space of
complex valued C∞ p-forms on U . Also, we let Ap(U,E) be the vector space of
“E-valued p-forms” on U , that is, C∞ sections of the bundle

∧p
(T c

R
M)

∗⊗E on U ,
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where (T c
R
M)

∗
denotes the dual of the complexification of the real tangent bundle

TRM of M . Thus A0(U) is the ring of C∞ functions and A0(U,E) is the A0(U)-
module of C∞ sections of E on U .

Definition 1.1. A (C∞) connection for E is a C-linear map

∇ : A0(M,E) −→ A1(M,E)

satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇(s) for f ∈ A0(M) and s ∈ A0(M,E).

Definition 1.2. For r = 1, . . . , �, an r-frame of E on an open set U is a collection
s(r) = (s1, . . . , sr) of r sections of E linearly independent everywhere on U . An
�-frame is simply called a frame.

Definition 1.3. Let ∇ be a connection for E on U , and s(r) = (s1, . . . , sr) an
r-frame of E. We say that ∇ is s(r)-trivial if ∇(si) = 0 for i = 1, . . . , r.

A connection ∇ for E induces a C-linear map

∇ : A1(M,E) −→ A2(M,E)

satisfying

∇(ω ⊗ s) = dω ⊗ s− ω ∧ ∇(s) for ω ∈ A1(M) and s ∈ A0(M,E).

The composition

K = ∇ ◦∇ : A0(M,E) −→ A2(M,E)

is called the curvature of ∇. It is not difficult to see that K is A0(M)-linear; hence
it can be thought of as a C∞ 2-form with coefficients in the bundle Hom(E,E).

Notice that a connection is a local operator, i.e., it is also defined on local
sections. This fact allows us to obtain local representations of a connection and
its curvature by matrices whose entries are differential forms. Thus suppose that
∇ is a connection for E. If e(�) = (e1, . . . , e�) is a frame of E on U , we may write,
for i = 1, . . . , �,

∇(ei) =

�∑
j=1

θji ⊗ ej with θji in A1(U).

The matrix θ = (θji ) is the connection matrix of ∇ with respect to e(�). Also, from
the definition we get

K(ei) =

�∑
j=1

κj
i ⊗ ej with κj

i = dθji +

�∑
k=1

θjk ∧ θki .

We call κ = (κj
i ) the curvature matrix of ∇ with respect to e(�).
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If ẽ(�) = (ẽ1, . . . , ẽ�) is another frame of E on Ũ , we have ẽi =
∑�

j=1 a
j
iej for

suitable functions aji ∈ A0(U ∩ Ũ), and the matrix A = (aji ) is nonsingular at each

point of U ∩ Ũ . If we denote by θ̃ and κ̃ the connection and curvature matrices
of ∇ with respect to ẽ(�) we have

(1.1) θ̃ = A−1 · dA+A−1θA and κ̃ = A−1κA in U ∩ Ũ .

Up to now E could have been only a C∞ complex vector bundle. Now we use
the assumption that E is holomorphic.

Definition 1.4. A connection ∇ for E is of type (1, 0) (or a (1, 0)-connection) if
the entries of the connection matrix with respect to a holomorphic frame are forms
of type (1, 0).

Remark 1.5. 1) It is easy to check that the above property does not depend on
the choice of the holomorphic frame.

2) A holomorphic vector bundle always admits a (1, 0)-connection. In fact let
V = {Vλ} be an open covering of M trivializing E. For each λ, let ∇λ be the
connection trivial with respect to some holomorphic frame on Vλ. If we take a
partition of unity {ρλ} subordinate to V and set ∇ =

∑
λ ρλ∇λ, then ∇ is a

(1, 0)-connection for E.

If ∇ is a (1, 0)-connection for E, we may write its curvature K as

K = K2,0 +K1,1

with K2,0 and K1,1, respectively, a (2, 0)-form and a (1, 1)-form with coefficients in
Hom(E,E). Locally, if θ and κ are respectively the connection and the curvature
matrices of ∇ with respect to a (local) holomorphic frame of E, then we can
decompose κ = κ2,0 + κ1,1 according to type, and K2,0 and K1,1 are respectively
represented by

(1.2) κ2,0 = ∂θ + θ ∧ θ and κ1,1 = ∂̄θ .

Thus K1,1, being locally ∂̄-exact, is a ∂̄-closed (1, 1)-form with coefficients in
Hom(E,E).

With respect to another holomorphic frame, K1,1 is represented by a matrix
similar to κ1,1 (cf. (1.1)). Thus for each elementary symmetric polynomial σp (with
p = 1, 2, . . . ) we may define a ∂̄-closed C∞ (p, p)-form σp(K

1,1) on M . Locally it
is given by σp(κ

1,1), which is the coefficient of tp in the expansion

det(I + tκ1,1) = 1 + σ1(κ
1,1)t+ · · ·+ σp(κ

1,1)tp + · · · .
In particular, σ1(κ

1,1) = tr(κ1,1) and σ�(κ
1,1) = det(κ1,1).

Definition 1.6. Let ∇ be a (1, 0)-connection for a holomorphic vector bundle E
of rank �. For p = 1, . . . , �, we define the p-th Atiyah form ap(∇) of ∇ by

ap(∇) =
(√−1

2π

)p

σp(K
1,1).

It is a ∂̄-closed (p, p)-form on M .
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More generally, if ϕ is a symmetric homogeneous polynomial of degree d, we
may write ϕ = P (σ1, σ2, . . . ) for a suitable polynomial P . Then we define the
Atiyah form ϕA(∇) of ∇ associated to ϕ by

ϕA(∇) = P (a1(∇), a2(∇), . . .);

it is a ∂̄-closed (d, d)-form on M .

Remark 1.7. The p-th Chern form cp(∇) of ∇ is defined by

cp(∇) =
(√−1

2π

)p

σp(κ),

which is a closed (2p)-form having components of bidegrees (2p, 0), . . . , (p, p). The
Atiyah form ap(∇) is then the (p, p)-component of cp(∇). In particular, an(∇) =
cn(∇), where n denotes the dimension of M .

More generally, the Atiyah form ϕA(∇) of ∇ associated to a symmetric homo-
geneous polynomial ϕ of degree d is the component of type (d, d) of the Chern form
ϕ(∇) = P (c1(∇), c2(∇), . . . ) associated to ϕ. Again, if d = n then ϕA(∇) = ϕ(∇).

1.2. Atiyah classes

Let E be a holomorphic vector bundle over a complex manifold M . As in the case
of Chern forms, to any finite set of (1, 0)-connections for E one can associate a
difference form. Here we recall the construction given in Proposition 5.4 of [25].

Thus, given q + 1 (1, 0)-connections ∇0, . . . ,∇q for E, we consider the vector

bundle E × Rq → M × Rq and define the connection ∇̃ for the bundle by ∇̃ =
(1−∑q

i=1 ti)∇0+
∑q

i=1 ti∇i, where (t1 . . . , tq) denote coordinates on Rq. Denoting
by Δq the standard q-simplex in R

q and by π : M ×Δq → M the projection, we
have the integration along the fiber

π∗ : A2p(M ×Δq) −→ A2p−q(M).

Then we set
cp(∇0, . . . ,∇q) := π∗(cp(∇̃)).

The Atiyah difference form ap(∇0, . . . ,∇q) is the (p, p − q)-component of the
form cp(∇0, . . . ,∇q). It is alternating in the q + 1 entries and satisfies

(1.3)

q∑
ν=0

ap(∇0, . . . , ∇̂ν , . . . ,∇q) + (−1)q∂̄ap(∇0, . . . ,∇q) = 0.

In particular, if q = 1, we have

(1.4) ∂̄ap(∇0,∇1) = ap(∇1)− ap(∇0),

which shows that, if ∇ is a (1, 0)-connection for E, the class of ap(∇) in Hp,p

∂̄
(M)

does not depend on the choice of ∇.
Similarly, if ϕ is a symmetric homogeneous polynomial of degree d, we can

define a (d, d − q)-form ϕA(∇0, . . . ,∇q) as the (d, d − q)-component of the Chern
difference form ϕ(∇0, . . . ,∇q). It satisfies an identity analogous to (1.3).
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Then we can introduce the following definition:

Definition 1.8. Let E be a holomorphic vector bundle E of rank �. For p =
1, . . . , � the p-th Atiyah class ap(E) of E is the class represented by ap(∇) in
Hp,p

∂̄
(M), where ∇ is an arbitrary (1, 0)-connection for E.

Similarly, if ϕ is a symmetric homogeneous polynomial of degree d, the Atiyah
class ϕA(E) of E associated to ϕ is the class of ϕA(∇) in Hd,d

∂̄
(M), where ∇ is an

arbitrary (1, 0)-connection for E.

Remark 1.9. If n denotes the dimension of M , there is a canonical surjective map
Hn,n

∂̄
(M) → H2n

dR(M), the de Rham cohomology of M , which assigns the class of

a form ω to the class of ω. If d = n, then ϕA(∇) = ϕ(∇) for any (1, 0)-connection
∇ for E and the image of ϕA(E) by the above map is ϕ(E). In particular, if M is
compact,

∫
M ϕA(E) =

∫
M ϕ(E).

Moreover, if d = n, then ϕA(∇0,∇1) also coincides with the usual Bott differ-
ence form ϕ(∇0,∇1) for any pair ∇0, ∇1 of (1, 0)-connections for E.

