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The twisting representation of the
L-function of a curve

Francesc Fité and Joan-C. Lario

Abstract. Let C be a smooth projective curve defined over a number field
and let C’ be a twist of C. In this article we relate the f-adic represen-
tations attached to the ¢-adic Tate modules of the Jacobians of C' and C’
through an Artin representation. This representation induces global rela-
tions between the local factors of the respective Hasse—Weil L-functions.
We make these relations explicit in a particularly illustrative situation. For
all but a finite number of Q-isomorphism classes of genus 2 curves defined
over Q with Aut(C) ~ Dg or D12, we find a representative curve C'/Q such
that, for every isomorphism ¢: C’ — C satisfying some mild condition, we
are able to determine either the local factor L,(C’/Q,T) or the product
L,(C"/)Q,T) - L,(C'/Q, —T) from the local factor L,(C/Q,T).

1. Introduction

Let C and ¢’ be smooth projective curves of genus g > 1 defined over a number
field k& that become isomorphic over an algebraic closure of k (that is, they are
twists of each other). The aim of this article is to relate the (-adic representations
attached to the Qg-vector spaces V;(C) and V;(C"). Here, for a prime ¢, V;(C)
stands for Q; @ T¢(C'), where T;(C') denotes the ¢-adic Tate module of the Jacobian
variety J(C) attached to C (and similarly for C”).

The case of quadratic twists of elliptic curves is well known. If E and E’ are el-
liptic curves defined over k that become isomorphic over a quadratic extension L/k,
then there exists a character x of Gal(L/k) such that

(1.1) Vi(E") ~ x @ Vi(E).

This translates into a relation of local factors of the corresponding Hasse—Weil
L-functions. Indeed, one has that, for every prime p of k unramified in L,

(1.2) Lp(E' [k, T) = Ly(E/k, x(Frob,)T) .
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Hence, from now on we will assume that the genus of C' (and C’) is g > 2, and
we will focus on obtaining a generalization of relation (1.1).

Let us fix some notation. Hereafter, Q denotes a fixed algebraic closure of Q
that is assumed to contain k and all of its algebraic extensions. For any algebraic
extension F/k, we will write Gr := Gal(Q/F). For abelian varieties A and B
defined over k, denote by Homp (A, B) the Z-module of homomorphisms from A
to B defined over F', and by Endgr(A) the ring of endomorphisms of A defined
over F. Write Hom% (A, B) for the Q-vector space Q@ Homp(A, B), and EndOF(A)
for the algebra Q ® Endp(A). We write A ~p B to denote that A and B are
isogenous over F'.

1.1. Relating ¢-adic representations of twisted curves

Let Aut(C) be the group of automorphisms defined over Q of C, and let Isom(C”, C)
be the set of all isomorphisms from C’ to C. Throughout the paper, L/k (re-
spectively K/k) will denote the minimal extension of k where all the elements
in Isom(C’, C) (respectively in Aut(C)) are defined. By a theorem of Hurwitz,
Aut(C') has order less than or equal to 84(g — 1). Since the isomorphism ¢ induces
a bijection between Aut(C') and Isom(C’, C'), we have, in particular, that these two
sets are finite. Thus, the extensions K/k and L/k are finite. Since the curves C'
and C’ are defined over k, the extensions K/k and L/k are Galois extensions.
Clearly, K/k is a subextension of L/k. We can now state the principal result of
Section 2.

Theorem 1.1. The representation
Oc: Ge = Aut(C) x5, Gal(K/k) — Autg(End% (J(C))),

defined by equation (2.2) and called the twisting representation of C', satisfies that,
for every Oc-twist ¢: C' — C, there is an inclusion of Q¢[Gy]-modules

(1.3) V(€' € (00 0 M) @ Vi(C).
Here \y: Gal(L/k) — G¢ stands for the monomorphism defined by equation (2.1).

This result encompasses Remark 2.1, Proposition 2.3 and Theorem 2.1, and we
refer to the remaining results of Section 2 for proofs that the objects involved in
the statement are well defined. Requiring a twist C’ of C to be a fc-twist is a
mild condition that we make precise in Definition 2.1. In Proposition 2.4, we show
that (1.3) indeed generalizes (1.1).

1.2. Applications

In the particular cases that we will consider, one can in fact compute the whole
decomposition of (0 o Ay) ® Vi(C). This leads to a relation between local factors
of C and C’ of the style of (1.2), that is, a relation written in terms of an Artin
representation. Such global relations have proved to be most useful when one is
interested in the study of the behaviour of the local factor at a varying prime (e.g.,
generalized Sato—Tate distributions; see Section 4 of [5] and especially [6]).
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The essential feature of the cases considered in which one can perform the
computation of the decomposition of (¢ o Ay) ® Vo(C) is the splitting of the
Jacobian J(C) over K as the power of an elliptic curve E/K (what we call the
completely split Jacobian case). In this article we restrict to the case in which F
does not have complex multiplication (CM), and we refer to [6] for a treatment of
the case in which E has CM.

