
Rev. Mat. Iberoam. 29 (2013), no. 2, 691–713
doi 10.4171/rmi/735

c© European Mathematical Society

Partial spectral multipliers and partial Riesz

transforms for degenerate operators

A.F.M. ter Elst and E.M. Ouhabaz

Abstract. We consider degenerate differential operators of the type A =
−∑d

k,j=1 ∂k(akj∂j) on L2(Rd) with real symmetric bounded measurable

coefficients. Given a function χ ∈ C∞
b (Rd) (respectively, a bounded

Lipschitz domain Ω), suppose that (akj) ≥ μ > 0 a.e. on suppχ (re-
spectively, a.e. on Ω). We prove a spectral multiplier type result: if
F : [0,∞) → C is such that supt>0 ‖ϕ(.)F (t.)‖Cs < ∞ for some non-
trivial function ϕ ∈ C∞

c (0,∞) and some s > d/2 then MχF (I + A)Mχ is
weak type (1, 1) (respectively, PΩF (I+A)PΩ is weak type (1, 1)). We also
prove boundedness on Lp for all p ∈ (1, 2] of the partial Riesz transforms
Mχ∇(I + A)−1/2Mχ. The proofs are based on a criterion for a singular
integral operator to be weak type (1, 1).

1. Introduction

Let A be a non-negative self-adjoint uniformly elliptic operator in divergence form.
More precisely, let akj = ajk : R

d → R be bounded measurable functions for all
j, k ∈ {1, . . . , d}, and assume that there exists a μ > 0 such that

(1.1)

d∑
k,j=1

akj(x) ξk ξj ≥ μ |ξ|2 for all ξ = (ξ1, . . . , ξd) ∈ R
d and x ∈ R

d.

The operator

A = −
d∑

k,j=1

∂k(akj∂j),

defined by quadratic form techniques, is self-adjoint on L2(Rd). It is a standard fact
that −A is the generator of a strongly continuous semigroup (e−tA)t>0 on L2(Rd).
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The well-known Aronson estimates assert that e−tA is given by an integral kernel pt
(called the heat kernel of A) which satisfies the Gaussian upper bound:

(1.2) |pt(x, y)| ≤ C t−d/2 e−c|x−y|2/t for all t > 0 and x, y ∈ R
d.

Here C and c are positive constants.

In recent years, harmonic analysis of operators of type A has attracted a lot
of attention and substantial progress has been made, in which upper bounds for
the heat kernel play a fundamental role. We mention for example the theory
of Hardy and BMO spaces associated with such operators (see for example [11]
and [16]), spectral multipliers ([10]) and Riesz transforms (see [8], [2], [18], [20]
and the references therein). Concerning spectral multipliers, it is known that if
F : [0,∞) → C is a bounded measurable function then the operator F (A), which
is well defined on L2 by spectral theory, extends to a bounded operator on Lp for
all 1 < p <∞ provided F satisfies the condition

(1.3) sup
t>0

‖ϕ(.)F (t.)‖Cs <∞

for some s > d/2 and some nontrivial auxiliary function ϕ ∈ C∞
c (0,∞). See

Duong–Ouhabaz–Sikora [10], where a more general result is proved. Note that
condition (1.3) is satisfied if F has [d/2] + 1 derivatives such that

sup
λ>0

λk|F (k)(λ)| <∞ for all k ∈ {0, 1, . . . , [d/2] + 1}.

As an example, one obtains polynomial estimates on Lp for imaginary powers of
type ‖Ais‖p→p ≤ C(1+|s|)βp for all βp > d|1/2−1/p|. Taking F (λ) := (1−λ/R)α+,
one obtains Bochner–Riesz summability for all α > d/2.

Concerning Riesz transforms Rk := ∂kA
−1/2, it is an obvious consequence of

the ellipticity assumption (1.1) thatRk is bounded on L2(Rd) for all k ∈ {1, . . . , d}.
As for multiplier results, the Gaussian bound (1.2), combined with recent develop-
ments on singular integral operators, make it possible to prove that Rk is bounded
on Lp(Rd) for all p ∈ (1, 2) with only assumptions (1.1) and bounded measurable
coefficients (see Duong–McIntosh [8], Auscher [2], Ouhabaz [18]). Under weak reg-
ularity assumption on the coefficients one obtains boundedness of Rk on Lp(Rd)
for all p ∈ (2,∞) (cf. Auscher [2], Shen [20]).

In the present paper we wish to study similar problems for degenerate operators.
Instead of (1.1) we merely assume that

(1.4)
d∑

k,j=1

akj(x) ξk ξj ≥ 0 for all ξ = (ξ1, . . . , ξd) ∈ R
d and x ∈ R

d.

In this case, we define the form

(1.5) a0(u, v) =

d∑
k,j=1

∫
Rd

akj (∂ju) (∂kv)
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with form domainD(a0) = C∞
c (Rd). If this form is closable, then A will be the self-

adjoint operator associated with its closure. If not, we take the regular part and
consider A as the operator associated with the closure of this regular part (see [21]
and [1]).

Proving results like the previous ones for these operators seems unattainable
because Gaussian (or Poisson) upper bounds are not true in general. Even the
L1-L∞ estimates of e−tA are not valid in general. What we will do is to restrict
the operators to parts where the matrix (akj) is elliptic. It is proved by ter Elst
and Ouhabaz [12] that if χ ∈ C∞

b (Rd) and μ > 0 are such that (akj(x)) ≥ μI for
a.e. x ∈ suppχ, thenMχe

−tAMχ has a Hölder continuous kernel Kt which satisfies
the Gaussian bound

(1.6) |Kt(x, y)| ≤ C t−d/2 e−c|x−y|2/t (1 + t)d/2 for all t > 0 and x, y ∈ R
d.

HereMχ is the operator of multiplication by χ. The same result holds for PΩe
−tAPΩ

if Ω is a bounded Lipschitz domain such that (akj(x)) ≥ μI for a.e. x ∈ Ω for some
μ > 0. Here PΩ is the operator of multiplication by the indicator function 1Ω of Ω.

Note that in general one cannot get rid of the extra term (1+ t)d/2 in the right
hand side of (1.6). For example, if akj = δkj on a smooth bounded domain Ω,
then A is the Neumann Laplacian on L2(Ω) and 0 on L2(Rd \ Ω). It is then
clear that the Gaussian bound is not valid without the additional term (1 + t)d/2.
Because of that additional term in (1.6), we shall consider in the sequel I + A
instead of A (of course, one can take εI + A for any ε > 0 to absorb the factor
(1 + t)d/2).

For spectral multipliers and Riesz transforms we will prove the following results.
Suppose that χ ∈ C∞

b (Rd) (resp., a bounded Lipschitz domain Ω) is such that
(akj(x)) ≥ μI for a.e. x ∈ suppχ (resp., for a.e. x ∈ Ω) for some constant μ > 0.
The main theorems of this paper are the following:

Theorem 1.1. Let F : [0,∞) → C be a bounded function such that

sup
t>0

‖ϕ(.)F (t.)‖Cs <∞

for some s > d/2 and some nontrivial function ϕ ∈ C∞
c (0,∞). Then the operator

MχF (I +A)Mχ (resp., PΩF (I +A)PΩ) is bounded on Lp(Rd) for all 1 < p <∞.

