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Size of orthogonal sets of exponentials for the disk

Alex Iosevich and Mihail N. Kolountzakis

Abstract. Suppose that Λ ⊆ R
2 has the property that any two expo-

nentials with frequency from Λ are orthogonal in the space L2(D), where
D ⊆ R

2 is the unit disk. Such sets Λ are known to be finite but it is not
known if their size is uniformly bounded. We show that if there are two
elements of Λ which are distance t apart then the size of Λ is O(t). As a
consequence we improve a result of Iosevich and Jaming and show that Λ
has at most O(R2/3) elements in any disk of radius R.

1. Introduction

1.1. Orthogonal sets of exponentials for domains in Euclidean space

Let Ω ⊆ R
d be a bounded measurable set and let us assume for simplicity that Ω

has Lebesgue measure 1. The concept of a spectrum of Ω that we deal with in this
paper was introduced by Fuglede [4], who was studying a problem of Segal on the
extendability of the partial differential operators (on C∞

c (Ω))

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xd

to commuting operators on all of L2(Ω).

Definition 1.1. A set Λ ⊆ R
d is called a spectrum of Ω (and Ω is said to be a

spectral set) if the set of exponentials

E(Λ) =
{
eλ(x) = e2πiλ·x : λ ∈ Λ

}
is a complete orthogonal set in L2(Ω).

(The inner product in L2(Ω) is 〈f, g〉 = ∫
Ω
fg.)
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It is easy to see (see, for instance, [11]) that the orthogonality of E(Λ) is
equivalent to the packing condition

(1.1)
∑
λ∈Λ

|χ̂Ω|2(x− λ) ≤ |Ω|2, a.e. (x),

as well as to the condition

(1.2) Λ− Λ ⊆ {0} ∪ {χ̂Ω = 0}.
Here χΩ is the indicator function of Ω.

The orthogonality and completeness of E(Λ) is in turn equivalent to the tiling
condition

(1.3)
∑
λ∈Λ

|χ̂Ω|2(x− λ) = |Ω|2, a.e. (x).

These equivalent conditions follow from the identity

〈eλ, eμ〉 =
∫
Ω

eλ eμ = χ̂Ω(μ− λ),

and from the completeness of all the exponentials in L2(Ω). Condition (1.1) is
roughly expressing the validity of Bessel’s inequality for the system of exponen-
tials E(Λ), while condition (1.3) says that Bessel’s inequality holds as equality.

If Λ is a spectrum of Ω then so is any translate of Λ, but there may be other
spectra as well.

Example: If Qd = (−1/2, 1/2)d is the cube of unit volume in R
d then Z

d is a
spectrum of Qd. Let us remark here that there are spectra of Qd which are very
different from affine images of the lattice Z

d ([8], [16], [10]).

Research on spectral sets [17], [15], [14] has been driven for many years by
a conjecture of Fuglede [4], sometimes called the Spectral Set Conjecture, which
stated that a set Ω is spectral if and only if it is a translational tile. A set Ω is
a translational tile if we can translate copies of Ω around and fill space without
overlaps. More precisely, there exists a set S ⊆ R

d such that

(1.4)
∑
s∈S

χΩ(x− s) = 1, a.e. (x).

One can generalize naturally the notion of translational tiling from sets to
functions by saying that a nonnegative f ∈ L1(Rd) tiles when translated at the
locations S if

∑
s∈S f(x− s) = � for almost every x ∈ R

d (the constant � is called
the level of the tiling). Thus the question of spectrality for a set Ω is essentially

a tiling question for the function |χ̂Ω|2 (the power-spectrum). Taking into account
the equivalent condition (1.3) one can now, more elegantly, restate the Fuglede
Conjecture as the equivalence

(1.5)
χΩ tiles Rd by translation at level 1

⇐⇒ |χ̂Ω|2 tiles Rd by translation at level |Ω|2.
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In this form the conjectured equivalence is perhaps more justified. However this
conjecture is now known to be false in both directions if d ≥ 3 (see [19], [18], [12],
[13], [2] and [3]), but remains open in dimensions 1 and 2, and it is not out of the
question that the conjecture is true in all dimensions if one restricts the domain Ω
to be convex. (It is known that the direction “tiling ⇒ spectrality” is true in the
case of convex domains; see for instance [11].) The equivalence (1.5) is also known,
from the time of Fuglede’s paper [4], to be true if one adds the word lattice to both
sides (that is, lattice tiles are the same as sets with a lattice spectrum).

