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Transversal multilinear Radon-like transforms:

local and global estimates

Jonathan Bennett, Neal Bez and Susana Gutiérrez

Abstract. We prove local “Lp-improving” estimates for a class of multi-
linear Radon-like transforms satisfying a strong transversality hypothesis.
As a consequence, we obtain sharp multilinear convolution estimates for
measures supported on fully transversal submanifolds of Euclidean space
of arbitrary dimension. Motivated by potential applications in diffraction
tomography, we also prove global estimates for the same class of Radon-like
transforms under a natural homogeneity assumption.

1. Introduction

The main purpose of this paper is to obtain local and global estimates for a class
of multilinear Radon-like transforms satisfying a transversality hypothesis.

A popular description of a Radon-like transform is a mapping R of the form

Rf(x) =

∫
Rd

f(y) δ(F (y, x))ψ(y, x) dy,

where f : Rd → C is a suitable test function, x ∈ Rn, and F : Rd × Rn → Rk is
a suitably smooth function which typically satisfies some nondegeneracy condition
on the support of the cutoff function ψ. Here d, k, n ∈ N and δ denotes the Dirac
delta distribution on Rk. If ∇F does not vanish then δ ◦ F is easily seen to be
a well-defined distribution. Notice that Rf(x) may be interpreted as a surface
integral (or “average”) of f over the submanifold

Mx := {y ∈ Rd : F (y, x) = 0, (y, x) ∈ supp ψ},
which generically has dimension d−k. It is natural to seek so-called “Lp-improving”
properties of such transforms; that is, given F find the exponents p and q for
which R extends to a bounded mapping from Lp(Rd) into Lq(Rn). There is a
considerable literature on such problems which we do not discuss here, although
the interested reader should consult the paper of Tao and Wright [14].
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A natural description of a multilinear Radon-like transform is a mapping R of
the form

(1.1) Rf(x) =

∫
Rd1×···×Rdm

f1(y1) · · · fm(ym) δ(F (y, x))ψ(y, x) dy,

where f = (fj)
m
j=1, fj : R

dj → C are suitable test functions, x ∈ Rn, and F : Rn ×
Rd1 × · · · ×Rdm → Rk is a suitably smooth function which typically satisfies some
nondegeneracy conditions on the support of the cutoff function ψ. Again it is
natural to seek Lp1(Rd1)× · · · ×Lpm(Rdm) → Lq(Rn) estimates for R. By duality
these qualities may be expressed as bounds on multilinear forms such as

(1.2)

∫
Rd1×···×R

dm+1

m+1∏
j=1

fj(yj) δ(F (y))ψ(y) dy ≤ C
m+1∏
j=1

‖fj‖Lpj (Rdj ).

Estimates of the form (1.2) arise frequently in problems in a variety of fields
including geometric and harmonic analysis and dispersive PDE. Often these are
manifested as certain multilinear singular convolution inequalities, which we now
describe. In the work of Tao, Vargas, and Vega [13] it was shown that whenever S1

and S2 are transversal compact submanifolds of Rd, where d ≥ 2, which are smooth
with nonvanishing Gaussian curvature, we have the estimate

(1.3) ‖f1dσ1 ∗ f2dσ2‖L2(Rd) ≤ C ‖f1‖
L

4d
3d−2 (dσ1)

‖f2‖
L

4d
3d−2 (dσ2)

.

Here, dσj is the measure supported on Sj given by∫
Rd

f(x) dσj(x) =

∫
Uj

f(Σj(x
′)) dx′,

where Σj : Uj → Rd parametrises Sj for some compact subset Uj of Rd−1. See [9]
for the case d = 3 on which [13] built. The estimate in (1.3) was obtained in [13]
from a Ld/d−1(Rd) → Ld(Rd) estimate on the Radon-like transform in (1.1) with
m = 1 and where F satisfies a rotational curvature condition on the support of
the cutoff. By Plancherel’s theorem, (1.3) immediately implies a bilinear adjoint
Fourier restriction estimate for transversal compact subsets of surfaces given by
the graph of an elliptic phase (such as a paraboloid).

At higher levels of multilinearity, in particular when the level coincides with the
ambient dimension, transversality is key and additional curvature hypotheses do
not increase the Lp improving nature of the singular convolution operation. It is
known that if S1, . . . , Sd are transversal C1,β codimension one submanifolds of Rd

at the origin, 1 ≤ q ≤ ∞ and p′j ≤ (d− 1)q′, then

(1.4)
∥∥f1dσ1 ∗ · · · ∗ fddσd∥∥Lq(Rd)

≤ C

d∏
j=1

‖fj‖Lpj (dσj)

if each fj ∈ Lpj(dσj) has support sufficiently close to the origin. This follows
from [8] when d = 3, and [4] for d ≥ 4. In [3] the case d = 3, q = ∞ was considered
under certain scalable assumptions at each point of the hypersurfaces.
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A major goal of this paper is to provide a certain generalisation of (1.4) to
transversal submanifolds of general codimension. This will be a consequence of
Theorem 1.2 below concerning local multilinear Radon-like transform estimates.
To be precise, let Uj be a compact subset of Rdj and let Σj : Uj → Rd parametrise
a C1,β and dj-dimensional submanifold Sj of Rd, where d ≥ 2 and 1 ≤ j ≤ m.
As above, define the associated measure dσj on Rd by∫

Rd

f(x) dσj(x) =

∫
Uj

f(Σj(y)) dy.

We say that S1, . . . , Sm are fully transversal at the origin if

(1.5)

m⊕
j=1

ker(dΣj(0))
∗ = Rd.

Theorem 1.1. Suppose that the submanifolds S1, . . . , Sm are fully transversal at
the origin. If 1 ≤ q ≤ ∞ and p′j ≤ (m− 1)q′, then there exists a constant C such
that

(1.6) ‖f1dσ1 ∗ · · · ∗ fmdσm‖Lq(Rd) ≤ C
m∏
j=1

‖fj‖Lpj (dσj)

for all fj ∈ Lpj (dσj) supported in a sufficiently small neighbourhood of the origin.

When dj = d − 1 for each 1 ≤ j ≤ m, Theorem 1.1 was proved in [4]. The
general case for m = 3 was established by Bejenaru and Herr [1] (although under
certain scalable assumptions over the entire patches Uj in the spirit of [3]) using
the nonlinear Brascamp–Lieb inequalities in [4]. Bejenaru and Herr succeeded in
using this to obtain the local well-posedness of the three-dimensional Zakharov
system in the full subcritical regime.

In Theorem 1.1, the most interesting case is where p′j = (m − 1)q′ for each j
since, of course, the remaining cases follow from Hölder’s inequality. We shall
discuss the optimality of the estimates given by Theorem 1.1 later in Section 3,
including a justification that given, 1 ≤ q ≤ ∞, the exponents pj satisfying p′j =
(m− 1)q′ cannot be improved.