1.3. Atiyah classes on compact Kähler manifolds

Let M be a complex manifold (not necessarily Kähler) and E a holomorphic vector
bundle on M . Let h be any Hermitian metric on E and let ∇h be the associated
metric connection, i.e., ∇h is the unique (1, 0)-connection compatible with h. The
curvature K of ∇ is then of type (1, 1), and hence

cp(∇h) = ap(∇h) for all p ≥ 1.

In other words, Atiyah and Chern classes of the same degree can be represented
by the same form. Of course, as classes they are different, because they belong
to two different cohomology groups: cp(E) = [cp(∇h)] ∈ H2p

dR(M), while ap(E) =
[ap(∇h)] ∈ Hp,p

∂̄
(M), the Dolbeault cohomology of M .

However, if M is compact Kähler, the Hodge decomposition yields a canonical
injection Hp,p

∂̄
(M) ↪→ H2p

dR(M), and hence we obtain the following useful relation:

Proposition 1.10. Let M be a compact Kähler manifold and E a holomorphic
vector bundle on M . Let I : Hp,p

∂̄
(M) → H2p

dR(M) be the injection given by the
Hodge decomposition. Then

I
(
ap(E)

)
= cp(E) for all p ≥ 1.

2. Atiyah classes via complex analytic connections

Atiyah classes were originally introduced by Atiyah in [4], with a different con-
struction. In this section we show that our definition yields the same classes.

LetM be a complex manifold andO the sheaf of germs of holomorphic functions
on M . For a holomorphic vector bundle E over M we denote by E = O(E) the
sheaf of germs of holomorphic sections of E. We also denote by Θ = O(TM)
and Ω1 = O(T ∗M) the sheaves of germs holomorphic vector fields and of 1-forms
on M . All tensor products in this section will be over the sheaf O.
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Definition 2.1. A holomorphic (or complex analytic) connection for E is a homo-
morphism of sheaves of C-vector spaces

∇ : E −→ Ω1 ⊗ E
satisfying

∇(fs) = df ⊗ s+ f∇(s) for f ∈ O and s ∈ E .
If e(r) = (e1, . . . , er) is a local holomorphic r-frame of E, we shall say that ∇

is e(r)-trivial if ∇ej ≡ 0 for j = 1, . . . , r.

Remark 2.2. A holomorphic connection ∇ on a holomorphic vector bundle E
induces naturally a (1, 0)-connection ∇. In fact, let s be a C∞ section of E. Let U
be an open set trivializing E and let (e1, . . . , e�) be a holomorphic frame on U .

Write s =
∑�

i=1 f
iei with f i ∈ C∞(U), and set ∇s =

∑�
i=1(df

i ⊗ ei + f i∇(ei)).
It is easy to check that the definition does not depend on the choice of the frame.

Conversely, a (1, 0)-connection ∇ such that (∇s)(u) is holomorphic wherever s
and u are holomorphic clearly determines a holomorphic connection.

Following Atiyah [4], we set

D(E) := E ⊕ (Ω1 ⊗ E),
which is a direct sum as a sheaf of C-vector spaces. It is endowed with theO-module
structure given by

f · (s, σ) = (fs, df ⊗ s+ fσ).

Then we have the following exact sequence of (locally free) O-modules:

(2.1) 0 −→ Ω1 ⊗ E ι−→ D(E) ρ−→ E −→ 0.

A splitting of this sequence is a morphism η : E → D(E) of O-modules such
that ρ ◦ η = id.

Lemma 2.3 ([4]). Let E be a holomorphic vector bundle on a complex mani-
fold M . A morphism η : E → D(E) is a splitting of (2.1) if and only if it is of
the form η(s) =

(
s,∇(s)

)
, where ∇ is a holomorphic connection for E. Thus E

admits a holomorphic connection if and only if (2.1) splits.

The following is also easy to see:

Lemma 2.4 ([4]). Let ∇ be a holomorphic connection for a holomorphic vector
bundle E. If ξ ∈ HomO(E , Ω1 ⊗E) then ∇+ ξ is a holomorphic connection for E.
Conversely, every holomorphic connection for E is of this form.

We see that the sequence (2.1) determines an element b(E) in the cohomology
H1

(
M,Hom(E , Ω1 ⊗E)) as follows. First, applying the functor Hom(E , ·) to (2.1)

we get the exact sequence

0 −→ Hom(E , Ω1 ⊗ E) −→ Hom
(E , D(E)) −→ Hom(E , E) −→ 0,
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and thus the connecting homomorphism

δ : H0
(
M,Hom(E , E)) −→ H1

(
M,Hom(E , Ω1 ⊗ E)).

Then b(E) = δ(id) ∈ H1
(
M,Hom(E , Ω1 ⊗ E)). It is not difficult to prove the

following:

Lemma 2.5 ([4]). A holomorphic vector bundle E admits a holomorphic connec-
tion if and only if b(E) = 0.

Now, we have the Dolbeault isomorphism

H1
(
M,Hom(E , Ω1 ⊗ E)) = H1

(
M,Ω1 ⊗Hom(E , E)) 
 H1,1

∂̄

(
M,Hom(E,E)

)
.

Let a(E) denote the class in H1,1

∂̄

(
M,Hom(E,E)

)
corresponding to −b(E) via the

above isomorphism (cf. Theorem 5 in [4]). Then the original Atiyah class of type
(p, p) is defined as

apor(E) =
(√−1

2π

)p

σp(a(E));

we shall show that apor(E) = ap(E) for all p ≥ 1. To do so we need some definitions.

Definition 2.6. Let V = {Vλ} be an open covering of M . A V-splitting of (2.1) is
a collection {ηλ} of splittings ηλ of (2.1) on each Vλ. A holomorphic V-connection
for E is a collection {∇λ} of holomorphic connections ∇λ for E|Vλ

.

By Lemma 2.3, a V-splitting determines a holomorphic V-connection and vice-
versa. Furthermore, every holomorphic vector bundle E admits a holomorphic
V-connection for some open covering V . In fact, let V = {Vλ} be a covering
trivializing E; then take as ∇λ a holomorphic connection which is trivial with
respect to some holomorphic frame of E on Vλ.

Definition 2.7. We shall call ∂̄-curvature of E a ∂̄-closed (1, 1)-form with coeffi-
cients in Hom(E,E) representing the class a(E).

The next theorem shows that we can get a ∂̄-curvature as the (1, 1)-component
of the curvature of a suitable (1, 0)-connection:

Theorem 2.8. Let E be a holomorphic vector bundle over a complex manifold M .
A holomorphic V-connection for E determines a (1, 0)-connection ∇ for E such
that the (1, 1)-component of the curvature of ∇ is a ∂̄-curvature.

Proof. Let {∇λ} be a V-connection for E with respect to a (sufficiently fine) open
covering V = {Vλ} of M . On Vλ ∩ Vμ the difference ξλμ = ∇λ − ∇μ is an
O-morphism from E to Ω1 ⊗ E , and the collection ξ = {ξλμ} is a 1-cocycle on V
representing −b(E).

We denote by Ap,q
(
Hom(E,E)

)
the sheaf of germs of smooth forms of type

(p, q) with coefficients in the bundle Hom(E,E); in particular, we may think of
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Hom(E , Ω1 ⊗ E) = Ω1 ⊗Hom(E , E) as a subsheaf of A1,0
(
Hom(E,E)

)
. Since the

sheaf Ap,q
(
Hom(E,E)

)
is fine, there exists a 0-cochain {τλ} of A1,0

(
Hom(E,E)

)
on V such that

ξλμ = τμ − τλ on Vλ ∩ Vμ.

Hence
∇λ + τλ = ∇μ + τμ on Vλ ∩ Vμ.

In this way we have defined a global (1, 0)-connection ∇ which coincides with
∇λ + τλ on Vλ.

Since the forms ξλμ are holomorphic, on Vλ∩Vμ we have ∂̄τλ = ∂̄τμ. Hence we
get a global ∂̄-closed (1, 1)-form ω with coefficients in Hom(E,E) which is equal
to ∂̄τλ on Vλ. By chasing diagrams, it is easy to see that the form ω represents
the class a(E), and thus it is a ∂̄-curvature. Moreover, (1.2) shows that ω is the
(1, 1)-component of the curvature of ∇, and we are done. �

Corollary 2.9. Let E be a holomorphic vector bundle on a complex manifold M .
Then

apor(E) = ap(E)

for all p ≥ 1.

Remark 2.10. Given a holomorphic V-connection {∇λ}, the ∂̄-curvature ω con-
structed in the proof of Theorem 2.8 is not uniquely determined; it depends on
the choice of the 0-cochain {τλ}. One way to choose {τλ} is to take a partition of
unity {ρλ} subordinate to V and set τλ =

∑
ν ρνξ

νλ.

We give now a more explicit expression for the forms introduced in the proof
of Theorem 2.8. Let � be the rank of E, and choose an open cover V of sufficiently
small open sets trivializing E. On each Vλ take a holomorphic frame (eλ1 , . . . , e

λ
� )

of E and let ∇λ be the connection on Vλ trivial with respect to this frame. Finally,
let {hλμ} be the system of transition matrices corresponding to these choices,
that is

eμj =
�∑

k=1

(hλμ)kj e
λ
k on Vλ ∩ Vμ.

