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On isoperimetric inequalities

with respect to infinite measures

Friedemann Brock, Anna Mercaldo and Maria Rosaria Posteraro

Abstract. We study isoperimetric problems with respect to infinite mea-

sures on R
n. In the case of the measure µ defined by dµ = ec|x|

2

dx, c ≥ 0,
we prove that, among all sets with given µ-measure, the ball centered at
the origin has the smallest (weighted) µ-perimeter. Our results are then
applied to obtain Pólya–Szegö-type inequalities, Sobolev embedding the-
orems, and a comparison result for elliptic boundary value problems.

1. Introduction

Consider an elliptic boundary value problem of the following type,

(1.1)

{
−div(ϕ(x)|∇u|p−2∇u) = fϕ(x) in Ω

u = 0 on ∂Ω,

where Ω is an open subset of RN , possibly unbounded, and f belongs to a suitable
weighted Lebesgue space. We are interested in sharp explicit a priori bounds for
the weak solution to (1.1). Such problems can be examined by symmetrization
methods. However, the presence of the weight function in the operator in (1.1)
does not allow us to use the classical approach via Schwarz symmetrization given,
e.g., in [30] and [3]. This leads us to introduce an appropriate symmetrization
based on a weighted isoperimetric inequality which is related to the structure of
the operator. A similar approach which is based on the isoperimetric inequality
for the Gauss measure has been carried out by the authors in [5] (see also [14]
and [9]).

In this paper we study isoperimetric inequalities for infinite measures, together
with properties of the corresponding weighted symmetrizations. To be more pre-
cise, let μ be a measure on R

n defined by

dμ = ϕ(x) dx,

Mathematics Subject Classification (2010): 26D20, 35J70, 46E35.
Keywords: Isoperimetric inequalities, infinite measures, Steiner symmetrization, Schwarz sym-
metrization, comparison result, Pólya–Szegö inequality.
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where ϕ is a positive continuous function. For any smooth set Ω, we denote by

Pμ(Ω) =

∫
∂Ω

ϕ(x) dHn−1(x)

the weighted perimeter of Ω w.r.t. μ, and for any fixed number m > 0, we denote
by Iμ(m) the isoperimetric function, that is

(1.2) Iμ(m) := inf
{
Pμ(Ω) : Ω smooth, μ(Ω) = m

}
.

We are interested in finding isoperimetric sets , that is smooth sets which realize
the infimum in (1.2).

Such a problem has been treated in various settings. For example, if μ is the
Lebesgue measure on R

n, then the isoperimetric sets are the balls, i.e., if ϕ(x) ≡ 1,
then Iμ(m) = Pμ(B), for any ball B in R

n with μ(B) = m (see for instance [29]
and [32]).

Moreover if μ is the Gauss measure, then the isoperimetric sets are the half-
spaces of Rn, i.e. if ϕ(x) = exp (−c|x|2) for some c > 0 and m ∈ (0, μ(Rn)), then
Iμ(m) = Pμ(H), where H is any Euclidean half-space with μ(H) = m (see for
instance [7], [15], and [22]).

Isoperimetric inequalities and their connections with rearrangements have re-
ceived considerable interest in the last decades (see e.g. [20], [10], [31], [26], [27],
and the references cited therein). In the paper [6], the authors recently analyzed
symmetrizations w.r.t. finite measures on R

n.
Here we investigate infinite measures on R

n together with Steiner and Schwarz
symmetrizations. One of our results is the following: if μ is a measure defined by

(1.3) dμ = exp (c|x|2)dx, for some c > 0,

then the only isoperimetric sets are Euclidean balls which are centered at the origin,
i.e., one has

(1.4) Iμ(m) = Pμ(BR),

where R is chosen in such a way that μ(BR) = m. Alternatively one can express
this isoperimetric inequality by using the notion of the weighted Schwarz sym-
metrization U� of a set U , which is the Euclidean ball centered at the origin such
that μ(U) = μ(U�). With this notation, (1.4) is equivalent to

(1.5) Pμ(U) ≥ Pμ(U
�), for any smooth set U,

with equality if and only if U = U� (see Theorem 5.1).
We note that a proof of inequality (1.5), but without the equality case, was

given by Borell already in 1986, in an unpublished preprint (see [8]). Theorem 5.1
was the subject of an earlier preprint of the authors, and it has been presented at
several conferences since 2005. In 2006 Benguria and Linde in [4] used this result
to obtain eigenvalue bounds for the Dirichlet Schrödinger operator.

We emphasize that after having finished our paper we learned that Theorem 4.4
has been also proved independently by Rosales, Cañete, Bayle and Morgan ([28]).
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All the cited proofs are based on the observation that Steiner symmetrization
does not increase the perimeter. Note that our proof differs from the one given
in [28] in that it does not make use of the smoothness of a minimizing set. Therefore
we include it here, for the convenience of the reader. It is performed in several steps.

First we study the one-dimensional case. More precisely, we consider a measure
on R given by

dμ1 = ψ(x1) dx1,

where ψ is an even, positive and continuous function on R and we prove that (1.4)
holds if and only if ψ is log-convex. Then we consider a more general measure μ
whose density is the product of two continuous functions ψ : R → R+, and ρ :
R

n−1 → R+ depending on x1 and x′ = (x2, . . . , xn) respectively, i.e.,

dμ = ψ(x1) ρ(x
′) dx;

we prove that Steiner symmetrization with respect to this measure decreases the
perimeter (see Section 4 for the definition of Steiner symmetrization). The last step
consists in approximating the ball U� by an appropriate sequence of successive
Steiner symmetrizations. In view of the product structure of the density and the
invariance w.r.t. rotations of the measure (1.3), this leads to (1.5).

Isoperimetric inequality (1.5) has various consequences. For example, by Ta-
lenti’s result ([31]), inequality (1.5) implies a Pólya–Szegö type inequality (see
Theorem 5.4) and the equality case is also studied. Moreover, we prove a Sobolev
type imbedding theorem in a weighted space w.r.t. the measure μ defined in (1.3)
(see Theorem 5.5). The best constant in such an inequality is obtained in a special
case (see Corollary 5.7).

We now outline the content of the paper. In Section 2 we introduce some
notation and provide basic information about the weighted perimeter. In Section 3
we study the symmetrization w.r.t. general measures, on the real line. In Section 4
we prove isoperimetric inequalities w.r.t. product measures in R

N . In particular,
we show that the Steiner symmetrization decreases the weighted perimeter of a
set having given measure. We also prove general Pólya–Szegö-type inequalities
(see Theorem 4.12). In Section 5 we study measures whose densities are radially
symmetric, and in particular we show inequality (1.5). Finally, Section 6 contains
the comparison result; a similar result is given in [6].

2. Notation and preliminaries

In the whole paper μ will denote a measure on R
n defined by

(2.1) dμ = ϕ(x) dx,

where ϕ ∈ C(Rn) and ϕ(x) > 0 for any x ∈ R
n. Moreover μ1 will denote a measure

on R defined by

(2.2) dμ1 = ψ(x) dx,

where ψ ∈ C(R) and ψ(x) > 0 for any x ∈ R.
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We will always assume that the measures are infinite, that is

(2.3) μ(Rn) = +∞, μ1(R) = +∞.