Under the hypotheses of Theorem 1.1, taking q = 2 and via Plancherel’s theo-
rem, we obtain the estimate

∥∥∥ m∏
j=1

f̂jdσj

∥∥∥
L2(Rd)

≤ C

m∏
j=1

‖fj‖L(2m−2)′ (dσj)

for all fj ∈ L(2m−2)′(dσj) supported in a sufficiently small neighbourhood of the
origin. This estimate is, of course, a certain multilinear adjoint Fourier restriction
estimate for fully transversal submanifolds of Rd, and extends previous results of
this nature in [8] and [4]. See [7] for further context and results.
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Notice that for the transversality assumption (1.5) to hold it is necessary that

(1.7)

m∑
j=1

dj = (m− 1) d.

It is also natural to assume that m ≥ 2 and 1 ≤ dj ≤ d − 1 for each 1 ≤ j ≤ m.
We shall now state our local result on Radon-like transforms, for which we shall
assume the above restrictions on d,m and each dj . In order to state the theorem,
we need to introduce some notation which will be adopted throughout the paper.

Let
Kj = {d1 + · · ·+ dj−1 + 1, . . . , d1 + · · ·+ dj−1 + dj}

for 1 ≤ j ≤ m, so that the (Kj)
m
j=1 partition {1 . . . , (m − 1)d}. Note that the

cardinality of each Kj is dj . In addition, it is natural to introduce some language
from exterior algebra to express the nondegeneracy assumption on the mapping F
in the distribution δ◦F . We use the standard notation Λn(Rd) for the nth exterior
algebra of Rd. Also, we use � : Λn(Rd) → Λd−n(Rd) for the Hodge star operator.

For a linear map F : Rd1 × · · · × Rdm → Rd, let Yj(F ) ∈ Λdj(Rd) be given by

(1.8) Yj(F ) =
∧

k∈Kj

F (ek) ∈ Λdj(Rd),

where ek denotes the kth standard basis vector in R(m−1)d ∼= Rd1 × · · · × Rdm .
We shall write ek for the kth standard basis vector throughout; the dimension

will be clear from the context. Also, with an index such as k ∈ Kj , as in (1.8),
we shall always mean that the operation is being performed as k increases over Kj .

Theorem 1.2. Let
∑m

j=1 dj = (m− 1)d. If F : Rd1 × · · · × Rdm → Rd is C1,β in

a neighbourhood of some point y∗ ∈ Rd1 × · · · × Rdm for some β > 0 and

(1.9) �

m∧
j=1

�Yj(dF (y∗)) �= 0,

then there exists a neighbourhood V of y∗ and a constant C such that

(1.10)

∫
V

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C

m∏
j=1

‖fj‖L(m−1)′ (Rdj )

for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m.

It is important to point out the nondegeneracy hypothesis (1.9) need only
be imposed on some neighbourhood of the zero set of F . Some further remarks
concerning Theorem 1.2 are now in order.

Firstly, suppose we have a mapping G : (Rd−1)d−1 → R which is C1,β in a
neighbourhood of a point u∗ ∈ (Rd−1)d−1 and satisfies the nondegeneracy assump-
tion

det(∇u1G(u∗) · · ·∇ud−1
G(u∗)) �= 0.
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Then there exists a neighbourhood V of u∗ and a constant C such that∫
V

f1(u1) · · · fd−1(ud−1)fd(u1 + · · · + ud−1) δ(G(u)) du

≤ C

d∏
j=1

‖fj‖L(d−1)′(Rd−1)(1.11)

for all nonnegative fj ∈ L(d−1)′(Rd−1). This was proved in [8] for d = 3 and in [4]
for d ≥ 4, and the multilinear singular convolution estimate in (1.4) for hypersur-
faces is a consequence of (1.11). Observe that (1.11) follows from Theorem 1.2 by
taking m = d, dj = d− 1 for each j, and F : (Rd−1)d → Rd given by

F (y1, . . . , yd) = (yd − yd−1 − · · · − y1, G(y1, . . . , yd−1)).

An especially elegant case of Theorem 1.2 occurs when m = d = 3 and dj = 2
for each j. In this case, the nondegeneracy assumption (1.9) is simply that

(1.12) det
(
Y1(dF (y∗))Y2(dF (y∗))Y3(dF (y∗))

) �= 0,

where
Yj(dF (y∗)) = ∂(yj)1F (y∗)× ∂(yj)2F (y∗).

Then Theorem 1.2 tells us that there exists a neighbourhood V of y∗ in (R2)3 and
a constant C such that∫

V

f1(y1) f2(y2) f3(y3) δ(F (y)) dy ≤ C ‖f1‖L2(R2) ‖f2‖L2(R2) ‖f3‖L2(R2)

for all nonnegative f1, f2, f3 ∈ L2(R2).
One interpretation of inequality (1.10) is that it is a distributional Lp variant

of the multilinear weighted L2 estimates of Tao [12]. At the end of this section we
provide another more explicit perspective from a dispersive PDE point of view.

Next, we present our global extension of Theorem 1.2 under the additional
hypothesis that F is homogeneous of degree one. Our original motivation for
considering this setting stemmed from the appearance of certain globally defined
multilinear Radon-like transforms in diffraction tomography, and we shall elaborate
on this shortly. The hypothesis that F be homogeneous of degree one is of course
a natural assumption since it encompasses the case of linear F . Observe that
mappings F which are homogeneous of degree one are not, in general, smooth at
the origin. As a consequence, the neighbourhood V obtained from Theorem 1.2
will not contain the origin and thus a trivial globalisation argument based on a
direct isotropic scaling argument will not run.

Theorem 1.3. Suppose
∑m

j=1 dj = (m − 1)d. If F : Rd1 × · · · × Rdm → Rd is

homogeneous of degree one, with regularity C1,β for some β > 0, and

(1.13) �
m∧
j=1

�Yj(dF (ω)) �= 0
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for each ω in the unit sphere in Rd1 × · · · × Rdm , then there exists a constant C
such that ∫

Rd1×···×Rdm

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C

m∏
j=1

‖fj‖L(m−1)′(Rdj )

for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m.

There is a superficially stronger version of Theorem 1.3 where the hypothe-
sis (1.13) is made on the support of a homogeneous degree zero cutoff function ψ,
and the resulting inequality is replaced by∫

Rd1×···×Rdm

m∏
j=1

fj(yj) δ(F (y))ψ(y) dy ≤ C

m∏
j=1

‖fj‖L(m−1)′(Rdj ).

This fact, which is immediately apparent from the forthcoming proof, allows The-
orem 1.3 to be applied in situations where the form in (1.13) has vanishing points.
Indeed our argument yields a more quantitative result where the hypothesis (1.13)
is replaced with

(1.14)
∣∣∣� m∧

j=1

�Yj(dF (ω))
∣∣∣ ≥ ε

on the support of the cutoff function ψ. In this situation, as may be readily
observed from our arguments, we may conclude that

(1.15)

∫
Rd1×···×Rdm

m∏
j=1

fj(yj) δ(F (y))ψ(y) dy ≤ C ε−γ
m∏
j=1

‖fj‖L(m−1)′(Rdj )

for some positive exponent γ. The value of γ that our argument produces is
unfortunately quite far from optimal; a change of variables argument involving
linear F shows that γ cannot be smaller than 1/(m− 1).