Theorem 1.2. The Riesz transform type operator Mχ∂k(I+A)
−1/2Mχ is bounded

on Lp(Rd) for all 1 < p ≤ 2 and k ∈ {1, . . . , d}.
Now we discuss how we prove these results. In the elliptic case, besides the

Gaussian bound (1.2), the proof of the boundedness of the spectral multipliers or
Riesz transforms rely on a criterion proved by Duong and McIntosh [9] for singular
integral operators to be weak type (1, 1). This criterion says that if T is bounded
on L2 with a (singular) kernelK such that there exists a family of operators (At)t>0

given by integral kernels at which satisfy Gaussian (or Poisson) bounds, TAt is also
given by a (singular) kernel Kt and there are C, δ > 0 such that

(1.7)

∫
|x−y|≥δ

√
t

|K(x, y)−Kt(x, y)| dx ≤ C
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for all t > 0 and a.e. y, then T is weak type (1, 1). In applications to spectral
multipliers of elliptic operators we start with T = F (A) and one takes At = e−tA.
Therefore, Kt is the kernel of the operator F (A)e−tA which can be seen as a
regularization of F (A). In the degenerate case and because of (1.6), it is tempting
to choose At =Mχe

−t(I+A)Mχ. Then,

TAt =MχF (I +A)MχMχe
−t(I+A)Mχ =MχF (I +A)M2

χe
−t(I+A)Mχ.

Now, the presence of M2
χ makes it imposible to regularize F (I + A) by e−t(I+A).

The simple fact that we do not have F (I + A) next to e−t(I+A) in the expression
for TAt destroys this strategy. The same problem occurs for the truncated Riesz
transform Mχ∂k(I +A)−1/2Mχ. To overcome this difficulty we prove a version of
the Duong–McIntosh criterion that is suitable for our purpose. It reads as follows
(see Theorems 2.1 and 2.3 together with Remark 2.2 for precise and quantitative
statements).

Theorem 1.3. Let T be a bounded linear operator on L2 and (At)t>0 a family
of linear operators which satisfy L1-L2 off-diagonal estimates. Suppose that there
exists a bounded linear operator S on L2 and δ,W > 0 such that

(1.8)

∫
|x−y|≥(1+δ)t

|(T − SAt)u(y)| dy ≤W‖u‖1

for all x ∈ Rd, t > 0 and u ∈ L1 ∩ L∞ supported in the ball B(x, t). Then T is
weak type (1, 1).

Note that the estimate (1.8) is satisfied if T and SAt are given by (singular)
kernels K and Kt and there are C, δ > 0 such that∫

|x−y|≥δ
√
t

|K(x, y)−Kt(x, y)| dx ≤ C

for all t > 0 and a.e. y ∈ Rd.
Theorem 1.3 gives the extra freedom to choose any appropriate operator S,

which not need equal T . Returning to spectral multipliers for degenerate oper-
ators A, we had T = MχF (I + A)Mχ and we choose now S = MχF (I + A)
and At = e−t(I+A)Mχ. Then TAt = MχF (A + I)e−t(I+A)Mχ for which we can
prove the estimate in Theorem 1.3. Similarly for the Riesz transforms where
T = Mχ∂k(I + A)−1Mχ, we take S = Mχ∂k(I + A)−1 which turns out to be
bounded on L2 and At = e−t(I+A)Mχ. We emphasize that At = e−t(I+A)Mχ

satisfies the usual L1-L2 off-diagonal estimates but it is not known whether it
satisfies Gaussian upper bounds in general1. We believe that our version of the
Duong–McIntosh criterion can be used in other circumstances in which products
of several operators come into play. Also, as in [9], our version holds for operators
on domains of spaces of homogeneous type.

1Under the additional assumption that akj ∈ W 1,∞(Rd), we proved recently in [13] that

e−t(I+A)Mχ has a kernel which satisfies a Gaussian bound.
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Notation. We fix some notation which we will use throughout this paper. If
(X, ρ, μ) is a metric measure space, x ∈ X , r > 0 and j ∈ N, then we denote by
B(x, r) := {y ∈ X : ρ(x, y) < r} the open ball of X with centre x and radius r,
by Cj(x, r) the annulus B(x, 2j+1r) \ B(x, 2jr) if j ≥ 2, and by C1(x, r) the ball
B(x, 4r). Let v(x, r) = μ(B(x, r)) be the volume of the ball B(x, r). Next, ‖T ‖p→q

is the norm of T as an operator from Lp to Lq. If E is a measurable set, then PE

denotes the operator of multiplication by the indicator function 1E of E. If s ∈
(0,∞)\N, we denote by Cs the space of all Lipschitz functions on [0,∞) of order s
(i.e., functions that are continuously differentiable up to [s] and for which the
derivative of order [s] is Hölder continuous of order s − [s]). By W r,p we denote
the classical Sobolev spaces on Rd.

All our operators are linear operators.
We emphasize that we shall use C,C′, c, . . . for all inessential constants. A

constant C may differ from line to line, even within one line.

2. Singular integral operators

Let (X,μ, ρ) be a metric measure space. We shall assume that 0 < v(x, r) < ∞
for all x ∈ X and r > 0, and that X is a space of homogeneous type. This means
that it satisfies the doubling condition

(2.1) v(x, 2r) ≤ C0 v(x, r)

for some C0 > 0, uniformly for all x ∈ X and r > 0. If (2.1) is satisfied then there
exist positive constants C1 and d such that

(2.2) v(x, λr) ≤ C1 λ
d v(x, r)

for all x ∈ X and r ≥ 1. Let Ω be an open subset of X . It is endowed with ρ and μ
but (Ω, μ, ρ) is not necessarily a space of homogeneous type. Let T be a bounded
linear operator on Lp0(Ω) := Lp0(Ω, μ) for some p0 ∈ [1,∞). We say that T is
given by a kernel K : Ω× Ω → C if K is measurable and

(2.3) Tu(x) =

∫
Ω

K(x, y)u(y) dμ(y)

for all u ∈ Lp0(Ω) with bounded support and a.e. x outside the support of u. We
also say that K is the associated kernel of T . A classical problem in harmonic
analysis is to find conditions on the kernel K under which the operator T can be
extended from Lp0(Ω) to other Lp(Ω)-spaces. Several results are known in this
direction. We refer the reader to [22], [9], [3], [2] and the references therein.

The main result in [9] states that if there exists a family of bounded opera-
tors At, with t > 0, which are given by integral kernels at satisfying a Gaussian
or Poisson estimate and if the associated kernel of T − TAt does not oscillate too
much in a certain sense then T is weak type (1, 1). Here we prove by the same
method that if there exists a bounded operator S on Lq0(X) for some q0 ∈ (1,∞)
such that the associated kernel of T − SAt does not oscillate too much then T is
weak type (1, 1).
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As explained in the introduction, this new version gives the extra freedom
to choose any appropriate S which need not coincide with T . This extension
turns out to be powerful for proving spectral multiplier type results as well as
Riesz transforms for degenerate operators, whereas it is not clear how to apply
the condition from [9]. Note also that, following ideas from [3] and [2] we can
weaken the assumption on the kernel of At. Instead of assuming a Gaussian or
Poisson bound, we merely assume an L1-Lq0 off-diagonal estimate (see (2.4) below).
This difference is again illustrated in our application to degenerate operators. In
addition it is possible to formulate the result in [9] without reference to the kernels
(see also the remark immediately after the next theorem).

We first state and prove the result in the case Ω = X .

Theorem 2.1. Let T be a nonzero bounded linear operator on Lp0(X) for some
p0 ∈ (1,∞). Suppose that there exists a bounded linear operator S on Lq0(X) for
some q0 ∈ (1,∞), a family of bounded linear operators (At)t>0 on Lq0(X) and a
sequence (g(j))j∈N in R such that

(2.4)
( 1

v(x, 2j+1t)

∫
Cj(x,t)

|Atf |q0
)1/q0 ≤ g(j)

1

v(x, t)

∫
B(x,t)

|f |

for all x ∈ X, t > 0, j ∈ N and f ∈ Lq0(B(x, t)), and
∑∞

j=1 2
jdg(j) <∞. Finally,

suppose there exist δ,W > 0 such that

(2.5)

∫
X\B(x,(1+δ)t)

|(T − SAt)u| ≤W ‖u‖1

for all x ∈ X, t > 0 and u ∈ L1(X)∩L∞(X) supported in the ball B(x, t). Then T
is a weak type (1, 1) operator with

(2.6) ‖T ‖L1→L1,w ≤ C(1 + δ)d
(
W + ‖T ‖p0→p0 + ‖S‖q0q0→q0‖T ‖1−q0

p0→p0

)
.