Then

ξλμ(eλi ) = −
�∑

j,k=1

(hλμ)jk · d(hμλ)ki ⊗ eλj .

Thus, with respect to the frame (eλ1 , . . . , e
λ
� ), ξ

λμ is represented, as an element of
Hom(E , Ω1 ⊗ E) 
 Ω1 ⊗Hom(E , E) on Vλ ∩ Vμ, by the matrix

−hλμ · dhμλ = dhλμ · (hλμ)−1 = ∂hλμ · (hλμ)−1.

Taking a partition of unity {ρλ} subordinate to V , we may set τλ =
∑

ν ρνξ
νλ, as in

Remark 2.10; the global (1, 0)-connection constructed in the proof of Theorem 2.8
is then given by ∇ =

∑
ν ρν∇ν , and its curvature matrix with respect to the frame

(eλ1 , . . . , e
λ
� ) is given by τλ, and the corresponding ∂̄-curvature by ∂̄τλ. As a direct

consequence of Lemma 2.5 and Corollary 2.9 we get:
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Proposition 2.11. Let E be a holomorphic vector bundle over a complex mani-
fold M . If E admits a holomorphic connection then ap(E) = 0 for all p ≥ 1, that
is, all Atiyah classes of E vanish.

Remark 2.12. In fact, the existence of a holomorphic connection ∇ implies the
stronger vanishing ap(∇) = 0 for all p ≥ 1. This can be easily seen from (1.2), since
the connection matrix θ of ∇ with respect to a holomorphic frame is holomorphic.
See Theorem 6.10 below for more general vanishing results of this type.

It should be remarked that the converse of Proposition 2.11 is not true. Namely,
it might happen that ap(E) = 0 for all p ≥ 1 but a(E) �= 0, as the following example
shows.

Example 2.13. Let M be a compact Riemann surface and L a line bundle overM
such that a1(L) = c1(L) �= 0. Let E := L⊕ L∗. Then c1(E) = c1(L)− c1(L) = 0,
and by Proposition 1.10 it follows a1(E) = 0. For dimensional reasons, ap(E) = 0
for all p ≥ 2. Now we claim that E does not admit a holomorphic connection, and
hence a(E) �= 0 as a class in H1,1

∂̄

(
M,Hom(E,E)

)
. In fact, aiming at a contra-

diction, let ∇ denote a holomorphic connection for E. Let π : Ω1 ⊗ E → Ω1 ⊗ L
denote the projection and ι : L → E the immersion. It is easy to show that π◦∇◦ ι
is a holomorphic connection for L. But then c1(L) = a1(L) = 0, contrary to our
assumption.

3. Čech–Dolbeault cohomology

In this section, we recall the theory of Čech–Dolbeault cohomology in the case of
coverings consisting of two open sets. Although it is technically more involved, the
ideas are similar for the general case of coverings with arbitrary number of open
sets. We review relevant material for this case in Section 9 and refer to [25] for
details

Let M be a complex manifold of dimension n. For an open set U of M , we
denote by Ap,q(U) the vector space of C∞ (p, q)-forms on U . Let U = {U0, U1} be
an open covering of M . Set U01 = U0 ∩U1 and define the vector space Ap,q(U) by

Ap,q(U) = Ap,q(U0)⊕Ap,q(U1)⊕Ap,q−1(U01).

Thus an element σ in Ap,q(U) is given by a triple σ = (σ0, σ1, σ01) with σi a
(p, q)-form on Ui, i = 0, 1, and σ01 a (p, q − 1)-form on U01.

We define a differential operator D̄ : Ap,q(U) → Ap,q+1(U) by

D̄σ = (∂̄σ0, ∂̄σ1, σ1 − σ0 − ∂̄σ01).

Then we have D̄ ◦ D̄ = 0 and thus a complex for each fixed p:

· · · −→ Ap,q−1(U) D̄p,q−1

−→ Ap,q(U) D̄p,q

−→ Ap,q+1(U) −→ · · · .
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We set
Hp,q

D̄
(U) = Ker D̄p,q/Im D̄p,q−1

and call it the Čech–Dolbeault cohomology of U of type (p, q). We denote the image
of σ by the canonical surjection Ker D̄p,q → Hp,q

D̄
(U) by [σ].

Let Hp,q

∂̄
(M) denote the Dolbeault cohomology of M of type (p, q).

Theorem 3.1. The map α : Ap,q(M) → Ap,q(U) given by ω �→ (ω, ω, 0) induces
an isomorphism

α : Hp,q

∂̄
(M)

∼−→ Hp,q

D̄
(U).

Proof. It is not difficult to show that α is well defined. To prove that α is surjective,
let σ = (σ0, σ1, σ01) be such that D̄σ = 0. Let {ρ0, ρ1} be a partition of unity
subordinate to U and set ω = ρ0σ0 + ρ1σ1 − ∂̄ρ0 ∧ σ01. Then it is easy to see that
∂̄ω = 0 and [(ω, ω, 0)] = [σ]. The injectivity of α is also not difficult to show. �

We define the cup product

(3.1) Ap,q(U)×Ap′,q′(U) −→ Ap+p′,q+q′(U),

assigning to σ in Ap,q(U) and τ in Ap′,q′(U) the element σ � τ in Ap+p′,q+q′(U)
given by

(σ � τ)0 = σ0 ∧ τ0, (σ � τ)1 = σ1 ∧ τ1 and

(σ � τ)01 = (−1)p+qσ0 ∧ τ01 + σ01 ∧ τ1.

Then σ � τ is linear in σ and τ and we have

D̄(σ � τ) = D̄σ � τ + (−1)p+qσ � D̄τ.

Thus it induces the cup product

Hp,q

D̄
(U)×Hp′,q′

D̄
(U) −→ Hp+p′,q+q′

D̄
(U)

compatible, via the isomorphism of Theorem 3.1, with the product in the Dolbeault
cohomology induced from the exterior product of forms.

Now we recall the integration for the Čech–Dolbeault cohomology. Let M and
U = {U0, U1} be as above and let {R0, R1} be a system of honeycomb cells adapted
to U (cf. [16], [23]). Thus each Ri, i = 0, 1, is a real submanifold of dimension 2n
with C∞ boundary in M such that Ri ⊂ Ui, M = R0∪R1, and IntR0∩IntR1 = ∅.
We set R01 = R0 ∩R1, which is equal to ∂R0 = −∂R1 as an oriented manifold.

Suppose M is compact; then each Ri is compact and we may define the inte-
gration ∫

M

: An,n(U) −→ C

as the sum ∫
M

σ =

∫
R0

σ0 +

∫
R1

σ1 +

∫
R01

σ01
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for σ in An,n(U). Then this induces an integration on cohomology∫
M

: Hn,n

D̄
(U) −→ C,

which is compatible, via the isomorphism of Theorem 3.1, with the usual integra-
tion on the Dolbeault cohomology Hn,n

∂̄
(M). Also the bilinear pairing

Ap,q(U)×An−p,n−q(U) −→ An,n(U) −→ C

defined as the composition of the cup product and the integration induces the
Kodaira–Serre duality

(3.2) KS : Hp,q

∂̄
(M) 
 Hp,q

D̄
(U) ∼−→ Hn−p,n−q

D̄
(U)∗ 
 Hn−p,n−q

∂̄
(M)∗.

Now let S be a closed set in M . Let U0 = M�S and U1 a neighborhood of S
in M , and consider the covering U = {U0, U1} of M . We denote by Ap,q(U , U0)
the subspace of Ap,q(U) consisting of elements σ with σ0 = 0, so that we have the
exact sequence

0 −→ Ap,q(U , U0) −→ Ap,q(U) −→ Ap,q(U0) −→ 0.

We see that the operator D̄ maps Ap,q(U , U0) into Ap,q+1(U , U0). Denoting
by Hp,q

D̄
(U , U0) the q-th cohomology of the complex (Ap,∗(U , U0), D̄), we have the

long exact sequence

(3.3) · · · −→ Hp,q−1

∂̄
(U0) −→ Hp,q

D̄
(U , U0) −→ Hp,q

D̄
(U) −→ Hp,q

∂̄
(U0) −→ · · · .

In view of the fact that Hp,q

D̄
(U) 
 Hp,q

∂̄
(M), we set

Hp,q

∂̄
(M,M�S) := Hp,q

D̄
(U , U0).

Suppose S is compact (M may not be) and let {R0, R1} be a system of honey-
comb cells adapted to U . Then we may assume that R1 is compact and we have
the integration on An,n(U , U0) given by∫

M

σ =

∫
R1

σ1 +

∫
R01

σ01.

This again induces an integration on cohomology∫
M

: Hn,n

D̄
(U , U0) −→ C.

The cup product (3.1) induces a pairing

Ap,q(U , U0)×An−p,n−q(U1) −→ An,n(U , U0),

which, followed by integration, gives a bilinear pairing

Ap,q(U , U0)×An−p,n−q(U1) −→ C.