Again, we emphasise that (1.13) (or (1.14)) only need hold for each unit vec-
tor ω which belongs to some neighbourhood of the zero set of F . We can see the
importance of this in the example F : (R2)3 → R3 given by

F (y1, y2, y3) = (y3 − y1 − y2, |y1| − |y2|)
since although the modulus function ceases to be smooth at the origin, F is smooth
at unit vectors ω belonging to a small neighbourhood of the zero set of F .

Similar explicit examples of globally defined multilinear Radon-like transforms
arise in diffraction tomography, and it was these specific operators that inspired
Theorem 1.3. A simple example arises in the theory of obstacle scattering, and
in particular in the recovery of singularities (in the scale of classical L2 Sobolev
spaces) of a potential q by its so-called Born approximation qB from backscat-
tering data. As may be seen (for example in [10]), smoothing estimates for the
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mapping q 
→ q − qB may be reduced to bounds on certain multilinear operators
comprising the associated Born series1. Of particular relevance in [10] are smooth-
ing estimates for the second term of the Born series, and in particular of its so-called
“spherical part”, S(q), defined by

(1.16) Ŝ(q)(x) =
iπ

|x|
∫
Γ(x)

q̂(x− y) q̂(y) dσx(y),

where ̂ denotes the n-dimensional Fourier transform, Γ(x) the sphere centered
at x/2 and radius |x|/2 in Rn, and dσx the arclength measure on Γ(x). Crucial to
the results in [10] is the establishment of Ḣs1×Ḣs2 → Ḣs3 bounds for S(q) in three
dimensions, for certain s1, s2, s3 ∈ R; here Ḣs denotes the usual homogeneous L2

Sobolev space of order s. From the definition of the Ḣs norm, this bound is quickly
recast as an L2 × L2 → L2 bound on the bilinear operator

Ls1,s2,1−s3(f, g)(x) =
1

|x|1−s3

∫
Γ(x)

f(y)

|y|s1
g(x− y)

|x− y|s2 dσx(y).

By duality, this L2 bound may then be further recast as an L2 × L2 × L2 bound
on the trilinear form

(1.17) Λa,b,c(f, g, h) =

∫
(R2)3

f(y)

|y|a
g(z)

|z|b
h(x)

|x|c δ(F (x, y, z)) dxdy dz,

where F : (R2)3 −→ R3 is given by

F (x, y, z) =
(
x− y − z,

∣∣∣y − x

2

∣∣∣− ∣∣∣x
2

∣∣∣ ).
Here we have set a = s1, b = s2 and c = 1 − s3. A straightforward calculation
shows that in this particular case the left-hand side of (1.13) or (1.14) is given by

(1.18)
∣∣∣� m∧

j=1

�Yj(dF (x, y, z))
∣∣∣ = |x · (y − x/2)⊥|

2 |x| |y − x/2| =
1

2
| sin(θ(x, y − x/2))|

on the zero set of F , where y⊥ = (−y2, y1) and θ(x, y) denotes the angle be-
tween two vectors x, y ∈ R2. The form in (1.17) resembles those appearing in
our global multilinear Radon-like transform result (Theorem 1.3), with the excep-
tion of the powers of |x|, |y| and |z| that feature and the fact that the crucial
quantity in (1.18) fails to be bounded below. However, a suitable decomposition
away from the vanishing set of (1.18) allows us to express (1.17) as a sum of
multilinear Radon-like transforms which do fall into the class that we consider
in this paper. More specifically, if {ψj}j≥0 is a partition of unity on (R2)3\{0}
with each ψj homogeneous of degree zero and adapted to the set Γj = {(x, y, z) ∈
(R2)3 : | sin(θ(x, y − x/2))| ∼ 2−j}, then on {F = 0} ∩ Γj it is straightforward to

1We refer the reader to [10] and the references there for the relevant background to this
singularity recovery problem, including the definition of the Born series and approximation.
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observe that |y|a|z|b|x|c ∼ 2−aj|x|a+b+c and, by construction, the form in (1.18)
is bounded below by a constant multiple of 2−j . Setting a + b + c = 0 yields

Λa,b,c =
∑

j Λ
(j)
a,b,c, where

(1.19) Λ
(j)
a,b,c(f, g, h) ∼ 2aj

∫
(R2)3

f(y) g(z)h(x) δ(F (x, y, z))ψj(x, y, z) dxdy dz.

The forms Λ
(j)
a,b,c are indeed of the type that we consider in this paper, and we may

apply the estimate (1.15) with ε ∼ 2−j to obtain

Λa,b,c(f, g, h) �
∞∑
j=0

2γj 2aj ‖f‖2 ‖g‖2 ‖h‖2,

which clearly has the desired bound provided γ + a < 0. Of course the size of γ
is decisive here. If we could take γ = 1/2 in (1.15) we would recover the smooth-
ing result of Ruiz and Vargas [10] (involving a gain of almost half a derivative in
q 
→ q − qB). For general γ we obtain a gain of almost 1− γ derivatives, which of
course only has content for γ < 1. Unfortunately the methods of this paper, which
are based on the local results of [4], generate still larger values of γ. Despite this
rather negative conclusion, our very general Theorem 1.3 does have the virtue of
shedding some light on the geometry of the underlying multilinear forms in this
scattering problem. The inefficiencies in our arguments that lead to the suboptimal
exponent γ in the global inequality (1.15) are an unfortunate feature of our glob-
alisation method, since the quantitative version of the local Theorem 1.2 (see the
forthcoming Theorem 2.1) does indeed carry the optimal exponent γ = 1/(m− 1).
Indeed, PDE applications of this more effective local theorem have been success-
fully found by Bejenaru and Herr in the setting of the Zahkarov system [1].

Our proof of the local Theorem 1.2 rests on the nonlinear Brascamp–Lieb
inequalities proved in [4], and proceeds via a parametrisation of the support of
the distribution δ ◦ F . Using this approach, one is led estimates of the form

(1.20)

∫
U

m∏
j=1

fj(Bj(x)) dx ≤ C

m∏
j=1

‖fj‖Lpj (Rdj ),

where U is a neighbourhood of Rd, and Bj : U → Rdj are local submersions.
See Section 2 for a precise statement of the inequalities from [4] that we need in
this paper. We also note that Lp-improving estimates of the type (1.20) have been
obtained by Tao and Wright [14] for m = 2, and Stovall [11] for m ≥ 3; in these
works, curvature plays a more prominent role than transversality, and are restricted
to the case where the fibres of the underlying mappings Bj are one-dimensional.

We provide a direct proof of Theorem 1.3 in Section 4. We note that one
may also obtain Theorem 1.3 as a consequence of the global nonlinear Brascamp–
Lieb inequalities in the companion paper [5]. In the setting of estimates of the
form (1.20), our globalisation argument is especially natural.