Here C is a constant depending only on the constants in (2.2). In particular, T
extends to a bounded operator on Lp(X) for all p ∈ (1, p0).

Remark 2.2. Let p0, q0 ∈ (1,∞), T ∈ L(Lp0(X)), and for all t > 0, let S,At ∈
L(Lq0(X)). Suppose that T and S At have kernels K and Kt, respectively. Let
δ,W > 0 and assume that

(2.7)

∫
ρ(x,y)≥δt

|K(x, y)−Kt(x, y)| dμ(x) ≤W <∞,

for all t > 0 and y ∈ X . Fix now x ∈ X , t > 0 and u ∈ L1(X)∩L∞(X) supported
in the ball B(x, t). Then∫

X\B(x,(1+δ)t)

|(T − SAt)u(y)| dμ(y)

=

∫
X\B(x,(1+δ)t)

∣∣∣ ∫
B(x,t)

(
K(y, z)−Kt(y, z)

)
u(z) dμ(z)

∣∣∣ dμ(y)
≤

∫
X

∫
ρ(y,z)≥δt

|K(y, z)−Kt(y, z)| dμ(y) |u(z)| dμ(z) ≤W‖u‖1.
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Thus, (2.5) is satisfied. The condition (2.7) is the direct analogue of the condition
in Duong–McIntosh [9].

We also observe that one does not need kernels for both operators T and TAt,
rather only a kernel Ht(x, y) for the difference T − SAt. We may then replace
K(x, y) − Kt(x, y) in (2.7) by Ht(x, y). On the other hand, the use of the local
estimate (2.5), which does not appeal to kernels, may have the advantage of avoid-
ing issues of the measurability with respect to x and y of the expected singular
kernels.

Proof. As mentioned before, the arguments are similar to those used in [9] and [2].
We give the details for convenience. Recall we denote by C all inessential constants.

We begin with the classical Calderón–Zygmund decomposition. There exist
c,N > 0 such that the following is valid. Fix f ∈ L1(X) ∩ L∞(X) and α >
‖f‖1/μ(X). There exist g, b1, b2, . . . ∈ L1(X) ∩ L∞(X) such that

f = g + b = g +
∑
i

bi

and

(i) |g(x)| ≤ c α for a.e. x ∈ X ,

(ii) each bi is supported in a ball Bi = B(xi, ri) and ‖bi‖1/v(xi, ri) ≤ c α,

(iii)
∑

i v(xi, ri) ≤ c ‖f‖1/α, and,

(iv) there exists a constant N such that
∑

i 1Bi(x) ≤ N for a.e. x ∈ X .

See Section III.2 in [5].

We proceed in several steps.

Step 1. Using the boundedness of T on Lp0 we have

μ({x ∈ X : |(Tg)(x)| > α}) ≤ ‖T ‖p0
p0→p0

αp0
‖g‖p0

p0

≤ C αp0−1 ‖T ‖p0
p0→p0

αp0
‖g‖1 ≤ C

‖T ‖p0
p0→p0

α
‖g‖1.

It follows from (ii) and (iii) above that ‖b‖1 ≤ c‖f‖1 and hence ‖g‖1 ≤ (1+c)‖f‖1.
Therefore,

(2.8) μ
({x ∈ X : |(Tg)(x)| > α}) ≤ C

‖T ‖p0
p0→p0

α
‖f‖1.

Step 2. We shall prove that

(2.9)
∥∥∥∑

i

Aribi

∥∥∥
q0

≤ C α1−1/q0 ‖f‖1/q01 .
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We use arguments similar to those in [2]. Fix u ∈ Lq′0 with ‖u‖q′0 = 1, where q′0 is
the dual exponent of q0. Let i, j ∈ N and set Ci,j := Cj(xi, ri). Then∫

Ci,j

|Aribi| |u| ≤
( ∫

Ci,j

|Aribi|q0
)1/q0( ∫

Ci,j

|u|q′0
)1/q′0

≤ g(j)
v(xi, 2

j+1ri)
1/q0

v(xi, ri)

(∫
|bi|

)(∫
Ci,j

|u|q′0
)1/q′0

≤ c α g(j) v(xi, 2
j+1ri)

( 1

v(xi, 2j+1ri)

∫
Ci,j

|u|q′0
)1/q′0

,

where we have used (2.4) and property (ii) in the Calderón–Zygmund decomposi-
tion. Denote by M the Hardy–Littlewood maximal operator. Then

1

v(xi, 2j+1ri)

∫
Ci,j

|u|q′0 ≤ M(|u|q′0)(y)

for all y ∈ Bi. Combining the previous inequalities and using the doubling condi-
tion (2.2) one estimates∫

Ci,j

|Aribi| |u| ≤ C α 2jd g(j) v(xi, ri)
(M(|u|q′0)(y))1/q′0 .

Taking the integral over y ∈ Bi gives∫
Ci,j

|Aribi| |u| ≤ C α 2jd g(j)

∫
Bi

(M(|u|q′0)(y))1/q′0dμ(y).
We sum over j and i and use

∑
j 2

jdg(j) < ∞ together with property (iv) in the
Calderón–Zygmund decomposition to obtain∫

X

|
∑
i

Aribi| |u| ≤ Cα

∫
X

1∪iBi(y)
(M(|u|q′0)(y))1/q′0dμ(y)

≤ Cα‖1∪iBi‖q0
∥∥(M(|u|q′0))1/q′0∥∥

q′0,w
≤ Cα

(∑
i

v(xi, ri)
)1/q0 ‖|u|q′0‖1/q′01 .

Note that we have used the fact that M is weak type (1, 1) to obtain the last
inequality. Using now (iii) of the Calderón–Zygmund decomposition and ‖u‖q′0 = 1,
we obtain (2.9).

By assumption, S is bounded on Lq0 . Hence

μ
({
x ∈ X :

∣∣∣(S∑
i

Aribi

)
(x)

∣∣∣ > α
})

≤ 1

αq0
‖S‖q0q0→q0

∥∥∥ ∑
i

Aribi

∥∥∥q0
q0
.

Now we use (2.9) to obtain

(2.10) μ
({
x ∈ X :

∣∣∣(S∑
i

Aribi)(x)
∣∣∣ > α

})
≤ C

α
‖S‖q0q0→q0 ‖f‖1.
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Step 3. Let δ be as in (2.5) and for all i ∈ N set Qi := B(xi, (1+ δ)ri), the ball
of centre xi and radius (1 + δ)ri. Then

μ
({
x ∈ X :

∣∣∣∑
i

(T − SAri)bi(x)
∣∣∣ > α

})

≤
∑
i

μ(Qi) + μ
({
x ∈ X \

⋃
j

Qj :
∣∣∣∑

i

(
(T − SAri)bi

)
(x)

∣∣∣ > α
})

≤ C(1 + δ)d
∑
i

v(xi, ri) +
1

α

∫
X\⋃j Qj

∣∣∣∑
i

(
(T − SAri)bi

)
(x)

∣∣∣ dμ(x)
≤ C(1 + δ)d

α
‖f‖1 + 1

α

∑
i

∫
X\Qi

∣∣((T − SAri)bi
)
(x)

∣∣ dμ(x)
≤ C(1 + δ)d

α
‖f‖1 + W

α

∑
i

∫
|bi(y)| dμ(y)

≤ C(1 + δ)d(1 +W )

α
‖f‖1.