1.2. Orthogonal exponentials for the disk

Already in [4] it was claimed that the disk in the plane (and the Euclidean ball
in R

d) is not a spectral set, in agreement with (1.5). A proof appeared in [7]. Later
it was proved in [5] and [9] that any orthogonal set of exponentials for the ball must
necessarily be finite. It is still unknown however if there is a uniform bound for
the size of each orthogonal set. It is still a possibility that there are arbitrarily
large orthogonal sets of exponentials for the ball, and proving a uniform upper
bound is probably very hard as it appears to depend on algebraic relations among
the roots of the Bessel function J1. In the direction of showing upper bounds for
orthogonal sets of exponentials, it was proved in [6] that if Λ is a set of orthogonal
exponentials for the ball then

∣∣Λ ∩ [−R,R]d
∣∣ = O(R), with the implicit constant

independent of Λ. Completeness would of course require that
∣∣Λ ∩ [−R,R]d

∣∣ � Rd

(this follows easily from the tiling condition (1.3)).

The result in this paper, Theorem 1.2 below, improves the result of [6] men-
tioned above. We choose to work only in the case of the unit disk in the plane and
not in higher dimension or in the larger class of smooth convex bodies in order to
present a clear geometric argument, which probably extends to these cases as well.

Abusing language slightly, for the benefit of readability, let us also call two
vectors λ and μ orthogonal if the corresponding exponentials eλ(x) and eμ(x) are
orthogonal in L2(Ω). In other words, we will often identify the frequency λ with
the exponential eλ(x).

Theorem 1.2. There are constants C1, C2 such that whenever Λ ⊆ R
2 is an

orthogonal set of exponentials for the unit disk in the plane and

t = inf {|λ− μ| : λ, μ ∈ Λ, λ �= μ},

then

|Λ| ≤ C1t.

(It is well known and easy to see from (1.1) or (1.2) that t > 0.)

Furthermore, ∣∣Λ ∩ [−R,R]2
∣∣ ≤ C2 R

2/3 for all R ≥ 1.

The proof of Theorem 1.2 is given in the next section.
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2. Proof of the main theorem

A crucial ingredient of the proof is the asymptotics for the zeros of the Fourier
transform of the indicator function of the unit disk D =

{
x ∈ R

2 : |x| ≤ 1
}
, which

is of course a radial function. Since the zeros of χ̂D(r) are the same as the ze-
ros of the Bessel function J1(2πr), and since for the zeros of J1, written as j1,n,
n = 1, 2, . . ., we have ([1]) an asymptotic expansion

(2.1) j1,n = ρn +
K1

ρn
+O

( 1

ρ3n

)
, where ρn = nπ + π

4 , n = 1, 2, . . .,

where K1 is an absolute constant, it follows that the zeros of χ̂D(r) are at the
locations

(2.2) rn =
1

2π
j1,n =

n

2
+

1

8
+

K1

2πρn
+O(n−3).

Moreover, if 0 ≤ m− n ≤ K and m,n → ∞, it follows from (2.1) that

rm − rn =
m− n

2
+O

(
Kn−2

)
=

m− n

2
+O

(
Kr−2

n

)
=

m− n

2
+O

(
(rm − rn) r

−2
n

)
.(2.3)

Lemma 2.1. There are constants R0, C > 0 such that whenever a, b, c ∈ R
2 are

orthogonal for the unit disk, with |a− c|, |b− c|, |a− b| ≥ R ≥ R0, then the two
largest angles of the triangle abc (as well as all its external angles) are

(2.4) ≥ C

R1/2
.

Proof. Assume without loss of generality that R = |a− c| ≤ |b− c| ≤ |a− b| (see
Figure 1).

T

θa b

c
R

Figure 1. Three points orthogonal for the unit disk.

Writing θ = b̂ac for the second largest angle and T = |a− b| we have

|b− c| =
√
(T −R cos θ)2 +R2 sin2 θ =

√
(T −R)2 + 2TR(1− cos θ),

from which we get

(2.5) |b− c| − (T −R) =
2TR(1− cos θ)

T −R+ |b− c| =
2R(1− cos θ)

1− R
T + |b−c|

T

≤ 2R(1− cos θ) ≤ Rθ2.
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From (2.2) it follows that as R → ∞ the quantities |a− b|, |b− c|, |a− c| are all of
the form

k

2
+

1

8
+ o(1), for some integer k.