To conclude this section, we mention an interpretation of some of our results
from a dispersive PDE point of view. For n ∈ N, consider solutions uj : R×Rn → R
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to the dispersive PDE

(1.21) ∂tuj(t, x) = ihj(D)uj(t, x)

for 1 ≤ j ≤ n + 1. Here, D is the frequency operator i−1∇ and the hj : Rn → R

are the dispersion relations. If the initial data are sufficiently nice (say Schwartz
functions) we may write the solutions as

uj(t, x) =

∫
Rn

ûj(0)(ξ) e
2πi(thj(ξ)+x·ξ) dξ,

and consequently∫
R×Rn

n+1∏
j=1

uj(t, x) dt dx =

∫
(Rn)n+1

n+1∏
j=1

ûj(0)(ξj) δ(F (ξ)) dξ

where F : (Rn)n+1 → Rn+1 is given by

F (ξ) = (ξ1 + · · ·+ ξn+1, h1(ξ1) + · · ·+ hn+1(ξn+1)).

In this case, the nondegeneracy condition (1.9) is equivalent to the transversality
of the hypersurfaces in Rn+1 which are the graphs of the hj . If this holds then
from either Theorem 1.2 or Theorem 1.3 we obtain “interaction” estimates of the
type

(1.22)

∣∣∣∣
∫
V⊆R×Rn

n+1∏
j=1

uj(t, x) dt dx

∣∣∣∣ ≤ C

n+1∏
j=1

‖ûj(0)‖Ln′(Rn).

When n = 2, (1.22) can be interpreted as a certain weak form of the sharp trilinear
Fourier extension inequality from [7]. In the case of n+1 solutions of the classical
Schrödinger equation, where hj(ξ) = −|ξ|2 for each j, we have the appropriate
transversality by insisting that the initial data have Fourier transforms whose sup-
ports do not simultaneously meet any affine hyperplane. When each hj(ξ) = |ξ|
(strictly speaking, giving rise to a pseudo-differential operator associated to the
wave equation), by Theorem 1.3 we may take V = R× Rn if we have initial data
whose Fourier transforms are supported in appropriate conical regions.

Finally, we mention the case where hj(ξ) = −vj · ξ for some fixed vj ∈ Rn, in
which case (1.21) is of course a transport equation. When the vectors v1, . . . , vn+1

are non-coplanar we obtain global estimates in (1.22). Although the exponents
in (1.22) continue to be optimal in this setting, we note that for n ≥ 3 the stronger
estimate

(1.23)

∣∣∣∣
∫
R×Rn

n+1∏
j=1

uj(t, x) dt dx

∣∣∣∣ ≤ C

n+1∏
j=1

‖uj(0)‖Ln(Rn)

is true, with (1.22) following by an application of the Hausdorff–Young inequality
on the right-hand side of (1.23). Since uj(t, x) = uj(0)(x − vjt), the inequal-
ity (1.23) is simply a reinterpretation of the classical Loomis–Whitney inequality.
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This last observation suggests that inequality (1.10) in Theorem 1.2 may be
strengthened for m ≥ 3 to∫

V

m∏
j=1

fj(yj) δ(F (y)) dy ≤ C

m∏
j=1

‖f̂j‖Lm−1(Rdj ).

Organisation of the paper. In Section 2 we prove a certain quantitative ver-
sion of Theorem 1.2. In Section 3 we deduce the multilinear singular convolution
estimates in Theorem 1.1. Finally, Theorem 1.3 is proved in Section 4.
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for his significant contribution during the early stages of this work. We are also
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2. The local case

We begin with a quantitative version of Theorem 1.2 which extends earlier versions
in [8] and [4], and from which we deduce Theorem 1.1 in Section 3.

Theorem 2.1. Let β, ε, κ > 0 be given and suppose
∑m

j=1 dj = (m − 1)d. If

F : Rd1 × · · · × Rdm → Rd is such that ‖F‖C1,β ≤ κ in a neighbourhood of some
point y∗ ∈ Rd1 × · · · × Rdm and

∣∣∣ � m∧
j=1

�Yj(dF (y∗))
∣∣∣ ≥ ε

then there exists a neighbourhood V of y∗, depending only on β, ε, κ and d, and a
constant C depending only on d, such that∫

V

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C ε−1/(m−1)
m∏
j=1

‖fj‖L(m−1)′ (Rdj )

for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m.

It will be clear from the proof of Theorem 2.1 that the rate of blow-up ε−1/(m−1)

is sharp.
Before beginning the proof of Theorem 2.1 we offer an outline in the case

explicitly presented in the introduction, where m = d = 3 and each dj = 2.
For additional simplicity, set y∗ = 0. The first step is to reduce to a “canoni-
cal” mapping F via linear changes of variables. Specifically, there exist invertible
matrices M and N such that if

F̃ := N ◦ F ◦M−1
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then

(2.1) dF̃ (0) =

⎛
⎝ 1 0 0 1 0 0

0 1 0 0 1 0
0 0 1 0 0 1

⎞
⎠ .

To see this, let n1, n2, n3 ∈ S2 be given by

n1 =
Y3(dF (0))

|Y3(dF (0))| , n2 =
Y2(dF (0))

|Y2(dF (0))| , n3 =
Y1(dF (0))

|Y1(dF (0))| ,

and let N be the matrix whose ith row is equal to ni. Furthermore, let N1, N2

and N3 be the matrices given by

N1 =

(
n1

n2

)
, N2 =

(
n1

n3

)
, N3 =

(
n2

n3

)

and let F1, F2 and F3 be the matrices given by

Fj =
(
∂(yj)1F (0) ∂(yj)2F (0)

)
for j = 1, 2, 3. Finally, we let M be the block diagonal matrix given by

M =

⎛
⎝ E1N1F1 0 0

0 E2N2F2 0
0 0 E3N3F3

⎞
⎠ ,

where E1 and E3 are simply the identity matrices, and E2 is the elementary matrix
which reflects in the line spanned by (1, 1). It is easy to verify that the above
construction yields (2.1). Observe that using the scalar quadruple product formula,
one obtains

| det(NjFj)| = |Yj(dF (0))| | det(N)|
for each j = 1, 2, 3, which allows one to obtain the desired quantitative control.

Note that if F were the linear map given by (2.1) then, by parametrising the
zero set of F , one is led to linear mappings Bj : R

3 → R2 whose kernels are
one-dimensional and constitute the coordinate axes. An appropriate form of the
implicit function theorem allows one to handle small nonlinear perturbations of
this situation, and the required multilinear Radon transform estimate follows in
this simple situation from the nonlinear Loomis–Whitney inequality in [8]. At
this stage, in the general case, we rely on the following nonlinear Brascamp–Lieb
inequalities.

Theorem 2.2 ([4]). Suppose that for each 1 ≤ j ≤ m the mappings Bj : R
d → Rdj

are C1,β submersions in a neighbourhood of a point x0 ∈ Rd. Suppose further that

(2.2)
m⊕
j=1

ker dBj(x0) = Rd.
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Then there exists a neighbourhood U of x0 and a constant C such that

(2.3)

∫
U

m∏
j=1

fj ◦Bj ≤ C

m∏
j=1

‖fj‖Lm−1(Rdj )

for all nonnegative fj ∈ Lm−1(Rdj ), 1 ≤ j ≤ m.