After some considerations of general type for the completely split Jacobian case
of Section 3, we restrict our attention in Section 4 to the situation in which C' is
a genus 2 curve defined over Q with Aut(C) =~ Dg (resp. Di2). Recall that every
such a curve is Q-isomorphic to a curve C, in the family of (4.3) (resp. in the
family of (4.4)) for some u in Q* \ {1/4,9/100} (resp. in Q* ~ {1/4,—1/50}). We
then prove the following result:

Theorem 1.2. Let ¢ : C' — C be a twist of C = C,, with Aut(C) ~ Dg (re-
spectively Aut(C) ~ Di3). Assume that u does not belong to the finite list (4.1)
(respectively (4.2)). If Vi(C") is a simple QG k|-module, then for every prime p
unramified in L/Q, we have

Ly(C"/Q,T)* iff=1,

Ly(C/Q.0c 0 2o, T) = {LP(C’/Q,T)Q Ly(C'/Q,=T)* if f =2,

where f denotes the residue class degree of p in K.

In the statement of the theorem, L,(C/Q,60c o Ay, T') stands for the Rankin—
Selberg polynomial whose roots are all the products of roots of L,(C/Q,T) and
roots of det(1 — O¢c o Ay (Frob,)T).

2. The twisting representation 6¢

For any twist C’ of a smooth projective curve C' defined over k of genus g > 2,
let K/k and L/k be as in the introduction. We will write the natural action of the
group Gal(L/k) on Aut(C), Isom(C’,C), End}(J(C)), and Hom$ (J(C), J(C"))
using left exponentiation and we will often avoid writing o for the composition of
maps. Then, we have the following monomorphism of groups:

Aot Gal(K/k) — Aut(Aut(C)), Ac(o)(a) =‘a.

Indeed, the minimality of K guarantees that if o € Gal(K/k) is such that o = “«
for every @ € Aut(C), then o is trivial. We define the twisting group of C' as

Geo = Aut(C) x5, Gal(K/k),

where X, denotes the semidirect product through the morphism A\c. We next jus-
tify the name for G¢. First, we fix some notation. Suppose that F’/k is a Galois ex-
tension and that F'/k is a Galois subextension of F'/k. Let 7mp//p: Gal(F'/k) —
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Gal(F/k) stand for the canonical projection. For every isomorphism ¢: C" — C|
define the map

(2.1) Aot Gal(L/k) = G, Aglo) = (6(70) " mr k().
Lemma 2.1. The map Ay s a monomorphism of groups.

Proof. Let o and 7 belong to Gal(L/k). Then we have
(@(Te) " mry(07) = ($(T0) T o T (7)), mr xc(07))
(¢(U¢)71/\C(7TL/K(U))<¢(T¢)7l)aWL/K(O') omr k(7))
(@) mry k(@)@ 0) " mr (7)) = Xo(0) 0 Ao (7).

Agp(0T)

Let o € Gal(L/k) be such that ¢(°¢) ' =id and 71,k (0) is trivial, i.e., ¢ = 7¢
and o € Gal(L/K). Let 1 be any element of Isom(C’,C). Since ¢! is an
element of Aut(C), it is fixed by o. Then, one has

Y= ) = (o) p = o=
The minimality of L now guarantees that o is trivial. O

Proposition 2.1. There is a one-to-one correspondence between the elements of
the following sets:

i) The set Twist(C/k) of twists of C up to k-isomorphism;

ii) The set of monomorphisms X: Gal(F/k) — G¢ of the form X = & X, Tp/k,
with €& a map from Gal(F/k) to Aut(C), where we identify

Az Gal(Fy/k) = Ge and  Ag: Gal(Fy/k) — Ge
if there exists o € Aut(C) such that, for every o € Gal(F1Fy/k), one has
Aro TR\ Fy | Fy (O')(Oé, 1) = (Oé, 1)/\2 OTR Fy/F> (0) ;

is given by associating to a twist C' of C the class of the monomorphism Ag,
where ¢ is any isomorphism from C to C'.

Proof. There is a well-known bijection between the elements of Twist(C/k) and the
elements of the cohomology set H' (G}, Aut(C)), given by associating to a twist C’
of C the class of the cocycle £(a) = ¢(7¢)~! (see [11], chapter X). Now, associate to
the cocycle € the morphism A: Gy — G defined by A = € Mo Tk Observe that
for o and 7 in Gy, one has that (o) = A(o)A(7) if and only if £(o7) = &£(a)0&(7).
Let G denote the kernel of A and let \: Gal(F/k) — G¢ satisfy A = Ao T/ F
Then A is injective. Moreover, the cocycles &1 and & are cohomologous if and only
if there exists o in Aut(C) such that for all o in G}, there holds &1 (0)o%a = a3 (o),
which is equivalent to A1 (0)(a, 1) = (o, 1)A2(0). Finally, this amounts to requiring
that Ay omp, g, /p, (0) (0, 1) = (o, 1) A2 0Tp, /1, (0) for every o € Gal(Fy Fa/k). O
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Proposition 2.2. The monomorphism Ag is an isomorphism if and only if the
action of Gal(L/K) on Isom(C’,C) has a single orbit.