It follows that |b− c| − (T −R) = k/2 + 1/8 + o(1), for some integer k ≥ 0. This,
together with (2.5), implies that k/2+1/8+o(1)≤ Rθ2, which gives us the required
inequality with constant C arbitrarily close to

√
1/8 when R is large. �

Remark 2.2. It follows from (1.2) that whenever Λ is an orthogonal set for the disk
the distance of any two points of Λ is bounded below by a constant c0, independent
of Λ. It is not hard to see that any orthogonal set may be partitioned into a constant
number of subsets Λj such that the distance of any two points of Λj is bounded
below by R0, the constant mentioned in Lemma 2.1. It is also clear that it suffices
to prove Theorem 1.2 for orthogonal sets that are R0-separated. The validity of
the theorem in the general case follows easily if one only alters the constants.

Assumption: For this reason we will assume from now on that we are dealing with
a R0-separated orthogonal set, even when we do not say so explicitly.

Corollary 2.3. There is a constant C′ > 0 such that whenever a, b, c ∈ R
2 belong

to a R0-separated orthogonal set for the unit disk and their pairwise distances are
at least L, then they cannot all belong to a strip of width C′L1/2.

Proof. Suppose they do belong to such a strip.

a

b

c

θ

Figure 2. Three points in a strip.

Move and turn the strip so that two of the points, those with the largest distance
apart, say a and b, are on one of the strip sides, and the other point c is still in the
strip (see Figure 2). Assume also that c is closer to a than to b. By Lemma 2.1 it

follows that the angle θ = b̂ac is at least

C

|a− c|1/2
,

from which we obtain that the distance of c to the line ab is at least C
√
a− c ≥

C
√
L, a contradiction if the constant C′ in Corollary 2.3 is sufficiently small. �
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Corollary 2.4. Suppose Λ ⊆ R
2 is a R0-separated set of orthogonal exponentials

for the unit disk, R > 0 and let

Δ = inf
{|λ− μ| : λ, μ ∈ Λ ∩ [−R,R]2

}
.

Then, for some constant C > 0,

(2.6)
∣∣Λ ∩ [−R,R]2

∣∣ ≤ C
R

Δ1/2
,

Proof. Cover [−R,R]2 by O(R/Δ1/2) strips of width cΔ1/2, for small c > 0. From
Corollary 2.3, each of these contains at most two points of Λ. �

We may assume from now on that the points V = (Δ, 0) and −V = (−Δ, 0)
belong to the set Λ and that t/2 ≤ Δ ≤ t. It is also sufficient to bound the size
of Λ in the first quadrant only, for reasons of symmetry, so we restrict ourselves to
the first quadrant. By Corollary 2.3 we have that

(2.7) |Λ ∩ {(x, y) : x, y ≥ 0, min {x, y} ≤ Δ}| = O(Δ1/2).

So from now on we may assume that the point λ = (x, y) ∈ Λ belongs to the first
quadrant, and has x, y ≥ Δ.

To each λ = (x, y) in the open first quadrant we correspond two numbers
a(λ), b(λ) ∈ (0,Δ) such that a(λ)2 + b(λ)2 = Δ2 and λ is on the hyperbola

Hλ :
x2

a(λ)2
− y2

b(λ)2
= 1, (x, y ≥ 0).

This hyperbola Hλ is the locus of all points p in the first quadrant such that

(2.8) |p+ V | − |p− V | = 2a(λ).

A parametrization of Hλ is

(2.9) x(s) = a(λ) cosh s, y(s) = b(λ) sinh s, (s ≥ 0).

It follows that in the region of interest x, y ≥ Δ we have

(2.10) Δ ≤ x ≤ a(λ)es ≤ 2x ≤ 2|λ|, Δ ≤ y ≤ b(λ)
es

2
≤ 2y ≤ 2|λ|.

Lemma 2.5. There is a constant K > 0 such that b(λ) ≥ KΔ1/2 with the exception
of at most a constant number of points of Λ.

Proof. It follows from Lemma 2.1 that λ cannot belong to the sector defined by
the x-axis from V onward and the straight line M through V of angle cΔ−1/2, if
c > 0 is small enough (refer to Figure 3). Now draw a parallel line L to straight
line M through the origin and note that the strip bordered by these two parallel
lines, L and M , has width O(Δ1/2). Therefore, by Corollary 2.3, there is only
a constant number of elements of Λ that can belong to the sector defined by the
positive x-semiaxis and the straight line L (shaded region in Figure 3).
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y

x

λ

L
M

2Δ

cΔ−1/2

−V Va(λ)

0

Figure 3. Figure to aid the proof of Lemma 2.5.