However, for most cases, the kernels of the derivatives of the mappings Bj at
the point in question do not form a direct sum decomposition. So, as a cautionary
note, in general, a further “tensoring” argument is needed at this stage in order
to apply Theorem 2.2. For this to proceed, we combine the Bj appropriately in
“block” form, to give rise to mappings which do satisfy the direct sum hypotheses
of Theorem 2.2 (see [4] for the origin of this idea).

Proof of Theorem 2.1. We have
∑m

j=1 dj = (m− 1)d, in which case we frequently

identify (y1, . . . , ym) ∈ Rd1 × · · · × Rdm with (u1, . . . , u(m−1)d) ∈ R(m−1)d.

We first prove that the following special case implies Theorem 2.1.

Proposition 2.3. Let β, κ > 0 be given and suppose
∑m

j=1 dj = (m − 1)d. If

F : Rd1 × · · · × Rdm → Rd is such that ‖F‖C1,β ≤ κ in a neighbourhood of some
point y∗ ∈ Rd1 × · · · × Rdm , and dF (y∗) : Rd1 × · · · × Rdm → Rd is given by

(2.4) (dF (y∗)u)i =
m−2∑
j=0

ui+jd

for 1 ≤ i ≤ d, then there exists a neighbourhood V of y∗, depending only on β, κ
and d, and a constant C depending only on d, such that∫

V

m∏
j=1

fj(uj) δ(F (u)) du ≤ C

m∏
j=1

‖fj‖L(m−1)′(Rdj )

for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m.

We remark that if F satisfies (2.4) then dF (y∗) is the augmented matrix compri-
singm−1 copies of the identity matrix Id, and moreover | �∧m

j=1 �Yj(dF (y∗))| = 1.

The proof that Proposition 2.3 implies Theorem 2.1 is based on the change of
variables outlined above. To set this up in general, for 1 ≤ j ≤ m, we let

K∗
j = {d− (d∗1 + · · ·+ d∗j−1 + d∗j ) + 1, . . . , d− (d∗1 + · · ·+ d∗j−1)},

where d∗j := d− dj . Clearly, K∗
j has d∗j elements.

Now let {nk : k ∈ K∗
j } be any orthonormal basis for the orthogonal complement

of the space spanned by {dF (y∗)(ek) : k ∈ Kj}, and let N be the d × d matrix
whose ith row is equal to ni for each 1 ≤ i ≤ d.

Denote by Nj the dj × d matrix obtained by deleting from N the rows nk for
each k ∈ K∗

j , and by Fj the d × dj matrix obtained by deleting the kth column
from dF (y∗) for k /∈ Kj .
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From Lemma A.1, for each 1 ≤ j ≤ m, we have

(2.5) � Yj(dF (y∗)) = ‖Yj(dF (y∗))‖Λdj (Rd)

∧
k∈K∗

j

nk.

We shall use (2.5) to demonstrate various identities involving the determinants of
the matrices describing the changes of variables, from which we obtain inequalities
which allow us to establish the claimed dependencies on the sizes of the neighbour-
hoods and the constants arising in Theorem 2.1.

It follows from (2.5) that

∣∣∣ � m∧
j=1

�Yj(dF (y∗))
∣∣∣ = ∣∣∣ � m∧

j=1

∧
k∈K∗

j

nk

∣∣∣ m∏
j=1

‖Yj(dF (y∗))‖Λdj (Rd)

and therefore

(2.6)
∣∣∣ � m∧

j=1

�Yj(dF (y∗))
∣∣∣ = | det(N)|

m∏
j=1

‖Yj(dF (y∗))‖Λdj (Rd).

Furthermore,

| det(NjFj)| =
∣∣∣〈 ∧

k/∈K∗
j

nk,
∧

�∈Kj

dF (y∗)(e�)
〉
Λdj (Rd)

∣∣∣
=
∣∣∣〈 ∧

k/∈K∗
j

ak, Yj(dF (y∗))
〉
Λdj (Rd)

∣∣∣
= ‖Yj(dF (y∗))‖Λdj (Rd)

∣∣∣〈 ∧
k/∈K∗

j

nk, �
∧

�∈K∗
j

n�

〉
Λdj (Rd)

∣∣∣
= ‖Yj(dF (y∗))‖Λdj (Rd)| det(N)|.

Consequently,

(2.7)

m∏
j=1

| det(NjFj)| = | det(N)|m−1
∣∣∣ � m∧

j=1

�Yj(dF (y∗))
∣∣∣.

Now define M to be the block diagonal
∑m

j=1 dj ×
∑m

j=1 dj matrix with dj ×dj
invertible matrices Mj on the diagonal. Here Mj is given by

Mj = E−1
j AjFj

where Ej : R
dj → Rdj is given by

Ej(x1, . . . , xdj ) = (xd′
1+···+d′

j−1+1, . . . , xdj , x1, . . . , xd′
1+···+d′

j−1
)

for 2 ≤ j ≤ m− 1, E1 = Id1 and Em = Idm . Since
∑m

�=1 d
′
� = d and each d′� ≥ 1 it

follows that
j−1∑
�=1

d� < (j − 1)d <

j∑
�=1

d�
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for each 2 ≤ j ≤ m − 1; in particular, it follows that each Ej is well defined. By

construction, we have that if F̃ : Rd1 × · · · × Rdm → Rd is the map given by

F̃ := N ◦ F ◦M−1,

then dF̃ (ỹ∗) : Rd1 × · · · × Rdm → Rd is the map given by

(dF̃ (ỹ∗)u)i =
m−2∑
j=0

ui+jd

for 1 ≤ i ≤ d, where ỹ∗ :=My∗.
By changes of variables,∫

V

m∏
j=1

fj(yj) δ(F (y)) dy =
| det(N)|
| det(M)|

∫
M(V )

m∏
j=1

(fj ◦M−1
j )(yj) δ(F̃ (y)) dy,

where the neighbourhood V of y∗ shall be chosen momentarily. It follows from (2.6)
that | det(N)| is bounded below by a constant depending only on ε, κ and d. Since
| det(M)| =

∏m
j=1 | det(Mj)| and | det(Mj)| = | det(NjFj)| it follows from (2.7)

that

(2.8) | det(M)| = | det(N)|m−1
∣∣∣ � m∧

j=1

�Yj(dF (y∗))
∣∣∣

and | det(M)| is also bounded below by a constant depending only on ε, κ and d.

Therefore, the operator norm of M−1 and, consequently, the C1,β norm of F̃ are
bounded above by a constant depending only on β, ε, κ and d. By Proposition 2.3
there exists a neighbourhood V , depending only on β, ε, κ and d, and a constant C,
depending only on d, such that∫

M(V )

m∏
j=1

(fj ◦M−1
j )(yj) δ(F̃ (y)) dy ≤ C

m∏
j=1

‖fj ◦M−1
j ‖L(m−1)′ (Rdj ).