Proof. One has that A4 is exhaustive if and only if |Aut(C)| = | Gal(L/K)|. This
is equivalent to the fact that the injective morphism

A: Gal(L/K) — Aut(C), o) = o(7p)~"

is an isomorphism. This happens if and only if for every a € Aut(C) there exists
o € Gal(L/K) such that a¢ = 7¢. That is, if and only if for every ¢ € Isom(C’, C),
there exists o € Gal(L/K) such that ¢ = 7¢. O

Remark 2.1. For any twist C’ of C, the abelian varieties J(C) and J(C’) are
defined over k and are isogenous over L. Let F/k be a subextension of L/k.
Denote by 6(C,C’; L/F) the representation afforded by the Q[Gal(L/F)]-module
Hom! (J(C), J(C")). We will write 8(C,C") := 6(C,C"; L/k). We recall that The-
orem 3.1 of [5] asserts that

Vi(C") CH(C,C") @ Vi (O)
as Q¢[Gx]-modules.

Every isomorphism ¢ from C’ to C induces an isomorphism from J(C”) to
J(C), that we will also call ¢. Consider the map

0p: Gal(L/k) — Autg(End] (J(C))), 04(0)(¥) = ¢(79)"* 074,
where ¢ is in Gal(L/k) and ¢ in End? (J(C)).

Proposition 2.3. For every isomorphism ¢: C' — C, the map 04 is a rational
representation of Gal(L/k) isomorphic to 0(C,C").

Proof. Tt is indeed a representation. For o and 7 in Gal(L/k), one has
Os(o) () = &(7T¢) " 0 7T
=0(¢7) o7 (d(TP) T 0 TY)
= (05(0) 0 05(7))(¥) -

The map ¢: Hom? (J(C), J(C")) — EndY} (J(C)), defined by ¢(¢) = ¢ o ¢ for
¢ € Hom? (J(C), J(C")) is an isomorphism of Q-vector spaces. Now, one deduces
that 6(C,C") and 64 are isomorphic from the fact that, for every ¢ in Gal(L/k),
the following diagram is commutative:

0(C,C") (o)

Hom! (J(C), J(C")) —————= Hom J(C)
l l%
End? (J( bolo) End? (.J
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Denote also by « the endomorphism of J(C') induced by an automorphism « in
Aut(C). We define the twisting representation of the L-function of C' as the map

(2.2) Oc: Go — Autg(End%(J(C))), Oc((o,0))(1h) = a0 %eh,
where ¢ in Gal(K/k) and ¢ in End% (J(C)).

Definition 2.1. We will say that a twist C' of C is a Oc-twist of C if L is such
that End% (J(C)) = End) (J(C)).

Theorem 2.1. The map 0¢c is a faithful representation of Go. Moreover, for
every Oc-twist C' of C and every isomorphism ¢: C' — C, one has 0c o Ay = 0.
That is, the following diagram is commutative:

Gal(L/k)— 2~ G

T

Autg(End% (J(C))).
Proof. For 11, o € Aut(C) and o1, o2 € Gal(K/k), one has

Oc (o, 01)(a2,02))(¥) = Oc (o1 0 Trap, 0102)) (1Y) = a1 0 TPy 07172 1)
= a1 07 (az 07 ¢P) = (0c((a1,01)) 0 Oc((a2,02))) () -

Let o in Aut(C) and o in Gal(K/k) be such that 0c(a, 0)(yp) = 4 for every + in
End% (J(C)). In particular, for ¢ = a, one obtains that o = id, which implies
o = id. Then ¢ = %4 for all ¢ in End% (J(C)) and the minimality of K implies
that o is trivial. Finally, there holds

(6 0 Xg)(0) () = 0c(D(7¢) 1y x (0)) () = (7)™ 0 T9p = O5(0) (4)
for o € Gal(L/k) and ¢ € EndY) (J(C)). O
As a corollary of the previous results one obtains the desired inclusion
(2.3) Vio(C') C (6o 0 Ap) @ Vi(C)
for every fc-twist C” of C'. This inclusion is a generalization of the identity (1.1).

Proposition 2.4. If C' is a nontrivial twist of C' such that End} (J(C)) ~ Q,
then the extension L/k is quadratic, the representation Oc o Ay is the quadratic
character of Gal(L/k), and one has V;(C") ~ (6c o \y) @ Vo (C).