Note that the penultimate inequality follows from assumption (2.5) and the last
one from properties (ii) and (iii) in the Calderón–Zygmund decomposition. Hence

(2.11) μ
({
x ∈ X :

∣∣∣∑
i

(
(T − SAri)bi

)
(x)

∣∣∣ > α
})

≤ C(1 + δ)d(1 +W )

α
‖f‖1.

Step 4. It follows from (2.8) that

μ
({
x ∈ X : |(Tf)(x)| > α

})
≤ μ

({
x ∈ X : |(Tg)(x)| > α/2

})
+ μ

({
x ∈ X : |(Tb)(x)| > α/2

})
≤ C

‖T ‖p0
p0→p0

α
‖f‖1 + μ

({
x ∈ X : |(Tb)(x)| > α/2

})
.

For the second term we use (2.10) and (2.11) to estimate

μ
({
x ∈ X : |(Tb)(x)| > α/2

})
=μ

({
x ∈ X :

∣∣∣∑
i

(SAribi)(x) +
∑
i

((T − SAri)bi)(x)
∣∣∣ > α/2

})

≤μ
({
x ∈ X :

∣∣∣(S∑
i

Aribi

)
(x)

∣∣∣ > α/4
})

+ μ
({
x ∈ X :

∣∣∣∑
i

(
(T − SAri)bi

)
(x)| > α/4

})

≤ C(1 + δ)d

α

(‖S‖q0q0→q0 + (1 +W )
) ‖f‖1.

We then conclude that T is of weak type (1, 1) with a weak type estimate

(2.12) ‖T ‖L1→L1,w ≤ C (1 + δ)d
(
1 +W + ‖T ‖p0

p0→p0
+ ‖S‖q0q0→q0

)
.
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Replacing T and S by ‖T ‖−1
p0→p0

T and ‖T ‖−1
p0→p0

S, we obtain (2.5) with ‖T ‖−1
p0→p0

W
instead of W . Thus applying (2.12) to

‖T ‖−1
p0→p0

T, ‖T ‖−1
p0→p0

S and ‖T ‖−1
p0→p0

W

yields (2.6).
Finally, by the Marcinkiewicz interpolation theorem the operator T extends to

a bounded operator from Lp(X) ∩ Lp0(X) to Lp(X) for all p ∈ (1, p0). �

Following again an idea in [9] we can prove a version of the previous theorem on
arbitrary domains. Let Ω be an open subset of X and assume that T is bounded on
Lp0(Ω) and S and At are bounded on Lq0(Ω). We define T̃ : Lp0(X) → Lp0(X) by

T̃ f = 1Ω T (1Ωf)

and similarly for S̃ and Ãt. If At satisfies (2.13) below then Ãt satisfies (2.4). The

operator T is weak type (1, 1) if and only if T̃ is weak type (1, 1). Applying the

previous theorem to T̃ , S̃ and Ãt gives the following result.

Theorem 2.3. Let T be a nonzero bounded linear operator on Lp0(Ω) for some
p0 ∈ (1,∞). Suppose there exists a bounded operator S on Lq0(Ω) for some q0 ∈
(1,∞), a family of bounded operators (At)t>0 on Lq0(Ω) and a sequence (g(j))j∈N

in R such that

(2.13)
( 1

v(x, 2j+1t)

∫
Cj(x,t)∩Ω

|Atf |q0
)1/q0 ≤ g(j)

1

v(x, t)

∫
B(x,t)∩Ω

|f |

for all x ∈ Ω, t > 0, j ∈ N, f ∈ Lq0(B(x, t) ∩Ω), and
∑∞

j=1 2
jdg(j) <∞. Finally,

suppose there exist δ,W > 0 such that

(2.14)

∫
Ω\B(x,(1+δ)t)

∣∣((T − SAt)u
)
(y)

∣∣ dμ(y) ≤W‖u‖1

for all x ∈ X, t > 0 and u ∈ L1(Ω) ∩ L∞(Ω) supported in the ball B(x, t) ∩ Ω.
Then T is a weak type (1, 1) operator with

(2.15) ‖T ‖L1(Ω)→L1,w(Ω) ≤ C(1 + δ)d
(
W + ‖T ‖p0→p0 + ‖S‖q0q0→q0‖T ‖1−q0

p0→p0

)
.

Here C is a constant depending only on the constants in (2.2). In particular, T
extends to a bounded operator on Lp(Ω) for all p ∈ (1, p0).

As in Remark 2.2 the condition (2.14) follows if the operators T and SAt are
given by kernels K and Kt (in the sense of (2.3)) and there are δ,W > 0 such that

(2.16)

∫
ρ(x,y)≥δt

|K(x, y)−Kt(x, y)| dμ(x) ≤W <∞,

for all t > 0 and y ∈ Ω. It suffices to note that the associated kernel of T̃ is the
extension by 0 outside Ω× Ω of the kernel of T where T̃ f = 1ΩT (1Ωf) as above.

Similarly for the kernel of S̃At.
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In the previous theorems, we may replace the annulus Cj(x, r) by the annulus
A(x, j, r) := B(x, (j + 1)r) \B(x, jr). In that case, v(x, 2j+1r) has to be replaced
by v(x, (j + 1)r) and the condition on g becomes

∑
j j

dg(j) <∞.

Following [3], it is proved in [2] that a bounded operator T on L2(X) is of weak
type (r, r) if

(2.17)
( 1

v(x, 2j+1t)

∫
Cj(x,t)

|T (I −At)f |2
)1/2

≤ g(j)
( 1

v(x, t)

∫
B(x,t)

|f |r
)1/r

and

(2.18)
( 1

v(x, 2j+1t)

∫
Cj(x,t)

|Atf |2
)1/2

≤ g(j)
( 1

v(x, t)

∫
B(x,t)

|f |r
)1/r

for all x ∈ X , t > 0, j ∈ N, f ∈ L2 supported in B(x, t), and
∑
g(j)2dj < ∞.

One can prove a version of this result in which T − TAt in (2.17) is replaced by
T − SAt as in Theorem 2.1. We do not give the details here since we have no
concrete application. Theorem 2.1 is suitable for our purpose.

Finally, let us mention that a Gaussian upper bound implies assumption (2.4).
Indeed, assume that At is given by a kernel at such that

|at(x, y)| ≤ C

v(y, t1/m)
exp

{
− c

ρ(x, y)m/(m−1)

t1/(m−1)

}
for all t > 0 and x, y ∈ X . Here m ≥ 2 and C, c are two positive constants.
Fix x0 ∈ X . Note that the operator 1Cj(x0,t)Atm1B(x0,t) has the kernel given by
(x, y) 	→ 1Cj(x0,t)(x)atm(x, y)1B(x0,t)(y). But∣∣1Cj(x0,t)(x) atm(x, y)1B(x0,t)(y)

∣∣
≤ C

v(y, t)
1Cj(x0,t)(x)1B(x0,t)(y) exp

{
− c

ρ(x, y)m/(m−1)

tm/(m−1)

}

≤ C

v(y, t)
e−c 2jm/(m−1)

1B(x0,t)(y) ≤
C

v(x0, t)
e−c 2jm/(m−1)

,

where the doubling property was used in the last step. This is an L1-L∞ estimate.
By interpolation, it implies an L1-Lq0 estimate giving (2.4) for every q0 ∈ (1,∞).

3. A partial multiplier theorem for degenerate operators

Let the coefficients akj , form a0, and the self-adjoint operator A associated with a0
be as in the introduction. For every bounded measurable function F : [0,∞) → C,
the operator F (A) is well defined by spectral theory and is bounded on L2(Rd).
As mentioned in the introduction, if A is uniformly elliptic then F (A) extends to
a bounded operator on Lp(Rd) for all p ∈ (1,∞) provided F has a finite number of
derivatives on [0,∞) which have good decay. We address here the same problem
for degenerate operators. This is a difficult problem because no global Gaussian
upper bounds are available for A in general.
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We prove a partial result by projecting on the part where the matrix (akj) is
uniformly elliptic. There are two versions.