By GMn we denote the set of μ-measurable sets with finite Lebesgue measure and
by Fn the set of all μ-measurable functions on R

n such that {x : u(x) > t} ∈ Mn

for every t > inf u.
Let Ω be a domain in R

n and p ∈ [1,+∞). We denote by Lp(ϕ,Ω) the space
of μ-measurable functions u such that

(2.4) ‖u‖p,Ω ≡
( ∫

Ω

|u|p dμ
)1/p

< +∞,

endowed with the norm (2.4). Furthermore, let W 1,p(ϕ,Ω) denote the weighted
Sobolev space containing all functions u ∈ Lp(ϕ,Ω) with weak derivatives uxi ∈
Lp(ϕ,Ω), i = 1, . . . , n, and let

(2.5) |‖u‖|p,Ω := ‖u‖p,Ω + ‖∇u‖p,Ω
be a norm in this space. Finally, let W 1,p

0 (ϕ,Ω) be the closure of C∞
0 (Ω) under the

norm (2.5). If Ω = R
n in one of the above spaces, then we will omit the subindex Ω

in the norms.
For subsets A,B,M of Rn, let A + B = {x + y : x ∈ A, y ∈ B} denote the

Minkowski sum of A and B, and

Mr := {x ∈ R
n : dist {x;M} < r} =M +Br, r > 0,

the exterior parallel sets of M , where Br is the ball of radius r with the center at
the origin.

We will call a set M ⊂ R
n smooth if M is bounded and open, and if there is a

number ε > 0 such that for every x0 ∈ ∂M , ∂M ∩Bε(x0) is a Lipschitz graph, and
M ∩Bε(x0) lies on one side of ∂M ∩Bε(x0). Observe that this definition includes
polyhedra and excludes the presence of “veils” and inner “slices” of M .

If M is a Borel set then we denote by μ+(M) the (lower outer) Minkowski
μ-content of the boundary of M (see, for instance, [10], p. 69) which is defined by

(2.6) μ+(M) = lim inf
r→0+

μ(Mr)− μ(M)

r
.

If ϕ ∈ W 1,1
loc (R

n), then we define the μ-perimeter (in the sense of De Giorgi) by

(2.7) Pμ(M) = sup
{∫

M

div (ϕ(x)h(x)) dx : h ∈ C1
0 (R

n,Rn), |h| ≤ 1
}
.

The following properties are well known for the Lebesgue measure (see, for in-
stance, [10]) and their proofs carry over to general measures μ defined in (2.1):

1) Both μ+(M) and Pμ(M) can be seen as “weighted surface measures” of M ,
that is, if M is a smooth set then

(2.8) μ+(M) = Pμ(M) =

∫
∂M

ϕ(x)Hn−1(dx) < +∞.
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2) Lower semicontinuity: If {Mk} ⊂ Mn, M ∈ Mn, and μ(MΔMk} → 0 as
k → ∞, then

(2.9) lim inf
k→∞

Pμ(Mk) ≥ Pμ(M).

3) IfM ∈ Mn, and Pμ(M) <∞, then there is a sequence of smooth sets {Mk}
such that μ(MΔMk) → 0 as k → ∞, and such that

(2.10) lim
k→∞

Pμ(Mk) = Pμ(M).

4) If M is a Borel set in R
n, then

(2.11) Pμ(M) ≤ μ+(M).

We mention that the theory of sets with finite μ-perimeter is imbedded in the
framework of BV-functions space, BV (ϕ,Rn), defined as the set of all functions
u ∈ L1(ϕ,Rn) such that

(2.12) ‖Du‖BV :=sup
{∫

Rn

u(x)div
(
ϕ(x)h(x)

)
dx, h ∈ C1

0 (R
n,Rn), |h| ≤ 1

}
<+∞.

Notice that if M has finite μ-perimeter then the characteristic function χM of M
belongs to BV (ϕ,Rn) and moreover ‖DχM‖BV = Pμ(M). Furthermore, if u ∈
W 1,1(ϕ,Rn) then ‖Du‖BV = ‖∇u‖1.

Finally we recall some well-known derivation formulas (cf. [1], [18] and [11]).

We set R
+
0 = [0,+∞) and we denote a point x ∈ R

n by x = (x1, x
′) where

x1 ∈ R and x′ ∈ R
n−1 (n ≥ 2).

Let u ∈ Fn, and letmu denote its μ-distribution function w.r.t. the variable x1,
that is,1

(2.13) mu(t, x
′) := μ1

({u( · , x′) > t}), t ∈ R, x′ ∈ R
n−1.

We also set
u− := ess inf u,

and

(2.14) Vu :=
{
(t, x′) : t > u−, x′ ∈ R

n−1
}
.

Let u ∈ W 1,p(ϕ,Rn) for some p ∈ [1,+∞). We define

(2.15) Du(x
′) :=

{
x1 ∈ R : ux1(x1, x

′) = 0
}
, x′ ∈ R

n−1,

and the superlevel sets

(2.16) Eu(t, x
′) := {u(x1, x′) > t} ≡ {u( · , x′) > t}, (t, x′) ∈ Vu.

Notice that, since u( · , x′) ∈W 1,p(ϕ,R) for a.e. x′ ∈ R
n−1, the Sobolev imbedding

theorem tells us that u( · , x′) is continuous for a.e. x′ ∈ R
n−1. Hence Eu(t, x

′) is
open and ∂Eu(t, x

′) is countable for a.e. (t, x′) ∈ Vu.

1Here and in the following we will write {u( · , x′) > t} for {x1 : u(x1, x′) > t}.
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Let us consider g ∈ L1(Rn). Defining

F (t, x′) :=
∫
Eu(t,x′)

g(x1, x
′) dx1, (t, x′) ∈ R× R

n−1,

we then have that F ( · , x′) ∈ BV (R) for a.e. x′ ∈ R
n−1, and the Fleming–Rishel

formula (see, for instance, [17]) tells us that

(2.17)
∂

∂t
F (t, x′) =

∫
∂Eu(t,x′)

g(·, x′)
|ux1(·, x′)|

dH0 for a.e. (t, x′) ∈ Vu.

Moreover, we have by the co-area formula (see, e.g., [17])

(2.18)

∫
R

F (t, x′) dt =
∫
R\Du(x′)

g(x1, x
′) dx1 =

∫ u+(x′)

u−(x′)

∫
∂Eu(t,x′)

g(·, x′)
|ux1(·, x′)|

dH0 dt,

for a.e. x′ ∈ R
n−1.

Now let us assume that u is a smooth function and satisfies

(2.19) L1(Du(x
′)) = 0 for a.e. x′ ∈ R

n−1.

Here L1 denotes the one-dimensional Lebesgue measure. Then the following deriva-
tion formula holds true (cf [1]; see also [18] and [11]).

Lemma 2.1. If g ∈ C1, then we have

∂

∂xi

∫
Eu(t,x′)

g(x1, x
′) dx1

=

∫
Eu(t,x′)

∂g

∂xi
(x1, x

′) dx1 +
∫
∂Eu(t,x′)

g(·, x′) uxi(·, x′)
|ux1(·, x′)|

dH0.(2.20)

3. Measures on the real line

Let ψ a positive, even and continuous function on R, such that∫
R

ψ(x) dx = +∞.

We then define a measure μ1 on R by

dμ1 = ψ(x)dx.

The primitive of ψ,

Ψ(x) :=

∫ x

0

ψ(t) dt, x ∈ R,

is strictly increasing and odd.
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We introduce a continuous, positive function J by

(3.1) J(y) = ψ(Ψ−1(y)), y ∈ R,

where Ψ−1 : R → R is the inverse of Ψ. Notice that J is even, and (3.1) implies
that

(3.2) Ψ−1(y) =

∫ y

0

dt

J(t)
, y ∈ R.

If M ∈ M1, and if μ1(M) < +∞, then there exists a unique number c ≥ 0 such
that

(3.3) μ1((−c, c)) = μ1(M),

and we set

(3.4) M∗ = (−c, c).
If M ∈ M1, and if μ1(M) = +∞ then we set M∗ = R. We call the set M∗ the
μ1-symmetrization of M .

