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Paraproducts via H∞-functional calculus

Dorothee Frey

Abstract. Let X be a space of homogeneous type and let L be a sec-
torial operator with bounded holomorphic functional calculus on L2(X).
We assume that the semigroup {e−tL}t>0 satisfies the Davies–Gaffney es-
timates. In this paper, we introduce a new type of paraproduct operators
that is constructed via certain approximations of the identity associated
with L. We show various boundedness properties on Lp(X) and the re-
cently developed Hardy and BMO spaces Hp

L(X) and BMOL(X). Gener-
alizing standard paraproducts constructed via convolution operators, we
show L2(X) off-diagonal estimates as a substitute for Calderón–Zygmund
kernel estimates. As an application, we study differentiability properties
of paraproducts in terms of fractional powers of the operator L.

The results of this paper are fundamental for the proof of a T (1)-
Theorem for operators that are beyond the reach of Calderón–Zygmund
theory, which is the subject of a forthcoming paper.

1. Introduction and main results

Paraproduct operators are an important tool in harmonic analysis, and play an
essential role in the theory of partial differential equations. They emerged from
the theory of paradifferential operators (see e.g. [15] and [13]), and have crucial
applications in the general theory of singular integral operators and the study
of nonlinear problems; see e.g. [32] in the context of Euler and Navier–Stokes
equations.

More specifically, in the proof of the T (1)-theorem of David and Journé [19], the
following paraproduct plays an important role. Given b ∈ BMO(Rn), one defines
an operator Πb on L2(Rn) via

Πbf =

∫ ∞

0

Qt
[
(Qtb)(Ptf)

] dt
t
, f ∈ L2(Rn),(1.1)
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where Pt and Qt are convolution operators with Pt(1) = 1 and Qt(1) = 0. One
can then show that Πb is a Calderón–Zygmund operator, bounded on L2(Rn) and
satisfying Πb(1) = b and Π∗

b(1) = 0.
In the last two decades, the study of properties of sectorial operators often de-

pended on pointwise Gaussian estimates for the kernel of the corresponding semi-
group, which, consequently, ensured the boundedness of the semigroup on Lp for
p ∈ [1,∞]. In recent years, the theory has been extended to sectorial operators L
whose semigroup is bounded on Lp only for a range of p strictly smaller than (1,∞).
For such operators, one cannot work with pointwise Gaussian estimates for the
semigroup, but one has to work with generalized Gaussian estimates, Davies–
Gaffney estimates or other off-diagonal estimates instead. A key role in this theory
is played by approximation operators that are constructed via the H∞-functional
calculus as introduced in [36]. For example, the semigroup {e−tL}t>0 can be used
as an approximation of the identity and the derivative {t∂te−tL}t>0 for the con-
struction of a resolution identity. In this way, various results have been obtained on
generalizations of operators and function spaces, that were originally constructed
via the Laplacian and Littlewood–Paley theory. This includes the Hardy spacesHp

L

and a corresponding space BMOL that are associated with L, see e.g. [5], [22],
[7], [10], [29], [30], [27], and [21]; Riesz transforms, e.g. in [6], [28], and [12]; and
similar studies of operators beyond the reach of Calderón–Zygmund theory, e.g.,
in [11], [4], [3], and [2].

In this article, we introduce the following type of paraproduct operators and
generalize the above paraproduct in the following sense.

We assume X to be a space of homogeneous type and let L be a sectorial
operator with bounded holomorphic functional calculus on L2(X). We assume
that the semigroup {e−tL}t>0 satisfies the Davies–Gaffney estimates and, for some
results, an Lp-L2 estimate for some p < 2. Standard examples of operators that
satisfy our assumptions are elliptic operators in divergence form with bounded
complex coefficients, see e.g. [2], Schrödinger operators with singular potentials,
see e.g. [35], and Laplace–Beltrami operators on complete Riemannian manifolds
with non-negative Ricci curvature, see e.g. [20], [25].

Using theH∞-functional calculus, we define a paraproduct associated with L by

(1.2) Πb : f �→
∫ ∞

0

ψ̃(t2mL)
[
ψ(t2mL)b ·At(e−t2mLf)

] dt
t
,

where ψ and ψ̃ are taken from the set Ψ of bounded holomorphic functions on
a sector with decay at zero and infinity, e.g. ψ(tL) = (tL)Me−tL for M > n

4m ,
and At denotes some averaging operator.

The appearance of the operator At might seem surprising, but this is due to
the fact that we do not impose any kernel estimates on the semigroup {e−tL}t>0.

For X = Rn and L = −Δ, one can omit the averaging operator At and the
definition in (1.2) then corresponds to paraproducts defined via convolution.

Paraproducts defined in this way allow for a great flexibility, making it possible
to adapt them to many situations in Calderón–Zygmund theory, and, more im-
portantly, beyond Calderón–Zygmund theory. The spaces Hp

L(X) and BMOL(X),
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that are associated with L, generalize the usual Lebesgue spaces and the space BMO
of John and Nirenberg and are the appropriate setting for paraproducts of the
form (1.2).

Our first main result is the following:

Theorem 1.1. Let b ∈ BMOL(X) and let ψ and ψ̃ be as specified in Theorem 4.2.
Then Πb, defined in (1.2), is bounded on L2(X) and extends to a bounded operator
from Lp(X) to Hp

L(X) for p ∈ (2,∞) and from L∞(X) to BMOL(X).

Moreover, if one assumes the conservation property e−tL(1) = 1 in L2
loc(X),

then the paraproduct also satisfies Πb(1) = b and Π∗
b (1) = 0.

For a second order elliptic operator L in divergence form, we denote by (p−(L),
p+(L)) the interior of the interval of Lp boundedness of {e−tL}t>0. Then for
p ∈ (p−(L), p+(L)), as shown in [30], there holds Hp

L(X) = Lp(X), and there-
fore Πb is bounded on Lp(X) for all p ∈ [2, p+(L)). For other types of operators L,
one can obtain similar results via generalized Gaussian estimates; see Proposi-
tion 3.14 below.

The proof of Theorem 4.2 heavily relies on the following analogue of the Feffer-
man–Stein criterion. Assuming a growth estimate for b, we have

b ∈ BMOL(X) ⇐⇒ νψ,b :=
∣∣ψ(t2mL)b(y)∣∣2 dμ(y) dt

t
is a Carleson measure.

For ψ(z) = zMe−z and M > n
4m , the result is proven in [29]. In Proposition 3.18

we generalize the result to allow more general ψ.
We then define Π(f, b) := Πb(f), and consider the paraproduct as a bilinear

operator. By analogy with the fact that the paraproduct in (1.1) is a Calderón–
Zygmund operator, we show certain off-diagonal estimates for the paraproduct as-
sociated with L. These off-diagonal estimates allow us, as in e.g. [11], [2], and [29],
to extend the operator to certain Lp(X) and Hp

L(X) spaces. We obtain the fol-
lowing result:

Theorem 1.2. Let ψ and ψ̃ be as specified in Theorem 4.10. Then Π: L∞(X)×
L2(X) → L2(X) is bounded and extends to a bounded operator Π: L∞(X) ×
Hp
L(X) → Lp(X) for p ∈ [1, 2) and Π : L∞(X)×Lp(X) → Hp

L(X) for p ∈ (2,∞).

As before, the identification of Hp
L(X) and Lp(X) for a certain range of p

(see [30] and Proposition 3.14 below) yields boundedness results Π: L∞(X) ×
Lp(X) → Lp(X).

We end the article with some results on differentiability properties of paraprod-
ucts constructed via H∞-functional calculus, and establish a Leibniz-type rule.
More results of this kind will be given in [23].

An important application of the paraproduct defined in (1.2) is given in [24],
where we generalize the T (1)-Theorem for operators beyond the reach of Calderón–
Zygmund theory.

While this work was in preparation, we learned that similar paraproducts have
also been considered by Bernicot; see [9]. The main difference with our results is



638 D. Frey

that pointwise bounds on the kernels of the semigroup {e−tL}t>0 are used in [9],
an assumption which is considerably relaxed here.

The article is organized as follows: in Section 2 we collect the most important
definitions and results about H∞-functional calculus, tent spaces and Carleson
measures, and state our assumptions on the operator L. In Section 3 we recall
the theory of Hardy and BMO spaces associated with operators. We generalize
results, usually stated for second order operators only, to higher order operators,
and prove a generalized Calderón reproducing formula and a Carleson measure
characterization of BMOL(X). Section 4 contains our main results, Theorem 1.1
and Theorem 1.2. We end with a Leibniz-type rule.

Throughout the article, the letter C will denote possibly different positive con-
stants that are independent of the essential variables. We will frequently write
a � b for nonnegative quantities a and b, if a ≤ Cb for some C.

2. Preliminaries

We assume that (X, d) is a metric space and μ is a nonnegative Borel measure
on X with μ(X) = ∞ which satisfies the doubling condition:

There exists a constant A1 ≥ 1 such that for all x ∈ X and all r > 0

V (x, 2r) ≤ A1V (x, r) <∞,

where we set B(x, r) := {y ∈ X : d(x, y) < r} and V (x, r) := μ(B(x, r)).
Note that the doubling property implies the following strong homogeneity prop-

erty: There exists a constant A2 > 0 and some n > 0 such that for all λ ≥ 1, for
all x ∈ X and all r > 0,

V (x, λr) ≤ A2 λ
n V (x, r).(2.1)

In a Euclidean space with the Lebesgue measure, the parameter n corresponds
to the dimension of the space. For more details on spaces of homogeneous type,
see [17].