This induces a homomorphism

(3.4) Ā : Hp,q

∂̄
(M,M�S) = Hp,q

D̄
(U , U0) −→ Hn−p,n−q

∂̄
(U1)

∗,
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which we call the ∂̄-Alexander homomorphism. Note that, although the cohomol-
ogy Hp,q

∂̄
(M,M �S) does not depend on the choice of U1, because of the exact

sequence (3.3), Hn−p,n−q

∂̄
(U1)

∗ does depend on the choice of U1. From the above
construction, we have the following:

Proposition 3.2. If M is compact, the following diagram is commutative:

Hp,q

∂̄
(M,M�S)

j∗−−−−→ Hp,q

∂̄
(M)

Ā

⏐⏐
 �
⏐⏐
KS

Hn−p,n−q

∂̄
(U1)

∗ i∗−−−−→ Hn−p,n−q

∂̄
(M)∗.

4. Localization of Atiyah classes

In this section we describe a general scheme for dealing with localization problems.

4.1. Atiyah classes in the Čech–Dolbeault cohomology

Let M be a complex manifold and U = {U0, U1} an open covering of M consisting
of two open sets, so that

Ap,p(U) = Ap,p(U0)⊕Ap,p(U1)⊕ Ap,p−1(U01).

For i = 0, 1, let ∇i be a (1, 0)-connection for E on Ui. Then the cochain

ap(∇∗) =
(
ap(∇0), a

p(∇1), a
p(∇0,∇1)

)
is in fact a cocycle, because of (1.4), and thus defines a class [ap(∇∗)] in Hp,p

D̄
(U).

As in the case of Chern classes, it is not difficult to show that the class [ap(∇∗)]
does not depend on the choice of the connections ∇i and corresponds to the Atiyah
class ap(E) via the isomorphism of Theorem 3.1 (cf. Ch. II, 8. D, of [23]).

Similarly, if ϕ is a symmetric homogeneous polynomial of degree d, the cocycle

(4.1) ϕA(∇∗) =
(
ϕA(∇0), ϕ

A(∇1), ϕ
A(∇0,∇1)

)
defines a class in Hd,d

D̄
(U), which corresponds to the class ϕA(E) via the isomor-

phism of Theorem 3.1.

4.2. Localization principle

Let M be a complex manifold of dimension n and E a holomorphic vector bundle
of rank � over M . Also, let S be a closed set in M and U1 a neighborhood of S.
Setting U0 = M �S, we consider the covering U = {U0, U1} of M . Recall that
for a homogeneous symmetric polynomial ϕ of degree d, the characteristic class
ϕA(E) in Hd,d

D̄
(U) 
 Hd,d

∂̄
(M) is represented by the cocycle ϕA(∇∗) in Ad,d(U)

given by (4.1).
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It often happens (see, e.g., Remark 2.12, Theorems 5.1 and 6.10 below, or
[2], [3]) that the existence of a geometric object γ on U0 implies the vanishing of
ϕ(E|U0 ) or of ϕ

A(E|U0), or even of the forms representing them, for some symmet-
ric homogeneous polynomial ϕ. In this section we shall show that in this case we
can localize the class ϕA(E) at S.

To formalize this idea, assume that given a symmetric homogeneous polyno-
mial ϕ we can associate to γ a class C of (1, 0)-connections for E|U0 such that

ϕA(∇) ≡ 0

for all ∇ ∈ C. We shall also assume (see, e.g., Theorem 6.10) that

ϕA(∇0,∇1) ≡ 0

for all pairs ∇0, ∇1 ∈ C. In this case we shall say that ϕ is adapted to γ, and we
shall call any connection in C special.

Assume that ∇0 is special and ϕ is adapted to γ. The cocycle ϕA(∇∗) is

then in Ad,d(U , U0) and thus it defines a class in Hd,d

∂̄
(M,M �S), which is de-

noted by ϕA
S (E, γ). It is sent to the class ϕA(E) by the canonical homomorphism

j∗ : Hd,d

∂̄
(M,M�S) → Hd,d

∂̄
(M). It is not difficult to see that the class ϕA

S (E, γ)
does not depend on the choice of the special connection∇0 or of the connection ∇1

(cf. Chapter III, Lemma 3.1 in [23]). We call ϕA
S (E, γ) the localization of ϕA(E)

at S by γ.

Suppose now S is compact. Then we have the ∂̄-Alexander homomorphism (3.4)

Ā : Hd,d

∂̄
(M,M�S) −→ Hn−d,n−d

∂̄
(U1)

∗.

Thus the class ϕA
S (E, γ) defines a class in Hn−d,n−d

∂̄
(U1)

∗, which we call the residue

of γ for the class ϕA(E) on U1, and denote by ResϕA(γ,E;U1).

Suppose moreover that S has a finite number of connected components {Sλ}λ.
For each λ, we choose a neighborhood Uλ of Sλ so that Uλ∩Uμ = ∅ if λ �= μ. Then

we have the residue ResϕA(γ,E;Uλ) in Hn−d,n−d

∂̄
(Uλ)

∗ for each λ. Let Rλ be a
2n-dimensional manifold with C∞ boundary in Uλ containing Sλ in its interior and
set R0λ = −∂Rλ. Then the residue ResϕA(γ,E;Uλ) is represented by a functional

(4.2) η �→
∫
Rλ

ϕA(∇1) ∧ η +

∫
R0λ

ϕA(∇0,∇1) ∧ η

for every ∂̄-closed (n− d, n− d)-form η on Uλ.

From the above considerations and Proposition 3.2, we have the following
residue theorem:

Theorem 4.1. Let E be a holomorphic vector bundle on a complex manifold M
of dimension n. Let S be a compact subset of M with a finite number of connected
components {Sλ}λ. Assume we have a geometric object γ on U0 = M�S and a
symmetric homogeneous polynomial ϕ of degree d, adapted to γ. For each λ choose
a neighbourhood Uλ of Sλ so that Uλ ∩ Uμ = ∅ when λ �= μ. Then:
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1) For each connected component Sλ the residue ResϕA(γ,E;Uλ) in the dual

space Hn−d,n−d

∂̄
(Uλ)

∗ is represented by the functional (4.2);

2) if moreover M is compact, then∑
λ

(iλ)∗ResϕA(γ,E;Uλ) = KS(ϕA(E)) in Hn−d,n−d

∂̄
(M)∗,

where iλ : Uλ ↪→ M denotes the inclusion.

Remark 4.2. If d = n and if M is compact and connected, Hn−d,n−d

∂̄
(M)∗ =

H0,0

∂̄
(M)∗ may be identified with C, and in this case, (iλ)∗ResϕA(γ,E;Uλ) is a

complex number given by∫
Rλ

ϕA(∇1) +

∫
R0λ

ϕA(∇0,∇1),

and KS(ϕA(E)) may be expressed as
∫
M ϕA(E).

Furthermore, in this case H0,0

∂̄
(M)∗ = H0(M,C), and ϕA may be replaced by ϕ

(cf. Remark 1.9) so that the Atiyah residue equals the Chern residue.

We finish this section by studying what happens in the case of compact Kähler
manifolds. Let M be a compact Kähler manifold of dimension n, and E a holo-
morphic vector bundle on M . We have the following commuting diagram:

Hp,p

∂̄
(M)

I−−−−→ H2p
dR(M)

KS

⏐⏐
� �
⏐⏐
P

Hn−p,n−p

∂̄
(M)∗ I∗−−−−→ H2n−2p(M,C).

where I denotes the injection given by the Hodge decomposition, I∗ the injection
given by the dual decomposition, and P the Poincaré isomorphism, which is given
by the cap product with the fundamental cycle [M ].

Since I(ϕA(E)) = ϕ(E) in this case (Proposition 1.10), applying I∗ to both
sides of the formula in Theorem 4.1 2), we actually have a localization result for
Chern classes:

Theorem 4.3. Let E be a holomorphic vector bundle on a compact Kähler man-
ifold M of dimension n. Let S be a compact subset of M with a finite number of
connected components {Sλ}λ. Assume we have a geometric object γ on U0 = M�S
and a symmetric homogeneous polynomial ϕ of degree d, adapted to γ. For each λ
choose a neighbourhood Uλ of Sλ so that Uλ ∩ Uμ = ∅ when λ �= μ. Then∑

λ

I∗
(
(iλ)∗ResϕA(γ,E;Uλ)

)
= ϕ(E) � [M ] in H2n−2d(M,C).

Notice that I∗
(
(iλ)∗ResϕA(γ,E;Uλ)

)
is represented by a cycle C such that for

each closed (2n − 2d)-form ω, the integral
∫
C
ω is given by the right-hand side

of (4.2) with η a ∂̄-closed (n − d, n − d)-form representing the (n − d, n − d)-
component of the class [ω] ∈ H2n−2d

dR (M).
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5. Localization by frames

In this section we give a first example of localization of Atiyah classes following
the scheme indicated in the previous section.

The starting point is the following vanishing theorem, which is a consequence
of the corresponding vanishing theorem for Chern forms (see, e.g., Chapter II,
Proposition 9.1 in [23]).

Theorem 5.1. Let E be a holomorphic vector bundle of rank � on a complex
manifold M . Let s(r) = (s1, . . . , sr) be an r-frame of E on an open set U ⊂ M ,
and let ∇ be an s(r)-trivial (1, 0)-connection for E on U . Then

ap(∇) = 0, on U for p ≥ �− r + 1.

Let S be a closed set in M and assume we have an r-frame s(r) of E on M�S.
We let U0 = M �S, choose a neighborhood U1 of S, and consider the covering
U = {U0, U1} of M . Let ∇0 be an s(r)-trivial (1, 0)-connection for E on U0,
and ∇1 an arbitrary (1, 0)-connection for E on U1. The p-th Atiyah class ap(E) is
represented by the Čech–Dolbeault cocycle

ap(∇∗) =
(
ap(∇0), a

p(∇1), a
p(∇0,∇1)

)
.