Remark 3.1. By the above definition, M∗ is some centered interval (−c, c), (c ∈
R

+
0 ∪ {+∞}). Notice that since we deal with measurable sets we usually do not

distinguish between two sets M,N which are equivalent , that is, which satisfy
μ1(MΔN) = 0. If M is closed, we take M∗ to be the closed interval [−c, c].
Remark 3.2. Obviously, by definition

(3.5) μ1(M) = μ1(M
∗) ∀M ∈ M1.

It is also easy to confirm the following monotonicity properties, (M,N ∈ M1):

M ⊂ N =⇒M∗ ⊂ N∗,(3.6)

M∗ ∪N∗ ⊂ (M ∪N)∗, M∗ ∩N∗ ⊃ (M ∩N)∗,(3.7)

μ1(M \N) ≥ μ1(M
∗ \N∗), μ1(MΔN) ≥ μ1(M

∗ΔN∗).(3.8)

We now ask for a condition on the measure μ1 such that the μ1-rearrangement
decreases the perimeter, that is we ask for a condition such that the following
isoperimetric inequality holds:

(3.9) Pμ1 (M) ≥ Pμ1 (M
∗) ≡ J(μ1(M)), ∀M ∈ M1.

Such a condition is given by Theorem 3.3 below. This theorem can be subsumed
by more general results of Section 3 of [28]; here we give the proof in our specific
case.

Theorem 3.3. Inequality (3.9) holds if and only if J is convex. Furthermore, let
us assume that equality holds in (3.9); if J is convex, then M is equivalent to an
interval, while if J is strictly convex, then M =M∗.



672 F. Brock, A. Mercaldo and M.R. Posteraro

Remark 3.4. J is convex if and only if logψ is convex (or equivalently, if ψ is
log-convex). A typical case is

ψ(x) = ec|x|
2

,

where c ∈ R
+
0 . Obviously if c > 0 then J is strictly convex.

Remark 3.5. The isoperimetric inequality (3.9) and property (2.11) imply an
isoperimetric inequality for the Minkowsky μ1-content, i.e.,

(3.10) μ+
1 (M) ≥ μ+

1 (M
∗) for every Borel set M .

Moreover it is easy to see that this also implies

μ1(Mr) ≥ μ1((M
∗)r) ∀r > 0,

which is equivalent to

(3.11) (Mr)
∗ ⊃ (M∗)r ∀r > 0.

Proof of Theorem 3.3. First let us assume that μ1 satisfies (3.9), and let I be
any finite interval (a, b), (a < b). Setting α = Ψ(a), β = Ψ(b), we have that
I∗ = (−c, c), where Ψ(c) = (β − α)/2. Then (3.9) reads

J(α) + J(β) ≥ 2 J
(β − α

2

)
.

Since J(α) = J(−α), this implies that

J(s) + J(t) ≥ 2 J
(s+ t

2

)
∀s, t ∈ R,

which means that J is convex.
Now let us assume that J is convex, and let M be a smooth set. Then M =

∪m
i=1(ai, bi) where m ∈ N, ai < bi, and the intervals [ai, bi] are mutually disjoint,

i = 1, 2, . . . ,m. Setting αi = Ψ(ai) and βi = Ψ(bi), i = 1, . . . ,m, we find, using
that J is convex and even,

Pμ1(M) =

m∑
i=1

(J(αi) + J(βi)) ≥
m∑
i=1

2J
(βi − αi

2

)

≥ 2mJ
( m∑

i=1

βi − αi

2m

)
≥ 2J

( m∑
i=1

βi − αi

2

)
= μ+

1 (M
∗).

By property (2.10) this also implies (3.9) for sets M ∈ M1, proving the first
statement of the theorem.

Now we assume that equality holds in (3.9) and that J is convex. Without
loss of generality we may assume that also μ1(M) > 0. For r > 0, let θr(M,x) :=
μ1(M ∩ Br(x))[μ1(Br(x))]

−1 and define the upper density of the set M at x by
θ(M,x) := lim sup r↘0 θr(M,x). Suppose thatM ′ is the set of upper density points
of M , i.e. M ′ = {x ∈ R : θ(M,x) = 1}. Since μ1(MΔM ′) = 0, it is sufficient to
study M ′ instead of M . We first claim that M ′ is convex.
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Assume that M ′ is not convex. Then there are points xi ∈ R, i = 1, 2, 3,
x1 < x3 < x2, such that θ(M,x1) = θ(M,x2) = 1 and θ(M,x3) = 0. Then for r <
(1/4)min{(x3 − x1); (x2 − x3)}, and small enough, we have that θr(M,xi) ≥ 7/8,
i = 1, 2, and θr(M,x3) ≤ 1/8. Let {Mk} be a sequence of smooth sets such that
μ1(MkΔM) → 0 and Pμ1(Mk) → Pμ1(M), as k → ∞. For k large enough (say
k ≥ k0) we still have θr(Mk, xi) ≥ 3/4, i = 1, 2, and θr(Mk, x3) ≤ 1/4. This implies
that the sets Br(xi) ∩Mk, i = 1, 2, and Br(x3) \Mk are nonempty for these k. In
other words, if k ≥ k0, then there is a nonempty interval Ik = (y1k, y

2
k) such that

Ik ⊂ (x1 − r, x2 + r), Ik ∩Mk = ∅ and y1k, y
2
k ∈ ∂Mk. Setting Nk := Ik ∪Mk we

then have in view of the isoperimetric property (3.9),

Pμ1 (Mk)− J(μ1(Mk)) ≥ Pμ1(Nk)− J(μ1(Nk)) + ψ(y1k) + ψ(y2k)

≥ ψ(y1k) + ψ(y2k) ≥ δ, ∀k ≥ k0,

for some δ > 0 independent on k. Passing to the limit for k → ∞, this also implies
Pμ1(M)− J(μ1(M)) ≥ δ > 0, which is a contradiction. Hence M ′ is convex.

Now we assume that equality holds in (3.9) and that J is strictly convex. Hence
M ′ = (a, b), where a, b ∈ R, a < b. Setting α = Ψ(a) and β = Ψ(b), we have that
M∗ = (−c, c), where Ψ(c) = (β − α)/2, so that

J(α) + J(β) = 2J
(β − α

2

)
.

The strict convexity of J then implies that |α| = |β|, that is b = −a. The theorem
is proved. �

4. Product measures on R
n

In this section we prove isoperimetric inequalities with respect to product measures
on R

n and we apply them to obtain integral inequalities in Sobolev spaces.
We deal with a product measure μ on R

n defined by

(4.1) dμ = ψ(x1)ρ(x
′) dx ,

where x = (x1, x2, . . . , xn) = (x1, x
′) is a point in R

n, (n ≥ 2), ψ is a function as
in the previous section and ρ is a positive, continuous function on R

n−1.

4.1. Isoperimetric inequalities

If M ⊂ R
n we introduce x′- slices, x′ ∈ R

n−1, by

M(x′) =
{
x1 : (x1, x

′) ∈M
}
.

Notice that if M ∈ Mn, and if μ(M) < ∞ then μ1(M(x′)) < ∞ for almost every
x′ ∈ R

n−1. For M ∈ Mn, we define its Steiner μ-symmetrization M∗ by

(4.2) M∗ :=
{
x = (x1, x

′) : x1 ∈ (
M(x′)

)∗
, x′ ∈ R

n−1
}
.

Then

(4.3) μ(M) = μ(M∗),
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and it is easy to see that the monotonicity properties (3.6)–(3.8) carry over to
Steiner μ-symmetrization.

As in the one-dimensional case, the above definitions will be interpreted point-
wise for open and closed sets.