For a ball B ⊆ X we denote by rB the radius of B and set

(2.2) S0(B) := B and Sj(B) := 2jB \ 2j−1B for j = 1, 2, . . . ,

where 2jB is the ball with the same center as B and radius 2jrB .
Let t > 0. We define the averaging operator At by

Atf(x) :=
1

V (x, t)

∫
B(x,t)

f(y) dμ(y)(2.3)

for all x ∈ X and every f ∈ L1
loc(X).

We denote by M the uncentered Hardy–Littlewood maximal operator. For
p ∈ [1,∞) and measurable functions f : X → C we set Mpf := [M(|f |p)]1/p.
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2.1. Holomorphic functional calculus

We only state the most important definitions and results. For more details on
holomorphic functional calculi we refer to [36], [1], [34] and [26].

For 0 ≤ ω < σ < π, we define the closed and open sectors in the complex
plane C by

Sω+ :=
{
ζ ∈ C \ {0} : |arg ζ| ≤ ω

} ∪ {0},
Σ0
σ :=

{
ζ ∈ C : ζ �= 0, |arg ζ| < σ

}
.

We denote by H(Σ0
σ) the space of all holomorphic functions on Σ0

σ. We further
define

H∞(Σ0
σ) :=

{
ψ ∈ H(Σ0

σ) : ‖ψ‖L∞(Σ0
σ)
<∞}

,

Ψα,β(Σ
0
σ) :=

{
ψ ∈ H(Σ0

σ) : |ψ(ζ)| ≤ C |ζ|α (1 + |ζ|α+β)−1 for every ζ ∈ Σ0
σ

}
for every α, β > 0 and Ψ(Σ0

σ) :=
⋃
α,β>0 Ψα,β(Σ

0
σ).

Definition 2.1. Let ω ∈ [0, π). A closed operator L in a Hilbert space H is said to
be sectorial of angle ω if σ(L) ⊆ Sω+ and, for each σ > ω, there exists a constant
Cσ > 0 such that ∥∥(ζI − L)−1

∥∥ ≤ Cσ |ζ|−1 , ζ /∈ Sσ+.

Remark 2.2. Let ω ∈ [0, π) and let L be a sectorial operator of angle ω in a
Hilbert space H . Then L has dense domain in H . If L is assumed to be injective,
then L also has dense range in H . See e.g. Theorems 2.3 and 3.8 in [18].

Let ω < θ < σ < π and let L be a sectorial operator of angle ω ∈ [0, π) in a
Hilbert space H . Then for every ψ ∈ Ψ(Σ0

σ)

ψ(L) :=
1

2πi

∫
∂Σ0

θ

ψ(λ)(λI − L)−1 dλ(2.4)

defines a bounded operator on H . By sectoriality of L the integral in (2.4) is
well defined, and an extension of Cauchy’s theorem shows that the definition is
independent of the choice of θ ∈ (ω, σ).

Let L be in addition injective and set ψ(z) := z(1+z)−2. Then ψ(L) is injective
and has dense range in H . For f ∈ H∞(Σ0

σ) one can define by

f(L) := [ψ(L)]−1(f · ψ)(L)
a closed operator in H . We say that L has a bounded H∞(Σ0

σ) functional calculus
if there exists a constant cσ > 0 such that for all f ∈ H∞(Σ0

σ), there holds
f(L) ∈ B(H) with

‖f(L)‖ ≤ cσ ‖f‖L∞(Σ0
σ)
.

One can show that L has a bounded holomorphic functional calculus on H if
and only if the following quadratic estimates are satisfied:
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For some (all) σ ∈ (ω, π) and some ψ ∈ Ψ(Σ0
σ) \ {0} there exists some C > 0

such that, for all x ∈ H ,

C−1 ‖x‖2 ≤
∫ ∞

0

‖ψ(tL)x‖2 dt

t
≤ C ‖x‖2 .(2.5)

Moreover, if ψ, ψ̃ ∈ Ψ(Σ0
σ) \ {0} are chosen to satisfy

∫∞
0
ψ(t)ψ̃(t) dtt = 1,

then the functional calculus of L on H yields the following Calderón reproducing
formula: for every f ∈ H and every m > 0,∫ ∞

0

ψ(t2mL)ψ̃(t2mL)f
dt

t
= f in H.

Observe that for ψ ∈ Ψ(Σ0
σ) \ {0} and α, β > 0, one can always find a function

ψ̃ ∈ Ψα,β(Σ
0
σ) \ {0} such that

∫∞
0
ψ(t)ψ̃(t) dtt = 1.

2.2. Tent spaces and Carleson measures

We recall the most important definitions and properties of tent spaces and Carleson
measures. For proofs of the results, we refer to [16]. As mentioned in Chapter II
of [37], the proofs, given there in the case of the Euclidean space Rn, carry over
to spaces of homogeneous type.

For any x ∈ X , we denote by Γ(x) the cone of aperture 1 with vertex x, namely

Γ(x) :=
{
(y, t) ∈ X × (0,∞) : d(y, x) < t

}
.

If O is an open subset of X , then the tent over O, denoted by Ô, is defined as

Ô :=
{
(x, t) ∈ X × (0,∞) : dist(x,Oc) ≥ t

}
.

Definition 2.3. For any measurable function F on X× (0,∞), the conical square
function A F is defined by

A F (x) :=
(∫∫

Γ(x)

|F (y, t)|2 dμ(y)

V (x, t)

dt

t

)1/2

, x ∈ X,

and the Carleson function CF by

CF (x) := sup
B :x∈B

( 1

V (B)

∫∫
B̂

|F (y, t)|2 dμ(y)dt
t

)1/2

, x ∈ X,

where the supremum is taken over all balls B in X that contain x.
For 0 < p <∞, the tent spaces on X × (0,∞) are defined by

T p(X) :=
{
F : X × (0,∞) → C measurable ; ‖F‖Tp(X) := ‖A F‖Lp(X) <∞}

.

The tent space T∞(X) is defined by

T∞(X) :=
{
F : X × (0,∞) → C measurable ; ‖F‖T∞(X) :=‖CF‖L∞(X) <∞}

.
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When p ∈ [1,∞], the space (T p(X), ‖ . ‖Tp(X)) is a Banach space. Moreover,
one can show the following duality results.

Theorem 2.4. (i) Let 1 < p < ∞ and 1/p + 1/p′ = 1. There exists a constant
C > 0 such that for all F ∈ T p(X) and all G ∈ T p

′
(X)∫∫

X×(0,∞)

∣∣F (x, t)G(x, t)∣∣ dμ(x)dt
t

≤ C

∫
X

A (F )(x)A (G)(x) dμ(x).

Further, there exists a constant C > 0 such that, for all F ∈ T 1(X) and all
G ∈ T∞(X),∫∫

X×(0,∞)

∣∣F (x, t)G(x, t)∣∣ dμ(x)dt
t

≤ C

∫
X

A (F )(x)C (G)(x) dμ(x).

(ii) The pairing

〈F,G〉 �→
∫∫

X×(0,∞)

F (x, t)G(x, t)
dμ(x)dt

t

realizes T p
′
(X) as equivalent to the dual of T p(X) if 1 < p < ∞ and 1

p + 1
p′ = 1,

and realizes T∞(X) as equivalent to the dual of T 1(X).

We finally state the definition of nontangential maximal functions and Carleson
measures and the connection between both.

Definition 2.5. For any measurable function F on X × (0,∞), the nontangential
maximal function F ∗ is defined by

(2.6) F ∗(x) := sup
(y,t)∈Γ(x)

|F (y, t)| , x ∈ X.

The space N is defined by

N :=
{
F : X × (0,∞) → C measurable ; ‖F‖N := ‖F ∗‖L1(X) <∞}

.

A Carleson measure is a Borel measure ν on X × (0,∞) such that

‖ν‖C := sup
B

1

V (B)

∫∫
B̂

|dν| <∞,

where the supremum is taken over all balls B in X . We define C to be the space
of all Carleson measures.

The spaces (N , ‖ . ‖N ) and (C, ‖ . ‖C) are Banach spaces. Observe that, for
F ∈ T∞(X),

‖F‖2T∞(X) = ‖CF‖2L∞(X) =
∥∥∥|F (y, t)|2 dμ(y)dt

t

∥∥∥
C
.(2.7)

Theorem 2.6. If F ∈ N and ν ∈ C, then∫∫
X×(0,∞)

|F (x, t)| dν(x, t) ≤ C ‖F‖N · ‖ν‖C .
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For applications, we also need the following corollary:

Proposition 2.7. Let 2 < p <∞. Let F be a measurable function on X × (0,∞)
with F ∗ ∈ Lp(X) and let G ∈ T∞(X). Then

‖C (F ·G)‖Lp(X) ≤ C ‖F ∗‖Lp(X) ‖CG‖L∞(X) ,

with a constant C > 0 independent of F and G.

2.3. Assumptions on the operator

We fix our assumptions on the operator L. Let m > 1 be a fixed constant, repre-
senting the order of the sectorial operator L. Unless otherwise specified, we will
assume the following:

(H1) The operator L is an injective, sectorial operator in L2(X) of angle ω, where
0 ≤ ω < π/2. Further, L has a bounded H∞(Σ0

σ)-functional calculus for
some (all) ω < σ < π.