Proof. By the inclusion (2.3), it is enough to prove that L/k is quadratic and that
0(C,C") is the quadratic character of L/k. Since Aut(C) injects in EndY (J(C)) =
End)(J(C)) ~ Q, we have that Aut(C) injects in Cy and that K = k. Since C’
is nontrivial, Aut(C) is nontrivial and, by Lemma 2.1, we deduce that L/k is a
quadratic extension. Since the 1-dimensional representation 6(C, C") is faithful, it
corresponds to the quadratic character of Gal(L/k). O
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3. The completely split Jacobian case

In this section we explore the twisting representation ¢ when the Jacobian J(C)
splits over K as the power EY of an elliptic curve E defined over K without complex
multiplication (CM). Note that in this case dim 6 = g*. We will use the notation
He = Aut(C) when we view Aut(C') as a subgroup of the twisting group G¢. We
will be interested in the following cases:

(I) [K: k] = g%, the elliptic curve E does not have CM, and ¢ is absolutely
irreducible.

() [K: k] = g*/2, the elliptic curve E does not have CM, and 0c ~g 61 © 62
for #; and 65 absolutely irreducible non-isomorphic representations such that
Resgg 01 = Resgg 0.

Lemma 3.1. Suppose that J(C) ~x E9, for E an elliptic curve defined over K
without CM. One has:

Resgg Oc~g-o,
where o 1s a rational representation of Ho of dimension g.

Proof. Consider the isomorphism

g
®: Endj(J(C)) ~ Endy (E?) — P Hom' (E, E9),
i=1

defined by ®(¢) = (pot1,...,pou,), where 1;: E — EY is the inclusion of E as the
i-th component of E9. The action of Ho = Aut(C'), which is by right composition,
clearly restricts to each HomY% (F, E9). The rational representation ¢ afforded by
Hom(}((E, E9) satisfies Resgg fc =~ g- o, and has dimension g provided that E has
no CM. O

Proposition 3.1. Suppose that J(C) ~x E9, for E an elliptic curve defined
over K. Suppose we are in either case (I) or (II). Let o be as in Lemma 3.1. Then
one has KK

Indgg o~ ——

-Oc.

Proof. Let (+,-)a. and (-, ). denote the scalar products on complex-valued func-
tions on G¢ and He, respectively. For the case (I), by Frobenius reciprocity, the
multiplicity of 8¢ in Indflf7 o is

(TrIndgg 0,Tr0c)c. = (Trp, Tr Resgg Oc)me =9 (Tro,Tro)p. > g.

Since [K : k] = ¢?, the dimensions of Indg(c7 o and g - ¢ equal g3, and the result
follows.
For the case (II), observe that Resgg 0 = Resgg 0> implies that Resgg 0 =

g/2 - 0. Then, the multiplicity of 6; in Indgg 01is

(Trlndgg 0,Tr01)g. = (Trp, Tr Resgg 0. == (Tro, Tro) . >

N
N
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from which one sees that g/2- 6, is a subrepresentation of Indgg 0. Similarly, one
proves that g/2 - 05 is a subrepresentation of Indg‘c7 0. Therefore, g/2 - 0¢ is a

subrepresentation of Indgc 0 and, since they both have dimension equal to g°/2,
C
they are isomorphic. O

Corollary 3.1. Suppose that J(C) ~x E9, for E an elliptic curve defined over K.
Suppose we are in either case (I) or (II). Then one has

Ind$j¢ Res3iC Oc ~ [K : k] - Oc .

In what follows we will be particularly interested in the structure of V;(C') as a
Q¢[Gk]-module. First, we define some notation. For an isomorphism ¢: ¢’ — C,
denote by

ResA\y: Gal(L/K) — Aut(C)

the restriction of the morphism A, to the subgroup Gal(L/K). Observe that
Resgg OcoRes Ay ~ 0(C,C"; L/K).

Theorem 3.1. Suppose that J(C) ~x E9, for E an elliptic curve defined over K.
Let C' be a Oc-twist of C. Suppose that Vi(C') is a simple Q|G k]-module. Then,
one has:

Q[Gal(K/k)] @ Vi(C)  if (1),

0(C,C") @ Vy(C) =~ 2. Q[Gal(K/k)] @ Vi(C") if (IT).