If M is open (resp., closed) then the function ϕ(x′) := μ(M(x′)), (x′ ∈ R
n−1),

is lower (resp., upper) semicontinuous. Since the sets (M(x′))∗, (x′ ∈ R
n−1), are

open (resp., closed) it then follows that M∗ is open (resp., closed), too.
Steiner-like rearrangements are characterized by the fact that the isoperimetric

property (3.11) on slices carries over to sets on R
n (see [10]). By adapting the

proof of Theorem 3.3 in [6], we can prove the following result

Lemma 4.1. The property (3.11) holds for Borel sets M on R
n.

By the definition of μ+ and Pμ, and by property (2.10) we then also have

Corollary 4.2. The following inequalities hold:

μ+(M) ≥ μ+(M∗) for every Borel set M , and(4.4)

Pμ(M) ≥ Pμ(M
∗) for every M ∈ Mn.(4.5)

The next property follows easily from Lemma 4.1.

Corollary 4.3. Let M and N be open sets in R
n with M ⊂ N . Then

(4.6) dist {M ; ∂N} ≤ dist {M∗; ∂N∗}.
Finally we analyze the equality case in (4.5). The following result holds:

Theorem 4.4. Assume that equality holds in (4.5) for someM ∈Mn. ThenM(x′)
is either empty or equivalent to an interval for almost every x′ ∈ R

n−1. Moreover,
if J is strictly convex, then M =M∗.

The proof of Theorem 4.4 depends on a precise estimate for the deficit of the
perimeter under Steiner symmetrization for polyhedra. This approach is well-
known in the case of the uniform Lebesgue measure ϕ ≡ 1 (see chapter 14 of [10]).
Let us first introduce some notation. Let ∇′ denote the vector of derivatives
(∂/∂x2, . . . , ∂/∂xn). If x′ ∈ R

n−1 then let lx′ denote the line {(t, x′) : t ∈ R}.
Let P denote the set of polyhedra Π in R

n such that lx′ ∩ Π is either empty or
consists of a finite number of points for every x′ ∈ R

n−1. The map p : ∂Π → R
n−1

will be called a projection. If Π ∈ P then R
n−1 is splitted into a finite numbers

of domains Q such that the part of ∂Π which is projected into Q consists of
a finite number 2m of components Γj whose projections onto Q are one-to-one.
(The number m depends on Q, and those for which m = 0 will not be considered
further on.)

Each Γj permits an (affine) representation x1 = zj(x
′), x′ ∈ Q. Then it follows

that

(4.7) Pμ(Π) =
∑ ∗

∫
Q

2m∑
j=1

√
1 + |∇′zj|2 ψ(zj)ρ(x′) dx′,
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where the sum
∑∗

is taken over all the Q for which m ≥ 1. After the Steiner
symmetrization, the area of the boundary will be

(4.8) Pμ(Π
∗) =

∑ ∗
∫
Q

2

2m∑
j=1

√
1 + |∇′z|2 ψ(z)ρ(x′) dx′,

where the function z : Q→ R
+
0 is given by

(4.9)

2m∑
j=1

(−1)jΨ(zj) = 2Ψ(z).

Lemma 4.5. Let Π ∈ P. Then, with the above notations,

Pμ(Π)− Pμ(Π
∗)

≥(
Pμ(Π

∗)
)−1 ∑ ∗

∫
Q

(
ψ(z)

∣∣∣ 2m∑
j=1

ψ(zj)− 2ψ(z)
∣∣∣)1/2

ρ(x′) dx′.(4.10)

Proof. For convenience, we set yj := Ψ(zj), j = 1, . . . 2m, y = Ψ(z), and J :=
ψ(Ψ−1). Recall that J is convex by our assumptions. Then we find

2m∑
j=1

√
1 + |∇′zj|2 ψ(zj)− 2

√
1 + |∇′z|2ψ(z)

=

2m∑
j=1

√
J(yj)2 + |∇′yj |2 − 2

√
J(y)2 + |∇′y|2

≥ J(y)√
J(y)2 + |∇′y|2

( 2m∑
j=1

J(yj)− 2J(y)
)
=

∑2m
j=1 ψ(zj)− 2ψ(z)√

1 + |∇′z|2 .(4.11)

Integrating (4.11) and applying the Cauchy–Schwarz inequality we have (4.10). �

Proof of Theorem 4.4. For x ∈ R
n and r > 0 let

θr(M,x) := μ(M ∩Br(x))[μ(Br(x))]
−1,

and define θ(M,x′) and the set M ′ of upper density points of M as in the proof
of Theorem 3.3. As before, we may restrict ourselves to the set M ′ instead of M .

Choose a sequence of polyhedra {Πk} such that μ(ΠkΔM) → 0 and Pμ(Πk) →
Pμ(M) as k → ∞. Without loss of generality, we may also assume that Πk ∈ P ,
k = 1, 2, . . . Since μ(Π∗

kΔM
∗) → 0 as k → ∞, we have by the lower semicontinuity

of the perimeter,

(4.12) lim
k→∞

(
Pμ(Πk)− Pμ(Π

∗
k)
)
= 0.

Set
Rk :=

{
x′ ∈ R

n−1 : lx′ ∩ Πk has at least two components
}
,

and introduce a measure ν on R
n−1 defined by

dν = ρ(x′) dx′.
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Since the function ψ is bounded away from 0, Lemma 4.10 together with (4.12)
tells us that

(4.13) lim
k→∞

ν(Rk) = 0.

We claim that M(x′) is convex for almost every x′ ∈ R
n−1.

Assume that this is not the case. Then there are points xi = (zi, x
′
0), i = 1, 2, 3,

with x′0 ∈ R
n−1, and z1 < z3 < z2, such that θ(M,x1) = θ(M,x2) = 1, and

θ(M,x3) = 0. Let ε be positive and small (the exact choice of ε will be specified
later). Choose r(= r(ε)) > 0, and small enough such that θr(M,xi) ≥ 1 − ε,
i = 1, 2, and θr(M,x3) ≤ ε. For k large enough – say k ≥ kε – we then still have
θr(Πk, x

i) ≥ 1− 2ε, i = 1, 2, and θr(Πk, x
3) ≤ 2ε. Let

Hk :=
{
x = (x1, x

′) ∈ Br(x
3) : ν(lx′ ∩Πk∩Br(x

1)) > 0, ν(lx′ ∩Πk∩Br(x
2)) > 0

}
.

By choosing ε small enough we can achieve that μ(Hk) > (1/2)μ(Br(x
3)), and in

view of θr(Πk, x
3) ≤ 2ε, also that μ(Hk \ Πk) > (1/4)μ(Br(x

3)). Hence there is a
number c0 > 0 which depends only on ε, but not on k, such that ν(Rk) ≥ c0. This
contradicts (4.13), and proves the claim.

Hence there is a nullset N ⊂ R
n, a measurable set G ⊂ R

n−1, and measurable
functions zi, i = 1, 2, such that

M = N ∪ {
(x1, x

′) : z1(x′) < x1 < z2(x
′), x′ ∈ G

}
.

Using Lemma 4.10 and the limit property (4.12) we have

0 = Pμ(M)−Pμ(M
∗)

≥ (
Pμ(M)

)−1
∫
G

(
ψ(z)

∣∣∣ 2∑
j=1

ψ(zj)− 2ψ(z)
∣∣∣)1/2

ρ(x′) dx′,(4.14)

where z is given by 2Ψ(z) = Ψ(z2) − Ψ(z1). Using the strict convexity of J this
implies that z2 = −z1 = z on G and the theorem is proved. �

4.2. Steiner µ-symmetrization of functions

If u ∈ Fn we define its Steiner μ-symmetrization (w.r.t. x1) u
∗ by

(4.15) u∗(x) := sup
{
t ∈ R : x ∈ {u > t}∗}, x ∈ R

n.