Theorem 3.1. Let Ω ⊂ Rd be an open bounded set with Lipschitz boundary.
Suppose there exists a μ > 0 such that (akj(x)) ≥ μI for almost every x ∈ Ω
and denote by PΩ the projection from L2(Rd) onto L2(Ω). Set H = A + I. Let
F : [0,∞) → C be a bounded function such that

(3.1) sup
t>0

‖ϕ(.)F (t.)‖Cs <∞

for some s > d/2 and some nontrivial function ϕ ∈ C∞
c (0,∞). Then PΩF (H)PΩ is

of weak type (1, 1) and extends to a bounded operator on Lp(Rd) for all p ∈ (1,∞).

Theorem 3.2. Let χ ∈ C∞
b (Rd), μ > 0 and suppose that (akj(x)) ≥ μI for almost

every x ∈ suppχ. Set H = A+ I. Let F : [0,∞) → C be a bounded function such
that

(3.2) sup
t>0

‖ϕ(.)F (t.)‖Cs <∞

for some s > d/2 and some nontrivial function ϕ ∈ C∞
c (0,∞). Then MχF (H)Mχ

is of weak type (1, 1) and extends to a bounded operator on Lp(Rd) for all p ∈ (1,∞).

The proofs of both theorems are almost the same. They rely mainly on weighted
estimates for the associated kernel of MχF (H)Mχ (or the kernel of PΩF (H)PΩ),
together with Theorem 2.1. The proof of weighted estimates for the kernel of
MχF (H)Mχ (or of PΩF (H)PΩ) is based on partial Gaussian bounds proved in [12]
and a similar strategy as in [10] and [18].

In the rest of this section we assume that there exists a constant μ > 0 such that
(akj(x)) ≥ μI for a.e. x ∈ Ω, respectively for a.e. x ∈ suppχ ∪ supp χ̃. In the first
case Ω is a bounded Lipschitz domain of Rd and in the second case χ, χ̃ ∈ C∞

b (Rd).
We denote by St := e−tA the holomorphic semigroup generated by −A on L2(Rd).
We recall the following result from [12]:

Theorem 3.3. There are C, c > 0 such that for all t > 0 the operator Mχ̃StMχ

(respectively PΩStPΩ) is given by a kernel pt which satisfies

|pt(x, y)| ≤ C t−d/2 e−c|x−y|2/t (1 + t)d/2 for all t > 0 and x, y ∈ R
d.

The theorem is stated in [12] with χ = χ̃, but the arguments work with differ-
ent χ and χ̃. It is also proved there that

(3.3) ‖MχSt‖2→∞ ≤ C t−d/4 (1 + t)d/4 resp. ‖PΩSt‖2→∞ ≤ C t−d/4 (1 + t)d/4.

If z = t+ is ∈ C with t = Re z > 0, then

‖MχSzMχ‖1→∞ = ‖MχSt/2SisSt/2Mχ‖1→∞ ≤ Ct−d/4(1 + t)d/4‖SisSt/2Mχ‖1→2

≤ C t−d/4 (1 + t)d/4 ‖St/2Mχ‖2→∞ ≤ C t−d/2 (1 + t)d/2.
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Similarly,

(3.4) ‖PΩ Sz PΩ‖1→∞ ≤ C (Re z)−d/2 (1 + Re z)d/2

for all z ∈ C with Re z > 0. Using the Gaussian bounds of Theorem 3.3 for
real t together with the uniform bounds (3.4) for complex z it follows as in Theo-

rem 3.4.8 in [7] or Theorem 7.2 in [18] that for all ε > 0 the kernel p
(0)
z ofMχSzMχ,

respectively PΩSzPΩ, satisfies the bound

(3.5)
∣∣p(0)z (x, y) e−εz

∣∣ ≤ Cε (Re z)
−d/2 exp

{
− c

|x− y|2
|z| cos(arg z)

}

for all x, y ∈ Rd and z ∈ C with Re z > 0.

Let H = A + I and define pz(x, y) = p
(0)
z (x, y)e−z. Then pz is the kernel of

Mχe
−zHMχ. We shall formulate the results below for MχF (H)Mχ only, but all

statements are also valid for PΩF (H)PΩ. In the following lemmas, we shall always
assume that (akj(x)) ≥ μI for almost every x ∈ suppχ. Since associated kernels
with several operators are involved in the sequel we shall denote by KT the kernel
associated to a given operator T , whenever it exists.

Lemma 3.4. For all s > 0 and ε > 0 there exists a C > 0 such that∫
Rd

∣∣KMχF (H)Mχ
(x, y)

∣∣2 (1 +√
r|x− y|)s dx ≤ C rd/2 ‖δrF‖2Cs/2+ε

for all r > 0, y ∈ Rd and F ∈ Cs/2+ε supported in [0, r]. Here (δrF )(λ) := F (rλ).

Proof. The arguments are very similar to those of Lemma 4.3 in [10]. Fix r > 0
and assume first that F is supported in [0, 1]. Set g(λ) := F (λ)eλ and Hr := 1

rH .
By (3.5), the kernel pz/r of Mχe

−zHrMχ satisfies

(3.6) |pz/r(x, y)| ≤ C rd/2 (Re z)−d/2 exp
{
− cr

|x− y|2
|z| cos(arg z)

}

for all x, y ∈ Rd and z ∈ C with Re z > 0, with constants C, c independent of r.
We write

g(λ) =

∫
R

ĝ(ξ) eiλξ dξ,

where ĝ is the Fourier transform of g. Then

F (Hr) =

∫
R

ĝ(ξ) e−(1−iξ)Hr dξ,

from which one obtains

(3.7) KMχF (Hr)Mχ
(x, y) =

∫
R

ĝ(ξ) p(1−iξ)/r(x, y) dξ.
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Let y ∈ Rd. Using the estimate (3.6) with z = 1− iξ gives∫
Rd

∣∣p(1−iξ)/r(x, y)
∣∣2 (1 +√

r|x− y|)s dx
≤ C rd

∫
exp

{
− 2cr

|x− y|2
1 + ξ2

}(
1 +

√
r|x− y|)s dx

≤ C rd(1 + ξ2)s/2
∫

exp
{
− cr

|x − y|2
1 + ξ2

}
dx

≤ C rd(1 + ξ2)s/2
(1 + ξ2

r

)d/2

= C rd/2(1 + ξ2)(d+s)/2.

It follows from (3.7), the continuous version of the Minkowski inequality, and the
previous estimate that(∫

Rd

∣∣KMχF (Hr)Mχ
(x, y)

∣∣2 (1 +√
r|x− y|)s dx)1/2

≤
∫
R

|ĝ(ξ)|
( ∫

Rd

∣∣p(1−iξ)/r(x, y)
∣∣2 (1 +√

r|x− y|)sdx)1/2

dξ

≤ C rd/4
∫
R

|ĝ(ξ)| (1 + ξ2)(d+s)/4 dξ

≤ C rd/4 ‖g‖W (d+s+2)/2,2 ≤ C rd/4 ‖F‖W s/2+α,2.(3.8)

Here α = (d + 2)/2 and the constants are independent of r and y. On the other
hand MχF (Hr)Mχ =Mχg(Hr)e

−HrMχ. It follows from (3.3) that

‖e−HrMχ‖1→2 ≤ C rd/4 (1 + 1
r )

d/4 e−1/r ≤ C rd/4

for all r > 0. Moreover, ‖Mχg(Hr)‖2→2 ≤ e‖χ‖∞‖F‖∞. Therefore

(3.9)

∫
Rd

∣∣KMχF (Hr)Mχ
(x, y)

∣∣2 dx ≤ ‖MχF (Hr)Mχ‖21→2 ≤ C rd/2 ‖F‖2∞.