(H2) The operator L generates an analytic semigroup {e−tL}t>0 satisfying the
Davies–Gaffney condition. That is, there exist constants C, c > 0 such that
for arbitrary open subsets E,F ⊆ X

(2.8)
∥∥e−tLf∥∥

L2(F )
≤ C exp

[
−
(dist(E,F )2m

ct

) 1
2m−1

]
‖f‖L2(E)

for every t > 0 and every f ∈ L2(X) with supp f ⊆ E.

For the theory of Hardy and BMO spaces associated with L, these two assump-
tions will be enough. In order to show L2(X)-boundedness of certain paraproducts,
we need one additional assumption. Henceforth, we will explicitly mention when-
ever we take into account the following assumption.
(H3) The semigroup {e−tL}t>0 satisfies an Lp̃−L2 off-diagonal estimate for some

p̃ ∈ (1, 2) and an L2-Lq̃ off-diagonal estimate for some q̃ ∈ (2,∞), i.e., there
exists a constant C > 0 and some ε > 0 such that for every t > 0, every
j ∈ N0 and for an arbitrary ball B in X with radius r = t1/2m∥∥e−tL1Sj(B)f

∥∥
L2(B)

≤ C 2−j(
n
p̃+ε) V (B)

1
2− 1

p̃ ‖f‖Lp̃(Sj(B))(2.9)

and ∥∥e−tL1Bg∥∥Lq̃(Sj(B))
≤ C 2

−j( n
q̃′ +ε) V (B)

1
q̃− 1

2 ‖g‖L2(B)(2.10)

for all f ∈ Lp̃(X) and all g ∈ L2(X). Here, q̃′ is the conjugate exponent of q̃
defined by 1/q̃ + 1/q̃′ = 1.

Observe that (2.10) is just the dual estimate of (2.9). That is, if L satisfies (2.10)
with exponent q̃, then L∗ satisfies (2.9) with exponent q̃′ and vice versa.

One can show that the Davies–Gaffney estimates imply L2 off-diagonal estima-
tes for more general operator families associated with L. The proof of Lemma 2.28
in [30] carries over with only minor changes to our more general setting.
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Proposition 2.8. Let L satisfy the conditions (H1) and (H2). Let σ ∈ (ω, π2 ),
ψ ∈ Ψα,β(Σ

0
σ) for some α, β > 0, and ϕ ∈ H∞(Σ0

σ). Then the family of operators
{ψ(tL)ϕ(L)}t>0 satisfies L2 off-diagonal estimates of order α, with a constant
controlled by ‖ϕ‖L∞(Σ0

σ)
. That is, there exists a constant C > 0 such that for

arbitrary open sets E,F ⊆ X

‖ψ(tL)ϕ(L)f‖L2(F ) ≤ C ‖ϕ‖L∞(Σ0
σ)

(
1 +

dist(E,F )2m

t

)−α
‖f‖L2(E)

for every t > 0 and every f ∈ L2(X) supported in E.

We end the section with an observation on conservation properties of the semi-
group.

Lemma 2.9. Let L satisfy (H1) and (H2), and let σ ∈ (ω, π/2).
(i) Let γ > n

4m . For every ball B ⊆ X there exists some constant CB > 0 such
that for all t > 0 ∥∥e−tL∗∥∥

L2(B)→L1(X\4B)
≤ CBt

γ .

In particular, e−tL can be defined via duality as an operator from L∞(X) to L2
loc(X).

(ii) Let α > 0, β > n
4m and ψ ∈ Ψβ,α(Σ

0
σ). Moreover, let b ∈ L∞(X). If for

every t > 0
e−tL(b) = b in L2

loc(X),

then, for every t > 0,
ψ(tL)(b) = 0 in L2

loc(X).

Proof. (i) Let f ∈ L2(X) with supp f ⊆ B. Due to the Cauchy–Schwarz inequal-
ity, (H2) and the doubling condition (2.1), there holds

∥∥e−tL∗
f
∥∥
L1(X\4B)

≤
∞∑
j=1

V (2jB)1/2
∥∥e−tL∗

f
∥∥
L2(Sj(B))

�
∞∑
j=1

V (2jB)1/2 exp
(
− dist(B,Sj(B))2m

t

)
‖f‖L2(B)

� V (B)1/2
∞∑
j=1

2jn/2
( t

(2jrB)2m

)γ
‖f‖L2(B) ≤ CBt

γ ‖f‖L2(B) ,

where in the last step we used the assumption γ > n
4m .

(ii) Let B be an arbitrary ball in X and let γ ∈ ( n
4m , β). Moreover, let ω < θ <

σ < π/2 and λ ∈ ∂Σ0
θ. According to (i), the integral∫ ∞

0

e−λte−tL
∗
dt

converges strongly as an operator from L2(B) to L1(X \ 4B) with operator norm
bounded by a constant times |λ|−γ−1.
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This also implies that ‖ψ(λ)(λ + L∗)−1‖L2(B)→L1(X\4B) � |ψ(λ)| |λ|−γ−1 and
the integral

1

2πi

∫
∂Σ0

θ

ψ(λ)(λ + L∗)−1 dλ,

converges strongly as an operator from L2(B) to L1(X \ 4B), since β > γ. On
the other hand, due to the Cauchy–Schwarz inequality and (H1), both integrals
converge strongly as operators from L2(B) to L1(4B). The assumption e−tL(b) = b
then yields, for every f ∈ L2(B),

〈b, (λ+ L∗)−1f〉 =
〈
b,

∫ ∞

0

e−λte−tL
∗
f dt

〉
=

∫ ∞

0

e−λt〈e−tL(b), f〉 dt = 1

λ
〈b, f〉.

We finally obtain for ψ(L)(b) the equality

〈ψ(L)(b), f〉 = 〈b, ψ(L∗)f〉 = 1

2πi

∫
∂Σ0

θ

ψ(λ)
〈
b, (λ+ L∗)−1f

〉
dλ

=
1

2πi

∫
∂Σ0

θ

ψ(λ)

λ
dλ 〈b, f〉 = 0,

where the last step is due to an extension of Cauchy’s theorem and the assumption
ψ ∈ Ψ(Σ0

σ). Since B was chosen arbitrarily and f ∈ L2(B), we obtain via duality
the equality ψ(L)(b) = 0 in L2

loc(X). Replacing ψ by ψ(t ·) for t > 0 gives the
assertion. �

3. Hardy and BMO spaces associated with operators revi-
sited

In the following, we will always assume that the operator L satisfies the assump-
tions (H1) and (H2) and that σ ∈ (ω, π/2). We denote by D(S) the domain and
by R(S) the range of an unbounded operator S, and by Sk the k-fold composition
of S with itself, in the sense of unbounded operators.

We summarize the most important facts about Hardy and BMO spaces asso-
ciated with L. For more details and proofs of the results, we refer to [29], [30],
[27] and [21]. The proofs given there carry over with only minor changes to our
more general setting. In addition, we generalize a Calderón reproducing formula
for elements of H1

L(X) and BMOL∗(X) and a Carleson measure estimate. Both
results have their origin in [29].

3.1. The spaces Hp
L(X) and BMOL(X)

Let ψ ∈ Ψ(Σ0
σ)\{0} and consider for every f ∈ L2(X) the square function AQψ,Lf

associated with L, namely

AQψ,L(f)(x) =
( ∫∫

Γ(x)

∣∣ψ(t2mL)f(y)∣∣2 dμ(y)

V (x, t)

dt

t

)1/2

, x ∈ X.
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Definition 3.1. (i) Let 1 ≤ p ≤ 2 and let ψ0 ∈ Ψ(Σ0
σ) be defined by ψ0(z) := ze−z.

Define Hp
L(X) to be the completion of the space

(3.1) H
p
L(X) :=

{
f ∈ L2(X) : AQψ0,Lf ∈ Lp(X)

}
,

with respect to the norm ‖f‖Hpψ0,L
(X) := ‖AQψ0,Lf‖Lp(X) .

(ii) Let 2 < p <∞. Define Hp
L(X) := (Hp′

L∗(X))′, where 1/p+1/p′ = 1 and L∗

is the adjoint operator of L.

Observe that, by definition,

‖AQψ,Lf‖Lp(X)=‖Qψ,Lf‖Tp(X) ,

where Qψ,Lf(x, t) := ψ(t2mL)f(x). Moreover, there holds H2
L(X) = L2(X).

In both cases, for p ≤ 2 and for p > 2, there is a characterization of Hp
L(X) by

general square functions constructed via functions ψ ∈ Ψ(Σ0
σ) \ {0} with a certain

decay at infinity and at zero, respectively. For a proof, we refer to Corollary 4.21
of [30].

Theorem 3.2. Let α > 0 and β > n
4m . Further, let either 1 ≤ p ≤ 2 and

ψ ∈ Ψα,β(Σ
0
σ) \ {0} or 2 ≤ p <∞ and ψ ∈ Ψβ,α(Σ

0
σ) \ {0}. Define Hp

ψ,L(X) to be
the completion of the space

H
p
ψ,L(X) :=

{
f ∈ L2(X) : AQψ,Lf ∈ Lp(X)

}
,

with respect to the norm ‖f‖Hpψ,L(X) := ‖AQψ,Lf‖Lp(X) . Then Hp
L(X) =Hp

ψ,L(X),
with equivalence of norms.

There also exists a molecular characterization of H1
L(X). We begin with a

definition of molecules associated with L.