Therefore,∫
V

m∏
j=1

fj(uj)δ(F (y)) dy ≤ C
| det(N)|
| det(M)|

( m∏
j=1

| det(Mj)|
)1/(m−1)′ m∏

j=1

‖fj‖L(m−1)′ (Rdj )

≤ C ε−1/(m−1)
m∏
j=1

‖fj‖L(m−1)′(Rdj ).

The second inequality follows from (2.8). This concludes our proof that Theo-
rem 2.1 is implied by Proposition 2.3.

Proof of Proposition 2.3. Without loss of generality we suppose that y∗ = 0 and
F (0) = 0. Since

dF (0)|span{er :(m−2)d+1≤r≤(m−1)d} = Id,
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we obtain from Theorem B.1 that there exists a neighbourhood W of the origin
in R(m−2)d and a mapping η :W → Rd such that, for each

x = (u1, . . . , um−2, (um−1)1, . . . , (um−1)dm−1−d′
m
) ∈ W,

we have F (x, η(x)) = 0 and η(0) = 0. The neighbourhoodW depends only on β, κ
and d, and the mapping η satisfies ‖η‖C1,β ≤ κ̃ for some constant κ̃ which depends
only on β, κ and d.

Let Bj : W ⊂ R(m−2)d → Rdj be the map given by

Bj(x) =
(
x1+

∑j−1
�=1 d�

, x2+
∑j−1

�=1 d�
, . . . , x∑j

�=1 d�

)
for 1 ≤ j ≤ m− 2,

Bm−1(x) =
(
x1+

∑m−2
�=1 d�

, . . . , x(m−2)d,−η1(x), . . . ,−ηd′
m
(x)
)

and
Bm(x) =

(− ηd′
m+1(x), . . . ,−ηd(x)

)
.

Let S(j) denote the (m − 2)-tuple obtained by deleting j − 2 (mod m) and

j−1 (mod m) from them-tuple (1, . . . ,m). Then define B⊕
j : W ⊂ R(m−2)d → R

d⊕
j ,

where

d⊕j =
m−2∑
�=1

d
S

(j)
�

,

by
B⊕

j (x) = (B
S

(j)
1

(x), . . . , B
S

(j)
m−2

(x)).

Lemma 2.4. Suppose 3 ≤ j ≤ m− 1. Then

ker dB⊕
1 (0) = span

{
er : r = 1 +

m−2∑
�=1

d�, . . . , (m− 2)d
}
,

ker dB⊕
2 (0) = span{er : r = d′m + 1, . . . , d1},

ker dB⊕
j (0) = span

{
er − er+d : r = 1 +

j−3∑
�=1

d�, . . . ,
( j−1∑

�=1

d�

)
− d
}
,

ker dB⊕
m(0) = span

{
er − er+d : r = 1 +

m−3∑
�=1

d�, . . . , (m− 3)d
}

+ span{es : s = (m− 3)d+ 1, . . . , d′m + (m− 3)d}.
Proof. Of course, for 1 ≤ j ≤ m − 2, Bj is linear and therefore dBj(0) = Bj .
By the chain rule,

dη(0) = −dF (0)|span{er :1≤r≤(m−2)d}
because dF (0)|span{er :(m−2)d+1≤r≤(m−1)d} = Id. Hence,

dBm−1(0)x =
(
x1+

∑m−2
�=1 d�

, . . . , x(m−2)d,−
m−3∑
�=0

x1+�d, . . . ,−
m−3∑
�=0

xd′
m+�d

)
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and

dBm(0)x =
(
−

m−3∑
�=0

xd′
m+1+�d, . . . ,−

m−3∑
�=0

xd+�d

)
.

The claimed expression for the kernel of each dB⊕
j (0) now follows from the fact

that

ker dB⊕
j (0) =

m−2⋂
�=1

ker dB
S

(j)
�

(0)

and straightforward considerations. �

Corollary 2.5. We have

m⊕
j=1

ker dB⊕
j (0) = R(m−2)d.

Proof. For 3 ≤ j ≤ m− 1, define

B1 :=
{
er : r = 1 +

m−2∑
�=1

d�, . . . , (m− 2)d
}

B2 := {er : r = d′m + 1, . . . , d1}

Bj :=
{
er − er+d : r = 1+

j−3∑
�=1

d�, . . . ,
( j−1∑

�=1

d�

)
− d
}

Bm :=
{
er − er+d : r = 1 +

m−3∑
�=1

d�, . . . , (m− 3)d
}

∪ {es : s = (m− 3)d+ 1, . . . , d′m + (m− 3)d},
and define

B =

m⋃
j=1

Bj .

Since
∑m

j=1 |Bj | = (m− 2)d it suffices to check that span(B) = R(m−2)d. In order
to show this, we prove that er ∈ span(B) for each r ∈ {1, . . . , (m− 2)d}. To help
clarify the notation in the rest of the proof, note that

{1, . . . , (m− 2)d} =

m−1⋃
j=2

{
1 +

j−2∑
�=1

d�, . . . ,

j−1∑
�=1

d�

}⋃{
1 +

m−2∑
�=1

d�, . . . , (m− 2)d
}

and in our considerations we split

{
1 +

j−2∑
�=1

d�, . . . ,

j−1∑
�=1

d�

}
=
{
1 +

j−2∑
�=1

d�, . . . , d
′
m + (j − 2)d

}

∪{d′m + 1 + (j − 2)d, . . . ,

j−1∑
�=1

d�

}
.
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Case 1: r ∈ {1 +∑m−3
�=1 d�, . . . , d

′
m + (m− 3)d}.

Clearly we have er∈ Bm ⊆span(B) for r ∈ {(m− 3)d+ 1, . . . , d′m + (m− 3)d}.
For the remaining r ∈ {1 +

∑m−3
�=1 d�, . . . , (m − 3)d} we have r + d ∈ {1 +∑m−2

�=1 d�, . . . , (m− 2)d}, so
er = (er − er+d) + er+d ∈ Bm +B1 ⊆ span(B).

Case 2: r ∈ {1 +∑j−2
�=1 d�, . . . , d

′
m + (j − 2)d}, 2 ≤ j ≤ m− 2.

Write

er =

m−j−1∑
�=1

(er+(�−1)d − er+�d) + er+(m−j−1)d.

We have

r + (� − 1)d ≥ 1 + (� − 1)d+

j−2∑
k=1

dk ≥ 1 +

j+�−3∑
k=1

dk

and

r + (�− 1)d ≤ d′m + (j + �− 3)d ≤
( j+�−1∑

k=1

dk

)
− d.

For each 1 ≤ � ≤ m− j − 1 we have 2 ≤ j ≤ �+ j − 1 ≤ m− 2, so

er+(�−1)d − er+�d ∈ Bj+�.

Similarly, we have r + (m − j − 1)d ∈ {1 +
∑m−3

�=1 d�, . . . , d
′
m + (m − 3)d} and

therefore er+(m−j−1)d ∈ span(B) by case 1. Hence er ∈ span(B) for r ∈ {1 +∑j−2
�=1 d�, . . . , d

′
m + (j − 2)d}, where 2 ≤ j ≤ m− 2.

Case 3: r ∈ {d′m + 1, . . . , d1}.
Immediately we have er ∈ B2 ⊆ span(B) for such r.