By its definition, the function u∗ is nonincreasing and right-continuous w.r.t. the
variable x1. Moreover u and u∗ are equimeasurable functions, that is

(4.16) {u > t}∗ = {u∗ > t} and {u ≥ t}∗ = {u∗ ≥ t} ∀t > inf u,

which implies that, for all t > inf u and for a.e. x′ ∈ R
n−1,

μ
({u > t})=μ({u∗ > t}), μ({u ≥ t}) = μ

({u∗ ≥ t}), and(4.17)

μ
({u( · , x′) > t})=μ({u∗( · , x′) > t}), μ({u( · , x′) ≥ t})=μ({u∗( · , x′) ≥ t}).

Furthermore, the monotonicity (3.6) implies

(4.18) u, v ∈ Fn, u ≤ v =⇒ u∗ ≤ v∗.
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Remark 4.6. We will generally not distinguish between u and its equivalence
class given by all measurable functions which differ from u on a nullset. But if u
is continuous, then the sets {u > t}, (t ∈ R) are open, and the above definition
of u∗ has to be understood in pointwise sense. Furthermore it is easy to see that
the sets {u∗ > t}, (respectively {u∗ ≥ t}) are open (respectively closed), (t ∈ R),
so that u∗ is continuous too.

Remark 4.7. An equivalent definition of u∗ can be given by using the μ-distribution
function of u (w.r.t. x1), mu, defined by

mu(x
′, t) := μ1

({u(·, x′) > t}), x′ ∈ R
n−1, t > inf u.

The function mu is nonnegative, nonincreasing, and right-continuous w.r.t. the
variable t, and

(4.19) u∗(x1, x′) = sup
{
t ∈ R : mu(x

′, t) > μ1((−x1, x1))
}
, x = (x1, x

′) ∈ R
n.

Proceeding analogously as we did in [6] for a certain class of Steiner-like rear-
rangements w.r.t. a finite measure, we can prove the following properties:

Theorem 4.8. 1) If u ∈ L1
+(μ,R

N ), then

(4.20)

∫
Rn

u dμ =

∫
Rn

u∗ dμ.

2) If u ∈ Fn and if ϕ : R → R is a nondecreasing function, then

(4.21) ϕ(u∗) =
(
ϕ(u)

)∗
.

3) (Cavalieri’s principle). If f : R → R is continuous or nondecreasing, u ∈ Fn

and if f(u) ∈ L1(μ,Rn), then f(u∗) ∈ L1(μ,Rn) and

(4.22)

∫
Rn

f(u) dμ =

∫
Rn

f(u∗) dμ.

4) Let F ∈ C((R+
0 )

2), F (0, 0) = 0, and

(4.23) F (A,B)− F (a,B)− F (A, b) + F (a, b) ≥ 0

for all a, b, A,B ∈ R
+
0 with a ≤ A, b ≤ B.

Furthermore, let u, v ∈ Fn
+ be such that F (u, 0), F (0, v), F (u, v) ∈ L1(μ,Rn).

Then

(4.24)

∫
Rn

F (u, v) dμ ≤
∫
Rn

F (u∗, v∗) dμ.

5) (Nonexpansivity of the rearrangement). Let G ∈ C(R+
0 ) be continuous,

nondecreasing and convex with G(0) = 0, and let u, v ∈ Fn
+ be such that G(|u|),

G(|v|), G(|u − v|) ∈ L1(μ,Rn). Then

(4.25)

∫
Rn

G(|u∗ − v∗|) dμ ≤
∫
Rn

G(|u− v|) dμ.
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6) Let u, v ∈ L2
+(μ,R

n). Then

(4.26)

∫
Rn

uv dμ ≤
∫
Rn

u∗v∗ dμ.

7) Let u, v ∈ L∞(Rn) ∩ Fn. Then

(4.27) ‖u∗ − v∗‖∞ ≤ ‖u− v‖∞.
Remark 4.9. If F ∈ C2 then (4.23) is equivalent to

(4.28)
∂2F (σ, τ)

∂σ∂τ
≥ 0, ∀σ, τ ∈ R

+
0 .

Proof. The proofs of the properties 1)–3), and of 5)–7), mimic the proofs of anal-
ogous properties in [6].

4) We proceed similarly as in [12]. In view of (4.23), there exists a nonnegative
measure, denoted by dFστ , such that

F (s, t)− F (s, 0)− F (0, t) =

∫ t

0

∫ s

0

dFστ

=

∫∫
(R+

0 )2
χ(0, s)(σ)χ(0, t)(τ)dFστ ∀s, t ∈ R

+
0 .(4.29)

Notice that in the case F ∈ C2 we have

dFστ =
∂2F (σ, τ)

∂σ∂τ
dσ dτ,

which is obviously nonnegative by (4.23).
Choosing s = u(x) and t = v(x) in (4.29) and then integrating we find∫

Rn

F (u, v) dμ =

∫
Rn

F (u, 0) dμ+

∫
Rn

F (0, v) dμ

+

∫∫
(R+

0 )2
μ
({u > σ} ∩ {v > τ}) dFστ .(4.30)

An analogous expression for
∫
Rn F (u

∗, v∗) dμ holds. Since from (3.7), we have

(4.31) μ
({u > σ} ∩ {v > τ}) ≤ μ

({u∗ > σ} ∩ {v∗ > τ}) ∀σ, τ > 0.

Then (4.24) follows from (4.30) and (4.31). �

Remark 4.10. LetM = R×M ′, where M ∈ Mn−1, and let u, v ∈ Fn. Then the
properties 1), and 3)–6) of Theorem 4.8 hold with the range of integration restricted
toM . Indeed the proof of this result can be easily obtained by Theorem 4.8 setting

U(x) :=

{
u(x) if x ∈M ,

inf u if x ∈ R
n \M ,

and therefore

U∗(x) :=

{
u∗(x) if x ∈M ,

inf u if x ∈ R
n \M .



On isoperimetric inequalities with respect to infinite measures 679

We conclude this subsection with the following property, which is easy to prove
but it is crucial for the next section.

Let u be a function belonging to C(Rn). Denote its modulus of continuity by

(4.32) ωu(t) := sup
{|u(x)− u(y)| : |x− y| < t

}
, t > 0.

Notice that u is uniformly continuous if and only if limt↘0 ωu(t) = 0.

Proposition 4.11. Let u ∈ C(Rn) ∩ Fn. Then u∗ ∈ C(Rn) and

(4.33) ωu(t) ≥ ωu∗(t) ∀t > 0.

In particular, if u is Lipschitz continuous with constant L, then also u∗ is Lipschitz
continuous with a Lipschitz constant L∗ such that L∗ ≤ L.

Proof. By Remark 4.6 and (4.6) of Corollary 4.3, since u is continuous we have that

(4.34) dist
{{u > t}; ∂{u > s}} ≤ dist

{{u∗ > t}; ∂{u∗ > s}} ∀s, t ∈ R with s < t,

which implies (4.33). Since L = sup{ωu(t)/t : t > 0}, and similarly for u∗, the
second assertion follows, too. �

4.3. Integral inequalities in Sobolev spaces

In this subsection we state integral inequalities which involve derivatives of a func-
tion and its rearrangement. Variants of them are well known for different types
of rearrangements, including Steiner symmetrization (see, for instance, [20], [11],
and [16]), and they are usually referred to as Pólya–Szegö type inequalities. Theo-
rem 4.12 below can be found as Theorem 6.1 and Corollary 6.1 in [6], and its proof
is therefore omitted.

Theorem 4.12 (Pólya–Szegö’s principle). Let G = G(y, v, x′) be a function be-
longing to L∞(Rn×R

+
0 ×R

n−1) where y = (y1, . . . , yn) ∈ R
n. Assume also that G

is continuous in v, convex in y, even in y1 and nondecreasing in y1 with y1 > 0.
Moreover let u ∈ L∞(Rn) be a nonnegative Lipschitz continuous function with
compact support. Then

(4.35)

∫
Rn

G(∇u, u, x′) dμ ≥
∫
Rn

G(∇u∗, u∗, x′) dμ.