Definition 3.3. Let M ∈ N and ε > 0. A function m ∈ L2(X) is called a
(1, 2,M, ε)-molecule associated with L if there exists a function b ∈ D(LM ) and a
ball B in X with radius rB > 0 such that

(i) m = LM b;
(ii) for every k = 0, 1, 2, . . . ,M and all j ∈ N0,∥∥(r2mB L)kb

∥∥
L2(Sj(B))

≤ r2mMB 2−jε V (2jB)−1/2.

The molecular Hardy spaces associated with L are then defined as follows:

Definition 3.4. Given M ∈ N, ε > 0 and f ∈ L1(X), one says that f =
∑

j λjmj

is a molecular (1, 2,M, ε)-representation of f if
∑∞

j=0 |λj | < ∞, each mj is a
(1, 2,M, ε)-molecule, and the sum converges in L2(X).

Let ε > 0 be fixed. Set

H
1
L,mol,M (X) :=

{
f ∈ L1(X) : f has a (1, 2,M, ε)-representation

}
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with the norm given by

‖f‖H1
L,mol,M (X) := inf

{ ∞∑
j=0

|λj | : f =

∞∑
j=0

λjmj is a (1, 2,M, ε)-representation
}
.

The space H1
L,mol,M (X) is defined to be the completion of H1

L,mol,M (X) with
respect to the norm ‖ . ‖H1

L,mol,M
(X) defined above.

One can show the following equivalence. For a proof, we refer to Theorem 3.12
of [21].

Theorem 3.5. Suppose that M ∈ N, with M > n
4m . Then H1

L,mol,M (X) = H1
L(X)

with equivalence of norms.

Next, let us define the space BMOL(X). Let us fix some element x0 ∈ X that
will henceforth be called 0. The ball B0 := B(0, 1) will then be referred to as the
unit ball. One first defines a space EM (L) in such a way that for every f ∈ EM (L)

there holds (I − er
2m
B L)Mf ∈ L2

loc(X), and therefore the expression in (3.2) is well
defined.

Definition 3.6. Let ε > 0, M ∈ N and let φ ∈ R(LM ) ⊆ L2(X) with φ = LMν
for some ν ∈ D(LM ). Introduce the norm

‖φ‖M1,2,M,ε
0 (L) := sup

j≥0

[
2jεV (2jB0)

1/2
M∑
k=0

∥∥Lkν∥∥
L2(Sj(B0))

]
,

where B0 is the unit ball, and set

M1,2,M,ε
0 (L) :=

{
φ ∈ R(LM ) : ‖φ‖M1,2,M,ε

0 (L) <∞}
.

One denotes by (M1,2,M,ε
0 (L))′ the dual of M1,2,M,ε

0 (L). For any M ∈ N, let
EM (L) be defined by

EM (L) :=
⋂
ε>0

(M1,2,M,ε
0 (L∗))′.

Remark 3.7. Let M ∈ N and ε > 0. Then for every f ∈ (M1,2,M,ε
0 (L∗))′ and

every t > 0, one can via duality define (I − e−t
2mL)Mf and (I − (I + t2mL)−1)Mf

as elements of L2
loc(X).

Definition 3.8. Let M ∈ N. An element f ∈ EM (L) is said to belong to
BMOL,M (X) if

(3.2) ‖f‖BMOL,M(X) := sup
B⊆X

( 1

V (B)

∫
B

∣∣∣(I − e−r
2m
B L

)M
f(x)

∣∣∣2dμ(x))1/2

<∞,

where the supremum is taken over all balls B in X .

One can then show the following duality result. For a proof, we refer to Theo-
rems 3.23 and 3.24 in [21].

Theorem 3.9. Let M ∈ N, with M > n
4m . Then (H1

L(X))′ = BMOL∗,M (X).
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In particular, the theorem yields that the definition of BMOL,M (X) is inde-
pendent of the choice of M > n/(4m). This leads to the following definition:

Definition 3.10. Let M ∈ N with M > n
4m . The space BMOL(X) is defined by

BMOL(X) := BMOL,M (X).

3.2. Interpolation of Hardy spaces

The spaces Hp
L(X) form a complex interpolation scale. For a proof, we refer

to Lemma 4.24 of [30], where the authors reduce the problem to complex interpo-
lation of tent spaces.

Proposition 3.11. Let L be an operator satisfying (H1) and (H2). Let 1 ≤ p0 <
p1 <∞ and 0 < θ < 1. Then

[Hp0
L (X), Hp1

L (X)]θ = Hp
L(X) where 1/p = (1− θ)/p0 + θ/p1,

[Hp0
L (X),BMOL(X)]θ = Hp

L(X) where 1/p = (1− θ)/p0.

The next result is a slight generalization of Theorem 3.2 of [29], and comple-
ments Theorem 1.1 of [11].

Proposition 3.12. Let M ∈ N, M > n/(4m). Assume that T is a linear or a
non-negative sublinear operator defined on L2(X) such that T : L2(X) → L2(X)
is bounded and T satisfies the following weak off-diagonal estimates:

There exists some γ > n/(2m) and a constant C > 0 such that for every t > 0,
arbitrary balls B1, B2 ∈ X with radii r = t1/2m and every f ∈ L2(X) supported
in B1,

∥∥T (I − e−tL)M (f)
∥∥
L2(B2)

≤ CT

(
1 +

dist(B1, B2)
2m

t

)−γ
‖f‖L2(B1)

,(3.3)

∥∥T (tLe−tL)M (f)
∥∥
L2(B2)

≤ CT

(
1 +

dist(B1, B2)
2m

t

)−γ
‖f‖L2(B1)

.(3.4)

Then T : H1
L(X) → L1(X) is bounded and there exists some C > 0, independent

of CT , such that for all f ∈ H1
L(X)

‖Tf‖L1(X) ≤ C CT ‖f‖H1
L(X) .

Remark 3.13. If (3.3) and (3.4) are satisfied for arbitrary open sets E,F ⊆ X ,
one need only require a decay of order γ > n/(4m).

A sufficient condition and a detailed proof for the equivalence of Hp
L(X) and

Lp(X) is given in Theorem 4.19 of [38]. The reader should compare the assumption
below to assumption (H3).
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Proposition 3.14. Let L satisfy (H1) and (H2). If for some p0 ∈ [1, 2), there
exist constants C, c > 0 such that, for all x, y ∈ X and all t > 0,∥∥1B(x,t1/2m)e

−tL1B(y,t1/2m)

∥∥
Lp0(X)→Lp

′
0(X)

≤ C V
(
x, t1/2m

)−(1/p0−1/p′0) exp
(
−
(d(x, y)2m

ct

)1/(2m−1))
,

then

Hp
L(X) = Lp(X), p0 < p < p′0.

For further relationships between Hp
L(X) and Lp(X) in the case of second order

elliptic operators in divergence form, we refer to Proposition 9.1 of [30].

3.3. A Calderón reproducing formula and Carleson measures

As shown in [29], Lemma 8.4, it is possible to generalize the Calderón repro-
ducing formula, originally given on L2(X) via functional calculus, to functions
f ∈ BMOL∗,M (X) and functions g ∈ H1

L(X), that can be represented as finite
linear combinations of molecules. We state a more general version of Lemma 8.4
in [29], that gives greater freedom in the choice of functions ψ, ψ̃ ∈ Ψ(Σ0

σ).

Lemma 3.15. Let M ∈ N and suppose that f ∈ EM (L∗) satisfies the “controlled
growth estimate”

(3.5)
∫
X

∣∣(I − (I + L∗)−1)Mf(x)
∣∣2

(1 + d(x, 0))ε1V (0, 1 + d(x, 0))
dμ(x) <∞

for some ε1 > 0. Let ψ ∈ Ψβ1,α1(Σ
0
σ) \ {0} and ψ̃ ∈ Ψβ2,α2(Σ

0
σ) \ {0} for some

constants α1, α2, β1, β2 > 0, with β1 + β2 >
n+ε1
4m and

∫∞
0 ψ(t)ψ̃(t)dtt = 1. Then

for every g ∈ H1
L(X) that can be represented as a finite linear combination of

(1, 2,M ′, ε)-molecules, with ε > ε1/2, M ′−M > n+ε1
4m and α1+α2 > M ′, we have

〈f, g〉 = lim
δ→0
R→∞

∫ R

δ

∫
X

ψ(t2mL∗) f(x) ψ̃(t2mL)g(x)
dμ(x) dt

t
.

Remark 3.16. If f ∈ BMOL∗,M (X), then condition (3.5) is fulfilled for every
ε1 > 0.

The proof works is in most respects analogous to the one of [29]. We need one
additional lemma, which gives us a primitive of a function ψ ∈ Ψ(Σ0

σ).

Lemma 3.17. Let σ ∈ (0, π), α, β > 0 and ψ ∈ Ψβ,α(Σ
0
σ) \ {0}. Then for every

l ∈ N with l ≥ α there exists a function ϕ ∈ Ψβ,α(Σ
0
σ) and some γ ∈ C such that

ψ(z) = zϕ′(z) + γ
z

(1 + z)l+1
, z ∈ Σ0

σ.

Proof. Let us define a function G on Σ0
σ by setting

G(z) :=

∫
γz

ψ(ζ)

ζ
dζ, z ∈ Σ0

σ,
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where γz(t) := tei arg z, t ≥ |z|, is the parametrization of the half-ray with angle
arg z starting at z. By assumption there holds ψ(ζ)/ζ = O(|ζ|−α−1

) for |ζ| → ∞
and consequently, G(z) = O(|z|−α) for |z| → ∞. By definition of G, we further
have

zG′(z) = ψ(z), z ∈ Σ0
σ.