Proof. For the case (I), recall that by Theorem 3.1 in [5] there is an inclusion of
Q¢[Gx]-modules

Vi(C") C 0(C,C"; L/K) @ Vi(C)~ (ResfC Oc o Res Ag) @ Ve(C)
~ g*- (0oRes)\y) @ Vi(E).
Since V¢(C") is a simple Q;[G i ]-module, we obtain that

(3.1) Vi(C") ~ (0o Res ) @ Vi(E).
Tensoring both sides of the previous isomorphism with g - Q[Gal(K/k)] we get
g-Q[CGal(K/k)] ® Vi(C") ~ g-Ind% (0o Res\g) @ Vi(E)

~ Tnd% (0o Res \y) @ V¢(C) ~ (Indg‘c7 00 Xs) @ Vy(C)

~ g-(0coXs) ®Vi(C) ~ g0, Vi(C) ~ g-0(C,C") @ Vi(C),

where we have used that Indflf7 0 = g - 0c, as follows from Proposition 3.1. For
the case (II), everything is as for case (I) until equation (3.1). Then, tensoring by
2¢g - Q[Gal(K/E)], we get

2¢ - Q[Gal(K/k)] @ Vi(C") =~ 2g-Indk (00 Res \y) @ Vi(E)
~ 2Ind% (0o Res\y) @ Vi(C) ~ Q(Indg‘c7 00 Xy) ®@Vi(C)
~ g (0o 0 Xg) ®Vi(C) = g-0(C,C") @ Vi(C). O
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Corollary 3.2. Assume the hypotheses of Theorem 3.1, and that one of the
cases (1) or (I1) holds. Let p a prime of good reduction for both C' and C' un-
ramified in L/k. Write ay = Tr oc(Froby) and aj, = Tr oo/ (Froby). Then:

i) If Frob, € Gk, one has

sgn(ay - Tr(0(C, C")(Froby))) = sgn(ay,) .

ii) If Frob, & Gk, one has

Tr6(C, C")(Frob,) = 0.

Proof. Theorem 3.1 implies
Te(9(C. C")(Froby)) - ap = aj, - Tr(QIGal(K/k)](Frob,))..
Part i) follows from the fact that if Frob, € Gk, then
Tr(Q[Gal(K /k)|(Froby)) = | Gal(K/K) .

For part ii), suppose that Frob, ¢ Gx. Corollary 3.1 implies that Tr (o) =0
for any o ¢ He. Then, Tr6(C,C")(Froby) = Trfc o Ay (Frob,) = 0. O

4. The genus 2 case

Throughout this section, C' denotes a genus 2 curve defined over Q. Let us recall
some basic facts that may be found in [2]. Tt is well known that C' admits an affine
model given by a hyperelliptic equation Y2 = f(X), where f(X) € Q[X]. Any
element o € Aut(C) can then be written in the form

a(X,Y) = (mX+n mq —np > 7

pX +q (pX +¢q)?

for unique m, n,p,q € K. Moreover, the map

Aut(C) = GLy(K), ar— (’; Z)

defines a 2-dimensional faithful representation of Aut(C'). We will often identify an
automorphism of C' with its corresponding matrix. Note that w(X,Y) = (X, -Y)
is always an automorphism of C| called the hyperelliptic involution of C, which

lies in the center Z(Aut(C)) of Aut(C).
The group Aut(C) is isomorphic to one of the groups

Cy, Cy x Cy, Dg, Dy, 2D1a, Sy, Cy x Cs,

where 2D15 and Sy denote certain double covers of the dihedral group of 12 ele-
ments Dj2 and the symmetric group on 4 letters Sy. Completing the study initiated
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by Clebsch and Bolza, Igusa [8] computed the 3-dimensional variety Mo of moduli
of genus 2 curves defined over Q. Generically, the only nontrivial automorphism
of a curve in My is the hyperelliptic involution and, thus, Aut(C) ~ C3. The
curves with Aut(C') containing Cy x Co constitute a surface in Ms. The moduli
points corresponding to curves such that Aut(C') contains Dg or Dqo describe two
curves contained in this surface. The curves with Aut(C') ~ 2D, Sy, or Cy x Cs
correspond to three isolated points of M.

In this section, we will explicitly compute the twisting representation - of C
and the decomposition of 6(C,C") ® Vy(C) when Aut(C) ~ Dg or Dis. In both
cases, the irreducible characters of G¢ will be denoted x;, even though they refer
to different groups (we will always refer the reader to the corresponding character
table in Section 5). We will denote by p; a representation of character x;.

Lemma 4.1. If Aut(C) is nonabelian, then J(C) ~x E?, where E is an elliptic
curve defined over K.