By Theorem 5.1, if p ≥ �− r + 1, we have ap(∇0) = 0; thus ap(∇∗) ∈ Ap,p(U , U0)
determines a class in Hp,p

∂̄
(M,M�S), which we denote by ap(E, s(r)) and call the

localization of ap(E) by s(r).

Remark 5.2. If we have several s(r)-trivial (1, 0)-connections, we also have the
vanishing of their difference form, and so s(r)-trivial (1, 0)-connections are special
in the sense discussed in the previous section. As a consequence, the localization
ap(E, s(r)) does not depend on the choice of the s(r)-trivial (1, 0)-connection ∇0

(or of the (1, 0)-connection ∇1); see [23].

Example 5.3. Let C be a compact Riemann surface and L a holomorphic line
bundle over C. Suppose we have a meromorphic section s of L and let S be the set
of zeros and poles of s. The previous construction gives us the localization a1(L, s)
in H1,1

∂̄
(C,C�S) of a1(L) in H1,1

∂̄
(C). Note that S consists of a finite number

of points. Let p be a point in S and choose an open neighborhood U of p not
containing any other point in S and trivializing L. Let e be a holomorphic frame
of L on U , and write s = fe with f a meromorphic function on U . Let ∇0 be the
s-trivial connection for L on C�S and ∇1 the e-trivial connection for L on U . If
we denote by i the embedding U ↪→ C, we have (by Theorem 4.1 and Remark 4.2)

i∗Resa1(L, s;U) =

∫
R

a1(∇1)−
∫
∂R

a1(∇0,∇1).

But we also have a1(∇1) = 0, and a computation gives

a1(∇0,∇1) =

√−1

2π

df

f
.
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So

i∗Resa1(L, s;U) =
1

2π
√−1

Resp

(df
f

)
,

and Theorem 4.3 yields∑
p∈S

1

2π
√−1

Resp

(df
f

)
=

∫
C

a1(L).

In particular we have recovered the classical residue formula for the Chern class,
as

∫
C c1(L) =

∫
C a1(L) in this case.

See [25] for another fundamental example of localized classes of this type, the
“∂̄-Thom class” of a holomorphic vector bundle.

6. A Bott type vanishing theorem

Let M be a complex manifold and E a complex vector bundle over M . If H is
a subbundle of the complexified tangent bundle T c

R
M , then its dual H∗ is canon-

ically viewed as a quotient of (T c
R
M)∗. We denote by ρ the canonical projection

(T c
R
M)∗ → H∗. Following [6], we give the following definition:

Definition 6.1. A partial connection for E is a pair (H, δ) given by a subbundle
H of T c

R
M and a C-linear map

δ : A0(M,E) −→ A0(M,H∗ ⊗ E)

satisfying

δ(fs) = ρ(df)⊗ s+ fδ(s) for f ∈ A0(M) and s ∈ A0(M,E).

As in the case of connections, it is easy to show that a partial connection is a
local operator and thus it admits locally a representation by a matrix whose entries
are C∞ sections of H∗.

Definition 6.2. Let (H, δ) be a partial connection for E. We say that a connection
∇ for E extends (H, δ) if the diagram

A0(M,E)
∇−−−−→ A1(M,E) = A0(M, (T c

R
M)∗ ⊗ E)

id

⏐⏐
 ρ⊗1

⏐⏐

A0(M,E)

δ−−−−→ A0(M,H∗ ⊗ E)

is commutative.

It is easy to see that the following lemma holds (see Lemma (2.5) in [6]).

Lemma 6.3. Any partial connection for a complex vector bundle admits an ex-
tension.
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Example 6.4. If E is holomorphic, then we have the differential operator

∂̄ : A0(M,E) −→ A0(M, T̄ ∗M ⊗ E).

The pair (T̄M, ∂̄) is a partial connection for E.

The following is not difficult to prove:

Lemma 6.5 ([6]). A connection ∇ for a holomorphic vector bundle E is of type
(1, 0) if and only if it extends (T̄M, ∂̄).

Definition 6.6. Let E be a holomorphic vector bundle over M . A holomorphic
partial connection for E is a pair (F, δ) given by holomorphic subbundle F of TM
and a C-linear homomorphism

δ : E −→ F∗ ⊗ E
satisfying

δ(fs) = ρ(df)⊗ s+ fδ(s) for f ∈ O and s ∈ E .
We shall also say that δ is a holomorphic partial connection along F .

Remark 6.7. A holomorphic partial connection (F, δ) for a holomorphic vector
bundle E induces a partial connection in the sense of Definition 6.1 (cf. Re-
mark 2.2). Conversely, if (F, δ) is a (C∞) partial connection such that δ(s)(u)
is holomorphic wherever s and u are holomorphic, then it defines a holomorphic
partial connection, and we shall say that (F, δ) is holomorphic.

Note that, if there is an “action” of F on E, it naturally defines a partial
connection for E along F (see Ch. II, 9, of [23]).

Remark 6.8. A holomorphic connection ∇ on E clearly gives a holomorphic
partial connection (TM,∇). The connection ∇ in Remark 2.2 (that is, ∇ viewed
as a C∞ connection) is a connection extending (TM ⊕ T̄M,∇⊕ ∂̄).

Definition 6.9. Let (F, δ) be a partial holomorphic connection for E. An F -
connection for E is a connection for E extending (F ⊕ T̄M, δ ⊕ ∂̄).

Using holomorphic partial connections we have a vanishing theorem generaliz-
ing Proposition 2.11:

Theorem 6.10. Let M be a complex manifold of dimension n and F a holomorphic
subbundle of rank r of TM , r ≤ n. Let E be a holomorphic vector bundle over M
and (F, δ) a holomorphic partial connection for E. If ∇0, . . . ,∇q are F -connections
for E, then

ϕA(∇0, . . . ,∇q) ≡ 0

for all homogeneous symmetric polynomials ϕ of degree d > n− r.

Proof. For simplicity, we prove the theorem for the case q = 0. The case for
general q follows from the construction of the difference form (see Subsection 1.2).
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Thus let ∇ be an F -connection for E. Note that the problem is local; so choose
a holomorphic frame s(�) = (s1, . . . , s�) of E on some open set U , and let θ be
the connection matrix of ∇ with respect to s(�). Taking a smaller U , if necessary,
we may write TM = F ⊕G for some holomorphic vector bundle G of rank n− r
on U . We have the corresponding decomposition T ∗M = F ∗ ⊕G∗. Taking, again
if necessary, a smaller U , we can choose a holomorphic frame u(r) = (u1, . . . , ur)
of F on U . Let (u∗

1, . . . , u
∗
r) be the holomorphic frame of F ∗ dual to u(r) and let

(v∗1 , . . . , v
∗
n−r) be a holomorphic frame of G∗ on U . Since ∇ is of type (1, 0), each

entry of θ may be written as
∑r

j=1 a
ju∗

j +
∑n−r

k=1 b
kv∗k with aj , bk ∈ A0(U). By

definition, we have ∇(si)(uj) = δ(si)(uj), which is holomorphic. Thus each aj is
holomorphic and hence the corresponding entry of κ1,1 = ∂̄θ is of the form

n−r∑
k=1

∂̄bk ∧ v∗k,

which yields the theorem. �

Another proof of the same theorem can be given along the lines of the original
Bott vanishing theorem and of Theorem 6.1 in [3]:

Second proof of Theorem 6.10. Let ∇ and TM = F ⊕G be chosen as in the pre-
vious proof. The curvature K of ∇ satisfies

K(X, Z̄) = 0

for all sections X of F and Z̄ of T̄M . Hence, if

{u∗
1, . . . , u

∗
r , v

∗
1 , . . . , v

∗
n−r, dz̄1, . . . , dz̄n}

is a basis of (T c
R
M)∗ with respect to the decomposition T c

R
M = F ⊕ G ⊕ T̄M , it

follows that the (1, 1)-part of each entry of the curvature matrix of K in such a
frame is of the form

n−r∑
j=1

n∑
k=1

ajkv
∗
j ∧ dz̄k,

and again the assertion follows. �

Remark 6.11. The previous vanishing theorem is an analogue of the Bott van-
ishing theorem for Chern forms. As shown in Theorem 6.1 of [3], under the same
hypotheses we have ϕ(∇) = 0 for a symmetric homogeneous polynomial ϕ of degree
d > n− r + [ r2 ], where [q] denotes the integer part of q.

See Section 9, Remark 9.2 below for an example where the Atiyah form vanishes
but the corresponding Chern form does not.

Remark 6.12. A version of this Bott type vanishing theorem for Atiyah classes
is proved in Proposition (3.3) of [5] and Proposition 5.1 of [13] by cohomological
arguments (actually, in the latter the authors assume F to be involutive, but
involutivity is not really needed in their argument). The above theorem gives a
more precise form of the vanishing theorem in the sense that it gives the vanishing
at the level of forms.
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From Theorem 6.10, Remark 6.11 and Propositions 1.10 and 2.11, we have:

Theorem 6.13. Let E be a holomorphic vector bundle on a complex manifold M .
Assume that E admits a holomorphic connection ∇, and let ∇ be corresponding
(1, 0)-connection (cf. Remark 6.8). Let ϕ be a a symmetric homogeneous polyno-
mial of degree d > 0. Then ϕA(∇) = 0. Moreover if d > [n2 ], then ϕ(∇) = 0.
Furthermore, if M is compact Kähler then ϕ(E) = 0.