To get the desired behaviour at 0, one has to do a little more work. We know by
assumption that ψ(z)/z = O(|z|β−1

) for |z| → 0 and, since β > 0, the integral∫
Γθ

ψ(ζ)

ζ
dζ(3.6)

converges for every θ ∈ (−σ, σ), where Γθ(t) := teiθ, 0 < t < ∞. Using the same
arguments as in Remark 9.3 of [34], one can show that due to Cauchy’s theorem,
the integral in (3.6) is independent of the angle θ ∈ (−σ, σ). Therefore, let us set
c :=

∫
Γθ

ψ(ζ)
ζ dζ for any θ ∈ (−σ, σ). We then obtain

c−G(z) =

∫
γ̃z

ψ(ζ)

ζ
dζ, z ∈ Σ0

σ,

where γ̃z(t) := tei arg z , 0 < t ≤ |z|, is the parametrization of the half-ray with angle
arg z starting at 0 and ending at z. From the assumption ψ(ζ)/ζ = O(|z|β−1

) for
|z| → 0 we now get that c−G(z) = O(|z|β) for |z| → 0. Therefore, by defining for
a given l ∈ N with l ≥ α

ϕ(z) := G(z)− c

(1 + z)l
, z ∈ Σ0

σ,

we obtain the following: By construction there holds ϕ(z) = O(|z|β) for |z| → 0
and ϕ(z) = O(|z|−α) for |z| → ∞. In addition, a simple calculation shows that

ψ(z) = zG′(z) = zϕ′(z)− lcz

(1 + z)l+1
,

which concludes the proof with γ = −lc. �

The relation of elements of BMOL(X) and Carleson measures can be described
as follows:

Proposition 3.18. Let M ∈ N, M > n
4m . Further, let α > 0, β > n

4m and
ψ ∈ Ψβ,α(Σ

0
σ) \ {0}. Then the operator

f �→ ψ(t2mL)f

maps BMOL(X) → T∞(X), i.e., for every f ∈ BMOL(X),

(3.7) νψ,f :=
∣∣ψ(t2mL)f(y)∣∣2 dμ(y) dt

t

is a Carleson measure and there exists a constant Cψ > 0 such that

‖νψ,f‖C ≤ Cψ ‖f‖2BMOL(X)

for all f ∈ BMOL(X),
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Conversely, if f ∈ EM (L) satisfies the controlled growth bound (3.5) (with L in
place of L∗) for some ε1 > 0, and if νψ,f defined in (3.7) is a Carleson measure,
then f ∈ BMOL(X) and

‖f‖2BMOL(X) ≤ C ‖νψ,f‖C .

For a special choice of ψ, namely ψ(z) = zMe−z, the result is Theorem 9.1
of [29]. In the generality as stated above, the first part of the result is Proposi-
tion 4.13 of [30]. The second part is new and can be shown by combining the proof
of Theorem 9.1 in [29] with Lemma 3.15.

4. Paraproducts via H∞-functional calculus

In this section, we introduce paraproduct operators associated with a sectorial
operator L and investigate various of their properties.

4.1. Boundedness of paraproducts via Carleson measures

We begin with the study of the following paraproduct operator:

Definition 4.1. Let L satisfy (H1). Assume that ψ, ψ̃ ∈ Ψ(Σ0
σ) \ {0}. For b ∈

BMOL(X) and f ∈ L2(X) we define the paraproduct

(4.1) Πb(f) :=

∫ ∞

0

ψ̃(t2mL) [ψ(t2mL)b ·At(e−t2mLf)] dt
t
,

where At is the averaging operator defined in (2.3).

For convenience, we do not index Πb with the defining functions ψ and ψ̃. The
defining functions will always be clear from the context.

Theorem 4.2. Assume that L satisfies (H1) and (H2). Let α > 0, β > n
4m and

let ψ ∈ Ψβ,α(Σ
0
σ) \ {0}.

(i) Let L satisfy in addition (2.9) of (H3) and assume that ψ̃ ∈ Ψ(Σ0
σ) \ {0}.

Then the operator Πb defined in (4.1) is bounded on L2(X) for every b ∈ BMOL(X),
i.e., there exists some constant C > 0 such that, for every f ∈ L2(X) and every
b ∈ BMOL(X),

‖Πb(f)‖L2(X) ≤ C ‖b‖BMOL(X) ‖f‖L2(X) .

(ii) Let p ∈ (2,∞] and assume that ψ̃ ∈ Ψα,β(Σ
0
σ) \ {0}. Then the operator Πb,

initially defined on L2(X) in (4.1), extends for every b ∈ BMOL(X) to a bounded
operator Πb : Lp(X) → Hp

L(X). That is, there exists some constant C > 0 such
that for every b ∈ BMOL(X) and every f ∈ Lp(X)

‖Πb(f)‖HpL(X) ≤ C ‖b‖BMOL(X) ‖f‖Lp(X) .

Here, we designate H∞
L (X) := BMOL(X).
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The combination of Theorem 4.2 and Proposition 3.14 yields appropriate bo-
undedness results on Lp(X) instead of Hp

L(X).
We start the preparations for the proof with the following definition of a mod-

ified nontangential maximal function. The modification is required in the absence
of pointwise estimates. It has its origin in [33] and was e.g. recently applied in [29].

Definition 4.3. Given an operator L satisfying (H1) and a function f ∈ L2(X)
we define the nontangential maximal operator Nh,L associated with L via

Nh,Lf(x) := sup
(y,t)∈Γ(x)

( 1

V (y, t)

∫
B(y,t)

∣∣e−t2mLf(z)∣∣2dμ(z))1/2

, x ∈ X.

We can then show the following:

Lemma 4.4. (i) Assume that L satisfies (H1) and (2.9) of (H3). Then the oper-
ator Nh,L is bounded on L2(X), i.e., there exists a constant C > 0 such that for
every f ∈ L2(X)

‖Nh,Lf‖L2(X) ≤ C ‖f‖L2(X) .

(ii) Assume that L satisfies (H1) and (H2). Then the operator Nh,L is bounded
on Lp(X) for every p ∈ (2,∞].

Proof. (i) We will show a pointwise estimate of Nh,Lf by the uncentered maximal
function Mp̃f , where the index p̃ ∈ (1, 2) comes from the assumption (H3).

Let f ∈ L2(X) and x ∈ X . To apply the Lp̃-L2 off-diagonal estimates for the
semigroup, we use an annular decomposition of f . This yields

Nh,Lf(x) = sup
(y,t)∈Γ(x)

( 1

V (y, t)

∫
B(y,t)

∣∣e−t2mLf(z)∣∣2 dμ(z))1/2

≤ sup
(y,t)∈Γ(x)

∞∑
j=0

V (y, t)−1/2
∥∥e−t2mL1Sj(B(y,t))f

∥∥
L2(B(y,t))

� sup
(y,t)∈Γ(x)

∞∑
j=0

2−j(n/p̃+ε) V (y, t)−1/p̃ ‖f‖Lp̃(Sj(B(y,t))) .

By application of the doubling condition (2.1), we further get that the above is
bounded by a constant times

sup
t>0

sup
y∈B(x,t)

∞∑
j=0

2−j(n/p̃+ε) 2jn/p̃ V (y, 2jt)−1/p̃ ‖f‖Lp̃(B(y,2jt))

�
[M(|f |p̃)(x)]1/p̃ = Mp̃f(x).

As Mp̃ is bounded on Lp(X) for every p ∈ (p̃,∞], the proof is finished.
(ii) First recall that, due to Lemma 2.9, the operator e−tL can be defined via

duality as an operator acting from L∞(X) to L2
loc(X) for every t > 0. With the

same reasoning, one can also define e−tL for every p ∈ (2,∞) by duality, as an
operator acting from Lp(X) to L2

loc(X).
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Let p ∈ (2,∞] and let f ∈ Lp(X). Then, repeating the arguments in (i), but
with the Lp̃ −L2 off-diagonal estimates replaced by the Davies–Gaffney estimates
for the semigroup, we obtain, for every x ∈ X ,

Nh,Lf(x) ≤ sup
(y,t)∈Γ(x)

∞∑
j=0

V (y, t)−1/2
∥∥e−t2mL1Sj(B(y,t))f

∥∥
L2(B(y,t))

� sup
(y,t)∈Γ(x)

∞∑
j=0

V (y, t)−1/2e−
(

(2jt)2m

ct2m

) 1
2m−1 ‖f‖L2(B(y,2jt))

� sup
t>0

sup
y∈B(x,t)

∞∑
j=0

2−j(n/2+ε) 2jn/2 V (y, 2jt)−1/2 ‖f‖L2(B(y,2jt)) � M2f(x).

The claim follows from the fact that M2 is bounded on Lp(X) for every p ∈ (2,∞].
�

Remark 4.5. The boundedness of Nh,L∗ in L2(X) immediately follows from
Lemma 4.4 and the assumptions (H1) and (2.10) of (H3).

Remark 4.6. Let L satisfy (H1) and (H2). Let p ∈ (2,∞] and f ∈ Lp(X). The
proof of Lemma 4.4 (ii) shows, in particular, that for every t > 0 and every x ∈ X ,

∣∣Ate−t2mLf(x)∣∣ ≤ 1

V (x, t)

∫
B(x,t)

∣∣e−t2mLf(y)∣∣ dμ(y) � M2f(x).

The boundedness of M2 on Lp(X) for every p ∈ (2,∞] then implies that
∥∥Ate−t2mLf∥∥Lp(X)

� ‖f‖Lp(X)

uniformly in t > 0.