Case 4: r ∈ {d′m + 1 + (j − 2)d, . . . ,
∑j−1

�=1 d�}, 3 ≤ j ≤ m− 1.

Write

er =

j−2∑
�=1

(er−(�−1)d − er−�d) + er−(j−2)d.

Since

r − �d ∈
{
1 +

j−�−2∑
k=1

dk, . . . ,
( j−�∑

k=1

dk

)
− d
}

and r−(j−2)d ∈ {d′m+1, . . . , d1}, we get er−(�−1)d−er−�d ∈ Bj−�−1 and, by case 3,

er−(j−2)d ∈ B2. Hence, er ∈ span(B) for r ∈ {d′m+1+(j− 2)d, . . . ,
∑j−1

�=1 d�} and
each 2 ≤ j ≤ m− 1.

Case 5: r ∈ {1 +∑m−2
�=1 , . . . , (m− 2)d}.

Immediately we have er ∈ B1 for such r. This completes our proof of Corol-
lary 2.5. �
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Given Corollary 2.5 we can apply Theorem 1.3 of [4], a certain quantitative
version of Theorem 2.2, to obtain a neighbourhood U of the origin in R(m−2)d,
depending on β, κ and d, and a constant C, depending on d, such that∫

U

m∏
j=1

gj(B
⊕
j (x)) dx ≤ C

m∏
j=1

‖gj‖
Lm−1(R

d
⊕
j )

for all gj ∈ Lm−1(Rd⊕
j ). Given nonnegative fj ∈ L(m−1)′(Rdj ) we let

f⊗
j =

m−2⊗
�=1

f
1/(m−2)

S
(j)
�

so that ∫
U

m∏
j=1

f⊗
j (B⊕

j (x)) dx =

∫
U

m∏
j=1

fj(Bj(x)) dx

and
m∏
j=1

‖f⊗
j ‖

Lm−1(R
d
⊕
j )

=

m∏
j=1

‖fj‖L(m−1)′ (Rdj ),

and therefore ∫
U

m∏
j=1

fj(Bj(x)) dx ≤ C
m∏
j=1

‖fj‖L(m−1)′ (Rdj ).

Finally, since F (x, η(x)) = 0 for x ∈W ⊂ R(m−2)d,

dF (0)|span{er :(m−2)d+1≤r≤(m−1)d} = Id,

and ‖F‖C1,β ≤ κ, we obtain a neighbourhood V ⊂ R(m−1)d, depending on β, κ
and d, such that∫

V

m∏
j=1

fj(uj)δ(F (u)) du ≤ 2

∫
U

m∏
j=1

fj(Bj(x)) dx.

This completes the proof of Proposition 2.3. �

Proposition 2.3 implies Theorem 2.1 and thus our proof of Theorem 2.1 is
complete. �

3. Multilinear singular convolution

In this section, we prove Theorem 1.1 and demonstrate that the exponents are
sharp.

Proof of Theorem 1.1. Recall that it suffices to handle the case where p′j = (m− 1)q′

for each 1 ≤ j ≤ m. Furthermore, since the operator

(f1, . . . , fm) 
→ f1dσ1 ∗ · · · ∗ fmdσm
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is trivially bounded as a mapping L1(dσ1)× · · · × L1(dσm) → L1(Rd), using mul-
tilinear interpolation, it suffices to handle the case (p, q) = ((m− 1)′,∞).

If x ∈ Rd then

f1dσ1 ∗ · · · ∗ fmdσm(x)

=

∫
Rd1×···×Rdm

m∏
j=1

fj(Σj(yj))δ(Σ1(y1) + · · ·+Σm(ym)− x) dy

=

∫
Rd1×···×Rdm

m∏
j=1

gj(yj)δ(F (y)) dy,

where, of course, gj = fj ◦ Σj and

F (y) = Σ1(y1) + · · ·+Σm(ym)− x.

As a matrix, dF (0) is the augmented matrix comprised of dΣ1(0), . . . , dΣm(0), and
therefore

Yj(dF (0)) =

dj∧
k=1

dΣj(0)(ek).

If we take any orthonormal basis {nk : k ∈ K∗
j} for the orthogonal complement of

the image of dΣj(0), or equivalently for ker(dΣj(0))
∗, then

�Yj(dF (0)) = ‖Yj(dF (0))‖Λdj (Rd)

∧
k∈K∗

j

nk

by Lemma A.1. Consequently,

�

m∧
j=1

�Yj(dF (0)) =

m∏
j=1

‖Yj(dF (0))‖Λdj (Rd) det(n1 · · ·nd)

and by (1.5) this quantity is nonzero. Since F ∈ C1,β uniformly in x belonging to
a sufficiently small neighbourhood of the origin, by Theorem 2.1, it follows that
there is some constant C such that

‖f1dσ1 ∗ · · · ∗ fmdσm‖L∞(Rd) ≤ C

m∏
j=1

‖fj‖L(m−1)′ (dσj)

if the support of each fj ∈ L(m−1)′(dσj) is sufficiently close to the origin. This
completes the proof when (p, q) = ((m−1)′,∞) and hence the proof of Theorem 1.1
entirely. �

To see that the exponents are sharp, suppose, setting a contradiction, that
when 1 ≤ q ≤ ∞ and for some p′ > (m− 1)q′ there exists a constant C such that

(3.1) ‖f1dσ1 ∗ · · · ∗ fmdσm‖Lq(Rd) ≤ C
m∏
j=1

‖fj‖Lp(dσj)
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for all fj ∈ Lp(dσj). It follows in particular that

(3.2) ‖f1dσ1 ∗ · · · ∗ fmdσm‖L2(Rd) ≤ C

m∏
j=1

‖fj‖Lr(dσj)

for all fj ∈ Lr(dσj), where r < (2m − 2)′. To see this, interpolate (3.1) with the

L1(dσ1)× · · · × L1(dσm) → L1(Rd) estimate if q > 2, or with the L(m−1)′(dσ1)×
· · · × L(m−1)′(dσm) → L∞(Rd) estimate if q < 2. To see that (3.2) is false, it
suffices to consider the case where the mappings Σj : R

dj → Rd are linear and thus

m⊕
j=1

kerΣ∗
j = Rd.

Setting gj = fj ◦ Σj , by Plancherel’s theorem and the linearity of the Σj we have

‖f1dσ1 ∗ · · · ∗ fmdσm‖2L2(Rd) =

∫
Rd

m∏
j=1

|ĝj|2(Σ∗
jx) dx

and therefore (3.2) is equivalent to

(3.3)

∫
Rd

m∏
j=1

|ĝj|2(Σ∗
jx) dx ≤ C

m∏
j=1

‖gj‖2Lr(Rdj )

for all gj ∈ Lr(Rdj ). However, an elementary scaling argument shows that a nec-
essary condition for (3.3) to hold is r ≥ (2m−2)′, giving the desired contradiction.