This is valid for all F with support in [0, 1] and for all s > 0. The estimates (3.8)
and (3.9) together with an interpolation argument (see [17], p. 151, and [10], p. 455)
give then that for all s > 0 there exists a C > 0 such that

(3.10)

∫
Rd

∣∣KMχF (Hr)Mχ
(x, y)

∣∣2 (1 +√
r|x− y|)sdx ≤ C rd/2 ‖F‖2Cs/2+ε.

Finally, if F has support in [0, r] we use the last estimate with δrF and obtain the
lemma. �

Lemma 3.5. The operators At := e−t2HMχ satisfy (2.4).

Proof. Let ψ ∈ W 1,∞(Rd,R) be such that |∇ψ| ≤ 1. For all ρ ∈ R define Uρ =
Meρψ and set Sρ

t := Uρe
−tHU−ρ. It follows from [12] Proposition 3.6 by duality

and a limit n→ ∞ that there exist C, ω > 0, independent of t, ρ and ψ, such that

(3.11) ‖Sρ
tMχ‖1→2 ≤ C t−d/4 eωρ2t.
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Now fix two bounded open nonempty sets E and F of Rd and choose ψ(x) :=
d(x,E) ∧N , where N = sup{|x − y| : x ∈ E, y ∈ F} + 1. For all h ∈ L2(E) and
ρ ≥ 0 one has

Mχe
−tHh =MχU−ρS

ρ
t h.

Therefore

‖Mχe
−tHh‖L∞(F ) ≤ e−ρd(E,F )‖MχS

ρ
t h‖∞ ≤ C t−d/4 e−ρd(E,F ) eωρ2t ‖h‖2.

Choosing ρ = d(E,F )
2ωt yields the Davies–Gaffney type estimate

(3.12) ‖PF (Mχe
−tH)PE‖2→∞ ≤ C t−d/4 e−

d(E,F )2

4ωt .

In particular,

‖PCj(x,t)e
−t2HMχPB(x,t)‖1→2 ≤ C t−d/2 e−c4j

for all x, y ∈ Rd and j ∈ N. This shows the lemma. �

Proof of Theorems 3.1 and 3.2. As mentioned above, the proofs of both theorems
are almost the same. We consider MχF (H)Mχ only. The proof is based on The-
orem 2.1 and the previous lemmas. It is in the same spirit as in the elliptic case
where a Gaussian bound holds (cf. [10], [18]). Let ϕ ∈ C∞

c (0,∞) be such that
suppϕ ⊂ [1/4, 1] and

∞∑
n=−∞

ϕ(2−nλ) = 1

for all λ > 0. Then

F (λ) =
∞∑

n=−∞
ϕ(2−nλ)F (λ) =:

∞∑
n=−∞

Fn(λ).

We apply Theorem 2.1 to MχFn(H)Mχ for each fixed n ∈ Z. We choose

S :=MχFn(H) and At := e−t2HMχ.

By Lemma 3.5, the operators At satisfy (2.4). It remains to prove (2.7). For this
we have to estimate for all y ∈ Rd the integral

In,t :=

∫
|x−y|≥t

∣∣KMχGn,t(H)Mχ
(x, y)

∣∣ dx,
where

Gn,t(λ) = Fn(λ)− Fn(λ)e
−t2λ = ϕ(2−nλ)F (λ)(1 − e−t2λ).

First, by the Cauchy–Schwarz inequality we have

In,t ≤
( ∫

Rd

∣∣KMχGn,t(H)Mχ
(x, y)

∣∣2 (1 + 2n/2 |x− y|)2s dx)1/2

×
(∫

|x−y|≥t

(1 + 2n/2 |x− y|)−2s dx
)1/2

.(3.13)
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We apply Lemma 3.4 with r = 2n and obtain

(3.14)

∫
Rd

∣∣KMχGn,t(H)Mχ
(x, y)

∣∣2 (1+2n/2|x− y|)2s dx ≤ C 2nd/2 ‖δ2nGn,t‖2Cs+ε .

Simple computations show that there exists a C > 0, independent of n and t, such
that

‖δ2nGn,t‖Cs+ε = ‖ϕ(.)F (2n.)(1 − e−t22n.)‖Cs+ε
≤ C sup

t′>0
‖ϕ(.)F (t′.)‖Cs+ε min(1, t22n).(3.15)

On the other hand (see [10] or (7.46) in [18]) one estimates

(3.16)

∫
|x−y|≥t

(1 + 2n/2|x− y|)−2s dx ≤ C 2−nd/2 min(1, (t2n/2)d−2s).

Using (3.13), (3.14), (3.15) and (3.16) we obtain

In,t ≤ C min(1, t22n) min
(
1, (t 2n/2)d/2−s

)
sup
t′>0

‖ϕ(.)F (t′.)‖Cs+ε .

Hence

∞∑
n=−∞

In,t ≤ C
( ∑

n∈Z, t22n≤1

t2 2n +
∑

n∈Z, t2n/2>1

(t 2n/2)d/2−s
)
sup
t′>0

‖ϕ(.)F (t′.)‖Cs+ε

and the right hand side is bounded by a constant independent of t since s > d/2.
This proves Theorem 3.1. �

As explained in the introduction, the reason why we consider H = A+I instead
of A in the previous results comes from the fact the Gaussian upper bound in
Theorem 3.3 is valid with the extra factor (1+t)d/2. If one considers the case where
akj = δkj on a smooth bounded domain Ω, then A is the Neumann Laplacian on
L2(Ω) and 0 on L2(Rd\Ω). It is then easy to see that L2-L∞ estimates (respectively,
Gaussian bounds) for Mχe

−tA or PΩe
−tA (respectively, Mχe

−tAMχ or PΩe
−tAPΩ)

cannot hold without an extra factor (1 + t)d/4 (respectively, (1 + t)d/2). On the
other hand, in the previous theorems we can replace H = A + I by H = A + εI
for any ε > 0.

It may be possible that if (akj) ≥ μI on a connected subset F of Rd which
is ‘large enough’ (in some sense), one can obtain Theorem 3.3 without the extra
factor (1 + t)d/2 in the Gaussian bound. This remains to be proved. We mention
that if such a bound holds, we obtain by the same proof Theorems 3.1 and 3.2 for
F (A) rather than F (H).

We emphasize also that we consider here general degenerate operators with
nonsmooth coefficients. One may obtain global results for some specific operators
which are degenerate at every point and have coefficients that are not continuous at
every point. For example, one might take a pure second-order subelliptic operator
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in divergence form with real measurable coefficients on a Lie group with polynomial
growth. Then global Gaussian bounds are valid by Théorème 1 of [19], together
with a regularization argument (see, for example Section 2.1 in [14]). Therefore a
global spectral multiplier result for such operators follows directly from [10]. Note
however that the order of smoothness required on the function F is larger than
half the Euclidean dimension. On the other hand, the operators that we consider
in this paper are allowed to vanish on big sets.

Examples 3.6. We give some examples which are direct applications of the pre-
vious theorems.

Imaginary powers. Set F (λ) = λis where s ∈ R. Then Theorems 3.1 and 3.2,
together with the Riesz–Thorin interpolation theorem, imply that for all
ε > 0 and p ∈ (1,∞) there exists a C > 0 such that

‖MχH
isMχ‖p→p ≤ Cε (1 + |s|)(d+ε) |1/2−1/p|

and
‖PΩH

isPΩ‖L(Lp) ≤ Cε (1 + |s|)(d+ε) |1/2−1/p|

for all s ∈ R.

The Schrödinger group. Set F (λ) = (1 + λ)−αeitλ with t ∈ R and α > d/2. The
operators Mχ(I + H)−αeitHMχ and PΩ(I + H)−αeitHPΩ are bounded on
Lp(Rd) for all p ∈ (1,∞). Their Lp-norms are estimated by C(1 + |t|)α.
By interpolation, we obtain boundedness on Lp for all α > d |1/2 − 1/p|
and t ∈ R.