Proof of Theorem 4.2 (i). For f, g∈L2(X), the Cauchy–Schwarz inequality implies

∣∣〈Πb(f), g〉∣∣ ≤ ( ∫∫
X×(0,∞)

∣∣ψ(t2mL)b(x) ·At(e−t2mLf)(x)∣∣2 dμ(x)dt
t

)1/2

×
(∫∫

X×(0,∞)

∣∣ψ̃(t2mL∗)g(x)
∣∣2 dμ(x)dt

t

)1/2

.

The second factor is bounded by a constant times ‖g‖L2(X) according to assump-
tion (H1) and (2.5). Recalling the definition of νψ,b in (3.7), we see that the first
factor is equal to

(∫∫
X×(0,∞)

∣∣At(e−t2mLf)(x)∣∣2 dνψ,b(x, t))1/2

.(4.2)

As we assumed β > n/(4m), Proposition 3.18 yields that νψ,b is a Carleson
measure with ‖νψ,b‖1/2C � ‖b‖BMOL(X). On the other hand, observe that the
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Cauchy–Schwarz inequality yields, for every h ∈ L2
loc(X) and every y ∈ X , the

estimate |Ath(y)|2 ≤ 1
V (y,t)

∫
B(y,t) |h(z)|2 dμ(z). With the help of Theorem 2.6, we

can therefore estimate (4.2) by a constant times

‖νψ,b‖1/2C
( ∫

X

sup
(y,t)∈Γ(x)

∣∣At(e−t2mLf)(y)∣∣2 dμ(x))1/2

� ‖b‖BMOL(X)

( ∫
X

sup
(y,t)∈Γ(x)

1

V (y, t)

∫
B(y,t)

∣∣e−t2mLf(z)∣∣2 dμ(z) dμ(x))1/2

= ‖b‖BMOL(X) ‖Nh,Lf‖L2(X) � ‖b‖BMOL(X) ‖f‖L2(X) ,

using the boundedness of Nh,L on L2(X) in the last step. �

Via the duality of H1
L∗(X) and BMOL(X) and with similar arguments as those

used in Section 8 of [29], we moreover obtain the following:

Proof of Theorem 4.2 (ii), p = ∞. Let f ∈ L∞(X). Moreover, let ε > 0 and
M ∈ N, with M > n

4m and let g ∈ H1
L∗(X), where H1

L∗(X) = H1
L∗(X) ∩ L2(X) as

defined in (3.1). For every R > 0 let us consider �R defined by

�R(g) :=
〈∫ R

1/R

ψ̃(t2mL)1BR
[
ψ(t2mL)b ·Ate−t2mLf

] dt
t
, g
〉
,(4.3)

where BR := B(0, R) and the pairing is that between H1
L∗(X) and its dual.

On the one hand, since β > n/(4m), Theorem 3.5 yields that the function G,
defined by

G(x, t) := ψ̃(t2mL∗)g(x), (x, t) ∈ X × (0,∞),(4.4)

is an element of T 1(X) with

‖G‖T 1(X) = ‖AG‖L1(X) � ‖g‖H1
L∗ (x) .(4.5)

As in the preceding proof, we use that νψ,b :=
∣∣ψ(t2mL)b(y)∣∣2 dμ(y)dt

t is a Carleson
measure with ‖νψ,b‖1/2C � ‖b‖BMOL(X). Thus, the function F , defined by

F (x, t) := ψ(t2mL)b(x) · Ate−t2mLf(x), (x, t) ∈ X × (0,∞),(4.6)

is an element of T∞(X) with

‖F‖T∞(X) = ‖CF‖L∞(X)

(4.7)

=
∥∥∥x �→ sup

B:x∈B

( 1

V (B)

∫ rB

0

∫
B

∣∣ψ(t2mL)b(y)∣∣2∣∣Ate−t2mLf(y)∣∣2 dμ(y)dt
t

)1/2∥∥∥
L∞(X)

� ‖f‖L∞(X) ‖νψ,b‖1/2C � ‖f‖L∞(X) ‖b‖BMOL(X) ,
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where we used Remark 4.6 in the penultimate step. This estimate also shows
that �R ∈ L2(X) for every R > 0, since Minkowski’s inequality, the uniform
boundedness of {ψ̃(tL)}t>0 and the Cauchy–Schwarz inequality yield

‖�R‖L2(X) =
∥∥∥ ∫ R

1/R

ψ̃(t2mL)1BRF ( . , t)
dt

t

∥∥∥
L2(X)

�
∫ R

1/R

‖F ( . , t)‖L2(BR)

dt

t

≤ CR

( ∫ R

0

∫
BR

|F (x, t)|2 dμ(x)dt

t

)1/2

≤ CR V (BR)
1/2 ‖F‖T∞(X) .

Therefore, according to Theorem 2.4, we obtain from (4.5) and (4.7)

|�R(g)| ≤
∫ ∞

0

∣∣∣〈ψ(t2mL)b · Ate−t2mLf, ψ̃(t2mL∗)g
〉∣∣∣ dt

t

�
∫
X

CF (x)A G(x) dμ(x) � ‖F‖T∞(X) ‖G‖T 1(X)

� ‖f‖L∞(X) ‖b‖BMOL(X) ‖g‖H1
L∗(x) .

Since H1
L∗(X) is dense in H1

L∗(X), the above implies that �R defines a continuous
linear functional on H1

L∗(X) which can, due to Theorem 3.9, be identified as an
element of BMOL(X) for every R > 0 with

sup
R>0

‖�R‖BMOL(X) � ‖f‖L∞(X) ‖b‖BMOL(X) .(4.8)

Moreover, in view of the duality of T 1(X) and T∞(X) stated in Theorem 2.4, �R
converges pointwise on H1

L∗(X) for R → ∞ with

�R(g) =

∫ R

1/R

〈
1BRF ( . , t), G( . , t)

〉 dt
t

→
∫ ∞

0

〈
F ( . , t), G( . , t)

〉 dt
t

=

∫ ∞

0

〈
ψ(t2mL)b ·Ate−t2mLf, ψ̃(t2mL∗)g

〉 dt
t
, R → ∞.

By uniform boundedness we can define Πb(f) in this sense as an element of
BMOL(X). The estimate (4.8) finally yields the desired norm estimate for the
operator Πb. �

One possibility for showing that Πb also extends to a bounded operator from
Lp(X) to Hp

L(X) is to use the interpolation result for Hardy spaces stated in
Proposition 3.11. We will present a more direct approach, that is similar to the
above proof and does not require assumption (H3). The idea goes back to [31].

Proof of Theorem 4.2 (ii), p ∈ (2,∞). Let 1/p + 1/p′ = 1 and let f ∈ Lp(X) and
g ∈ H

p′
L∗(X). For every R > 0, let �R be defined as in (4.3), where the pairing is

now that between Hp
L(X) and its dual. Further, let G and F be defined as in (4.4)

and (4.6). Then, due to Theorem 3.2 and the assumption ψ̃ ∈ Ψα,β(Σ
0
σ) with

β > n/(4m), we obtain G ∈ T p
′
(X) with

‖G‖Tp′ (X) = ‖AG‖Lp′(X) � ‖g‖
Hp

′
L∗ (X)

.(4.9)
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Let us now split F into F = H · F0 with H( . , t) := ψ(t2mL)b and F0( . , t) :=

Ate
−t2mLf . On the one hand, Proposition 3.18 yields, as before, that H ∈ T∞(X)

with ‖H‖T∞(X) = ‖νψ,b‖1/2C � ‖b‖BMOL(X). Observe that, on the other hand,
F ∗
0 = Nh,Lf , thus we obtain from Lemma 4.4 that F ∗

0 ∈ Lp(X) with ‖F ∗
0 ‖Lp(X) �

‖f‖Lp(X). Therefore, Proposition 2.7 implies that F ∈ T p(X) with

‖F‖Tp(X) = ‖C (H · F0)‖Lp(X) � ‖H‖T∞(X) ‖F ∗
0 ‖Lp(X)

� ‖b‖BMOL(X) ‖f‖Lp(X) .(4.10)

We get by Theorem 2.4, Hölder’s inequality, and the fact that ‖A F‖Lp(X) �
‖CF‖Lp(X), according to Theorem 3 of [16],

|�R(g)| ≤
∫ ∞

0

∣∣∣〈ψ̃(t2mL∗)g, ψ(t2mL)b ·Ate−t2mLf
〉∣∣∣ dt

t

�
∫
X

A (F )(x)A (G)(x) dμ(x) � ‖CF‖Lp(X) ‖AG‖Lp′(X)

� ‖b‖BMOL(X) ‖f‖Lp(X) ‖g‖Hp′
L∗ (X)

,

where the last step is a consequence of (4.9) and (4.10). Since H
p′
L∗(X) is dense in

Hp′
L∗(X) and Hp

L(X) was defined as the dual space of Hp′
L∗(X), we can therefore

identify �R with an element of Hp
L(X). With the same reasoning as in the above

proof and in view of the duality of T p(X) and T p
′
(X), we can finally define Πb(f)

as an element of Hp
L(X) and Πb as an operator acting from Lp(X) to Hp

L(X) with

‖Πb(f)‖HpL(X) ≤ C ‖b‖BMOL(X) ‖f‖Lp(X) . �

Remark 4.7. Let us for a moment assume that the semigroup satisfies the con-
servation property

e−tL(1) = 1 in L2
loc(X)

for every t > 0. Let ψ, ψ̃ ∈ Ψ(Σ0
σ), let g ∈ H1

L∗(X) be a finite linear combination of
(1, 2,M ′, ε)-molecules for some ε > 0, and letM ′ ∈ N be such that the assumptions
of Lemma 3.15 and Theorem 4.2 (ii) are satisfied. If one chooses ψ, ψ̃ ∈ Ψ(Σ0

σ) such
that

∫∞
0
ψ(t)ψ̃(t) dtt = 1, then Theorem 4.2 (ii) implies that Πb(1) ∈ BMOL(X)

with

〈Πb(1), g〉 =
∫ ∞

0

〈
ψ(t2mL)b ·Ate−t2mL1, ψ̃(t2mL∗)g

〉 dt
t

=

∫ ∞

0

〈
ψ(t2mL)b, ψ̃(t2mL∗)g

〉 dt
t

= 〈b, g〉

due to the reproducing formula of Lemma 3.15. Since g was chosen arbitrarily
from a dense subset of H1

L∗(X), we thus obtain

Πb(1) = b in BMOL(X).