Proof. Tt is straightforward to check that Aut(C') contains a nonhyperelliptic in-
volution u. Then the quotient F = C/(u) is an elliptic curve defined over K (see
Lemmas 2.1 and 2.2 in [2]). The injection F — J(C) is also defined over K and
the Poincaré Decomposition Theorem ensures the existence of an elliptic curve E’
defined over K such that J(C) ~x E x E’. Since Endg (J(C)) contains Aut(C),
it is non-abelian and so Endg (J(C)) ~ My (Endg (E)), from which E ~x E’. O

Remark 4.1. Henceforth, for the cases Aut(C) ~ Dg or Dis, we will make the
assumption that the elliptic quotient E does not have complex multiplication, i.e.,
End% (J(C)) ~ My(Q). This only excludes a finite number of Q-isomorphism
classes. Indeed, curves with Aut(C') ~ Dg or Djo defined over Q@ are parame-
terized by rational values of the absolute invariant u (see subsections 4.1 and 4.2
for details). According to Proposition 8.2.1 of [1], the j-invariant of the elliptic
quotient F has two possible forms:

26(3 F 10y/u)?
(1 F 2y/u)(1 £ 2y/u)?
2°33(2 F 5v/w)* (=)
1 F2vu)(1 £2Vu)?

Since the degree of the extension Q(j(E))/Q is 1 or 2 and the number of quadratic
imaginary fields of class number 1 or 2 is finite, we deduce that there exists only a
finite number of rational absolute invariants u for which £ has CM. According to
the table on page 112 of [1], for Aut(C) ~ Dg these values of u are:

if Aut(C) ~ Dsg,
i(E) =

if Aut(C) >~ D12.

(41) B 3969 —8L 1 9 12 8L 81 2101 9501 6430 194481 96059601
1967169007 7007 5327497 3207 3257 9600 ' 39200 25920 777925 384238400

For Aut(C') ~ D2 the values of u for which E has CM are:

(4.2) 4 -4 1 1 27 4 125 20 256 756 62500
' 2571120727100 17’484 811025’ 3025 ' 250001
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Remark 4.2. By Lemma 4.1, if Aut(C) ~ Dg or Djs, then for every twist C’
of C, one has that

End) (J(C)) = End% (J(C)) ~ My(Endg (E)).

In other words, every twist C’ of C' is a f¢c-twist of C.

4.1. Aut(C) ~ Ds

Proposition 4.1 (Proposition 2.1 of [3]). There is a bijection between the Q-isomor-
phism. classes of genus 2 curves defined over Q with Aut(C) ~ Dg and the open

set of the affine line Q* ~ {1/4,9/100}, given by associating to each u € Q* \

{1/4,9/100} the projective curve of equation

Y273 = X5+ X322 4 ux2z*.

_ As follows from Proposition 4.4 of [3], the curve in the previous proposition is
@Q-isomorphic to

1
(43) C=0C,:Y?*Z* = X® -8X5Z + §)(422+3X224+EXZM—ZG.
u u? u? us
where we have chosen parameters z = 0, s = 1 and v = 1/u. Its group of

automorphisms is computed in Proposition 3.3 of [3], and it is generated by

- (% 13 v-(x )

from which we see that K = Q(y/u,v/2). Note that U and V satisfy the relations
U?=1,V*=1and UV = V3U. For the character table of the group G¢, see in
Section 5 Table 1 if u and 2u & Q*2; Table 2 if u € Q*2; and Table 3 if 2u € Q*2.

Proposition 4.2. One has

X11 if u and 2u ¢ Q*2,
Trfc = q xo+x10 if ueQ*?,
Xo+x7  if2u€ Q.

Gc _ Gc - GC _ GC
Moreover., RespS x9 = Resyf x10 in the second case, and Resy? x¢ = RespS x7
in the third case.

Proof. The dimension of §¢ is 4. Suppose that u and 2u ¢ Q*2. By looking at the
column of the conjugacy class 24 in Table 1, one sees that 17 is the only faithful
representation of dimension 4 of G¢.

One can also directly compute the representation f¢c. Denote by o* the image
of a € Aut(C) under the inclusion Aut(C) < End%(J(C)). We will prove that
End(}((J(C’)) = (1*, U*, V*, U*V*)q. Indeed, it is enough to see that 1*, U*, V*
and U*V* are linearly independent. Suppose that for certain \; in Q, one has
MU+ XU+ A3V*+ M U*V* = 0. Conjugating by V* one obtains A\ 1* — U™ +
A V* = N U*V* =0, which implies A\11* + A\3V* = 0 and thus A\ = A3 = 0.
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Similarly, one has AoU* + A\ U*V* = 0, that is Ay1* + A V* = 0, which implies
A2 = Ay = 0. Let o, 7 € Gal(K/Q) be such that o(v/u) = —/u and 7(v/2) = —/2.
Now, fc can be computed by observing that °U = UV, °V = V3, "U = UV,
and "V =V.