Remark. Using the same proof as in [4], these results can be obtained di-
rectly from the Gaussian upper bound of Theorem 3.3 without appealing to
Theorems 3.1 and 3.2.

Wave operators. Set F (λ) = (1 + λ)−α/2eit
√
λ with t ∈ R and α > d/2. The

operatorsMχ(I +H)−αeit
√
HMχ and PΩ(I +H)−αeit

√
HPΩ are bounded on

Lp(Rd) for all p ∈ (1,∞).

4. Riesz transforms

The aim in this section is to prove boundedness on Lp(Rd) of a type of Riesz
transform operator Mχ∇(I + A)−1/2Mχ. We keep the same notation as in the
previous section. The main result of this section is the next theorem.

Theorem 4.1. Let χ ∈ C∞
b (Rd), μ > 0 and suppose that (akj(x)) ≥ μI for almost

every x ∈ suppχ. Set H = A + I. Then for every k ∈ {1, . . . , d}, the operator
Mχ∂kH

−1/2Mχ is of weak type (1, 1) and is bounded on Lp(Rd) for all p ∈ (1, 2].

Here ∂k denotes the distributional derivative. The proof is based on Theo-
rem 2.1 and uses some ideas from [6], [8], and Chapter 7 in [18] in the uniformly
elliptic case. We start with the following lemma. Let a be the closure of the regular
part of the form a0 defined in (1.5).
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Lemma 4.2. Let χ ∈ C∞
b (Rd), μ > 0, and suppose that (akj(x)) ≥ μI for almost

every x ∈ suppχ. Then χu ∈ W 1,2(Rd) and

‖χ∂ku‖22 ≤ ‖χ‖2∞
μ

‖H1/2u‖2

for all u ∈ D(a) = D(H1/2) and k ∈ {1, . . . , d}.
Proof. Let u ∈ D(a). Then there exists a sequence (un)n∈N in D(a0) = C∞

c (Rd)
such that limun = u in L2(Rd) and a(u) = lim a0(un). By the ellipticity assump-
tion on the support of χ one deduces

(4.1) μ

∫
Rd

χ2 |∇un|2 ≤
d∑

k,j=1

∫
Rd

akj (∂kun) (∂jun)χ
2 ≤ ‖χ‖2∞ a0(un)

for all n ∈ N. Therefore (χun)n∈N is bounded in W 1,2(Rd). Hence it has a weakly
convergent subsequence in W 1,2(Rd). Since limχun = χu in L2(Rd) it follows that
χu ∈W 1,2(Rd). Then taking the limit n→ ∞ in (4.1) one estimates

μ

∫
Rd

χ2 |∂ku|2 ≤ ‖χ‖2∞ a(u) ≤ ‖χ‖2∞ ‖H1/2u‖22

for all k ∈ {1, . . . , d}. �

Lemma 4.3. Let χ, χ̃ ∈ C∞
b (Rd), μ > 0, and assume that (akj(x)) ≥ μI for

almost every x ∈ suppχ ∪ supp χ̃. Then for all β > 0 small enough we have∫
Rd

∣∣(Mχ̃e
−sHMχu)(y)

∣∣2 eβ|x−y|2/s dy ≤ C s−d/2 e2βt
2/s e−s ‖u‖21

for all t > 0, s > 0, x ∈ Rd and u ∈ L2(Rd) with suppu ⊂ B(x, t).

Proof. By Theorem 3.3 one estimates

∣∣(Mχ̃e
−sH Mχu)(y)

∣∣2eβ|x−y|2/s =
∣∣∣ ∫

B(x,t)

e−sps(y, z)u(z) dz
∣∣∣2 eβ|x−y|2/s

≤ C e−s
(∫

B(x,t)

s−d/2 e−c|y−z|2/s eβ|x−y|2/(2s) |u(z)| dz
)2

≤ C e−s
(∫

Rd

s−d/2 e−(c−β) |y−z|2/s |u(z)| dz
)2

e2βt
2/s

≤ C e−ss−d/2 ‖u‖1
∫
Rd

s−d/2 e−(c−β) |y−z|2/s |u(z)| dz e2βt2/s.

Taking β < c/2 and integrating over y yields the lemma. �

Since e−sHL2(Rd) ⊂ D(a) for all s > 0 we obtain from Lemma 4.2 the in-
clusion Mχ∇e−sHMχ(L

2(Rd)) ⊂ W 1,2(Rd) for all s > 0. The following weighted
L2-estimate is in the same spirit as weighted gradient estimates for heat kernels
(see [6], [15] and Theorem 6.19 in [18]).
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Lemma 4.4. For all β > 0 small enough we have∫
Rd

∣∣(Mχ∇e−sHMχu)(y)
∣∣2 eβ|x−y|2/s dy ≤ C s−d/2−1 e6βt

2/s ‖u‖21

for all t > 0, s > 0, x ∈ Rd and u ∈ L2(Rd) with suppu ⊂ B(x, t).

Proof. In order to avoid problems related to the domain of forms, we shall proceed
by approximation. First, we prove the lemma for uniformly elliptic coefficients
with constants β and C depending only on μ > 0 such that (akj(x)) ≥ μ I a.e.
x ∈ suppχ.

Assume that there exists a μ0 > 0 such that (akj(x)) ≥ μ0 I for a.e. x ∈ Rd.
In this case the form a has domain W 1,2(Rd). We use ideas similar to those in
the proof of Theorem 6.19 in [18], but we want to prove that the constants in
the estimates are independent of μ0. Let ψ ∈ C∞

c (Rd) be such that ψ(x) = 1
for all x ∈ B(0, 1) and 0 ≤ ψ ≤ 1. For all n ∈ N, define ψn ∈ C∞

c (Rd) by
ψn(x) = ψ(n−1x). Set

In :=

∫
Rd

∣∣χ(y) (∇e−sHMχu)(y)
∣∣2 eβ|x−y|2/s ψn(y) dy

and define f := e−sHMχu. Then,

In ≤ 1

μ

∑
k,j

∫
Rd

akj(y) (∂kf)(y) (∂jf)(y) e
β|x−y|2/s χ(y)2 ψn(y) dy

=
1

μ

∑
k,j

∫
Rd

akj (∂kf) ∂j

(
f eβ|x−·|2/s χ2 ψn

)

+
1

μ

∑
k,j

∫
Rd

akj(y) (∂kf)(y) f(y)
2β(xj − yj)

s
eβ|x−y|2/s χ(y)2 ψn(y) dy

− 2

μ

∑
k,j

∫
Rd

akj(y) (∂kf)(y) f(y) e
β|x−y|2/s (∂jχ)(y)χ(y)ψn(y) dy

− 1

nμ

∑
k,j

∫
Rd

akj(y) (∂kf)(y) f(y) e
β|x−y|2/s χ(y)2 (∂jψ)( 1n y) dy

=: J1,n + J2,n + J3,n + J4,n.

Since y 	→ f(y)eβ
|x−y|2
s χ(y)2ψn(y) is an element of W 1,2(Rd) we have

J1,n =
1

μ
a
(
f, feβ|x−·|2/sχ2ψn

)
=

1

μ

∫
Rd

(
Ae−sHMχu

) (
e−sHMχu

)
eβ|x−·|2/s χ2 ψn

≤ ‖χ‖∞
μ

∥∥He−sHMχu
∥∥
2

∥∥eβ|x−·|2/sMχe
−sHMχu

∥∥
2
.