656 D. Frey

For the adjoint operator Π∗
b we also obtain, at least at a formal level, the

equality

Π∗
b (1) =

∫ ∞

0

e−t
2mL∗

A∗
t

[
ψ(t2mL)b · ψ̃(t2mL∗)1

] dt
t

= 0,

whenever ψ̃(tL∗)(1) = 0. The condition ψ̃(tL∗)(1) = 0 in L2
loc(X) is fulfilled in the

case that e−tL
∗
(1) = 1 in L2

loc(X) and ψ̃∈Ψβ,α(Σ
0
σ) for some α>0 and β>n/(4m);

see Lemma 2.9.

4.2. Boundedness of paraproducts via off-diagonal estimates

Throughout the section we will assume that L satisfies (H1), (H2), and also (H3).
This is done to avoid technicalities, even if assumption (H3) will not always be
necessary.

To obtain further boundedness properties of the paraproduct Π defined in (4.1),
we will consider Π in this section as a bilinear operator, initially defined on L2(X)×
BMOL(X) for ψ, ψ̃ ∈ Ψ(Σ0

σ) by

Π(f, g) :=

∫ ∞

0

ψ̃(t2mL)
[
ψ(t2mL)g ·Ate−t2mLf

] dt
t

(4.11)

for every f ∈ L2(X) and g ∈ BMOL(X). In Section 4.1, we already showed that Π
extends to a bounded bilinear operator

Π : L2(X)× BMOL(X) → L2(X),

Π : Lp(X)× BMOL(X) → Hp
L(X), 2 < p <∞,

Π : L∞(X)× BMOL(X) → BMOL(X),

if the defining functions ψ, ψ̃ ∈ Ψ(Σ0
σ) of the paraproduct have enough decay at 0

and infinity, respectively. In addition, we will now show that Π extends to a
bounded bilinear operator

Π : L∞(X)×Hp
L(X) → Lp(X), 1 ≤ p < 2,

Π : L∞(X)× L2(X) → L2(X),

Π : L∞(X)× Lp(X) → Hp
L(X), 2 < p <∞.

We begin with the simplest case, namely the boundedness of Π: L∞(X) ×
L2(X) → L2(X). This is an immediate consequence of quadratic estimates and
Remark 4.6.

Lemma 4.8. Let ψ, ψ̃ ∈ Ψ(Σ0
σ). Then the operator Π, defined in (4.11), extends

to a bounded operator Π : L∞(X)× L2(X) → L2(X), i.e., there exists a constant
C > 0 such that, for every f ∈ L∞(X) and every g ∈ L2(X),

‖Π(f, g)‖L2(X) ≤ C ‖f‖L∞(X) ‖g‖L2(X) .
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Proof. Let f ∈ L∞(X) and g, h ∈ L2(X). The Cauchy–Schwarz inequality, Re-
mark 4.6 and quadratic estimates for {ψ(tL)}t>0 and {ψ̃(tL)}t>0, which hold due
to (2.5), then yield

∣∣〈Π(f, g), h〉∣∣ ≤ (∫ ∞

0

∥∥ψ(t2mL)g ·Ate−t2mLf∥∥2L2(X)

dt

t

)1/2

×
( ∫ ∞

0

∥∥ψ̃(t2mL∗)h
∥∥2

L2(X)

dt

t

)1/2

� ‖f‖L∞(X) ‖g‖L2(X) ‖h‖L2(X) . �

Next, we show that Π extends to a bounded operator Π : L∞(X)×H1
L(X) →

L1(X). We therefore first check that the off-diagonal estimates (3.3) and (3.4) of
Proposition 3.12 are satisfied.

Lemma 4.9. Let α1, α2, β1, β2 > 0 and let ψ ∈ Ψβ1,α1(Σ
0
σ), ψ̃ ∈ Ψα2,β2(Σ

0
σ).

Further, let δ > 0 and ϕ ∈ H∞(Σ0
σ) with ϕ(z) = O(|z|δ) for |z| → 0.

Then for every γ > 0 with γ ≤ min(β1, α2) and γ < min(β2, δ) there exists
some constant C > 0 such that for every f ∈ L∞(X), every t > 0, arbitrary open
sets E,F ∈ X and every g ∈ L2(X) supported in E

∥∥ϕ(t2mL)Π(f, g)∥∥
L2(F )

≤ C
(
1 +

dist(E,F )2m

t2m

)−γ
‖f‖L∞(X) ‖g‖L2(E) .

Proof. According to Lemma 4.8, we can without restriction assume that dist(E,F )
> t. Let us abbreviate ρ := dist(E,F ). Similar to the proof of Lemma 2.3 in [28],
we define G1 := {x ∈ X : dist(x, F ) < ρ

2} and G2 := {x ∈ X : dist(x, F ) < ρ/4},
and then split X into X = Ḡ2 ∪ X \ Ḡ2. By construction, G1 and G2 are open
with dist(E,G1) ≥ ρ

2 and dist(F,X \ Ḡ2) ≥ ρ
4 . We then obtain, via Minkowski’s

inequality,
∥∥ϕ(t2mL)Π(f, g)∥∥

L2(F )

≤
∫ ∞

0

∥∥ϕ(t2mL)ψ̃(s2mL)1Ḡ2

[
ψ(s2mL)g · Ase−s2mLf

]∥∥
L2(F )

ds

s

+

∫ ∞

0

∥∥ϕ(t2mL)ψ̃(s2mL)1X\Ḡ2

[
ψ(s2mL)g ·Ase−s2mLf

]∥∥
L2(F )

ds

s

=: JḠ2
+ JX\Ḡ2

.

To handle JX\Ḡ2
, we split the integral into two parts J1

X\Ḡ2
and J2

X\Ḡ2
, represent-

ing the integration over (0, t) and (t,∞), respectively.
Observe that, due to Proposition 2.8, the operator family {ϕ(tL)ψ̃(sL)}s,t>0

satisfies off-diagonal estimates in s of order α2. Using in addition the uniform
boundedness of {ψ(sL)}s>0 on L2(X) and of {Ase−s2mL}s>0 on L∞(X) in the
second step and the substitution u = s/t in the third step, we can therefore estimate
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the term J1
X\Ḡ2

by

J1
X\Ḡ2

�
∫ t

0

(
1 +

dist(F,X \ Ḡ2)
2m

s2m

)−α2∥∥ψ(s2mL)g ·Ase−s2mLf∥∥L2(X\Ḡ2)

ds

s

�
(dist(E,F )2m

t2m

)−α2
∫ t

0

(s
t

)2mα2 ds

s
‖f‖L∞(X) ‖g‖L2(E)

�
(
1 +

dist(E,F )2m

t2m

)−α2 ‖f‖L∞(X) ‖g‖L2(E) .(4.12)

For an estimate of the second part J2
X\Ḡ2

, let us write for a > 0

ϕ(tL)ψ̃(sL) =
( t
s

)a
(tL)−aϕ(tL)(sL)aψ̃(sL).(4.13)

By assumption on ϕ and ψ̃ there holds z �→ z−aϕ(z) ∈ H∞(Σ0
σ) and z �→ zaψ̃(z) ∈

Ψα2+a,β2−a(Σ0
σ) for every a > 0 with a ≤ δ and a < β2. An application of Propo-

sition 2.8 therefore yields that the operator family {(tL)−aϕ(tL)(sL)aψ̃(sL)}s,t>0

satisfies off-diagonal estimates in s of order α2+a (thus, in particular of order α2).
Hence, with arguments similar to those before, we get

J2
X\Ḡ2

�
∫ ∞

t

( t
s

)2ma(
1 +

dist(F,X \ Ḡ2)
2m

s2m

)−α2

× ∥∥ψ(s2mL)g · Ase−s2mLf∥∥L2(X\Ḡ2)

ds

s

�
∫ ∞

t

( t
s

)2ma(
1 +

dist(E,F )2m

s2m

)−α2 ds

s
‖f‖L∞(X) ‖g‖L2(E) .(4.14)

Recall that we assumed γ < min(β2, δ). Thus, we can fix some a > γ with a ≤ δ
and a < β2. For such a choice of a we further get, in view of the assumptions
dist(E,F ) > t and γ ≤ α2,∫ ∞

t

( t
s

)2ma (
1 +

dist(E,F )2m

s2m

)−α2 ds

s
≤

(dist(E,F )2m
t2m

)−γ ∫ ∞

t

( t
s

)2m(a−γ) ds
s

=
(dist(E,F )2m

t2m

)−γ ∫ ∞

1

u−2m(a−γ)du
u

�
(
1 +

dist(E,F )2m

t2m

)−γ
.(4.15)

Combining equations (4.12), (4.14) and (4.15) yields the desired estimate for JX\Ḡ2
.