Moreover, if u ∈ W 1,p
+ (μ,Rn), for some p ∈ [1,∞), then u∗ ∈ W 1,p

+ (μ,Rn), and
the inequality (4.35) holds if

(4.36) |G(y, v, x′)| ≤ C|y|p for some C > 0,

for any (y, v, x′) ∈ R
n × R × R

n−1. Finally, if Ω is a bounded domain in R
n

and u is a nonnegative function belonging to W 1,p
0 (μ,Ω) for some p ∈ [1,∞), then

u∗ ∈W 1,p
0 (μ,Ω∗).
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Using Theorem 4.4 and proceeding analogously to the proof of Theorem 5.4
in [6], one can obtain a criterion for the equality case in the inequality (4.35). We
omit the proof.

Theorem 4.13. Let u ∈ W 1,p(ϕ,Rn) for some p ∈ [1,∞). Furthermore, let
the function J := ψ(Ψ−1) be strictly convex, let G ∈ C(Rn), G = G(y), y =
(y1, . . . , yn), let G be convex and strictly increasing in y1 for y1 > 0, and such that

(4.37) |G(y)| ≤ C(1 + |y|p), for some C > 0.

Finally, assume that

(4.38)

∫
Rn

G(∇u) dμ =

∫
Rn

G(∇u∗) dμ.

Then u = u∗.

5. Radial measures

In this section we consider measures μ whose density is a radially symmetric func-
tion, i.e.,

(5.1) dμ = ϕ(|x|)dx,
where ϕ ∈ C(R+

0 ) is positive.
We prove isoperimetric inequalities with respect to special measures whose

densities are

ϕ1(|x|) = exp {c|x|2}, c > 0, ϕ2(|x|) = |x|1−nexp {a(|x|)},
where a ∈ C(R+

0 ) is convex.

If M ∈ Mn, and if μ(M) < +∞, then let M� denote the ball BR such that
μ(M) = μ(BR). If μ(M) = +∞ then let M� = R

n. We call M� the Schwarz
μ-symmetrization of M . As in previous sections, we replace this definition by
pointwise ones for open and closed sets. Thus, if M is open/closed with finite
μ-measure, then let M� be the open/closed ball centered at zero, having the same
measure as M .

We ask for additional conditions on the measure μ such that the following
isoperimetric inequality holds:

(5.2) Pμ(M) ≥ Pμ(M
�), ∀M ∈ Mn,

with equality if and only if M = M�. Although we are not able to give a nec-
essary and sufficient condition for (5.2) to hold, we show below that the above
isoperimetric property holds if

(5.3) dμ = exp {c|x|2}dx, c > 0

or if

(5.4) dμ = |x|1−nexp {a(|x|)} dx, where a ∈ C(R+
0 ) is convex.
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These isoperimetric inequalities are proved in Corollary 5.2 and Proposition 5.8,
respectively.

Theorem 5.1. Let μ be the measure defined by (5.1) with ϕ defined by (5.3).
Then

(5.5) M� +Br ⊂
(
M +Br

)�
, ∀ Borel sets and ∀r > 0,

and (5.2) holds. Furthermore, if M and N are open sets with M ⊂ N , then

(5.6) dist {M ; ∂N} ≤ dist {M�; ∂N�}.
Finally, if Pμ(M) = Pμ(M

�) for some M ∈ Mn, then M =M�.

Proof. Let M be compact, M ⊂ BR for some R > 0, and set

A(M) := {N ⊂ R
n : N compact, N ⊂ BR, μ(N) = μ(M),

μ(N +Br) ≤ μ(M +Br) ∀r > 0}.
Letting

δ := inf{μ(NΔM�) : N ∈ A(M)},
there exists a sequence {Nk} ⊂ A(M) with

lim
k→∞

μ(NkΔM
�) = δ.

Since the Nk’s are equibounded, there is a subsequence {Nk′} which converges
in Hausdorff distance to some set N , which also implies that N ∈ A(M) and
μ(NΔM�) = δ. Assume that δ > 0. Then we find two density points η and ζ of N
and M� such that η ∈M� \N and ζ ∈ N \M�. After a rotation of the coordinate
system

x = ρ(ξ), (x, ξ ∈ R
n),

we have
ρ(η) = y = (y1, y

′), ρ(ζ) = z = (z1, y
′),

for some y′ ∈ R
n−1, y1, z1 ∈ R. Defining N ′ by

N ′ := ρ(N) ≡ {x = ρ(ξ) : ξ ∈ N}
let (N ′)∗ denote its Steiner μ-symmetrization w.r.t. the variable x1. Notice that
μ(N ′ΔM�) = δ, and, due to the product structure of ϕ, we have that (N ′)� =
((N ′)∗)� = N�, and N ′, (N ′)∗ ∈ A(M). Since the slices (N ′(y′))∗ and M�(y′) are
intervals centered at zero, it is easy to see that

μ1

(
(N ′(y′))∗ ∩M�(y′)

)
> μ1

(
N ′(y′) ∩M�(y′)

)
.

This also implies
μ
(
(N ′)∗ ∩M�) > μ

(
N ′ ∩M�),

and thus
μ
(
(N ′)∗ΔM�) < μ

(
N ′ΔM�),
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contradicting the minimality of δ. Hence N =M�, and (5.2) is proved for compact
sets. It is easy to see that this also implies property (5.5) for compact sets, and by
a simple approximation argument, as well for Borel sets. It is well known that (5.5)
also implies (5.6), and the lower semicontinuity of the perimeter Pμ yields (5.2).

Assume finally that Pμ(M) = Pμ(M
�) for some M ∈ Mn. Let ρ be any

rotation about the origin, and let ∗ denote μ-Steiner symmetrization in direction x1.
Then [(ρM)∗]� =M�, which means that Pμ(ρM) = Pμ((ρM)∗). By Theorem 4.4
this implies that ρM = (ρM)∗. Since ρ was arbitrary we have proved that M is
symmetric w.r.t. every (n−1)-hyperplane through the origin. HenceM =M�. �

Next we rewrite the isoperimetric inequality in terms of μ(M). Let Iμ(m) be
the isoperimetric function defined in (1.2), and define

h(r) := nωne
cr2rn−1 and(5.7)

H(r) :=

∫ r

0

h(t) dt.(5.8)

Then
Pμ(M

∗) = h
(
H−1(μ(M))

)
= I(μ(M∗)).

Therefore (5.2) reads as follows:

Corollary 5.2. If μ(M) < +∞, then

(5.9) Pμ(M) ≥ h
(
H−1(μ(M))

)
= I(μ(M∗)).

Now let us define the μ-Schwarz symmetrization of functions with respect to the
measure μ defined in (5.1) with ϕ defined by (5.3). First we introduce a function
ũ : (0,+∞) → R defined by

ũ(s) = inf {t ∈ R : mu(t) ≤ s} .
Notice that ũ is a nonincreasing and right-continuous function. Observe also
that ũ(s) is the inverse function of mu(t), if ũ(s) is not constant on intervals.
In this case, the following equality holds:

(5.10)
∂ũ(s)

∂s
=

[∂mu(t)

∂t

]−1

,

where s = mu(t).

If u ∈ Fn we define the Schwarz μ-symmetrization of u by

(5.11) u�(x) := sup
{
t ∈ R : x ∈ {u > t}�}, x ∈ R

n.

Observe that, by definition of ũ and u�, one has

u�(x) = ũ
(
H(|x|)), for a.e. x ∈ Ω�.