7. Partial connection for the normal bundle of an invariant
submanifold

Let M be a complex manifold. A (nonsingular holomorphic) distribution on M
is a holomorphic subbundle F of TM . The rank of the distribution is the rank
of F . In this section, we construct a partial connection for the normal bundle of
an invariant submanifold of a distribution.

Let V be a complex submanifold of M . We denote by IV ⊂ O the ideal sheaf
of holomorphic function germs vanishing on V so that OV = O/IV is the sheaf of
germs of holomorphic functions on V . Denoting by NV the normal bundle of V
in M , we have the exact sequence

0 −→ TV −→ TM |V π−→ NV −→ 0.

We say that a distribution F on M leaves V invariant (or F is tangent to V ),
if F |V ⊂ TV .

Theorem 7.1. Let V be a complex submanifold of M . If a distribution F on M
leaves V invariant, there exists a holomorphic partial connection δ for the normal
bundle NV along F |V .
Proof. Let x be a point in V and take u ∈ OV (F |V )x and s ∈ OV (NV )x. Let
ũ ∈ Fx and s̃ ∈ Θx be such that ũ|V = u and π(s̃|V ) = s, where π : OV (TM |V ) →
OV (NV ) is the natural projection. Define δ : OV (NV ) → OV (F |V )∗⊗OV (NV ) by

δ(s)(u) := π([ũ, s̃]|V ).
It is easy to show that δ does not depend on the choice of s̃. As for ũ, let F
be locally generated by holomorphic sections ṽ1, . . . , ṽr of TM , where r = rankF .
Choose local coordinates {z1, . . . , zn} on M such that V = {zm+1 = . . . = zn = 0}.
We shall denote by Tk any local vector field of the form

∑m
j=1 a

j ∂
∂zj

with aj ∈ Ik
V

(where clearly I0
V = O); by Nk any local vector field of the form

∑n
j=m+1 a

j ∂
∂zj

with aj ∈ Ik
V ; and by Rk any local vector field of the form

∑n
j=1 a

j ∂
∂zj

with

aj ∈ Ik
V .

Since F |V ⊂ TV , it follows that ṽj = T0 +N1 +R2 for j = 1, . . . , r. Therefore,
since the rank of F and the rank of F |V are the same, if

u =
r∑

j=1

gj ṽj |V
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with gj ∈ OV , then

ũ =

r∑
j=1

g̃j ṽj

with g̃j∈O such that g̃j|V=gj . Denoting by gj the natural extension (z1, . . . , zn) �→
gj(zm+1, . . . , zn), it follows that

g̃j − gj = hj ∈ IV .

Hence

ũ =

r∑
j=1

gj ṽj +

r∑
j=1

hj ṽj .

However,

hj ṽj = hj(T0 +N1 +R2) = T1 +R2,

and it is easy to see that this latter term does not contribute to the expression
π([ũ, s̃]|V ). From this it follows that δ is well defined, and it is easy to check that
it is a holomorphic partial connection. �

Note that the above partial connection is already known for foliations (see,
e.g., [18]). From Theorems 7.1 and 6.10, we have:

Corollary 7.2. Let V be a complex submanifold of M of dimension m, and let F
be a distribution on M of rank r ≤ m leaving V invariant. Also let ∇ be a
(1, 0)-connection for NV extending the partial connection δ of Theorem 7.1. Then
ϕA(∇) = 0 for all symmetric homogeneous polynomials ϕ of degree d > m− r.

We also get the following obstruction to the existence of distributions (not
necessarily integrable) tangent to a given submanifold:

Corollary 7.3. Let V and F be as in Corollary 7.2. Then ϕA(NV ) = 0 for all
symmetric homogeneous polynomials ϕ of degree d > m− r.

Moreover, if V is compact Kähler then we have ϕ(NV ) = 0 for all symmetric
homogeneous polynomial ϕ of degree d > m− r.

8. Residues of singular distributions

A general theory of singular holomorphic distributions can be developed modifying
the theory for singular holomorphic foliations (see [6], and Chapter VI of [23]), by
omitting the integrability condition.

LetM be a complex manifold of dimension n. For simplicity, we assume thatM
is connected.

Definition 8.1. A (singular) holomorphic distribution of rank r onM is a coherent
sub-OM -module F of rank r of Θ.



Localization of Atiyah classes 569

In the above, the rank of F is the rank of its locally free part. Note that,
since Θ is locally free, the coherence of F here simply means that it is locally
finitely generated. We call F the tangent sheaf of the distribution and the quotient
NF = Θ/F the normal sheaf of the distribution.

The singular set S(F) of a distribution F is defined to be the singular set of
the coherent sheaf NF :

S(F) = Sing(NF) = { x ∈ M | NFx is not Ox-free }.

Note that Sing(F) ⊂ S(F). Away from S(F), the sheaf F defines a nonsingular
distribution of rank r.

In particular, if F is locally free of rank r, in a neighborhood of each point in M
it is generated on U by r holomorphic vector fields v1, . . . , vr without relations.
The set S(F) ∩ U is the set of points where the vector fields fail to be linearly
independent.

Singular distributions can be dually defined in terms of the cotangent sheaf.
Thus a singular distribution of corank q is a rank q coherent subsheaf G of Ω1. Its
annihilator

F = Ga = { v ∈ Θ | 〈v, ω〉 = 0 for all ω ∈ G }
is a singular distribution of rank r = n− q.

Corollary 7.3 in the previous section has a slightly stronger version when the
rank of the distribution is equal to the dimension of the submanifold. Namely,

Proposition 8.2. Let V ⊂ M be a complex submanifold of dimension m. Let F be
a (possibly singular) holomorphic distribution of rank m. Assume that F ⊗ OV ⊂
OV (TV ) and that Σ = S(F) ∩ V is an analytic subset of V of codimension at
least 2. Then ap(NV ) = 0 for all p > 0.

Moreover, if V is compact Kähler then cp(NV ) = 0 for all p > 0.

Proof. We shall show that there exists a holomorphic connection for NV , then the
result follows from Theorem 6.13.

By Theorem 7.1 there exists a holomorphic connection ∇ for NV on V �Σ.
We are going to prove that such a connection extends holomorphically through Σ.
Indeed, let p ∈ Σ. Let U be an open neighborhood of p in V such that NV |U is
trivial. Let e1, . . . , ek be a holomorphic frame for NV |U (here k = dimM − m).
Let θ be the connection matrix of ∇ on U�Σ. With respect to local coordinates
(z1, . . . , zm) on U , the entries of θ are (1, 0)-forms of the type

∑
j aj(z)dzj, with

aj : U�Σ → C holomorphic. Since Σ has codimension at least two in U , Riemann’s
extension theorem implies that each aj admits a (unique) holomorphic extension
to U . In this way we have extended ∇ over U , and hence NV admits a holomorphic
connection. �

Now suppose F is a singular distribution of rank r and set U0 = M�S and
S = S(F). Let U1 be a neighborhood of S in M and consider the covering U =
{U0, U1}. On U0, we have a subbundle F0 of TM such that F|U0 = O(F0).
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Suppose E is a holomorphic vector bundle on M admitting a partial holomor-
phic connection (F0, δ) on U0. Then, choosing an F0-connection ∇0 on U0 and
a (1, 0)-connection ∇1 on U1, for a symmetric homogeneous polynomial ϕ of de-

gree d > n − r, we have the localization ϕA(E,F) in Hd,d
D̄

(U , U0) of ϕA(E) in

Hd,d

D̄
(U) 
 Hd,d

∂̄
(M) and, via the ∂̄-Alexander homomorphism, the correspond-

ing residues.
We restate the residue theorem (Theorem 4.1) in this context:

Theorem 8.3. In the above situation, suppose S has a finite number of connected
components {Sλ}λ. Then:

1) For each λ we have the residue ResϕA(F , E;Uλ) in Hn−d,n−d

∂̄
(Uλ)

∗;

2) if M is compact, then∑
λ

(iλ)∗ResϕA(F , E;Uλ) = KS(ϕA(E)) in Hn−d,n−d

∂̄
(M)∗.

9. An example

In this section, we give an example of the Atiyah residue of a singular distribution
on the normal bundle of an invariant submanifold.

We start with the 1-form

ω = z dx+ z dy − y dz

on C
3 with coordinates (x, y, z). It defines a corank one singular distribution on C

3

with singular set {y = z = 0}. As generators of its annihilator, we may take the
vector fields

(9.1) v1 = y
∂

∂y
+ z

∂

∂z
and v2 =

∂

∂x
− ∂

∂y
.

The distribution defined by ω leaves the plane {z = 0} invariant. Note that
from ω∧dω = −z dx∧dy∧dz, we see that ω defines a contact structure on C3 with
singular set {z = 0} (Martinet hypersurface). We will see that the first Atiyah
class of the normal bundle of the (projectivized) Martinet hypersurface is localized
at the singular set of the corresponding distribution.