Let us now turn to JḠ2
. By functional calculus, we obtain from (4.13) that

there exists a constant C > 0 such that for all s, t > 0∥∥ϕ(tL)ψ̃(sL)∥∥
L2(X)→L2(X)

≤ Cmin
(
1,
t

s

)a
.

Due to the fact that Ḡ2 ⊆ G1 and using that {ψ(sL)}s>0 satisfies off-diagonal
estimates in s of order β1 according to Proposition 2.8, we thus obtain

JḠ2
�

∫ ∞

0

min
(
1,
t

s

)2ma∥∥ψ(s2mL)g · Ase−s2mLf∥∥L2(G1)

ds

s

�
∫ ∞

0

min
(
1,
t

s

)2ma(
1 +

dist(E,G1)
2m

s2m

)−β1 ds

s
‖f‖L∞(X) ‖g‖L2(E)(4.16)
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Since we assumed γ ≤ β1 and chose a > γ, we can further estimate the integral
in (4.16) by∫ ∞

0

min
(
1,
t

s

)2ma(
1 +

dist(E,F )2m

s2m

)−β1 ds

s

≤
∫ ∞

0

min
(
1,
t

s

)2ma( t
s

)−2mγ(dist(E,F )2m
t2m

)−γ ds
s

=
(dist(E,F )2m

t2m

)−γ[ ∫ t

0

(s
t

)2mγ ds

s
+

∫ ∞

t

( t
s

)2m(a−γ) ds
s

]

�
(
1 +

dist(E,F )2m

t2m

)−γ
.(4.17)

The combination of (4.16) and (4.17) then gives the desired estimate for JḠ2
. �

Using Proposition 3.12, and interpolation and duality, we obtain the following:

Theorem 4.10. Let α1 > 0 and α2, β1, β2 >
n
4m .

(i) Let p ∈ [1, 2). If ψ ∈ Ψβ1,α1(Σ
0
σ) and ψ̃ ∈ Ψα2,β2(Σ

0
σ), then the operator Π

defined in (4.11) extends to a bounded operator Π : L∞(X) × Hp
L(X) → Lp(X);

i.e., there exists a constant C > 0 such that, for every f ∈ L∞(X) and every
g ∈ Hp

L(X),

‖Π(f, g)‖Lp(X) ≤ C ‖f‖L∞(X) ‖g‖HpL(X) .

(ii) Let p ∈ (2,∞). If ψ ∈ Ψα2,β2(Σ
0
σ) and ψ̃ ∈ Ψβ1,α1(Σ

0
σ), then the operator Π

defined in (4.11) extends to a bounded operator Π: L∞(X)×Lp(X) → Hp
L(X); i.e.,

there exists a constant C > 0 such that, for every f ∈ L∞(X) and every g ∈ Lp(X),

‖Π(f, g)‖HpL(X) ≤ C ‖f‖L∞(X) ‖g‖Lp(X) .

Proof. Concerning (i), observe that Lemma 4.9 yields the off-diagonal estimates re-
quired to apply Proposition 3.12. To see this, choose someM ∈N withM > n/(4m)
and define ϕ ∈ H∞(Σ0

σ) by either ϕ(z) = (1− e−z)M or ϕ(z) = (ze−z)M . In both
cases, |ϕ(z)| � |z|M for z ∈ Σ0

σ with |z| ≤ 1. Thus, we can choose some γ > n/(4m)
with γ ≤ min(β1, α2) and γ < min(β2,M). Due to Lemma 4.9 the operator family
{ϕ(t2mL)Π(f, g)}t>0 satisfies L2 off-diagonal estimates of order γ with constant
C ‖f‖L∞(X) for some C > 0 independent of f . We therefore obtain from Propo-
sition 3.12 that Π(f, . ) extends to a bounded operator from H1

L(X) to L1(X)
with

‖Π(f, g)‖L1(X) ≤ C ‖f‖L∞(X) ‖g‖H1
L(X) ,

for all g ∈ H1
L(X) and some constant C > 0 independent of f and g. Hence, Π

extends to a bounded operator Π : L∞(X) × H1
L(X) → L1(X). Via complex

interpolation between H1
L(X) and H2

L(X) = L2(X), which holds due to Propo-
sition 3.11, and interpolation between L1(X) and L2(X), we also obtain that Π
extends to a bounded operator Π : L∞(X)×Hp

L(X) → Lp(X) for every p ∈ (1, 2).
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The assertion (ii) is now obtained from (i) via duality. If p′ denotes the conju-
gate exponent of p ∈ (2,∞), then Hp

L(X) was defined as the dual space of Hp′
L∗(X).

Observe that the dual operator of Π(f, . ) is the operator

h �→
∫ ∞

0

ψ(t2mL∗)
[
ψ̃(t2mL∗)h · Ate−t2mLf

] dt
t
,

which is according to (i) bounded from Hp′
L∗(X) to Lp

′
(X) with its operator norm

bounded by a constant times ‖f‖L∞(X). Thus, Π(f, . ) is bounded from Lp(X) to
Hp
L(X) with

‖Π(f, g)‖HpL(X) ≤ C ‖f‖L∞(X) ‖g‖Lp(X) . �

4.3. Leibniz-type rules

Let us conclude the section with an observation on differentiability properties of
paraproducts constructed via functional calculus. One of the fundamental proper-
ties of paraproducts, as they were e.g. considered in [13] and [15] in the context of
paradifferential operators, is that they satisfy a Leibniz-type rule and “preserve”
Sobolev classes. We will show a corresponding result for the paraproduct Π defined
in Section 4.2, according to the general philosophy, “differentiability” is not mea-
sured in terms of derivatives, but in terms of fractional powers of the operator L.

Let ψ, ψ̃ ∈ Ψ(Σ0
σ). Let us recall the definition of the paraproduct operator Π,

now more precisely denoted by Πψ̃,ψ, as defined in (4.11): For f ∈ L∞(X) and
g ∈ L2(X) we set

Πψ̃,ψ(f, g) :=

∫ ∞

0

ψ̃(t2mL)
[
ψ(t2mL)g · Ate−t2mLf

] dt
t
.

Then the following fractional Leibniz-type rule for paraproducts is valid:

Proposition 4.11. Let s > 0, let ψ̃ ∈ Ψβ,α(Σ
0
σ) and ψ ∈ Ψα,β(Σ

0
σ) for some

α > s
2m and β > 0. For f ∈ L∞(X) and g ∈ D(Ls/2m)

Ls/2mΠψ̃,ψ(f, g) = Πψ̃s,ψs(f, L
s/2mg),

where ψ̃s, ψs are defined by ψ̃s(z) := zs/2mψ̃(z) and ψs(z) := z−s/2mψ(z).
Moreover, there exists some constant C > 0 such that, for all f ∈ L∞(X) and

all g ∈ D(Ls/2m),∥∥Ls/2mΠ(f, g)
∥∥
L2(X)

� ‖f‖L∞(X)

∥∥Ls/2mg∥∥
L2(X)

.

Proof. Due to functional calculus, the proposition is a consequence of the simple
calculation

Ls/2mΠψ̃,ψ(f, g)

=

∫ ∞

0

(t2mL)s/2mψ̃(t2mL)
[
(t2mL)−s/2mψ(t2mL)Ls/2mg · Ate−t2mLf

] dt
t

= Πψ̃s,ψs(f, L
s/2mg),

combined with Lemma 4.8. �
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In view of Theorem 4.10, one can obviously obtain a similar result for the
spaces Hp

L(X) and Lp(X), where p �= 2. We refer the reader to Section 8.4 of [30]
for a discussion of Hardy–Sobolev spaces associated with a second order elliptic
operator L in divergence form.

A corresponding result for paraproducts constructed via convolution operators
is stated in Proposition III. 23 of [14].

With the help of paraproducts and under some additional assumptions on L,
one can also show a fractional Leibniz-type rule for products of functions. It can be
understood as a generalization of an inequality of Kato and Ponce, see Lemma X4
of [32], where fractional derivatives are replaced by fractional powers of the oper-
ator L.

To simplify notation, we only state the result for the case X = Rn and p = 2.
For the same result in more general spaces of homogeneous type and a proof of
the result, we refer the reader to [23] (see also [8]). The essential idea in the proof
is a representation of the product of two functions with the help of paraproducts.
That is, via functional calculus one can write

f · g = Π1(f, g) + Π2(f, g) + Π2(g, f),(4.18)

where Π1 and Π2 are appropriately defined paraproduct operators.

Theorem 4.12. Let L satisfy (H1) and (H2) and let e−tL : L∞(Rn) → L∞(Rn)
be bounded uniformly in t > 0. Additionally, let e−tL(1) = 1 and assume that
∇L−1/2m : L2(Rn) → L2(Rn) is bounded. Then for every s ∈ (0, 1) there exists
some C > 0 such that, for all f, g ∈ D(Ls/2m) ∩ L∞(X),∥∥Ls/2m(fg)

∥∥
L2(Rn)

≤ C
∥∥Ls/2mf∥∥

L2(Rn)
‖g‖L∞(Rn)+ C ‖f‖L∞(Rn)

∥∥Ls/2mg∥∥
L2(Rn)

.
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