By definition u� is radially symmetric and radially decreasing. Moreover u
and u� are equimeasurable functions. If u is continuous then we will understand
this definition in pointwise sense, so that u� is continuous, too. The assertions of
Theorem 4.8 hold as well for the Schwarz μ-symmetrization.
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As in the case of the Steiner μ-symmetrization, the isoperimetric property (5.6)
implies the following estimate for the modulus of continuity.

Proposition 5.3. Let μ be given by (5.1) and (5.3). Then

(5.12) ωu ≥ ωu� ∀u ∈ C(Rn) ∩ L∞(Rn) ∩ Fn.

The isoperimetric property (5.2) and a result due to Talenti [33], imply some
Pólya–Szegö type inequalities, that is, integrals involving gradients of a nonnega-
tive Lipschitz function having compact support decrease under weighted Schwarz
symmetrization. The fact that the equality case in these inequalities occurs only
in symmetric situations can be shown analogously as in [6], and by using Theo-
rem 4.13 above. Using arguments as in the proofs of Theorem 4.8 and Corollary 4.3
this leads to norm inequalities in W 1,p(Rn). We omit the proofs.

Theorem 5.4. Let u be a nonnegative Lipschitz continuous function on R
n with

compact support, and let G ∈ C(R+
0 ) be nonnegative and convex with G(0) = 0.

Then

(5.13)

∫
Rn

G(|∇u|) dμ ≥
∫
Rn

G(|∇u�|) dμ.

Moreover, if G is strictly convex then (5.13) holds with equality only if u = u�.
Furthermore, if u ∈ W 1,p(μ,Rn) is nonnegative, for some p ∈ [1,∞), then u� ∈
W 1,p(μ,Rn), and (5.13) holds with G(t) = tp. Finally, if Ω is a domain in R

n

and u ∈W 1,p
0 (μ,Ω) is nonnegative, then u� ∈ W 1,p

0 (μ,Ω�).

The isoperimetric inequality leads to several integral inequalities which compare
an Lp-weighted norm of the gradient of a function with an Lq-weighted norm of
the same function when the measure μ is given by (5.1) and (5.3). This type of
result is also proved in a different way in [25].

Theorem 5.5. There are constants C=C(p, q) > 0 such that for every u∈C∞
0 (Rn),

(5.14) ‖∇u‖p ≥ C(p, q)‖u‖q,
where q ∈ [p, np/(n − p)] for p ∈ [1, n), q ∈ [n,+∞) for p = n, and q ∈ [p,+∞]
for p ∈ (n,+∞). Moreover, there are constants C(p) > 0 such that for every
u ∈ C∞

0 (Rn),

(5.15) ‖∇u‖p ≥ C(p) ‖u‖C0,1−(n/p)(Rn),

if p ∈ (n,+∞).

Proof. 1) Let h and H be given by (5.7) and (5.8). It is then easy to see that

h(r)q ≥ CH(r) ∀r ∈ [0,+∞), for some C > 0,

if q ∈ [1, n/(n− 1)]. Applying Theorem 2.1.1 of [24], this implies (5.14) with p = 1
and q ∈ [1, n/(n− 1)].
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2) Let p > 1, t > 0, q ∈ [1, n/(n − 1)], q < p/(p − 1), and u ∈ C∞
0 (Rn).

Applying 1) and Hölder’s inequality we have that

(5.16) ‖u|u|t−1‖q ≤ C(1, q) ‖t|u|t−1|∇u|‖1 ≤ C0‖∇u‖p ‖|u|t−1‖p′ ,

for some C0 > 0, where p′ = p/(p− 1). Choosing t = p′/(p′ − q), we obtain (5.14)
for p ∈ (1, n) with q ∈ [p, np/(n− p)], and for p ≥ n with q ∈ [n,+∞).

3) Since ϕ(t) = exp {ct2} ≥ 1, there results

‖∇u‖p ≥
( ∫

Rn

|∇u|p dx
)1/p

,

we obtain (5.15) from Morrey’s Imbedding Theorem. From this we also ob-
tain (5.14) for p ∈ [n,+∞) with q = +∞. �

Let Xp,q denote the closure of C∞
0 (Rn) with respect to the norm

(5.17) |‖u‖|p,q := ‖u‖q + ‖∇u‖p, p, q ∈ [1,+∞).

From (5.14) one immediately obtains the following results.

Corollary 5.6. 1) Let p ∈ [1,+∞), q ∈ [p, np/(n−p)] for p < n, and q ∈ [p,+∞)
for p ≥ n. Then

(5.18) Xp,q =W 1,p(Rn, ϕ).

2) Let Ω be any domain in R
n and let p ∈ [1,+∞). Then W 1,p

0 (Ω, ϕ) ⊂
W 1,p(Rn, ϕ), and

(5.19) ‖∇u‖p,Ω ≥ C(p, p)‖u‖p,Ω ∀u ∈W 1,p
0 (Ω, ϕ).

To our knowledge, the problem of finding the best constants in the inequali-
ties (5.14) is still open. Here we solve such a problem in the special case p = q = 2:

Corollary 5.7. Let c > 0. Then there holds

inf
{‖∇u‖22

‖u‖22
: u ∈ C∞

0 (Rn)
}
= 2cn =

‖∇(e−c|x|2)‖22
‖e−c|x|2‖22

.(5.20)

Proof. Consider the following eigenvalue problem for the harmonic oscillator:

(5.21) −Δv + c2|x|2v = λv in R
n.

The spectrum and the eigenfunctions are explicitly known (see [34], p.104 ff.). In
particular, the spectrum is given by {λ = λk : (2k−2+n)c, k = 1, 2, . . .}, the eigen-
value λ1 = cn is simple, and a corresponding eigenfunction is v1 = exp {−c|x|2/2}.
This implies∫

Rn

(
|∇v|2 + c2|x|2|v|2 − cn|v|2

)
dx ≥ 0 ∀ v ∈ C∞

0 (Rn),(5.22) ∫
Rn

(∣∣∇(exp{−c|x|2/2})∣∣2 + c2|x|2 exp{−c|x|2} − cn exp{−c|x|2}
)
dx = 0.(5.23)
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Now let u ∈ C∞
0 (Rn). Setting v := u exp {c|x|2/2} we then find, by partial inte-

gration,

‖∇u‖22 − 2cn‖u‖22 =
∫
Rn

(|∇v|2 + c2|x|2|v|2 − cn|v|2) dx,
and the assertion follows from (5.22). �

Finally we prove an isoperimetric inequality w.r.t. the measure μ given by

(5.24) dμ = |x|1−nexp {a(|x|)} dx,
where a ∈ C(R+

0 ) is convex (see [21] and [19]).

Notice that the measure μ above is singular at the origin. This implies in
particular that the outer Minkowski content of the set {0} is positive, namely

μ+({0}) = nωne
a(0) (ωn is the measure of the n-dimensional unit ball).

Proposition 5.8. Let Ω be a smooth open set in R
n which contains an open

neighborhood of the origin, and such that μ(Ω) <∞, where the measure μ is given
by (5.24), and let BR be the ball with μ(BR) = μ(Ω), (R > 0). Then

(5.25) μ+(Ω) =

∫
∂Ω

|x|1−nexp {a(|x|)}Hn−1(dx) ≥ nωne
a(R) = μ+(BR).

Proof. Denote by ν the exterior normal to Ω. By Green’s Theorem, since the
function a is convex (see Lemma 6.4 in [21]), we have

μ+(Ω) =

∫
∂Ω

|x|1−n exp{a(|x|)}Hn−1(dx) ≥
∫
∂Ω

|x|−n exp{a(|x|)}(x · ν)Hn−1(dx)

= nωne
a(0) +

∫
Ω

div
(|x|−n exp{a(|x|)}x) dx

= nωne
a(0) +

∫
Ω

a′(|x|) dμ ≥ nωne
a(0) +

∫
BR

a′(|x|) dμ

=

∫
∂BR

|x|−n exp{a(|x|)}(x · ν)Hn−1(dx) = μ+(BR).
�

Analogously to Theorem 5.4, the following result holds:

Theorem 5.9. Let u be a nonnegative Lipschitz continuous function with compact
support, and suppose that

(5.26) u(0) = ess sup u.