Suppose that u € Q*2. By looking at the column of the conjugacy class 2A in
Table 2, one sees that either pg or p1¢ is a constituent of 8¢, since otherwise 0
would not be faithful. Since g9 = 9,4, we deduce that - = g9 + 0190. Moreover,
by Lemma 3.1, Resgg 0c = 2 - o, where p is a representation of Ho ~ Dg. Since
the only faithful representation of Dg is irreducible, it follows that Resgg 09 =

Resgg 010 = 0. The case 2u € Q*? is analogous. O

As a consequence of the previous proposition and Theorem 3.1, we obtain the
following result:

Corollary 4.1. If C' is a twist of C such that Vo(C") is a simple Q|G k]-module,
then

Q[Gal(K/Q)] ® Ve(C") if u and 2u ¢ Q*2.

e {2 QIGA(K/Q)] @ V(C') ifu or 2u € Q2

Proof. If u € Q*2, the fact that Trc = xo + x10 together with ¢?/2 = [K: Q] = 2,
guarantees that we are in case (IT) of Theorem 3.1. The case 2u € Q*? is analogous.
If u and 2u & Q*2, then we are in case (I). O

4.2. Allt(C) ~ D12

Proposition 4.3 (Proposition 2.2 of [3]). There is a bijection between the Q-iso-
morphism classes of genus 2 curves defined over Q with Aut(C) ~ Dis and the
open set of the affine line Q* \ {1/4,—1/50}, given by associating to each u €
Q* ~ {1/4,—1/50} the projective curve of equation

Y224 = X6 + X323 + uZS.

_ As follows from Proposition 4.9 of [3], the curve of the previous proposition is
@Q-isomorphic to

C=0C,:Y?Z*= 27uX%—2916u2X"Z 4 243 u?>X*Z? + 29160 u3 X323

(4.4) +729uB X224 — 26244 u* X Z5 + 7294226 .

This curve corresponds to the curve appearing in Proposition 4.9 of [3], with the
choice of parameters z = 0, s = v and v = u/3. Its group of automorphisms is
computed in Proposition 3.5 of [3], and is generated by

o-(ta ¥ v (b )

from which we see that K = Q(+/u,v/3) (observe the change of two signs in the
matrix V with respect [3]). Note that U and V satisfy the relations U2 = 1, V6 =1
and UV = V5U. For the character table of the group G¢, see in Section 5 Table 4
if v and 3u ¢ Q*2; Table 5 if v € Q*2; and Table 6 if 3u € Q*2 .
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Proposition 4.4. One has

X15 if u and 3u ¢ Q*2,
Trlc = { xi + x;, fori#j€{10,11,12} ifu € Q™2
X8 + Xo if 3u e Q*2.

G G , G G )
Moreover, Resp¢ xi = RespC x; in the second case, and Res;C xs = Resy? xo in
the third case.

Proof. The dimension of ¢ is 4. Suppose that u and 3u € Q*?. By Lemma, 4.2,
and by looking at the column of the conjugacy class 2A in Table 4, one sees that
013, 014 and p15 are the only possible constituents of . We deduce that 8o ~ 015
from the fact that none of the representations 2- 013, 2- 014 and 913 P 014 is faithful.

One can also directly compute the representation #¢. Analogously to the case
Aut(C) ~ Dg one has End% (J(C)) = (1*, U*, V*, U*V*)q. Moreover, since the
algebra (1*, V*) has no zero divisors, one deduces that V** = V* — 1. Let o, 7 €
Gal(K/Q) be such that o(y/u) = —vu and 7(v/3) = —v/3. Then U = UV?,
V=V5"U=U,and "V = V5,

Suppose that u € Q*2. By Lemma 3.1, Resgg Oc = 2 - p. The only faithful
representation of Ho =~ Dj is irreducible. This, together with the fact that the
dimension of an irreducible representation of G¢ is at most 2 (see Table 5), implies
that f¢ is the sum of two irreducible representations of dimension 2. The only
sums of two irreducible representations of dimension 2 of G¢ which are faithful
are x10 + X11, X11 + X12, or X10 + X12. The case 3u € Q*? is analogous. O

Lemma 4.2. Let C be a smooth projective hyperelliptic curve. Let w be the hyper-
elliptic involution of C'. Then, one has

Tr o ((w,id)) = — dim End% (J(C)) .
Proof. Observe that for ¢ € End%(J(C)), one has ¢ ((w,id))(v) = —. O

As a consequence of the previous proposition and Theorem 3.1, we obtain the
following result:

Corollary 4.2. If C' is a twist of C such that V;(C") is a simple Q¢[Gi]|-module,
then

QIGA(K/Q)| & V(C")  if u and 3u ¢ Q.
2-Q[Gal(K/Q)] @ Vi(C") if u or 3u € Q*2.