Suppose now that λ ∈ Λ is such that b(λ) ≤ KΔ1/2, for an appropriately small
constant K, so that we also have a(λ) ≥ Δ/2. It follows that the asymptote to
the hyperbola Hλ, with equation y = (b(λ)/a(λ))x, has slope at most 2KΔ−1/2,
which implies that λ, lying below that asymptote, is contained in the (shaded)
sector mentioned above. �

Writing H(a,Δ) for the hyperbola x2/a2 − y2/b2 = 1, with a2 + b2 = Δ2, we
consider the finite family of confocal hyperbolas (we consider the special case k = 0
as a hyperbola too; it is the perpendicular bisector of the line segment connecting
the foci)

(2.11) Hk = H
(k
4
,Δ

)
, k = 0, 1, 2, . . . , �4Δ�.

The hyperbola Hk is the locus of all points p with |p+ V | − |p− V | = k/2. For
each λ we define the corresponding k to be the unique integer such that

(2.12) |λ+ V | − |λ− V | = k

2
+ 2ε, −1

8
≤ ε <

1

8
.

We write a = k/4, b =
√
Δ2 − a2. It follows from (2.8) and (2.12) that

a(λ) = a+ ε, b(λ) = b− ε′,

for some ε′, of the same sign as ε. From (2.3) we have that

(2.13) |ε| ≤ CΔ|λ|−2,

for some absolute finite constant C > 0.

Next we estimate ε′:

|ε′| = |b− b(λ)| = ∣∣√Δ2 − a2 −
√
Δ2 − a(λ)2

∣∣
=

∣∣∣a(λ)2 − a2

b+ b(λ)

∣∣∣ = ∣∣∣εa+ a(λ)

b+ b(λ)

∣∣∣ ≤ |ε| 2Δ

b(λ)

= O(|ε|Δ1/2) (from Lemma 2.5, excepting finitely many λ’s)

= O(Δ3/2 |λ|−2
) (from (2.13)).
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The asymptote L(a,Δ) to H(a,Δ) = Hk is the line y = (b/a)x and a unit
normal vector to this line is u = (b/Δ,−a/Δ). We can bound the distance of

λ = (x, y) = (a(λ) cosh s, b(λ) sinh s)

to L(a,Δ) as follows:

|u · λ| =
∣∣∣∣bxΔ − ay

Δ

∣∣∣∣ = 1

Δ

∣∣ba(λ) cosh s− ab(λ) sinh s
∣∣

=
1

Δ

∣∣(b(λ) + ε′)a(λ) cosh s− (a(λ) − ε)b(λ) sinh s
∣∣

=
1

Δ

∣∣a(λ)b(λ)e−s + εb(λ) sinh s+ ε′a(λ) cosh s
∣∣

= O(Δ2 |λ|−1
) + |ε|O(

Δ−1b(λ) sinh s+Δ−1/2a(λ) cosh s
)

(since ε′ = O(Δ1/2ε) and a(λ)es ∼ |λ| or b(λ)es ∼ |λ| from (2.10))

= O(Δ2 |λ|−1) + |ε|O(
Δ−1b(λ)es +Δ−1/2a(λ)es

)
= O(Δ2 |λ|−1

) + O
(|ε| |λ|Δ−1/2

)
(from (2.10))

= O(Δ2 |λ|−1
) (from (2.13)).

Therefore in the region |λ| ≥ CΔ3/2 each point of Λ is at distance O(Δ1/2) from
one of the asymptotes to the hyperbolasHk. In each strip of width O(Δ1/2) around
each such asymptote we therefore have at most C points, a constant. This gives a
total of O(Δ) points of Λ in that region as there are that many hyperbolas Hk. In
the region |λ| ≤ CΔ3/2 we also have O(Δ) points because of Corollary 2.4. This
concludes the proof of the first part of Theorem 1.2.

To prove that
∣∣Λ ∩ [−R,R]2

∣∣ = O(R2/3) notice that by Corollary 2.4 and by
the first part of Theorem 1.2 we have

∣∣Λ ∩ [−R,R]2
∣∣ = O

(
min

{ R

t1/2
, t
})

= O
(
R2/3

)
.
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