Then (5.13) holds.

Proof. The proof can be carried out in a way analogous to the proof of Theorem 5.1
in [6], taking into account that the superlevel sets {x : u(x) > t}, (supu > t > 0),
contain an open neighborhood of the origin. We leave the details to the reader. �
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6. Comparison results

In this section we assume that μ is the measure defined by (5.1) with ϕ given
by (5.3). We will prove a comparison result for weak solutions u to nonlinear
elliptic problems. This implies an estimate of the Schwarz μ-symmetrization in
terms of the solution of a related radially symmetric problem. We mention that
similar results for the classical Schwarz symmetrization are well known (see, for
instance, [2], [3], [30]). We also mention that a related comparison theorem holds
for finite measure (see [6]) or for the symmetrization in Gauss space (see [5], [14]).

Consider the following nonlinear elliptic problem:

(6.1)

{
−div(a(x, u,∇u)) = fϕ in Ω

u = 0 on ∂Ω.

Here Ω is an open subset of RN , N ≥ 2, p is a real number with 1 < p < N , and
a : Ω× R× R

N → R
N is a Carathéodory function satisfying

a(x, s, ξ)ξ ≥ ϕ(|x|)|ξ|p,(6.2)

|a(x, s, ξ)| ≤ ϕ(|x|)[|ξ|p−1 + |s|p−1 + a0(x)
]
, a0(x) ∈ Lp′

(μ,Ω), a0 ≥ 0,(6.3)

(a(x, s, ξ)− a(x, s, η), ξ − η) > 0, ξ �= η,(6.4)

for almost every x ∈ Ω and for every s ∈ R, ξ ∈ R
N , η ∈ R

N . Moreover we assume
that

(6.5) f ∈ L(p∗)′(ϕ,Ω).

We will say that u ∈ W 1,p
0 (Ω, ϕ) is a weak solution to the problem (6.1) if it satisfies

(6.6)

∫
Ω

a(x, u,∇u)∇ψ dx =

∫
Ω

fψϕdx, ∀ψ ∈W 1,p
0 (Ω, ϕ).

The existence of a weak solution is a consequence of the Sobolev type inequality
given by Theorem 5.5 and an adaptation of classical results due to J. Leray and
J.-L. Lions (cf. [23]).

The main result of this section is the following:

Theorem 6.1. Let u be a weak solution to the problem (6.1). Denote by v = v�(|x|)
∈W 1,p

0 (Ω�, ϕ) the function defined by

v(|x|) =
∫ μ(Ω�)

H(|x|)

1

[I(r)]
p′

( ∫ r

0

f̃(σ) dσ
)1/(p−1)

dr,

which is a weak solution to the problem

(6.7)

{
−div

(
ϕ(x)|∇u|p−2∇u) = f�(x)ϕ(x) in Ω�,

v = 0 on ∂Ω�.
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Then, for a.e. x ∈ Ω�,

(6.8) u�(x) ≤ v�(x).

Moreover, for any 1 ≤ q < p, there holds

(6.9) ‖∇u‖q ≤ ‖∇v‖q.
Proof. Let t ∈ [0, ess sup |u|), let h > 0, and let ψh be the function defined by

ψh =

⎧⎪⎪⎨
⎪⎪⎩

signu if |u| > t+ h,

u− t signu

h
if t < |u| ≤ t+ h,

0 otherwise.

Since u belongs to W 1,p
0 (Ω, ϕ) the function ψh can be considered as a test function

in (6.6) and we have ∫
Ω

a(x, u,∇u)∇ψh dx =

∫
Ω

fψhϕdx,

or, equivalently,

1

h

∫
t<|u|≤t+h

a(x, u,∇u)∇u dx

=

∫
|u|>t+h

f signuϕdx +
1

h

∫
t<|u|≤t+h

f(u− t signu)ϕdx.

By using the ellipticity condition (6.2), Hardy’s inequality, and by letting h go to
zero, we have that

(6.10) − d

dt

∫
|u|>t

ϕ(|x|)|∇u|p dx ≤
∫ mu(t)

0

f̃(σ) dσ.

Moreover, by Hölder’s inequality, we find

(6.11) − d

dt

∫
|u|>t

ϕ(|x|)|∇u| dx ≤
(
− d

dt

∫
|u|>t

ϕ(|x|)|∇u|p dx
)1/p

(−m′
u(t))

1/p′
.

On the other hand, from Federer’s coarea formula (cf. [17]), we obtain

(6.12) − d

dt

∫
|u|>t

ϕ(|x|)|∇u| dx =

∫
|u|=t

ϕ(|x|)Hn−1(dx).

Combining (6.10), (6.11) and (6.12), we deduce

(6.13)
(∫

|u|=t

ϕ(|x|)Hn−1(dx)
)p

≤ (−m′
u(t))

p/p′
∫ mu(t)

0

f̃(σ) dσ.

Now we apply the isoperimetric inequality given by Corollary 5.2, that is

(6.14)

∫
u=t

ϕ(|x|)Hn−1(dx) ≥ h
(
H−1(mu(t))

)
= I

(
mu(t)

)
.
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Combining (6.13) and (6.14), we get

(6.15) −
[
I(mu(t))

]p
(−m′

u(t))
p/p′ ≤

∫ mu(t)

0

f̃(σ) dσ, t ≥ ess inf u.

This implies

−dũ
ds

≤ 1

[I(s))]
p′
( ∫ s

0

f̃(r) dr
)1/(p−1)

.

Now an integration between s > 0 and μ(Ω�) gives

ũ(s) ≤
∫ μ(Ω�)

s

1

[I(r))]p
′

( ∫ r

0

f̃(σ) dσ
)1/(p−1)

dr.

Choosing s = H(|x|) > 0 this concludes the proof of (6.8).

By Hölder’s inequality, we have for any 1 ≤ q < p,

(6.16) − d

dt

∫
|u|>t

ϕ(|x|)|∇u|q dx ≤
(
− d

dt

∫
|u|>t

ϕ(|x|)|∇u|p dx
)q/p

(−μ′
u(t))

1−q/p.

Using (6.10) this leads to

(6.17) − d

dt

∫
|u|>t

ϕ(|x|)|∇u|q dx ≤
( ∫ μu(t)

0

f̃(s)ds
)q/p

(−μ′
u(t))

1−q/p.

Integrating between 0 and +∞ then gives

(6.18)

∫
Ω

ϕ(|x|)|∇u|q dx ≤
∫ +∞

0

[−μ′(t)]−q/p
(∫ μu(t)

0

f̃(s)ds
)q/p

(−dμ(t)),

from which one has, by (6.15),

(6.19)

∫
Ω

ϕ(|x|)|∇u|q dx ≤
∫ +∞

0

( 1

I(s)

)q/(p−1)( ∫ s

0

f∗(r)dr
) q

p(p−1)

ds.

This is (6.9). �

Remark 6.2. We emphasize that the proof of the comparison result carries over
to domains with infinite μ-measure. Indeed, since the solutions u and v belong to
weighted Sobolev spaces, their level sets {x ∈ Ω : |u| > t} and {x ∈ Ω : |v| > t}
have finite measure and therefore we can apply the isoperimetric inequality (5.9)
to such sets. Notice that in this case one has to replace Ω� in the symmetrized
problem (6.7) by R

n.
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