The standard estimate ‖He−sH‖2→2 ≤ s−1 and Lemma 4.3 give

(4.2) J1,n ≤ C s−d/2−1 e2βt
2/s ‖u‖21
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if β is small enough. Using the obvious inequality
|xj−yj |

s ≤ 1√
ε s
eε

|x−y|2
s we have

|J2,n| ≤ C√
s

∑
k

∫
Rd

∣∣∂ke−sHMχu
∣∣χ2

∣∣e−sHMχu
∣∣ e2β|x−·|2/s

≤ C√
s

√
In

(∫
Rd

∣∣(Mχe
−sHMχu)(y)

∣∣2e3β|x−y|2/s dy
)1/2

.

Therefore Lemma 4.3 implies

(4.3) |J2,n| ≤ C
√
In s

−d/4−1/2 e−s/2 e3βt
2/s ‖u‖1.

We estimate the third term in a similar way.

|J3,n| ≤ C
∑
k

∫
Rd

∣∣∂ke−sHMχu
∣∣ ∣∣χ∂jχ∣∣ ∣∣e−sHMχu

∣∣ eβ|x−·|2/s ψn

≤ C
√
In

(∫
Rd

∣∣M∂jχe
−sHMχu

∣∣2 eβ|x−·|2/s
)1/2

≤ C
√
In s

−d/4−1/2 e−s/3 eβt
2/s ‖u‖1.(4.4)

Finally,

|J4,n| ≤ C

n

∑
k,j

∫
Rd

∣∣(χ∂ke−sHMχu
)
(y)

∣∣ ∣∣(Mχe
−sHMχu

)
(y)

∣∣ eβ|x−y|2/s

× ∣∣(∂jψ)( 1
n y)

∣∣ dy
≤ C

n

∥∥Mχ∇ e−sH Mχu
∥∥
2

( ∫
Rd

∣∣(Mχe
−sHMχu)(y)

∣∣2 e2β|x−y|2/s dy
)1/2

≤ C

n

∥∥Mχ∇ e−sH Mχu
∥∥
2
s−d/4 e−s/2 e2βt

2/s ‖u‖1.(4.5)

Therefore, we obtain from (4.2), (4.3), (4.4) and (4.5) that

In ≤ C s−d/2−1 e6βt
2/s ‖u‖21 +

C

n

∥∥Mχ∇ e−sH Mχu
∥∥
2
s−d/4 e2βt

2/s ‖u‖1.

Letting n→ ∞ and then using Fatou’s lemma yields

(4.6)

∫
Rd

∣∣(Mχ∇e−sHMχu
)
(y)

∣∣2 eβ|x−y|2/s dy ≤ C s−d/2−1 e6βt
2/s ‖u‖21.

The constants C and β are independent of μ0.

Now we prove the lemma for degenerate operators. For all n ∈ N set a
(n)
kj =

akj + δkj/n. Then (a
(n)
kj (x)) ≥ 1

n I for a.e. x ∈ Rd and (a
(n)
kj (x)) ≥ μ I for a.e.

x ∈ suppχ. Moreover, ‖a(n)kj ‖∞ ≤ 1 + ‖akj‖∞. We denote by An the elliptic

operator with the coefficients a
(n)
kj and let Hn = I+An. We apply (4.6) to Hn and

obtain

(4.7)

∫
Rd

∣∣(Mχ∇e−sHnMχu
)
(y)

∣∣2 eβ|x−y|2/sdy ≤ C s−d/2−1 e6βt
2/s ‖u‖21.
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for some constants C and β > 0 which are independent of n. Let k ∈ {1, . . . , d}.
Then ∣∣(e−sHnMχu, ∂kMχ

(
ϕeβ

|x−.|2
2s

))∣∣ ≤ C s−d/4−1/2 e3βt
2/s ‖u‖1 ‖ϕ‖2

for all ϕ ∈ C∞
c (Rd). On the other hand, e−tHn converges strongly in L2(Rd) to

e−tH (see Corollary 3.9 of [1]). It follows then that

∣∣(e−sHMχu, ∂kMχ

(
ϕeβ

|x−.|2
2s

))∣∣ ≤ C s−d/4−1/2 e3βt
2/s ‖u‖1 ‖ϕ‖2.

Since this is true for all ϕ ∈ C∞
c (Rd) we have by density

∥∥(Mχ∂ke
−sHMχu

) · eβ |x−.|2
2s

∥∥
2
≤ C s−d/4−1/2 e3βt

2/s ‖u‖1.
This proves the lemma. �

Proof of Theorem 4.1. It follows from Lemma 4.2 that the truncated Riesz trans-
form Mχ∂kA

−1/2 is bounded on L2(Rd).
In order to prove a weak type estimate for T = Mχ∂kH

−1/2Mχ we apply

Theorem 2.1 with S = Mχ∂kH
−1/2 and At = e−t2HMχ. These operators are

bounded on L2(Rd) and by Lemma 3.5 the operators At satisfy assumption (2.4).
It remains then to check (2.5). By the formula

H−1/2 =
1

2
√
π

∫ ∞

0

e−sH ds√
s

we have

H−1/2e−t2H =
1

2
√
π

∫ ∞

0

e−(s+t2)H ds√
s
=

1

2
√
π

∫ ∞

0

e−sH 1{s>t2}
ds√
s− t2

.

Let β > 0 be as in Lemma 4.4 and let δ > 0. Fix x ∈ Rd, t > 0 and let u ∈ L2(Rd)
with suppu ⊂ B(x, t). Set

ν(s, t) =
∣∣∣1{s>t2}

1√
s− t2

− 1√
s

∣∣∣.
Then

2
√
π

∫
Rd\B(x,(1+δ)t)

∣∣((T − SAt)u
)
(y)

∣∣ dy
≤

∫ ∞

0

∫
Rd\B(x,(1+δ)t)

∣∣(Mχ∂ke
−sHMχu

)
(y)

∣∣ dy ν(s, t) ds
≤

∫ ∞

0

ν(s, t)
( ∫

Rd

∣∣(Mχ∂ke
−sHMχu

)
(y)

∣∣2 eβ|x−y|2/s dy
)1/2

×
(∫

Rd\B(x,(1+δ)t)

e−β|x−y|2/s dy
)1/2

ds

≤ C

∫ ∞

0

ν(s, t) s−d/4−1/2 e3βt
2/s ‖u‖1

( ∫
Rd\B(x,(1+δ)t)

e−β|x−y|2/s dy
)1/2

ds.
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Note that we have used Lemma 4.4 in the last inequality. Now∫
Rd\B(x,(1+δ)t)

e−β|x−y|2/s dy ≤ e−β(1+δ)2t2/(2s)

∫
Rd

e−β|x−y|2/(2s) dy

≤ C sd/2 e−β(1+δ)2t2/(2s).

Choosing δ ≥ 4 we obtain a positive constant γ such that∫
Rd\B(x,(1+δ)t)

|(T − SAt)u(y)| dy ≤ C

∫ ∞

0

ν(s, t) s−1/2 e−γt2/s ds.

The last integral is bounded by some constantM independent of t. This proves the
estimate (2.5) and hence T =Mχ∂kH

−1/2Mχ is weak type (1, 1). By interpolation,
it is bounded on Lp(Rd) for all 1 < p ≤ 2. �

As discussed at the end of the previous section, we note that if one proves a
version of Theorem 3.3 without the extra factor (1 + t)d/2 if (akj(x)) ≥ μI for
a.e. x in a ‘big’ domain, then Theorem 4.1 holds with A in place of H . That
is Mχ∂kA

−1/2Mχ is weak type (1, 1) and bounded on Lp(Rd) for all 1 < p ≤ 2.
In [13], we prove by a different method that if the coefficients akj ∈ W 1,∞(Rd),
then Mχ∂k(I +A)−1/2 and Mχ∂k ∂j(I + A)−1 are bounded on Lp(Rd) for all p ∈
(1,∞). Moreover, if akj ∈ W ν,∞(Rd,C) then we show that Mχ ∂k(I +A)−1/2Mχ

is bounded on Lp for all p ∈ (1,∞).
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