4. The global case

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. We let κ dominate the C1,β norm of F , and note that there
exists ε > 0 such that

(4.1)
∣∣∣ � m∧

j=1

�Yj(dF (ω))
∣∣∣ ≥ ε

for all ω in the unit sphere. Using the local result in Theorem 2.1, we obtain
0 < δ < 1 depending on at most β, κ and d, and a constant C depending on at
most ε and d satisfying

(4.2)

∫
U

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C
m∏
j=1

‖fj‖L(m−1)′ (Rdj )
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for all nonnegative fj ∈ L(m−1)′(Rdj ), 1 ≤ j ≤ m, where U = B(ω, δ). By (4.2),
scaling, and the homogeneity of F ,

∫
Γ(ω,δ)

m∏
j=1

fj(yj) δ(F (y)) dy ≤ C
∑
k∈Z

m∏
j=1

‖fj‖L(m−1)′ (λkUj)
.

Here, Uj is the subset of Rdj given by

Uj = πj(U ∩ F−1(0)),

where λ = 1 + cδ, for some appropriately chosen absolute constant c > 0, and
πj : R

d1 × · · · × Rdm → Rdj is the coordinate projection given by

πj(y1, . . . , ym) = yj.

Lemma 4.1. For each ω in the unit sphere, there exist j1(ω) and j2(ω) which
are distinct and such that, for r = 1, 2, the sets {λkUjr(ω) : k ∈ Z} have bounded
(independent of ω) overlap.

We remark that if one drops from Uj the intersection with the zero set of F ,
the claimed bounded overlap property clearly ceases to hold.

Proof. We shall prove that there exists η > 0 such that, for each ω in the inter-
section of the unit sphere with the zero set of F , we have |πj(ω)| ≥ η for at least
two 1 ≤ j ≤ m.

Suppose ω is on the unit sphere with F (ω) = 0, and suppose |πj(ω)| ≥ η only
when j = j1. Using the homogeneity of F , we have ω ∈ ker dF (ω) and so

m∑
j=1

πj(F
(�)) · πj(ω) = 0

for each 1 ≤ � ≤ d, where F (�) is the �th row of dF (ω). Therefore

(4.3) |πj1(F (�)) · πj1 (ω)| ≤ Cκ,m η

for each 1 ≤ � ≤ d. By (4.1) it follows that∥∥∥ ∧
k∈Kj1

dF (ω)(ek)
∥∥∥
Λ

dj1 (Rd)
≥ Cκ,m ε ,

which means that at least one of the components (with respect to the induced basis
of Λdj1 (Rd)) of

∧
k∈Kj1

dF (ω)(ek) is bounded below in magnitude by Cκ,mε. This

component is the determinant of a certain dj1 × dj1 matrix, and as a consequence,
we may write

πj1(ω) =

d∑
�=1

α� πj1(F
(�))
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for some α1, . . . , αd ∈ R satisfying |α�| ≤ Cκ,mε
−1. Thus, by (4.3),

|πj1 (ω) · πj1(ω)| ≤ Cε,κ,d,m η ,

which means that |ω| = ∑m
j=1 |πj(ω)| ≤ 1/2 for sufficiently small η, depending

on ε, κ, d, and m. From this contradiction we obtain the desired conclusion. �

Now∫
Γ(ω,δ)

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C
∏

j �=j1(ω),
j2(ω)

‖fj‖L(m−1)′ (Rdj )

∑
k∈Z

∏
j=j1(ω),
j2(ω)

‖fj‖L(m−1)′ (λkUj)

and by Cauchy–Schwarz, the embedding �(m−1)′(Z) ⊂ �2(Z), and Lemma 4.1,
it follows that ∫

Γ(ω,δ)

m∏
j=1

fj(yj)δ(F (y)) dy ≤ C

m∏
j=1

‖fj‖L(m−1)′ (Rdj ).

By compactness, the fully global estimate over Rd1 × · · · × Rdm follows. �

There is obviously some “slack” in the above argument where the embedding
�(m−1)′(Z) ⊂ �2(Z) was used. This slackness was not present in the analogous
argument in [5].

A. Some exterior algebra

Lemma A.1. If {v1, . . . , vr} ⊂ Rd is a linearly independent set and {n1, . . . , nr′}
is any orthonormal basis for the orthogonal complement of the space spanned by
{v1, . . . , vr}, where r + r′ = d, then

�

r∧
k=1

vk =
∥∥∥ r∧

k=1

vk

∥∥∥
Λr(Rd)

r′∧
k=1

nk.

Proof. One notes that {v1, . . . , vr, n1, . . . , nr′} is a basis for Rd and so we have the
induced basis B for Λr′(Rd). By definition of the Hodge star we want to show that

(A.1)
∥∥∥ r∧

k=1

vk

∥∥∥
Λr(Rd)

〈 r′∧
k=1

nk, u
〉
Λr′ (Rd)

σ = u ∧
r∧

k=1

vk

for each u ∈ Λn′
(Rd), where σ is the unit basis element for Λd(Rd). It suffices to

check (A.1) for u ∈ B and we divide this task into the cases where u =
∧r′

k=1 nk

and u �= ∧r′

k=1 nk. In the latter case is it easy to see that both sides of (A.1) are
equal to zero.
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If u =
∧r′

k=1 nk then

∥∥∥ r∧
k=1

vk

∥∥∥
Λr(Rd)

〈 n′∧
k=1

nk,

r′∧
�=1

n�

〉
Λr′ (Rd)

=
∥∥∥ r∧

k=1

vk

∥∥∥
Λr(Rd)

det(nk · n�)1≤k,�≤r′ =
∥∥∥ r∧

k=1

vk

∥∥∥
Λr(Rd)

,

because {n1, . . . , nr′} is orthonormal. Now

u ∧
r∧

k=1

vk = det(n1 · · ·nr′ v1 · · · vr)σ

and, using orthogonality considerations,

det(n1 · · ·nr′ v1 · · · vr)2 = det(n1 · · ·nr′ v1 · · · vr)T (n1 · · ·nr′ v1 · · · vr)

= det(vk · v�)1≤k,�≤r =
∥∥∥ r∧

k=1

vk

∥∥∥2
Λr(Rd)

.

Hence (A.1) holds in this case too, and this completes the proof of the lemma. �

B. A quantitative version of the implicit function theorem

We provide a quantitative version of the implicit function theorem for C1,β func-
tions.

Theorem B.1. Suppose d, n ∈ N and β, κ > 0 are given. Let R1, R2 > 0 be
given by

R1 = min
{
1, R2,

1

4dκ
R2

}
and R2 =

( 1

16dκ

)1/β
.

If F : Rn × Rd → Rd is such that ‖F‖C1,β ≤ κ, F (0, 0) = 0 and

dF (0, 0)|span{er :n+1≤r≤n+d} = Id,

then there exists a function η : B(0, R1) ⊂ Rn → B(0, R2) ⊂ Rd such that

F (x, η(x)) = 0 for each x belonging to B(0, R1),

and a constant κ̃, depending on at most β, κ, and n, such that ‖η‖C1,β ≤ κ̃.

For d = 1, a proof can be found in [4]. The argument in that case extends
easily to arbitrary d and we omit the details.
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