Proof. If w and 3u € Q*2, the fact that Tr 0 = Y15 together with ¢? = [K: Q] = 4,
guarantees that we are in case (I) of Theorem 3.1. If u or 3u € Q*2, then we are
in case (II). O

0(C,C") @ Vi (C) ’1{

4.3. L-functions of twisted genus 2 curves

Now the proof of Theorem 1.2 is immediate. If p is an unramified prime in L/Q,
then the reciprocal of the characteristic polynomial of Frob,, acting on the Q¢[Gg]-
module on the left-hand side of the isomorphism of Corollary 4.1 or Corollary 4.2
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is L,(C/Q,0c 0N, T). Recall that f denotes the residue class degree of p in K/Q.
The result follows from the fact that the right-hand side of the isomorphism of
Corollary 4.1 or Corollary 4.2 is of the form o ® V;(C"), where o is a 4-dimensional
representation of Gal(K/Q) such that o(Frob,) has four eigenvalues equal to 1
if f =1, and two eigenvalues equal to 1, and two equal to —1 if f = 2.

Observe that thanks to Theorem 1.2, from the local factor L,(C/Q,T) and
the representation 0(C,C”) ~ f¢c o Ay, either the polynomial L,(C’/Q,T) or the
product L,(C'/Q,T)-L,(C"/Q,—T) can be determined. The indeterminacy of the
sign of a;, which follows from the product L,(C"/Q,T) - L,(C'/Q, ~T), can not be

handled with the relation
sgn(Tr(0(C, C")(Frob,)) = sgn(ay - a;,)

from Proposition 3.2, since this relation only holds for f = 1.

5. Appendix: Character tables of twisting groups

In the following tables, the notation GAP(n, m) indicates the m-th group of order n
in the ordered list of finite groups of [7].

Class | 1A 2A 2B 2C 2D 2FE 4A 4B 4C 8A 8B
Size 1 1 2 4 4 4 2 2 4 4 4
X1 1 1 1 1 1 1 1 1 1 1 1
X2 1 1 -1 1 -1 1 1 -1 -1 -1 1
X3 1 1 1 1 -1 -1 1 1 1 -1 -1
X4 1 1 -1 1 1 -1 1 -1 -1 1 -1
X5 1 1 -1 -1 1 -1 1 -1 1 -1 1
X6 1 1 1 -1 -1 -1 1 1 -1 1 1
X7 1 1 -1 -1 -1 1 1 -1 1 1 -1
X8 1 1 1 -1 1 1 1 1 -1 -1 -1
X9 2 2 2 0 0 0 -2 =2 0 0 0
X10 2 2 =2 0 0 0 -2 2 0 0 0
X11 4 -4 0 0 0 0 0 0 0 0 0

TABLE 1. Character table of Dg x (C2 x C2) ~ GAP(32,43).

Class | 1A 2A 2B 2C 2D 4A 4B 4C 4D AE
Size 1 1 2 2 2 1 1 2 2 2
X1 1 1 1 1 1 1 1 1 1 1
X2 1 1 -1 1 1 -1 -1 1 -1 -1
X3 1 1 -1 -1 -1 -1 -1 1 1 1
X4 1 1 1 -1 -1 1 1 1 -1 -1
X5 1 1 1 -1 1 -1 -1 -1 1 -1
X6 1 1 1 1 -1 -1 -1 -1 -1 1
X7 1 1 -1 -1 1 1 1 -1 -1 1
X8 1 1 -1 1 -1 1 1 -1 1 -1
X9 2 =2 0 0 0 21 =2 0 0 0
X10 2 =2 0 0 0 -2 24 0 0 0

TABLE 2. Character table of Dg x C2 ~ GAP(16,13)
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2B 2C 4A 8A 8B

2A

1A

1

(s —Cs

—(8

0
0

(s

Class

Size

X1
2
3
X4
X5

X6

X7

TABLE 3. Character table of Dg x C2 ~ GAP(16,7)

6C  12A

6A 6B

3A 4A 4B

2A 2B 2C 2D 2E 2F 2G

1A

2
2
4

Class

Size

X1

X1

X1

X1

X1

X1

X1

X1

X1
X10

X11

X12

X13

X14

X15

GAP(48, 38)

~

TABLE 4. Character table of Dis x (C2 x C?)

68 6C

2A 2B 2C 2D 2E 2F 2G 3A 6A

1A

2

Size
Class

X1

X2

X3

X4

X5

X6

X7

X8

X9
X10

X11

X12

TABLE 5. Character table of D12 x Cy >~ GAP(24, 14)
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Class | 1A 2A 2B 2C 3A 4A 6A 6B 6C
Size 1 1 2 6 2 6 2 2 2
X1 1 1 1 1 1 1 1 1 1
X2 1 1 1 -1 1 -1 1 1 1
X3 1 1 -1 -1 1 1 -1 1 1
X4 1 1 -1 1 1 -1 -1 —1 1
X5 2 2 -2 0 -1 0 1 1 -1
xo| 2 -2 0 0 2 o0 0 0 -2
X7 2 2 2 0 -1 0 -1 -1 -1
xs| 2 =2 0 0 -1 0 —-v=3 V=3 1
Yol 2 =2 0 0 -1 0 =3 —-v=3 1
TABLE 6. Character table of D12 x C> >~ GAP(24, 8)
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