Now we projectivize everything. Thus let P3 be the complex projective space
of dimension three with homogeneous coordinates ζ = (ζ0 : ζ1 : ζ2 : ζ3). The
projective space P3 is covered by four open setsW (i), 0 ≤ i ≤ 3, given by ζi �= 0. We
take the original affine space C3 as W (0) with x = ζ1/ζ0, y = ζ2/ζ0 and z = ζ3/ζ0.

We consider the corank one distribution G on P3 naturally obtained as an
extension of the above:

0) On W (0), G is defined by ω0 = z dx+ z dy − y dz as given before.

1) On W (1), we set x1 = ζ0/ζ1, y1 = ζ3/ζ1 and z1 = ζ2/ζ1. Then G is defined by

ω1 = −y1 dx1 − x1z1 dy1 + x1y1 dz1.
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2) On W (2), we set x2 = ζ3/ζ2, y2 = ζ0/ζ2 and z2 = ζ1/ζ2. Then G is defined by

ω2 = −y2 dx2 − x2z2 dy2 + x2y2 dz2.

3) On W (3), we set x3 = ζ2/ζ3, y3 = ζ1/ζ3 and z3 = ζ0/ζ3. Then G is defined by

ω3 = z3 dx3 + z3 dy3 − y3 dz3.

Note that ωi = (ζj/ζi)
3ωj in W (i) ∩ W (j) so that the conormal sheaf of the

distribution G is locally free of rank one and, as a line bundle, it is −3 times the
hyperplane bundle on P

3. Let F = Ga be the annihilator of G, which defines
a singular distribution of rank two on P3. The singular set S(F) of F , which
coincides with that of G, has three irreducible components S1 = {ζ2 = ζ3 = 0},
S2 = {ζ0 = ζ3 = 0} and S3 = {ζ0 = ζ1 = 0}. We have a subbundle F0 of rank 2 of
TP3 on P3�S(F) defining F away from S(F).

The distribution F leaves the hyperplane V = {ζ3 = 0} 
 P2 invariant and we
work on V . In fact the distribution F also leaves invariant the singular hypersurface
{ζ0ζ3 = 0}, which contains the whole S(F). This case is treated in [26].

Thus we consider the singular distribution FV = F ⊗OV on V , whose singular
set S is given by S = S(F) ∩ V = S1 ∪ S2. We let P = (0 : 1 : 0 : 0), which is the
intersection point of S1 and S2. The restriction of the bundle FV,0 = F0|V defines
FV on U0 = V �S. As is shown in Section 7, the normal bundle NV of V in P

3

admits a partial connection along FV,0 on U0 and the first Atiyah class a1(NV ) is
localized near S and yields an “Atiyah residue”.

Note that, although a priori the first Chern class c1(NV ) is not localized in
this context, it has the “Atiyah localization” and the “Atiyah residue”, since it
coincides with a1(NV ), V being compact Kähler (see Remarks 9.2 and 9.5 below).

To describe the localization more precisely, we need the Čech–Dolbeault coho-
mology theory for coverings involving more than two open sets, as S is singular in
our case. We briefly recall what is needed in our case.

Let U0 = V�S be as above and let U1, U2 and U3 be neighborhoods of S1�{P},
S2�{P} and P in V , respectively, such that U1 ⊂ W (0), U2 ⊂ W (2) and U3 ⊂ W (1).
Then U = {U0, . . . , U3} is a covering of V and U ′ = {U1, U2, U3} is a covering of
U ′ = U1∪U2∪U3, which is an open neighborhood of S in V . Letting Uij = Ui∩Uj

and Uijk = Ui ∩ Uj ∩ Uk, we set

(9.2) Ap,q(U) := ⊕iA
p,q(Ui)⊕i,j A

p,q−1(Uij)⊕i,j,k A
p,q−2(Uijk),

where in the first sum, 0 ≤ i ≤ 3, in the second, 0 ≤ i < j ≤ 3 and in the third,
0 ≤ i < j < k ≤ 3. The differential operator

D̄ : Ap,q(U) −→ Ap,q+1(U)

is defined by

D̄(σi, σij , σijk) = (∂̄σi, σj − σi − ∂̄σij , σjk − σik + σij + ∂̄σijk).
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The q-th cohomology of the complex (Ap,∗(U), D̄) is the Čech–Dolbeault coho-
mology Hp,q

D̄
(U) of U of type (p, q), which is shown to be canonically isomorphic

to the Dolbeault cohomology Hp,q

∂̄
(V ) of V (see Theorem 3.1).

Likewise we have the cohomology Hp,q

D̄
(U ′) of the complex (Ap,∗(U ′), D̄) by

omitting U0 in the above.
Also, setting Ap,q(U , U0) = { σ ∈ Ap,q(U) | σ0 = 0 }, we have the relative

cohomology Hp,q
D̄

(U , U0), which we also denote by Hp,q

∂̄
(V, V �S).

The Atiyah classes are defined in the Čech–Dolbeault cohomology as in Subsec-
tion 4.1, taking a (1, 0)-connection on each open set and making use of difference
forms. In our case, the first Atiyah class a1(NV ) is represented by the cocycle
a1(∇∗) in

(9.3) A1,1(U) = ⊕iA
1,1(Ui)⊕i<j A

1,0(Uij),

(note that Ap,q−2(Uijk) = 0 in (9.2), if (p, q) = (1, 1)) given by

a1(∇∗) = (a1(∇i), a
1(∇i,∇j)),

with ∇i a (1, 0)-connection on Ui. If we take an FV,0-connection as ∇0, we have
a1(∇0) = 0 (see Theorem 6.10). Hence a1(∇∗) is in A1,1(U , U0) and defines the
localization a1(NV ,FV ) in H1,1

D̄
(U , U0).

Recall that V is defined by ζ3 = 0 in P3. Thus, in W (0) it is defined by z = 0
with (x, y) coordinates on W (0) ∩ V (⊃ U1); in W (2) it is defined by x2 = 0 with
(y2, z2) coordinates on W (2) ∩ V (⊃ U2); and in W (1) it is defined by y1 = 0 with
(x1, z1) coordinates on W (1) ∩ V (⊃ U3).

Proposition 9.1. Let F be the singular distribution on P3 as above. It leaves the
hyperplane V given by ζ3 = 0 invariant. We have the localization a1(NV ,FV ) in
H1,1

D̄
(U , U0) of a

1(NV ) in H1,1
D̄

(U) = H1,1

∂̄
(V ). By a suitable choice of connections

∇i, it is represented by the Čech–Dolbeault cocycle a1(∇∗) = (a1(∇i), a
1(∇i,∇j))

given by

a1(∇i) = 0, 0 ≤ i ≤ 3, a1(∇0,∇1) =

√−1

2π

dx+ dy

y

a1(∇0,∇2) =

√−1

2π

(
z2

dy2
y2

− dz2

)
, a1(∇0,∇3) = −

√−1

2π

( dx1

x1z1
− dz1

z1

)

a1(∇1,∇2) =

√−1

2π

dy2
y2

, a1(∇1,∇3) =

√−1

2π

dx1

x1
,

a1(∇2,∇3) =

√−1

2π

dz1
z1

.

Proof. By taking an FV,0-connection for NV on U0 as ∇0, we have a1(∇i) = 0 as
above. We have the exact sequence

0 −→ TV −→ TP3|V π−→ NV −→ 0.
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On each of U1, U2 and U3, the bundle NV is trivial and we may take ν1 = π( ∂
∂z ),

ν2 = π( ∂
∂x2

) and ν3 = π( ∂
∂y1

), respectively, as a frame of NV . Let ∇i be the

connection trivial with respect to νi. Then we have a1(∇i) = 0, 1 ≤ i ≤ 3.

To compute the difference forms a1(∇i,∇j), we first make the following obser-
vation (cf. Subsection 1.2). Let θi be the connection matrix (form, in this case)
of ∇i with respect to some holomorphic frame ν of NV . Then, since the θi’s are
of type (1, 0),

(9.4) a1(∇i,∇j) = c1(∇i,∇j) =

√−1

2π
(θj − θi).

Moreover, if ν̃ = aν is another holomorphic frame and if the θ̃i’s are corre-
sponding connection forms, we have (cf. (1.1))

(9.5) θ̃i = θi +
da

a
.

We first compute a1(∇0,∇1). For this, we find the connection forms θ0 and θ1
of ∇0 and ∇1 with respect to the frame ν1. Since θ1 = 0, we only need to find θ0.
Note that U01 ⊂ W (0), where we may take the vector fields v1 and v2 in (9.1) as
generators of F . We set

u1 = v1|V = y
∂

∂y
and u2 = v2|V =

∂

∂x
− ∂

∂y
.

Since θ0 is of type (1, 0), we may write as θ0 = f dx + g dy. Then, on the one
hand we have ∇0(ν1)(u1) = yg · ν1 and ∇0(ν1)(u2) = (f − g) · ν1. On the other
hand by definition,

∇0(ν1)(u1) = π
([

y
∂

∂y
+ z

∂

∂z
,
∂

∂z

]∣∣
V

)
= −ν1,

and

∇0(ν1)(u2) = π
([ ∂

∂x
− ∂

∂y
,
∂

∂z

]∣∣
V

)
= 0.

Hence we get

θ0 = −dx+ dy

y
,

which gives the expression for a1(∇0,∇1) by (9.4).

Similar computations show that the connection forms of ∇0 with respect to the
frames ν2 and ν3 are, respectively, −z2

dy2

y2
+ dz2 and dx1

x1z1
− dz1

z1
, which give the

expressions for a1(∇0,∇2) and a1(∇0,∇3).

Finally the relations ν2 = 1
y2
ν1, ν3 = 1

x1
ν1 and ν3 = 1

z1
ν2 give the expressions

for a1(∇1,∇2), a
1(∇1,∇3) and a1(∇2,∇3) by (9.5). �
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Remark 9.2. From the above, we see that the curvature form of ∇0 with respect
to ν1 is given by

κ0 = dθ0 + θ0 ∧ θ0 = −dx ∧ dy

y2
.

Since it has no (1, 1)-component, there holds a1(∇0) = 0, while c1(∇0) =
√−1
2π κ0

does not vanish.

We now try to find the corresponding residue. For this, we first consider the
cup product in our case. Recalling (9.2) and (9.3), it is the pairing

A1,1(U)×A1,1(U) −→ A2,2(U)
given by

(σi, σij , 0) � (τi, τij , 0) = (σi ∧ τi, σi ∧ τij + σij ∧ τj ,−σij ∧ τjk).

This induces a pairing H1,1

D̄
(U) × H1,1

D̄
(U) −→ H2,2

D̄
(U), which followed by

integration
∫
V : H2,2

D̄
(U) 
 H2,2

∂̄
(V ) −→ C defines the Kodaira–Serre duality.

In the relative case, we have σ0 = 0 and the above cup product involves only
(τi, τij) with i ≥ 1. Hence we have the pairing

A1,1(U , U0)×A1,1(U ′) −→ A2,2(U , U0).

This in turn induces the pairing

H1,1

D̄
(U , U0)×H1,1

D̄
(U ′) −→ H2,2

D̄
(U , U0),

which, followed by integration, defines the ∂̄-Alexander homomorphism

Ā : H1,1
D̄

(U , U0) −→ H1,1
D̄

(U ′)∗

and we have a commutative diagram as in Proposition 3.2, to which we return
below (see (9.9)).

We examine the ∂̄-Alexander homomorphism more closely. We take a “system
of honeycomb cells” (Ri) adapted to U , which will be given explicitly below. For
a class [σ] in H1,1

D̄
(U , U0), σ = (σi, σij), the image of [σ] under Ā is a functional

assigning to each class [τ ] in H1,1

D̄
(U ′), τ = (τi, τij), the integral

(9.6)

∫
V

σ � τ =
∑

1≤i≤3

( ∫
Ri

σi ∧ τi +

∫
R0i

σ0i ∧ τi

)

+
∑

1≤i<j≤3

(∫
Rij

σi ∧ τij + σij ∧ τj −
∫
R0ij

σ0i ∧ τij

)
.

In the above, each Ri has the same orientation as V . We set Rij = Ri ∩ Rj =
∂Ri∩∂Rj , which has the same orientation as ∂Ri (opposite the orientation of ∂Rj)
and R0ij = R0 ∩Rij = ∂R0 ∩ ∂Rij , which has the same orientation as ∂R0i.
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In fact, the right-hand side of (9.6) can be reduced by choosing Stein open
sets as the Ui, i = 1, 2, 3, which is possible (for example, we may take as U1 a
tubular neighborhood of S1�{P} in V ∩W (0) containing R1, or even the whole
V ∩W (0) 
 C2).

Lemma 9.3. If we choose Ui, 1 ≤ i ≤ 3, to be Stein, we may represent every class
in H1,1

D̄
(U ′) by a cocycle of the form ξ = (0, ξij).

Proof. From D̄τ = 0, we have ∂̄τi = 0, 1 ≤ i ≤ 3. Since each Ui is Stein, there
exist a (1, 0)-form ρi such that τi = ∂̄ρi. If we set ξ = (0, ξij) with

ξij = τij + ρi − ρj ,

Then we have τ = ξ + D̄ρ, ρ = (ρi, 0). �

If we use the representative as above, the right-hand side of (9.6) becomes

(9.7)
∑

1≤i<j≤3

( ∫
Rij

σi ∧ ξij −
∫
R0ij

σ0i ∧ ξij

)
.

Recall that the residue Resa1(FV , NV ;U
′) of FV with respect to a1 for NV

on U ′ is the image of the localization a1(NV ,FV ).

Proposition 9.4. If we choose connections ∇i as in Proposition 9.1, and a
representative ξ of each class in H1,1(U ′) as in Lemma 9.3, then the residue
Resa1(FV , NV ;U

′) is the functional assigning to [ξ] the value

−
∑

1≤i<j≤3

∫
R0ij

a1(∇0,∇i) ∧ ξij .

Proof. The proposition follows from a1(∇i) = 0 and (9.7). �

The domains of integration R0ij can be given explicitly, for example, as follows.
Let δ be positive number with δ2 < 1, and set

R3 =
{
ζ ∈ V | |ζ0|2 + |ζ2|2 ≤ δ2 |ζ1|2

}
,

R2 =
{
ζ ∈ V | |ζ0|2 ≤ δ2 |ζ2|2

}
�IntR3,

R1 =
{
ζ ∈ V | |ζ2|2 ≤ δ2 |ζ0|2

}
�IntR3,

R0 = U0�
(⋃3

i=1 IntRi

⋃
1≤i<j≤3 IntRij

)
.

From δ < 1, we see that R12 = ∅ and thus R012 = ∅. We first express R013

explicitly. As a set, it is given by

|y| = δ, 1 + |y|2 = δ2 |x|2 and z = 0.

Setting δ′ =
√
1+δ2

δ , we have

(9.8) R013 =
{
(x, y) | |x| = δ′, |y| = δ

}
,
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oriented so that argx ∧ arg y is negative. Similarly we have

R023 =
{
(y2, z2) | |y2| = δ, |z2| = δ′

}
,

which is oriented so that arg y2 ∧ arg z2 is positive.
Now we consider the commutative diagram

(9.9)

H1,1

D̄
(U , U0)

j∗−−−−→ H1,1

D̄
(U) 
 H1,1

∂̄
(V ) = H1,1

∂̄
(P2) 
 H2(P2,C)⏐⏐
ĀV

⏐⏐
KSV =PV

H1,1

D̄
(U ′)∗ i∗−−−−→ H1,1

D̄
(U)∗ 
 H1,1

∂̄
(V )∗ = H1,1

∂̄
(P2)∗ 
 H2(P

2,C).

The normal bundle NV of V in P3 is isomorphic to the hyperplane bundle H2

on V = P2. Since P2 is compact Kähler, we know that the first Atiyah class a1(NV )
in H1,1

∂̄
(V ) = H2(P2,C) 
 C coincides with the first Chern class c1(NV ) = c1(H2),

the generator of the cohomology.

We try to find i∗Resc1(F , NV ;S) and verify the Residue Theorem 4.1. Recall
that the isomorphism H1,1

∂̄
(P2) −→ H1,1

D̄
(U) is induced by τ �→ (τi, τij) = (τ, 0)

(cf. Theorem 3.1). Also note that H1,1

∂̄
(P2) 
 C, which is generated by the class of

τ0 =

√−1

2π
∂∂̄ log ‖ζ‖2

(see, e.g., [14]). For τ0 we may take, as ρi in the proof of Lemma 9.3, the forms

ρ1 = −
√−1

2π

x̄ dx+ ȳ dy

1 + |x|2 + |y|2 , ρ2 = −
√−1

2π

ȳ2 dy2 + z̄2 dz2
1 + |y2|2 + |z2|2 ,

ρ3 = −
√−1

2π

x̄1 dx1 + z̄1 dz1
1 + |x1|2 + |z1|2 ,

and we compute

ξ13 = ρ1 − ρ3 = −
√−1

2π

dx

x
, ξ23 = ρ2 − ρ3 = −

√−1

2π

dz2
z2

.

Thus, to the canonical generator [τ0], the residue assigns the value

−
∫
R013

a1(∇0,∇1) ∧ ξ13 −
∫
R023

a1(∇0,∇2) ∧ ξ23

=
(√−1

2π

)2{∫
R013

(dx+ dy

y

)
∧ dx

x
+

∫
R023

(
z2

dy2
y2

− dz2

)
∧ dz2

z2

}

= −
(√−1

2π

)2
∫
R013

dx ∧ dy

xy
= 1

(see (9.8)), as expected.
The above computation appears to suggest that the residue is concentrated

on S1.

Remark 9.5. Although the first Chern class c1(NV ) is not localized as a Chern
class (see Remark 9.2), it has the “Atiyah localization” and the “Atiyah residue”.
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stituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2000.

[11] Calaque, D. and van den Bergh, M.: Hochschild cohomology and Atiyah classes.
Adv. Math. 224 (2010), no. 5, 1839–1889.

[12] Camacho, C. and Sad, P.: Invariant varieties through singularities of holomorphic
vector fields. Ann. of Math. (2) 115 (1982), no. 3, 579–595.

[13] Carrell, J. B. and Lieberman, D. I.: Vector fields and Chern numbers. Math.
Ann. 225 (1977), no. 3, 263–273.

[14] Griffiths, P. and Harris, J.: Principles of algebraic geometry. Pure and Applied
Mathematics, Wiley-Interscience, New York, 1978.

[15] Kapranov, M.: Rozansky–Witten invariants via Atiyah classes. Compositio Math.
115 (1999), no. 1, 71–113.
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